初中数学七年级上第三章整式的加减专项练习题60道带答案

合集下载

初中数学专项练习《整式的加减》50道解答题包含答案

初中数学专项练习《整式的加减》50道解答题包含答案

初中数学专项练习《整式的加减》50道解答题包含答案一、解答题(共50题)1、用“★”定义一种新运算:对于任意有理数,都有,求:(-3)★2的值.2、有理数在数轴上的对应的点如图,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|3、小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4, B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.4、若单项式5x2y和42x m y n是同类项,求m+n的值.5、若单项式4x a y b+8与单项式9x2b y3a-b的和仍是一个单项式,求这两个单项式的和.6、如图,A、B、C,依次为直线l上三点,M为AB的中点,N为BC的中点,且AM=3cm,BC=10cm,求MN的长。

7、写出下列各单项式的系数和次数:30a -x3y系数次数8、已知式是关于m的多项式,且不含一次项,求k的值.9、先化简,再求值:,其中.10、问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.试比较图1和图2中两个长方形周长M1、N1的大小(b>c).11、已知a2+2a+1=0,求2a2+4a﹣3的值.12、有理数、、在数轴上的点如图所示:化简:.13、有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c﹣a|+|c﹣b|+|a+b|.14、张老师给学生出了一道题:当时,求:的值.题目出完后,小明说:“老师给的条件是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?15、若a、b满足|a+1|+(b-3)2=0,求5a2+3b2+2(a2﹣b2)﹣(5a2﹣b2)的值.16、小明和小亮在同时计算这样一道求值题:“当a=﹣3时,求整式7a2﹣[5a2﹣(a2﹣2a)+4a2]﹣2(2a2﹣a+1)的值.”小明在计算时错把a=﹣3看成了a=3;小亮没抄错题,但他们做出的结果却是一样的,你能说明为什么吗?并算出正确的结果.17、小明做一道数学题:“已知两个多项式A,B,A=……,,计算的值.”小明误把“2A+B”看成“A+2B”,求得的结果为,请求出2A+B的正确结果.18、已知a , b为常数,且三个单项式4xy2, axy b, -5xy相加得到的和仍然是单项式。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

初中数学专项练习《整式的加减》50道计算题包含答案

初中数学专项练习《整式的加减》50道计算题包含答案

初中数学专项练习《整式的加减》50道计算题包含答案一、解答题(共50题)1、先化简,再求值:求的值,其中.2、实数a,b,c在数轴上的位置如图,化简|b+c|-|b+a|+|a+c|.3、已知:A=2x2+xy﹣3,B=﹣x2+2xy﹣1,求2A﹣B.4、先化简,再求值:若多项式x2﹣2mx+3与x2+2x﹣1的差与x的取值无关,求多项式4mn﹣[3m﹣2m2﹣6(mn n2)]的值.5、小丽做一道数学题:“已知两个多项式A,B,B为﹣5x﹣6,求A+B”.小丽把A+B看成A﹣B,计算结果是+10x+12.根据以上信息,你能求出A+B的结果吗?6、合并同类项:4a-2(a-3b)7、若2x m y2﹣(n﹣3)x+1是关于x、y的三次二项式,求m、n的值.8、已知关于x、y的多项式5x2﹣2xy2﹣[3xy+4y2+(9xy﹣2y2﹣2mxy2)+7x2]﹣1(1)若该多项式不含三次项,求m的值;(2)在(1)的条件下,当x2+y2=13,xy=﹣6时,求这个多项式的值.9、已知A=3a2﹣a+1,B=a2+4a﹣3.若化简A+B+m(m是常数)的结果中没有常数项,求m的值;10、在解决关于x,y的二元一次方程组时,小明由于粗心,把c写错解得,小红符合题意地解得,求的值.11、如果﹣4x a y a+1与mx5y b﹣1的和是3x5y n,求(m﹣n)(2a﹣b)的值.12、下列代数式,哪些是整式?1﹣a,, 32+42,, -x3y4,, x2﹣8x+7.13、数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.14、先化简再求值:,其中15、如图,正方形的边长为a,用整式表示图中阴影部分的面积,并计算当a=2时阴影部分的面积(取3.14)16、有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?17、某市居民使用自来水按如下标准收费:若每户月用水不超过,按a 元收费,若超过,但不超过,则超过部分按元收费;若超过,超过部分按元收费,根据表中户月用水量n的取值,把相应的收费金额填在下表中户月用水量10 18 26收费金额/元18、如图,要设计一幅长为3xcm、宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是多少?19、观察下列等式:32﹣12=4×242﹣22=4×352﹣32=4×4…你发现有什么规律请用含有n(n≥1的整数)的等式表示你发现的规律,并写出第12个等式.20、如果的3倍加上一个多项式得到,求这个多项式.21、有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“ ”错抄成“ ”,但他计算的结果也是正确的,试说明理由,并求出这个结果.22、如图所示的是某居民小区的一块长为bm,宽为2am的长方形空地,为了美化环境,准备在这个长方形空地的四个顶点各修建一个半径为am的扇形花台,然后在花台内种花,其余空地种草,如果建筑花台及种花每平方米需要资金200元,种草每平方米需要资金150元,那么美化这块空地共需资金多少元?23、已知有理数在数轴上的位置如图,化简:24、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,计算当a=13,b=3时,剩余部分的面积.25、计算:26、化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|27、(1)化简2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y(2)若2a10x b与﹣a2b y是同类项,求(1)结果中的值.28、有一道化简求值题:“当x=2,y=﹣1时,求3x2y+[2x2y﹣(5x2y2﹣y2)]﹣5(x2y+y2﹣x2y2)的值.”小芳做题时,把“x=2,y=﹣1”错抄成了“x=﹣2,y=1”,但她的计算结果也是正确的,请你解释一下原因.29、如图,长为10cm,宽为6cm的长方形,在4个角剪去4个边长为x的小正方形,按折痕做一个有底无盖的长方形盒子,试求盒子的体积.30、关于x、y的单项式2ax c y与单项式3bx3y是同类项,并且2ax c y+3bx3y=0 ,当m 的倒数是-1,n的相反数是时,求的值。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案(时间:120分钟满分:120分)班级: 姓名: 成绩:一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−15.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m26.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 17.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.12.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.13.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________.15.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2 024个数是____.三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−1.218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值;(2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3.所以2m=37−3,即m=37−32.所以31+32+33+34+35+36=37−32.以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项【答案】B2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商【答案】C3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm 【答案】D4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−1【答案】B5.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m2【答案】D6.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B7.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关【答案】D8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m【答案】C9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元【答案】A10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32【答案】A二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.【答案】5 −2+512.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.【答案】513.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.【答案】(5m−6)14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________. 【答案】−4m2+2m+415.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2024个数是____.【答案】676三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.【答案】(1)解:−3m2m+3mm2−2mm2+2m2m=(−3m2m+2m2m)+(3mm2−2mm2)=−m2m+mm2.(2)解:2m2−5m+m2+6+4m−3m2=(2m2+m2−3m2)+(4m−5m)+6=−m+6..17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−12解:原式=3m2−4mm−4m2−4m2+4mm−8m2=−m2−12m2当m=2,m=−1时2)2=−4−3=−7.原式=−22−12×(−1218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.解:设原来的整式为m,则m−(5mm−3mm+2mm)=2mm−6mm+mm得m=7mm−9mm+3mmm+(5mm−3mm+2mm)=7mm−9mm+3mm+(5mm−3mm+2mm)=12mm−12mm+5mm.∴原题的正确答案为12mm−12mm+5mm.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?【答案】(1)解:轮船共航行的路程为(m+m)×3+(m−m)×2=(5m+m)(千米).(2)把m=80,m=3代入(1)中的式子,得5×80+3=403(千米).答:轮船共航行403千米.20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?【答案】(1)解:小明家9月份应交的水费为2×15+2.5(m−15)=(2.5m−7.5)(元);(2)当m=20时,2.5×20−7.5=42.5(元),所以小明家9月份应交水费42.5元. 21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)【答案】(1)解:由题意可知窗户的面积可表示为m(m+m2+m2)=2mm装饰物的面积可表示为π⋅(m2)2=π4m2所以窗户中能射进阳光的部分的面积是2mm−π4m2.(2)将m=5m,m=2m代入(1)中的代数式可得2mm−π4m2=2×5×2−π4×22=(20−π)(m2)所以窗户中能射进阳光的部分的面积是(20−π)m2.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值; (2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.【答案】(1)解:∵m=3时,多项式mm3−mm+5的值是1∴27m−3m+5=1∴27m−3m=−4∴m=−3时−27m+3m+5=4+5=9.(2)−3m2+mm+mm2−m+3=(−3+m)m2+(m−1)m+3∵关于字母m的二次多项式的值与m的取值无关∴−3+m=0m−1=0解得m=3m=1代入(m+m)(m−m)得(1+3)×(1−3)=4×(−2)=−8.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3. 所以2m=37−3,即m=37−3.2.所以31+32+33+34+35+36=37−32以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.【答案】(1)263(2)解:设m=20+21+⋯+263①则2m=21+22+23+⋯+263+264②②−①得2m−m=21+22+⋯+264−20−21−22−⋯−263=264−20=264−1即m= 264−1.【解析】(1)国际象棋共有64个格子,则在第64格中应放263粒米.故答案为263.。

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题班级_______ 姓名__________ 号次_______一、选择题(20分)1.下列说法中正确的是().A.单项式223x y-的系数是-2,次数是2B.单项式a的系数是0,次数也是0 C.532ab c的系数是1,次数是10D.单项式27a b-的系数是17-,次数是32.若单项式421ma b-+与272m ma b+-是同类项,则m的值为().A.4 B.2或-2 C.2D.-23.计算(3a2-2a+1)-(2a2+3a-5)的结果是().A.a2-5a+6 B.7a2-5a-4 C.a2+a-4 D.a2+a+64.当23,32a b==时,代数式2[3(2)1]b a a--+的值为().A.269B.1113C.2123D.135.如果长方形周长为4a,一边长为a+b,,则另一边长为().A.3a-b B.2a-2b C.a-b D.a-3b6.一个两位数,十位数字是a,个位数字是b,则这个两位数可表示为().A.ab B.10a+b C.10b+a D.a+b7.观察右图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为().().A.3n-2 B.3n-1C.4n+1 D.4n-38. 长方形的一边长为2a+b,另一边比它大a-b,则周长为( )A.10a+2bB.5a+bC.7a+bD.10a-b9. 两个同类项的和是()A.单项式B.多项式(第7题)C.可能是单项式也可能是多项式D.以上都不对10、如果A 是3次多项式,B 也是3次多项式, 那么A +B 一定是( ) (A )6次多项式。

(B )次数不低于3次的多项式。

(C )3次多项式。

(D )次数不高于3次的整式。

二、填空题(32分)1.单项式2335x yz -的系数是___________,次数是___________.2.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是_________. 把它按a 的升幂排列是____________________________. 3. 计算222254(83)ab a b a b ab --+的结果为______________.4.一个三角形的第一条边长为(a +b )cm ,第二条边比第一条边的2倍长b cm .则第三条边x 的取值范围是________________________________. 5.如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 ______根.(用含n 的式子表示)……6. 观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n (n ≥1)表示自然数,用关于n 的等式表示这个规律为_______________________________.7.如下图,阴影部分的面积用整式表示为________________________.8. 若:2xx y ab --与255a b 的和仍是单项式,则x =y =9.若23n a b 与45m a b 所得的差是单项式,则m= ______ n= ______. 10.当k=______时,多项式22x -7kxy+23y +7xy+5y 中不含xy 项.1条 2条 3条三、解答题 (48分)1.请写出同时含有字母a 、b 、c ,且系数为-1的所有五次单项式?(6分)2.计算:(15分)(1) 2215x y x y -(2)22610125x x x x -+-(3)222232x y xy yx y x -+- (4))](32[52222b a ab ab b a ---(5)2222(2)3(2)4(32)ab a a ab a ab --+---3.先化简再求值(10分)(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.(6分)5.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人?(6分)6.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案(3)222232x y xy yx y x -+- (4))](32[52222b a ab ab b a ---(5)2222(2)3(2)4(32)ab a a ab a ab --+---3.先化简再求值(10分)(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.(6分)5.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人?(6分)6.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。

(5分)答案:一、选择题1.D 2.D 3.A 4.C 5.B 6.B 7.D二、填空题1.35-,六 2.五,五.432232,,5,,1a a b a b a --.23324152a a b a b a -+-++ 3.-12a 2b 2+2ab 4.(a+2b )cm <x <(3a +4b )cm 5.(6n +2) 6.22(2)44n n n +-=+ 7.x 2+3x +6三、解答题1.答:-ab 3c ,-ab 2c 2,-abc 3,-a 2b 2c ,-a 2bc 2,-a 3bc .2.解:(1)原式=2222523()a b ab ab a b -+-=22225233a b ab ab a b -+-=222a b ab +.(2)原式=2224263128ab a a ab a ab -++--+=24a ab -+.(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .3.(1)原式=9y -{159-[6y -21x ]+2y }=9y -{159+21x -4y }=-21x +13y -159.当x =-3,y =2时,原式=-21×(-3)+13×2 -159=-70.(2)原式=2222222232x y y x y x -+---=222x y --.当1-=x ,2=y 时,原式=-2-4=-6.4.解:∵第一条边长a 厘米,第二条边长(2a +3)厘米,第三条边长[a +(2a +3)]=(3a +3)厘米,第四条边长[48-a -(2a +3)-(3a +3)]=48-a -2a -3-3a -3=(42-6a )厘米.∴第四条边长为(42-6a )厘米.5.解:(8a -5b )-12(3a -b )=8a -5b -3322a b +=13922a b -.当a =10,b =8时,上车乘客是29人.。

华东师大版七年级数学上册第三章 整式的加减 专题训练试题(含答案)

华东师大版七年级数学上册第三章  整式的加减  专题训练试题(含答案)
13.有一道题“先化简,再求值:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3,其中 x=2 020.”小明做题时把“x=2 020”错抄成了“x=-2 020”.但他计算的结果却是正确 的,请你说明这是什么原因?
解:17x2-(8x2+5x)-(4x2+x-3)+(5x2+6x-1)-3 =17x2-8x2-5x-4x2-x+3+5x2+6x-1-3
3.若多项式 2x2+3x+7 的值为 10,则多项式 6x2+9x-7 的值为 2. 7 / 16
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
1 4.已知 xy=-1,x+y=2,那么 y-(xy-4x-3y)的值等于 3. 5.计算:
(1)6a2+4b2-4b2-7a2; 解:原式=(6-7)a2+(4-4)b2 =-a2.
D.1 010+1 011+…+3 029=2 0202
5.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下 去,摆成第 n 个“T”字形需要的棋子个数为_____.
5 / 16
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
6.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第 1 组取 3 粒,第 2 组取 5 粒,第 3 组取 7 粒,第 4 组取 9 粒,…,按此规律,那么请你推测第 n 组 取 1 的种子数是_____粒. 7.按规律写出空格中的数:-2,4,-8,16,_____,64. 8.已知一列数:a,b,a+b,a+2b,2a+3b,3a+5b,…,按照这个规律写下去,第 9 个 数是_____. 9.观察下列各等式:第一个等式 3=2+1,第二个等式 5=3+2,第三个等式 9=5+4,第 四个等式 17=9+8,…,按此规律猜想第六个等式是_____. 10.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上 述规律,第 n 个等式应表示为_____. 11.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019 个图形中共有_____个〇.

(完整版)初中数学七年级(上)第三章整式的加减专项练习题60道【带答案】

(完整版)初中数学七年级(上)第三章整式的加减专项练习题60道【带答案】

初中数学七年级(上)第三章整式及其加减整式的加减专项练习题60道1、【基础题】根据乘法分配律合并同类项:(1)- 7a 2b + 2a 2b ;(6) — 4ab + -b 2-9ab -丄 bl322.1、【基础题】合并同类项:(1) 3f + 2f — 7f ;(4) 3b -3a 3+1+ a 3- 2b ;3 2y + 6y + 2xy — 5 ;(3) - xy 2 + 3xy 2; 2、【基础题】合并同类项: (1) - 5ab + 4ab ; 1(4) - - xy + 2xy ;3(4) 7a + 3a + 2a — a + 3.(2) -2X 2+3X 2 ;1 33(4) --a 3-a 3 ;2(2) 8n + 5n ;(5) 3a +2b —5a — b ;(2) 3pq +7 pq + 4pq + pq ;初中数学七年级(上)2.2、【基础题】合并同类项:(1) X — f+5x —4f ;(2) 2a+3b+6a+9b-8a+12b ;2 2 2 2(3) 30a b+ 2b c —15a b —4b c ;(4) 7xy —8wx + 5xy —12xy ;3、【综合I】求代数式的值:2 2(1)8P —7q + 6q —7p —7, 其中p = 3 , q = 3 ;1 (2)—3x2 y+ 5x—0.5x2y + 3.5x2y —2 , 其中x= , y=7 ;5 (3)—9a2—3ab + 10a2—4ab + 3a , 其中a—2 , b ——1 ;13 5 1(4)m—— n —— n —— m ,其中m—6, n—2 ;3 2 6 63.1、【综合I】求代数式的值:(1) 6x+ 2x2—3x+ x2+ 1, 其中x——5 ;(2) 4x 2+ 3xy — x 2-9 ,其中 x =2 ,4、【基础题】化简下列各式:(1) 4a —( a —3b );(4) ( — 4y +3 — ( — 5y —2);(6) 3a 2—( 5a 2— ab + b 2) — ( 7ab — 7b 2— 3a 2).4.1、【综合I 】化简下列各式: (1)3( 2xy — y )— 2xy ;(4) 3 (xy —2z ) + (— xy +3z );(5) — 4 (pq + pr ) + (4pq + pr ); (6) — 5(x —2y +1) — (1-3x + 4y );y =- 3 ;(2) a +(5a — 3b ) — ( a — 2b );(3) (3x —1 — ( 2—5x );(5) (2x —3y ) — ( 5x — y );(2) 5x — y - 2 ( x —y );(4) 3x +1 - 2 (4— x );(7) (2a ?b — 5ab ) — 2(— ab — a 2b );(8) 1— 3( x — — y 2) + (— x + 丄 y 2).2 24.2、【综合I 】计算:(1) (4k 2+ 7k ) + (— k 2+3k —1);(4) (3x 2+2xy — 2x ) — ( 2x 2— xy + x );21 2 2 1 2(6) (一 xy + y +1) + ( x — xy — 2y —1);2 2(7) —( x 2 y + 3xy — 4) + 3( x 2y — xy + 2);1 1(8) — - (2k 3+4k 2—28) + - ( k 3—2k 2 + 4k ).4 2(3) 7 ( p 3+ p 2— p —1) — 2 ( p 3+ p );(-+ m 2n + m 3)(2) (5y + 3x —15z 2) — ( 12y + 7x + z 2);(2) (x 3-2y 3-3x 2y ) — ( 3x 3-3y 3-7x 2y );2 3x 2—( 2x 2 + 5x —1) — ( 3x + 1),其中 x =10;4.3、【综合I 】(1) 3(a +5b ) — 2(b — a );初中数学七年级(上)(3) (—2ab+3a) —2 (2a—b) + 2ab ;(4) 5 (a2b —3ab2) —2 ( a2b —7ab2);(5) 2(2a2—9b) —3( —4a2+ b); 2 2(6) 3(2x xy) 4(x xy 6)5、【综合I】化简并求值:(1) (4x3 x2 5) (5x2 x3 4),其中x 2 ;(3) (xy — — y — —) — ( xy — — x + 1), 其中 x = 10 , y = 8;2 22336、【综合I 】计算:(1)代数式 2x 2—3x + 1 与一3x 2 + 5x —7 的和;(2)代数式21 2 1 2 3 2—x +3xy — y 与一一 x + 4xy — y 的差;2 2 26.1、【综合n 】(1)已知 A = 2a $ + 3ab — 2a — 1 , B = — a ? + ab — 1 ,求 3A +6B .(2)已知 A = x 2 + xy + y 2, B = — 3xy — x 2,求 2A — 3B .(—x 1 xy 1),其中 x 2 23,y第4节 整式的加减专项练习题60道 【答案】1、 【答案】 (1)— 5a 3 4b ;(2) 13n ;( 3) 2xy ; (4) 9a + 2a 2+3.25 3 3 1 22、 【答案】(1) —ab ;(2)x ;(3) xy ; (4) — - a ; (5) — 2a + b ; (6) — 13ab — - b .3 2 62.1、 【答案】 (1) — 2f ; (2) 15pq ;( 3) 8y + 2xy —5 ; (4) b — 2a 3+1 ;2 22.2、 【答案】 (1) 6x —5f ; (2) 24b ; (3) 15a b — 2b c ;(4) — 8wx ;3、 【答案】 (1)原式=P—q —7 = —1 ;(2)原式=5x —2 = —1 ;1 711 (3)原式=a 2 —7ab + 3a = 24 ;(4)原式=—m — 一 n =—6 333.1、 【答案】 (1)原式=3x + 3x +1 = 61 ;(2)原式=3x+ 3xy — 9 = —15 ; (3) (4)4、 【答案】 (1) 3a +3b ;(2) 5a — b ;(3) 8x —3 ;(4) y + 5 ;(5) — 3x —2 y ;2 2(6) a — 6ab +6b .4.1、 【答案】 (1) 4xy —3y ; (2) 3x + y ; (3) 5x —7 ;(4) 2xy — 3z ;2 2(5) — 3pr ;(6) — 2x + 6y —6 ; ( 7) 4a 2b — 3ab ;(8) 1—4x + 2y .22324.2、 【答案】 (1) 3k +10k —1 ;(2) — 7y — 4x —16z ; (3) 5P +7P —9p — 7 ; (4)— 1 ;(5)x 2 + 3xy — 3x ;(6)x 2— y 2;( 7) 2x 2y — 6xy +10 ;(8) — 2k 2+ 2k + 7 .2332224.3、 【答案】 (1) 5a +13b ; (2) — 2x + y + 4x y ;(3) — a + 2b ; (4) 3a b — ab ;(5)16a 2—21b ; (6) — 2x 2 + 7xy — 24.5、 【答案】 (1)原式=3x‘ + 4x? +1 = —7 ; (2)原式=x— 8x = 20 ;1 3 2157--;(4)原式=_ xy — y — x315ab —6a —9 ;2 245x +11xy + 2y ;6、【答案】3 33(3)原式=3x — 3y —3= 2 22(1)— x 2+ 2x — 6 ;(2)初中数学七年级(上)2 23 2 3 41 2 2—-x —xy+ y ; (3) (4)26.1、【答案】【格式】如右图,注意多项式要加括号第11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 整式及其加减
整式的加减专项练习题60道
1、【基础题】根据乘法分配律合并同类项:
(1)-b a 27+b a 22; (2)n 8+n 5; (3)-2
xy +2
3xy ; (4)a 7+23a +a 2-2a +3. 2、【基础题】合并同类项:
(1)ab ab 45+-; (2)2232x x +-; (3)xy xy 23
1
+-; (4)332
1
a a --;
(5)b a b a --+523; (6)222
1
9314b ab b ab --+-.
2.1、【基础题】合并同类项:
(1)f 3+f 2-f 7; (2)pq pq pq pq +++473; (3)5262-++xy y y ; (4)b a a b 213333-++-;
2.2、【基础题】合并同类项:
(1)f x f x 45-+-; (2)b a b a b a 1289632+-+++; (3)c b b a c b b a 2222415230--+; (4)xy xy wx xy 12587-+-; 3、【综合Ⅰ】求代数式的值:
(1)776782
2
--+-p q q p , 其中3=p ,3=q ;
(2)25.35.0532
2
2
-+-+-y x y x x y x , 其中5
1
=x ,7=y ;
(3)a ab a ab a 34103922+-+--, 其中2=a ,1=-b ;
(4)m n n m 6
1652331
---, 其中6=m ,2=n ;
3。

1、【综合Ⅰ】求代数式的值:
(1)132622+
+-+x x x x , 其中5=-x ; (2)9342
2
--+x xy x , 其中2=x ,3=-y ;
4、【基础题】化简下列各式:
(1))--(b a a 34; (2))
-)-(-+(b a b a a 235; (3))
-)-(-(x x 5213; (4))-)-(-+(-2534y y ; (5))-)-(-(y x y x 532; (6))--)-(+--(22222
37753a b ab b ab a a .
4.1、【综合Ⅰ】化简下列各式:
(1)3xy y xy 22)--(; (2)y x -5-2(y x -); (3)13+x -2)-(x 4; (4)3)+)+(--(z xy z xy 32; (5)-4)+)+(+(pr pq pr pq 4; (6)-5)+-)-(+-(y x y x 43112;
(7))-(ab b a 522-2)-(-b a ab 2; (8)-13)
+)+(--(222
1
21y x y x .
4。

2、【综合Ⅰ】计算:
(1))
-+)+(-+(137422k k k k ; (2))++)-(-+(2
27121535z x y z x y ; (3)7)--+(12
3
p p p -2)+(p p 3
; (4))--)-(++-(32323
231m n m m n m ;
(5))+-)-(-+(x xy x x xy x 2222123 ; (6))
---)+(++(122
1
121222y xy x y xy ; (7))+-+-(432
xy y x 3)+-(22xy y x ; (8)41-)-+(284223k k 21+)
+-(k k k 4223。

4.3、【综合Ⅰ】
(1)325)-+(b a )
-(a b ; (2))--)-(--(y x y x y x y x 2
3323373332; (3))-+(-a ab 322ab b a 22)+-(; (4)5)-(223ab b a 2
-)-(227ab b a ; (5)2)-(b a 9223
-)+(-b a 24; (6))6(4)2(32
2-++--xy x xy x 5、【综合Ⅰ】化简并求值:
(1)2),45()54(3
2
2
3
-=--++-x x x x x 其中;
(2))+)-(-+-(13152322x x x x , 其中10=x ;
(3))
+-)-(--(1232123x xy y xy , 其中310=x ,38
=y ; (4)4
3
,32),12121()3232(==+----y x xy x y xy 其中;
6、【综合Ⅰ】计算:
(1)代数式 1322

-x x 与 7532-+-x x 的和; (2)代数式 22213y xy x -
+- 与222
3
421y xy x -+- 的差; 6.1、【综合Ⅱ】
(1)已知 12322

-+=a ab a A ,12-+=-ab a B , 求 B A 63+. (2)已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .
第4节 整式的加减专项练习题60道 【答案】
1、【答案】 (1)-b a 25; (2)n 13; (3)2
2xy ; (4)3292++a a 。

2、【答案】(1)ab -; (2)2x ; (3)
xy 3
5
; (4)323a -; (5)b a +-2; (6)26113b ab --。

2。

1、【答案】 (1)f 2-; (2)pq 15; (3)528-+xy y ; (4)123+-a b ; 2。

2、【答案】 (1)f x 56-; (2)b 24; (3)c b b a 22215-; (4)wx 8-; 3、【答案】 (1)原式=72
--q p =1-; (2)原式=25-x =1-;
(3)原式=a ab a 372+-=24; (4)原式=
n m 3761-=3
11
-; 3。

1、【答案】 (1)原式=1332++x x =61; (2)原式=9332
-+xy x =15-; (3)(4) 4、【答案】 (1)b a 33+; (2)b a -5; (3)38-x ; (4)5+y ; (5)y x 23--; (6)2266b ab a +-.
4。

1、【答案】 (1)y xy 34-; (2)y x +3; (3)75-x ; (4)z xy 32-; (5)pr 3-; (6)662-+-y x ; (7)ab b a 342-; (8)2
241y x +-.
4.2、【答案】 (1)11032-+k k ; (2)21647z x y ---; (3)79752
3
--+p p p ; (4)-1;
(5)x xy x 2
3
32-+; (6)22y x -; (7)10622

-xy y x ; (8)7222++-k k 。

4。

3、【答案】 (1)b a 135+; (2)y x y x 2
3
3
42++-; (3)b a 2+-; (4)223ab b a -; (5)b a 21162-; (6)24722
-+-xy x .
5、【答案】 (1)原式=14323+
+x x =7-; (2)原式=x x 82-=20; (3)原式=
232323--y x =21-; (4)原式=35213223---x y xy =4
7
-; 6、【答案】 (1)622-+-x x ; (2)222
1
y xy x +--; (3)(4)
【格式】 如右图,注意多项式要加括号.
6.1、【答案】 (1)9615--a ab ;
(2)2
2
2115y xy x ++
;。

相关文档
最新文档