浙教版九年级上册第四章相似三角形 专题:相似三角形及其判定练习

合集下载

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5 相似三角形的性质及其应用》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《4.5相似三角形的性质及其应用》2024年同步练习卷(3)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示的网格由边长相同的小正方形组成,点A,B,C,D,E,F,G均在小正方形的顶点上,则的重心是()A.点GB.点DC.点ED.点F2.如图,在中,E,G分别是AB,AC上的点,,的平分线AD交EG于点F,若,则()A.B.C.D.3.如图,的两条中线AD和BE相交于点G,过点E作交AD于点F,则FG:AG是()A.1:4B.1:3C.1:2D.2:34.如图,正方形ABCD中,E为CD的中点,,交BC于点F,则与的大小关系为()A.B.C.D.无法确定二、填空题:本题共6小题,每小题3分,共18分。

5.如图,在中,点D,E分别是BC,AC的中点,AD与BE相交于点若,则EF的长是______.6.如图,AD是的高,AE是的外接圆的直径,且,,,则的直径______.7.点G是的重心,,如果,那么AB的长是______.8.如图,E,F分别为AC,BC的中点,D是EC上一点,且若,,则BE的长为______.9.如图,在等腰中,,,点E在边CB上,,点D在边AB上,,垂足为F,则AD的长为______.10.如图,点D在的边BC上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离EF的长等于______.三、解答题:本题共3小题,共24分。

解答应写出文字说明,证明过程或演算步骤。

11.本小题8分已知,如图,在中,CD是斜边上的中线,交BC于点F,交AC的延长线于点∽吗?为什么?你能推出结论吗?请试一试.12.本小题8分已知:如图,在中,点D、E分别在边BC、AB上,,AD与CE相交于点F,求证:;求证:13.本小题8分如图,在中,,,动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒,连接若与相似,求t的值;连接AN,CM,若,求t的值.答案和解析1.【答案】B【解析】解:取BC的中点N,取AC的中点M,连接AN,BM,如图所示,则AN与BM的交点为D,故点D是的重心,故选:取BC的中点N,取AC的中点M,连接AN,BM,然后根据图形可知AN与BM的交点为D,即可得到点D 为的重心.本题考查三角形的重心,解答本题的关键是明确三角形的重心是三角形中线的交点.2.【答案】C【解析】解:,,,,∽,故选:根据两组对应角相等可判断∽,可得,则可得出结论.本题考查了相似三角形的判定与性质,灵活运用定理是关键.3.【答案】A【解析】【分析】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍,根据重心的性质得到,,根据平行线分线段成比例定理计算即可.【解答】解:的两条中线AD和BE相交于点G,点G是的重心,,,,,::4,故选:4.【答案】C【解析】解:,,,,∽,且相似比为2,,,又,∽,易证∽,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定∽,即可解题.本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证∽是解题的关键.5.【答案】3【解析】解:点D,E分别是BC,AC的中点,,且,,,,故答案为:由题意可知,DE是的中线,则,且,可得,代入BF的长,可求出EF的长,进而求出BE的长.本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题的关键.6.【答案】【解析】【分析】本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出∽首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于AE的比例式,计算即可.【解答】解:由圆周角定理可知,,,,∽::AC,,,,::5,,故答案为:7.【答案】6【解析】解:如图,AD为AB边上的中线,点G是的重心,,,,故答案为先根据三角形重心的性质得到,则,然后根据直角三角形斜边上的中线性质得到AB的长.本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:也考查了直角三角形斜边上的中线性质.8.【答案】【解析】解:,,,∽,,,,E,F分别为AC,BC的中点,,,解得:故答案为:由可得:,结合公共角,可证得∽,从而利用相似三角形的对应中线之比等于相似比即可求BE的长.本题主要考查相似三角形的判定与性质,解答的关键是明确相似三角形的对应中线的之等于相似比.9.【答案】【解析】解:过D作于H,在等腰中,,,,,,,,,,∽,,,,,,,故答案为:过D作于H,根据等腰三角形的性质得到,,求得,得到,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.10.【答案】【解析】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,点E、F分别是和的重心,,,,,,,,,,∽,,,故答案为:连接AE并延长交BD于G,连接AF并延长交CD于H,根据三角形的重心的概念、相似三角形的性质解答.本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.11.【答案】证明:,,,,,∽;为的中线,,,又,,又是公共角,∽,,即【解析】根据题意,得,,则,易证∽;由中,CD是斜边上的中线,得,则,又,所以,又是公共角,所以∽,即可得出;本题主要考查了直角三角形和相似三角形的判定与性质,掌握直角三角形斜边上的中线等于斜边的一半,是解答本题的关键.12.【答案】证明:,,,,,,∽,,;∽,,即,,,∽,,,,【解析】根据等腰三角形的性质得到,,推出∽,根据相似三角形的性质得到,于是得到;根据相似三角形的性质得到,即,推出∽,根据相似三角形的性质得到,于是得到,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得∽是解题的关键.13.【答案】解:,,,,由题意得,,当∽时,,即,解得:;当∽时,,即,解得:,综上所述,与相似时,t的值为或;如图,过点M作于点D,,,∽,,,,,,,,,,,,,,,∽,,即,解得:【解析】根据勾股定理求出AB,分∽、∽两种情况,根据相似三角形的性质列出比例式,计算即可;过点M作于点D,分别证明∽,∽,根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.。

度浙教新版九年级数学上第4章相似三角形 4.4两个三角形相似的判定 同步练习(有答案)-精选文档

度浙教新版九年级数学上第4章相似三角形 4.4两个三角形相似的判定 同步练习(有答案)-精选文档

浙教新版数学九年级上学期《4.4两个三角形相似的判定》同步练习一.选择题(共12小题)1.如图,10×2网格中有一个△ABC,图中与△ABC相似的三角形的个数有()A.1个B.2个C.3个D.4个2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=3.如图,点P在△ABC的边AC上,如果添加一个条件后可以得到△ABP∽△ACB,那么以下添加的条件中,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.4.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA 5.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是()A.B.C.D..6.下列说法:①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60°的两个直角三角形相似,其中正确的说法是()A.②④B.①③C.①②④D.②③④7.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=8.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1B.C.2D.9.如图,△ABC中,AD是中线,BC=4,∠B=∠DAC,则线段AC的长为()A.B.2C.3D.10.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则S△ADE:S四边形BCED的值为()A.1:B.1:3C.1:8D.1:911.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:112.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A.B.C.D.二.填空题(共8小题)13.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=时,△AMN与原三角形相似.14.如图,已知:∠ACB=∠ADC=90°,AD=2,CD=2,当AB的长为时,△ACB与△ADC相似.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为或时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP 相似时,DP=.18.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为.19.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD的面积为.20.如图,Rt△ABC中,∠BAC=90°,AD⊥BC,若BD=1,AD=3,则CD=.三.解答题(共8小题)21.如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在BD上由点B向点D方向移动,当点P移到离点B多远时,△APB和△CPD相似?22.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.23.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动,如果E、F同时出发,用t(0≤t≤6)秒表示运动的时间,当t为何值时,以点E、C、F为顶点的三角形与△ACD相似?24.如图,在平面直角坐标系中,已知OA=12厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动.:点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?25.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?26.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.27.如图,在矩形ABCD中,AD=6,AB=8,M是AD的中点,N,E是BC的三等分点,P是AB上一动点.(1)当MP∥BD时,求MP的长;(2)是否存在点P,满足△AMP与一点B,N,P为顶点的三角形相似?若存在,求出AP的长;若不存在,说明理由.28.已知:在△ABC中∠ACB=90°,CD⊥AB于点D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F.如图甲,当AC=BC时,且CE=EA时,则有EF=EG;(1)如图乙①,当AC=2BC时,且CE=EA时,则线段EF与EG的数量关系是:EF EG;(2)如图乙②,当AC=2BC时,且CE=2EA时,请探究线段EF与EG的数量关系,并证明你的结论;(3)当AC=mBC时且CE=nEA时,则线段EF与EG的数量关系,并直接写出你的结论(不用证明).参考答案一.选择题1.C.2.D.3.D.4.D.5.C.6.A.7.C.8.C.9.A.10.C.11.B.12.C.二.填空题13.2或4.5.14.4.15.∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时16.﹣1,0);(1,0).17.1或4或2.5.18..19.12.20.9三.解答题21.解:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴当或时,△PAB与△PCD是相似三角形,∵AB=6,CD=4,BD=14,∴或,解得:BP=2或12或,即PB=2或12或时,△PAB与△PCD是相似三角形.22.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.23.解:根据题意,可分为两种情况:①若△EFC∽△ACD,则=,所以=,解得t=3,即当t=3时,△EFC∽△ACD.②若△FEC∽△ACD,则=,所以=,解得t=1.2,即当t=1.2时,△FEC∽△ACD.因此,当t为3或1.2时,以点E,C,F为顶点的三角形与△ACD相似.24.解:①若△POQ∽△AOB时,=,即=,整理得:12﹣2t=t,解得:t=4.②若△POQ∽△BOA时,=,即=,整理得:6﹣t=2t,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.25.解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时,,即,解得:t=;当△APQ∽△ACB时,,即,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:s或4s.26.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.27.解:(1)∵PM∥BD,AM=MD,∴AP=PB,∴PM=BD,∵BD==10,∴PM=5.(2)存在点P使得两三角形相似.∵BN=4,设AP=x,则PB=8﹣x,当△MAP∽△NBP时,解得x=.当△MAP∽△PBN时,解得x=2或6,∴存在点P使得两三角形相似,此时AP的长为或2或4.28.图甲:连接DE,∵AC=BC,CD⊥AB,∴AD=BD,∠ACD=45°,∴CD=AD=AB,∵AE=EC,∴DE=AE=EC=AC,∴∠EDC=45°,DE⊥AC,∵∠A=45°,∴∠A=∠EDG,∵EF⊥BE,∵∠AEF+∠FED=∠EFD+∠DEG=90°,∴∠AEF=∠DEG,∴△AEF≌△DEG(ASA),∴EF=EG.(1)EF=EG;(2)解:EF=EG.证明:作EM⊥AB于点M,EN⊥CD于点N,∵EM∥CD,∴△AEM∽△ACD,即EM=CD,同理可得,EN=AD,∵∠ACB=90°,CD⊥AB,∴tanA=,又∵EM⊥AB,EN⊥CD,∴∠EMF=∠ENG=90°,∵EF⊥BE,∴∠FEM=∠GEN,∴△EFM∽△EGN,即EF=EG;(3)由(1)当AC=2BC时,且CE=EA时,EF=EG,当AC=2BC时,且CE=2EA时,EF=EG,可以得出:当AC=mBC时且CE=nEA时,EF=EG.。

浙教版九年级上册数学第4章 相似三角形含答案(配有卷)

浙教版九年级上册数学第4章 相似三角形含答案(配有卷)

浙教版九年级上册数学第4章相似三角形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC 上,得到折痕AE,那么BE的长度为()A. B. C. D.2、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交 CE于点G,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有( )A.1个B.2个C.3个D.4个3、如图,在正方形中,的顶点,分别在,边上,高与正方形的边长相等,连接分别交,于点,,下列说法:① ;②连接,,则为直角三角形;③ ;④若,,则的长为,其中正确结论的个数是()A.4B.3C.2D.14、如图,在中,,则DF的长为()A.4B.C.D.35、如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG 分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A. B. C. D.6、如图,l1∥l2∥l3,直线a,b与l1, l2, l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.67、如图,已知l1∥l2∥l3,直线AC分别交l1、l2、l3于点A,B,C,直线DF分别交l1、l2、l3于D,E,F,DE=4,EF=6,AB=5,则BC的长为()A. B. C. D.8、如图,直线l1∥l2∥l3 ,直线AC分别交l1 , l2 , l3于点A,B,C;直线DF分别交l1 , l2 , l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.9、如图,在菱形ABCD中,AC=8,BD=6,DE⊥AB,垂足为E,DE与AC交于点F,则sin∠DFC的值为()A. B. C. D.10、两相似三角形的周长之比为1:4,那么他们的对应边上的高的比为()A.1∶4B.1∶2C.2∶1D. ∶211、如图,在△ABC中,∠C=90°,过重心G作AC、BC的垂线,垂足分别为D、E,则四边形GDCE的面积与△ABC的面积之比为( )A. B. C. D.12、如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1= S2D. S1=2S213、如图,一组互相平行的直线a,b,c分别与直线l1, 12交于点A,B,C,D,E,F,直线11, l2交于点O,则下列各式不正确的是()A. B. C. D.14、如图,在平面直角坐标系中,矩形OABC的顶点A,B在反比例函数的图像上,纵坐标分别为1和3,则k的值为()A. B. C.2 D.315、如图,⊙O的直径为6,在⊙O上位于直径AB的异侧有定点C和动点P.已知BC:CA=4:3,P在半圆上运动,CP⊥CD交PB的延长线于D点.当点P运动到什么位置时,△PCD的面积最大为()A.36B.24C.18D.12二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,E是边BC的中点,连接AE,作EF⊥AE交正方形的外角平分线于点F,连接AF,交CD于点H,连接EH.若AB=4,则EH的长为________.17、如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为2,则平行四边形ABCD的面积是________.18、如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=________.19、如图所示,已知点E,F分别是△ABC的边AC,AB的中点,BE,CF相交于点G,FG=1,则CF的长为________.20、若a:b:c=3:2:5,则=________.21、如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.22、如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C 的坐标为________ .23、我国古代数学著作《九章算术》中记载:“今有方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”译文:如图,一座正方形城池北、西边正中A、C处各开一道门,从点A往正北方向走40步刚好有一棵树位于点B处,若从点C往正西方向走810步到达点D处时正好看到此树,则正方形城池的边长为________步。

浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册 第四章 相似三角形  单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有  .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。

浙教版九年级上册第四章相似三角形 专题:相似三角形及其判定练习

浙教版九年级上册第四章相似三角形 专题:相似三角形及其判定练习

专题:相似三角形及其判定一.选择题1. 如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. :2B. 1:C. :D. :22.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A. (1,)B. (,)C. (,2)D. (,2)3.P是△ABC一边上的一点(点P不与点A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有()A.1条B.2条C.3条D.4条4.在等边三角形ABC中,D为AC上一点,且,要在AB上取一点E,使△ADE∽△CDB,则等于()A. B. C. D. 15. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC 于点E.若AB=10,BC=16,则线段EF的长为().A.2B.3C.4D.56. 在△ABC中,AB=m,AC=n,P是AB的中点,过点P的直线交边AC于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为()A. B. C.或 D.或7. 如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于点H,若=2,则的值为()A. B. C. D.8. 如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OB=BC=1,则PD的长为()A. B. C. D.二.填空题9. 如图,在△ABC中,∠ABC=60°,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=____.10. 如图,在▱ABCD中,AC是对角线,∠BAE=∠DAC,已知AB=7,AD=10,则CE=____.11. 如图,正方形CDEF的顶点D、E在半圆O的直径上,顶点C、F在半圆上,连接AC、BC,则=____.12. 如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=____.13. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时,的值为______;当时,为______.(用含n的式子表示)14. 如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=______.15. 如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为()16. 如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于点H,点O是AB中点,连接OH,则OH=___________.三.解答题17. 在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△BED.18. 如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.19. 在矩形ABCD中,E为CD的中点,H为BE上的一点,=3,连结CH并延长交AB于点G,连结GE并延长交AD的延长线于点F.(1)求证:=.(2)若∠CGF=90°,求的值.20.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:=GE·GF.21.已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.22. 如图,△ABC内接于⊙O,AB=AC,过点C作CD平行于AB交⊙O于点D,过点D作DE 垂直于点E,且CD=DE(1)求证:AD2=2AE•AB;(2)若△ABC的面积是50,求△ACD的面积.23. △ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.24. 如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1) 点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2) 在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.25.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图2,在△ABC中,AC=2,,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形.求完美分割线CD的长.参考答案1. D 2. B 3. C 4. C 5.B 6.D 7. B8.C9. 4.10. 5.1.11. .12..13. ,.14. 1或.15.,16. .17.证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴,∵点E是AD的中点,∴AE=ED,∴,又∵∠FED=∠DEB,∴△DEF∽△BED.18. (1)证明:∵BF∥DE,∴==.∵AD=BD,∴AC=CG,AE=EF.在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5.∵点的是AB的中点,∴CD=AD=BD=AB=2.5,∴∠DCB=∠DBC.∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,,∴△BCP≌△BCD(AAS),∴BP=BD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,则BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.19. 解:(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴=;(2)作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得:==3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴=,∴EG·EF=DE·EC,∵CD∥AB,∴==,∴=,∴EF=EG,∴EG·EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a ,∴==3.20.解析(1)根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∵DG=DG,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴=,∴=GE·GF.21. 证明:∵△ACD∽△ABC,∴∠ADF=∠ACG,∵=,∴△ADF∽△ACG,∴∠DAF=∠CAF,即∠BAG=∠CAG,AG是∠BAC的平分线,∴,∴,∴CG2=DF•BG.22. 解:(1)连接BD,∵AB∥DC,∴=,∴∠ACD=∠BAC,∴=,∴BD=AC,∴BD=AC=AB,∵△BED为直角三角形,∴BD2=BE2+DE2,BD2=AB2=(AB-AE)2+DE2=AB2-2AB•AE+AE2+DE2,2AE•AB=AE2+DE2,∵△AED为直角三角形,∴AD2=AE2+DE2,∴AD2=2AE•AB;(2)过C作CF⊥AB,则BF=AE,CD=EF,∴BE=CD+BF=CD+AE,∴(CD+AE)2+DE2=AC2,即[CD+(AB-CD)]2+CD2=AB2,即3AB2-2AB•CD-5CD2=0,∴(3AB-5CD)•(AB+CD)=0,∵CD 不等于负数,∴CD=AB,∵DE⊥AB,∴DE⊥CD,∴S△ABC=AB•DE=50,∴S△ACD=DC•DE=AB•DE=S△ABC=30.23.(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BME=∠NEC,而∠B=∠C=45°,∴△BEM∽△CNE.(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE又∵BE=EC,∴ECCN =EMNE则△ECN与△MEN中有ECCN =EMNE,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.24. (1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.25.(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB,.∴∠ACD=∠A=40°,∴△ACD 为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD ∽△BAC.∴CD 是△ABC 的完美分割线.(2)当AD=CD 时(如图①),∠ACD=∠A=48°.∵△BDC ∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.当AD=AC 时(如图②),.∵△BDC ∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.当AC=CD 时(如图③),∠ADC=∠A=48°.∵△BDC ∽△BCA,∴∠BCD=∠A=48°,∵∠ADC=∠BCD=48°与∠ADC>∠BCD 矛盾,舍去.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD ∽△BAC,,设BD=x(x>0),,解得,∵x>0,.∵△BCD ∽△BAC,,.1、最困难的事就是认识自己。

度浙教新版九年级数学上第4章相似三角形 4.4两个三角形相似的判定 同步练习(有答案)

度浙教新版九年级数学上第4章相似三角形 4.4两个三角形相似的判定 同步练习(有答案)

度浙教新版九年级数学上第4章相似三角形4一.选择题〔共12小题〕1.如图,10×2网格中有一个△ABC,图中与△ABC相似的三角形的个数有〔〕A.1个B.2个C.3个D.4个2.以下条件不能判定△ADB∽△ABC的是〔〕A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=3.如图,点P在△ABC的边AC上,假设添加一个条件后可以失掉△ABP∽△ACB,那么以下添加的条件中,不正确的选项是〔〕A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.4.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么以下结论不一定正确的选项是〔〕A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA 5.如图,在△ABC中,点D、E、F区分在边AB、AC、BC上,且∠AED=∠B,再将以下四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是〔〕A.B.C.D..6.以下说法:①一切等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60°的两个直角三角形相似,其中正确的说法是〔〕A.②④B.①③C.①②④D.②③④7.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE 相似,还需满足以下条件中的〔〕A.=B.=C.=D.=8.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,那么CD 的长为〔〕A.1B.C.2D.9.如图,△ABC中,AD是中线,BC=4,∠B=∠DAC,那么线段AC的长为〔〕A.B.2C.3D.10.如图,在△ABC中,点D,E区分在边AB,AC上,且==,那么S△ADE:S四边形BCED的值为〔〕A.1:B.1:3C.1:8D.1:911.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,衔接AE交BD于点F,那么△DEF的面积与△BAF的面积之比为〔〕A.3:4B.9:16C.9:1D.3:112.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,假定∠APD=60°,那么CD的长是〔〕A.B.C.D.二.填空题〔共8小题〕13.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=时,△AMN与原三角形相似.14.如图,:∠ACB=∠ADC=90°,AD=2,CD=2,当AB的长为时,△ACB 与△ADC相似.15.如图,要使△ABC∽△ACD,需补充的条件是.〔只需写出一种〕16.如图,在平面直角坐标系中有两点A〔4,0〕、B〔0,2〕,假设点C在x轴上〔C与A不重合〕,当点C的坐标为或时,使得由点B、O、C组成的三角形与△AOB相似〔至少找出两个满足条件的点的坐标〕.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP 相似时,DP=.18.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,衔接DF.假=1,那么S△ADF的值为.定S△AEF19.如图,平行四边形ABCD中,E为AD的中点,△DEF的面积为1,那么平行四边形ABCD的面积为.20.如图,Rt△ABC中,∠BAC=90°,AD⊥BC,假定BD=1,AD=3,那么CD=.三.解答题〔共8小题〕21.如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在BD上由点B向点D方向移动,当点P移到离点B多远时,△APB和△CPD相似?22.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,〔1〕求证:AC2=AB•AD;〔2〕求证:△AFD∽△CFE.23.如图,在矩形ABCD中,AB=24,BC=12,点E沿BC边从点B末尾向点C以每秒2个单位长度的速度运动;点F沿CD边从点C末尾向点D以每秒4个单位长度的速度运动,假设E、F同时动身,用t〔0≤t≤6〕秒表示运动的时间,当t为何值时,以点E、C、F为顶点的三角形与△ACD相似?24.如图,在平面直角坐标系中,OA=12厘米,点P从点O末尾沿OA边向点A 以1厘米/秒的速度移动.:点Q从点B末尾沿BO边向点O以1厘米/秒的速度移动.假设P、Q同时动身,用t〔秒〕表示移动的时间〔0≤t≤6〕,那么,当t为何值时,△POQ与△AOB相似?25.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A动身,以每秒2厘米的速度向B运动,点Q从C同时动身,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应中止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?26.如图,△ABC是等边三角形,点D、E区分在BC、AC上,且BD=CE,AD与BE相交于点F.〔1〕试说明△ABD≌△BCE;〔2〕△EAF与△EBA相似吗?说说你的理由.27.如图,在矩形ABCD中,AD=6,AB=8,M是AD的中点,N,E是BC的三等分点,P是AB上一动点.〔1〕当MP∥BD时,求MP的长;〔2〕能否存在点P,满足△AMP与一点B,N,P为顶点的三角形相似?假定存在,求出AP的长;假定不存在,说明理由.28.:在△ABC中∠ACB=90°,CD⊥AB于点D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F.如图甲,当AC=BC时,且CE=EA时,那么有EF=EG;〔1〕如图乙①,当AC=2BC时,且CE=EA时,那么线段EF与EG的数量关系是:EF EG;〔2〕如图乙②,当AC=2BC时,且CE=2EA时,请探求线段EF与EG的数量关系,并证明你的结论;〔3〕当AC=mBC时且CE=nEA时,那么线段EF与EG的数量关系,并直接写出你的结论〔不用证明〕.参考答案一.选择题1.C.2.D.3.D.4.D.5.C.6.A.7.C.8.C.9.A.10.C.11.B.12.C.二.填空题13.2或4.5.14.4.15.∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时16.﹣1,0〕;〔1,0〕.17.1或4或2.5.18..19.12.20.9三.解答题21.解:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴当或时,△PAB与△PCD是相似三角形,∵AB=6,CD=4,BD=14,∴或,解得:BP=2或12或,即PB=2或12或时,△PAB与△PCD是相似三角形.22.〔1〕证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;〔2〕证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.23.解:依据题意,可分为两种状况:①假定△EFC∽△ACD,那么=,所以=,解得t=3,即当t=3时,△EFC∽△ACD.②假定△FEC∽△ACD,那么=,所以=,解得t=1.2,即当t=1.2时,△FEC∽△ACD.因此,当t为3或1.2时,以点E,C,F为顶点的三角形与△ACD相似.24.解:①假定△POQ∽△AOB时,=,即=,整理得:12﹣2t=t,解得:t=4.②假定△POQ∽△BOA时,=,即=,整理得:6﹣t=2t,解得:t=2.∵0≤t≤6,∴t=4和t=2均契合题意,∴当t=4或t=2时,△POQ与△AOB相似.25.解:设运动了ts,依据题意得:AP=2tcm,CQ=3tcm,那么AQ=AC﹣CQ=16﹣3t〔cm〕,当△APQ∽△ABC时,,即,解得:t=;当△APQ∽△ACB时,,即,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:s或4s.26.〔1〕证明:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;〔2〕答:相似;理由如下:∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC﹣∠BAD=∠CBA﹣∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.27.解:〔1〕∵PM∥BD,AM=MD,∴AP=PB,∴PM=BD,∵BD==10,∴PM=5.〔2〕存在点P使得两三角形相似.∵BN=4,设AP=x,那么PB=8﹣x,当△MAP∽△NBP时,解得x=.当△MAP∽△PBN时,解得x=2或6,∴存在点P使得两三角形相似,此时AP的长为或2或4.28.图甲:衔接DE,∵AC=BC,CD⊥AB,∴AD=BD,∠ACD=45°,∴CD=AD=AB,∵AE=EC,∴DE=AE=EC=AC,∴∠EDC=45°,DE⊥AC,∵∠A=45°,∴∠A=∠EDG,∵EF⊥BE,∵∠AEF+∠FED=∠EFD+∠DEG=90°,∴∠AEF=∠DEG,∴△AEF≌△DEG〔ASA〕,∴EF=EG.〔1〕EF=EG;〔2〕解:EF=EG.证明:作EM⊥AB于点M,EN⊥CD于点N,∵EM∥CD,∴△AEM∽△ACD,即EM=CD,同理可得,EN=AD,∵∠ACB=90°,CD⊥AB,∴tanA=,又∵EM⊥AB,EN⊥CD,∴∠EMF=∠ENG=90°,∵EF⊥BE,∴∠FEM=∠GEN,∴△EFM∽△EGN,即EF=EG;〔3〕由〔1〕当AC=2BC时,且CE=EA时,EF=EG,当AC=2BC时,且CE=2EA时,EF=EG,可以得出:当AC=mBC时且CE=nEA时,EF=EG.。

浙教版初三上册数学第四章相似三角形的性质及其应用第2课时相似三角形的周长比、面积比随堂练习(解析版)

浙教版初三上册数学第四章相似三角形的性质及其应用第2课时相似三角形的周长比、面积比随堂练习(解析版)

浙教版初三上册数学第四章41.[2021·重庆B 卷]已知△ABC ∽△DEF ,且相似比为1∶2,则△A BC 与△DEF 的面积比是( A )A. 1∶4B. 4∶1C. 1∶2D. 2∶1【解析】 依照相似三角形的面积比等于相似比的平方可得S △ABC ∶S △DEF =1∶4.2.[2021·重庆A 卷]若△ABC ∽△DEF ,相似比为3∶2,则对应高线的比为( A )A .3∶2B .3∶5C .9∶4D .4∶9【解析】 因为△ABC ∽△DEF ,依照相似三角形的性质“相似三角形对应高线之比等于相似比”,故选A.3.如图4-5-10,在△ABC 中,D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( D )A .BC =2DEB .△ADE ∽△ABC C.AD AE =AB AC D .S △ABC =3S △ADE【解析】 ∵在△ABC 中,D ,E 分别是边AB ,AC 的中点,∴DE ∥B C ,DE =12BC ,∴BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∵DE ∥BC ,∴AD AB =AE AC ,即AD AE =AB AC ,故C 正确;∵DE 是△ABC 的中位线,∴DE ∶BC =1∶2,∴S △ABC =4S △ADE ,故D 错误. 图4-5-10 图4-5-114.[2021·湘西]如图4-5-11,在△ABC 中,DE ∥BC ,DB =2AD ,△ADE 的面积为1,则四边形DBCE 的面积为( D )A .3B .5C .6D .8【解析】 由DE ∥BC ,DB =2AD ,得△ADE ∽△ABC ,AD AB =13. ∵S △ADE =1,S △ADE S △ABC =19,∴S △ABC =9. ∴S 四边形DBCE =SABC -S △ADE =8.故选D.5.[2021·连云港]如图4-5-12,已知,△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是( D ) A.BC DF =12 B.∠A 的度数∠D 的度数=12 C.△ABC 的面积△DEF 的面积=12 D.△ABC 的周长△DEF 的周长=12图4-5-12 图4-5-136.[2021·莘县一模]如图4-5-13,在▱ABCD 中,E 为CD 上一点,连结AE ,BE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,则DE ∶EC =( A )A .2∶3B .2∶5C .3∶5D .3∶2【解析】 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB =∠DEF ,∠AFB =∠DFE ,∴△DEF ∽△BAF.∵S △DEF ∶S △ABF =4∶25,∴DE AB =25,∵AB =CD ,∴DE ∶EC =2∶3.7.一副三角板叠放如图4-5-14,则△AOB 与△DOC 的面积之比为__1∶3__.图4-5-148.已知△ABC ∽△DEF ,DE AB =23,△ABC 的周长是12 cm ,面积是30 cm2.(1)求△DEF 的周长;(2)求△DEF 的面积. 解:(1)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的周长为12×23=8(cm);(2)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的面积为30×⎝ ⎛⎭⎪⎫232=1313(cm2). 9.已知两个相似三角形的一对对应边长分别是35 cm 和14 cm.(1)已知它们的周长相差60 cm ,求这两个三角形的周长;(2)已知它们的面积相差588 cm2,求这两个三角形的面积.解:(1)∵两个相似三角形的对应边长分别是35 cm 和14 cm ,∴这两个三角形的相似比为5∶2,∴这两个三角形的周长比为5∶2.设较大的三角形的周长为5x cm ,较小的三角形的周长为2x cm. ∵它们的周长相差60 cm ,∴5x -2x =60,∴x =20,∴5x =5×20=100,2x =2×20=40,∴较大的三角形的周长为100 cm ,较小的三角形的周长为40 cm ;(2)∵这两个三角形的相似比为5∶2,∴这两个三角形的面积比为25∶4.设较大的三角形的面积为25x cm2,较小的三角形的面积为4x cm2. ∵它们的面积相差588 cm2,∴(25-4)x =588,解得x =28,∴25x =25×28=700,4x =4×28=112,∴较大的三角形的面积为700 cm2,较小的三角形的面积为112 cm2.10.如图4-5-15,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( C )A .1∶ 3B .1∶2C .1∶3D .1∶4图4-5-15 图4-5-1611.[2021·咸宁]如图4-5-16,在△ABC 中,中线BE ,CD 相交于点O ,连结DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADE =13.其中正确的个数有( C )A. 1个B. 2个 C .3个 D. 4个【解析】 ①∵DE 是△ABC 的中位线,∴DE =12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC ,∴△DOE ∽△COB , ∴S △DOE S △COB =⎝ ⎛⎭⎪⎫DE BC 2=⎝ ⎛⎭⎪⎫122=14,故②错误; ③∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC ,∵△DOE ∽△COB ,∴OE OB =DE CB ,∴AD AB =OE OB ,故③正确;④∵△ABC 的中线BE 与CD 交于点O ,∴O是△ABC的重心,依照重心性质,得BO=2OE,△ABC的高线长=3△BOC的高线长,∵△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③,得S△ODE=14S△COB,S△ADE=14S△ABC,∴S△ODES△ADE=13.故④正确.综上所述,①③④正确.故选C.12.如图4-5-17,在Rt△ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为(C)A.5 B.6 C.7 D.12图4-5-17 第12题答图【解析】如答图,可知△DEF∽△HMN,∴EFMN=DFHN,即3x-4=x-34,解得x=7(x=0舍去).故选C.13.[2021·河北区校级模拟]如图4-5-18,AD=DF=FB,DE∥FG ∥BC,则SⅠ∶SⅡ∶SⅢ=__1∶3∶5__.图4-5-18【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD∶AF∶AB=1∶2∶3,∴S△ADE∶S△AFG∶S△ABC=1∶4∶9,∴SⅠ∶SⅡ∶SⅢ=1∶3∶5.14.如图4-5-19,在△ABC中,BC>AC,点D在BC上,且DC =AC,∠ACB的平分线CF交AD于点F.E是AB的中点,连结EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.图4-5-19解:(1)证明:∵DC=AC,∴△ACD为等腰三角形.又∵CF平分∠ACD,∴F 为AD 的中点.又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴EF ∥BC ;(2)由(1)得EF ∥BC ,且EF BD =12,∴△AEF ∽△ABD ,∴S △AEF ∶S △ABD =1∶4,∴S 四边形BDFE ∶S △ABD =3∶4.又∵S △ABD =6,∴S 四边形BDFE =92.15.如图4-5-20,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于E ,交⊙O 于D ,连结C D(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.图4-5-20 第15题答图解:(1)如答图所示;(2)如答图,连结OD ,设⊙O 半径为r , 在△ABE 和△DCE 中,⎩⎪⎨⎪⎧∠BAE =∠CDE ,∠AEB =∠DEC , ∴△ABE ∽△DCE.∵在Rt △ABC 中,∠ABC =90°,∠ACB =30°,∴AB =12AC =r.∵BD 平分∠ABC ,∴∠ABD =∠CBD =45°,又∵∠ABD =∠ACD ,∠ACD =∠ODC =45°,∴∠DOC =90°.∵在Rt △ODC 中,DC =OD2+OC2=2r , ∴S △ABE S △CDE =⎝ ⎛⎭⎪⎫AB DC 2=⎝ ⎛⎭⎪⎫r 2r 2=12. 16.[2021·梅州改编] 如图4-5-21,在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,动点M 从点B 动身,在BA 边上以2 cm/s 的速度向点A 匀速运动,同时动点N 从点C 动身,在CB 边上以 3 cm/s 的速度向点B 匀速运动,设运动时刻为t(s)(0≤t ≤5),连结MN.图4-5-21(1)若BM =BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值与△MBN 和△ABC 的周长比;(3)当t 为何值时,四边形ACNM 的面积最小?要求出最小值.解:(1)∵在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,∴A B =10 cm ,BC =5 3 cm.由题意,得BM =2t(cm),CN =3t(cm),BN =(53-3t)cm , 由BM =BN ,得2t =53-3t ,解得t =532+3=103-15; (2)①当△MBN ∽△ABC 时, ∴MB AB =BN BC ,即2t 10=53-3t 53,解得t =52, ∴MB AB =12,∴△MBN 和△ABC 的周长比为12;②当△NBM ∽△ABC 时, NB AB =BM BC ,即53-3t 10=2t 53,解得t =157, ∴BM BC =237,∴△MBN 和△ABC 的周长比为237. 综上所述,当t =52 s 或t =157 s 时,△MBN 与△ABC 相似,对应的△MBN 和△ABC 的周长比为12或237;(3)如答图,过点M 作MD ⊥BC 于点D ,可得MD =t cm.第16题答图设四边形ACNM 的面积为y cm2,∴y =S △ABC -S △BMN =12AC ·BC -12BN ·MD =12×5×53-12×(53-3t)t=32t2-532t +2532=32⎝ ⎛⎭⎪⎫t -522+758 3. ∴依照二次函数的性质可知,当t =52时,y 的值最小.∴当t =52 s 时,四边形ACNM 的面积最小,最小为758 3 cm2.。

浙教版九年级上册第四章相似三角形 专题:相似三角形及其判定练习

浙教版九年级上册第四章相似三角形 专题:相似三角形及其判定练习

专题:相似三角形及其判定一.选择题1. 如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. :2B. 1:C. :D. :22.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A. (1,)B. (,)C. (,2)D. (,2)3.P是△ABC一边上的一点(点P不与点A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有()A.1条B.2条C.3条D.4条4.在等边三角形ABC中,D为AC上一点,且,要在AB上取一点E,使△ADE∽△CDB,则等于()A. B. C. D. 15. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC 于点E.若AB=10,BC=16,则线段EF的长为().A.2B.3C.4D.56. 在△ABC中,AB=m,AC=n,P是AB的中点,过点P的直线交边AC于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为()A. B. C.或 D.或7. 如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于点H,若=2,则的值为()A. B. C. D.8. 如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OB=BC=1,则PD的长为()A. B. C. D.二.填空题9. 如图,在△ABC中,∠ABC=60°,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=____.10. 如图,在▱ABCD中,AC是对角线,∠BAE=∠DAC,已知AB=7,AD=10,则CE=____.11. 如图,正方形CDEF的顶点D、E在半圆O的直径上,顶点C、F在半圆上,连接AC、BC,则=____.12. 如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=____.13. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时,的值为______;当时,为______.(用含n的式子表示)14. 如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=______.15. 如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为()16. 如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于点H,点O是AB中点,连接OH,则OH=___________.三.解答题17. 在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△BED.18. 如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.19. 在矩形ABCD中,E为CD的中点,H为BE上的一点,=3,连结CH并延长交AB于点G,连结GE并延长交AD的延长线于点F.(1)求证:=.(2)若∠CGF=90°,求的值.20.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:=GE·GF.21.已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.22. 如图,△ABC内接于⊙O,AB=AC,过点C作CD平行于AB交⊙O于点D,过点D作DE 垂直于点E,且CD=DE(1)求证:AD2=2AE•AB;(2)若△ABC的面积是50,求△ACD的面积.23. △ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.24. 如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1) 点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2) 在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.25.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图2,在△ABC中,AC=2,,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形.求完美分割线CD的长.参考答案1. D 2. B 3. C 4. C 5.B 6.D 7. B8.C9. 4.10. 5.1.11. .12..13. ,.14. 1或.15.,16. .17.证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴,∵点E是AD的中点,∴AE=ED,∴,又∵∠FED=∠DEB,∴△DEF∽△BED.18. (1)证明:∵BF∥DE,∴==.∵AD=BD,∴AC=CG,AE=EF.在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5.∵点的是AB的中点,∴CD=AD=BD=AB=2.5,∴∠DCB=∠DBC.∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,,∴△BCP≌△BCD(AAS),∴BP=BD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,则BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.19. 解:(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴=;(2)作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得:==3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴=,∴EG·EF=DE·EC,∵CD∥AB,∴==,∴=,∴EF=EG,∴EG·EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a ,∴==3.20.解析(1)根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∵DG=DG,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴=,∴=GE·GF.21. 证明:∵△ACD∽△ABC,∴∠ADF=∠ACG,∵=,∴△ADF∽△ACG,∴∠DAF=∠CAF,即∠BAG=∠CAG,AG是∠BAC的平分线,∴,∴,∴CG2=DF•BG.22. 解:(1)连接BD,∵AB∥DC,∴=,∴∠ACD=∠BAC,∴=,∴BD=AC,∴BD=AC=AB,∵△BED为直角三角形,∴BD2=BE2+DE2,BD2=AB2=(AB-AE)2+DE2=AB2-2AB•AE+AE2+DE2,2AE•AB=AE2+DE2,∵△AED为直角三角形,∴AD2=AE2+DE2,∴AD2=2AE•AB;(2)过C作CF⊥AB,则BF=AE,CD=EF,∴BE=CD+BF=CD+AE,∴(CD+AE)2+DE2=AC2,即[CD+(AB-CD)]2+CD2=AB2,即3AB2-2AB•CD-5CD2=0,∴(3AB-5CD)•(AB+CD)=0,∵CD 不等于负数,∴CD=AB,∵DE⊥AB,∴DE⊥CD,∴S△ABC=AB•DE=50,∴S△ACD=DC•DE=AB•DE=S△ABC=30.23.(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BME=∠NEC,而∠B=∠C=45°,∴△BEM∽△CNE.(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE又∵BE=EC,∴ECCN =EMNE则△ECN与△MEN中有ECCN =EMNE,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.24. (1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.25.(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,.∴∠ACD=∠A=40°,∴△ACD为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC.∴CD是△ABC的完美分割线.(2)当AD=CD时(如图①),∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.当AD=AC时(如图②),.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.当AC=CD时(如图③),∠ADC=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC=∠BCD=48°与∠ADC>∠BCD矛盾,舍去.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,,设BD=x(x>0),,解得,∵x>0,.∵△BCD∽△BAC,,.。

浙教版九年级数学上册第四章:相似三角形基本模型练习题(含答案)

浙教版九年级数学上册第四章:相似三角形基本模型练习题(含答案)

相似证明中的基本模型A 字形图①A 字型,结论:AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DEAC AB BC== 图③双A 字型,结论:DF BG EF GC =,图④内含正方形A 字形,结论AH a aAH BC-=(a 为正方形边长)IH G FED CB AGFEDC BAEDCB A ED C BA图① 图② 图③ 图④8字型图①8字型,结论:AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD==、四点共圆 图③双8字型,结论:AE DF BE CF=,图④A 8字型,结论:111AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△EFD C BA F ED C BAOD C BAODC BAGFED CB A图① 图② 图③ 图④ 图⑤一线三等角型结论:出现两个相似三角形HE DC B AE DC BAEDCBAC60°F E DCB AFED CB A图① 图② 图③ 图④角分线定理与射影定理图①内角分线型,结论:AB BD AC DC =,图②外角分线型,结论:AB BDAC CD= 图③斜射影定理型,结论:2AB BD BC =⋅,图④射影定理型,结论:1、2AC AD AB =⋅,2、2CD AD BD =⋅,3、2BC BD BA =⋅D C BD BCAEDB AD B A梅涅劳斯型常用辅助线G FEDCBAGFEDCBA G E DC B ADEFCBA四、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题. 常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BCS CD CD AH ⋅⋅==⋅⋅△△. 图1:“山字”型H DC B A如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 图2:“田字”型G HODCBA如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.图3:“燕尾”型CDEB A考点一:相似三角形【例1】 如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【答案】∵AD AC AE AB ⋅=⋅ ∴AD ABAE AC=∵DAE BAC ∠=∠∴DAE ∆∽BAC ∆∴ADE B ∠=∠ 【例2】 如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A【答案】∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠ ∴ABD ∆∽CBE ∆∴BE BCBD AB=∵EBD CBA ∠=∠ ∴BED ∆∽BCA ∆∴11322DEDE AC AC===⇒== 【例3】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB =________.PCBA【解析】120APB BPC ∠=∠=︒,60BAP ABP ABC ABP CBP ∠=︒-∠=∠-∠=∠,故ABP BCP △∽△,2PB PA PC =⋅.【例4】 如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【答案】45︒ 【解析】连接DF 、CG ,则45EDF EBF DFB ∠=∠+∠=︒,若DFB EBG ∠=∠,则EBF EBG ∠+∠可求,问题的关键是证明BCG FDB △∽△.考点二:相似三角形与边的比例☞考点说明:可运用相似三角形模型,常用A 字形与8字形【例5】 在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA MPED C BA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴CM PC BD PB =, ∵CM AB ∥,∴CEM AED ∆∆∽, ∴CM AD CE AE =, ∵BD CE =, ∴CM CM CE BD =, ∴PC AD PB AE=, ∴AD BP AE CP ⋅=⋅【例6】 如图,在ABC ∆的边AB 上取一点D ,在AC 取一点E ,使AD AE =,直线DE 和BC 的延长线相交于P ,求证:BP BDCP CE= PEDCBA4321MPE D CBA【答案】过C 作CM AB ∥交DP 于M ,∵CM AB ∥,∴PCM PBD ∆∆∽, ∴BP BD CP CM =, ∵CM AB ∥, ∴14∠=∠, 又∵AD AE =,∴12∠=∠,∴24∠=∠, ∵23∠=∠, ∴34∠=∠, ∴CM CE = ∴BP BD CP CE= 【例7】 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.F NMED CBAK HF N MG ED CBA【答案】过M ,N 分别作AC 的平行线交AB 于H ,G 两点,NH 交AM 于K ,∵BM MN NC ==, ∴BG GH HA ==,易知12HK GM =,12GM HN =,∴14HK HN =,即13HK KN =,又∵DF HN ∥, ∴13DE HK EF KN ==,即3EF DE =. 考点三:相似三角形与内接矩形☞考点说明:内接矩形问题是相似三角形中比较典型的问题,考查了相似三角形对应高的比等于相似比【例1】 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,工人师傅要把它加工成一个面积最大的正方形桌面,请甲、乙两位同学进行设计加工方案。

浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(1)+答案解析

浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(1)+答案解析

浙教新版九年级上册《4.3相似三角形》2024年同步练习卷(1)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知∽,,,则()A.2B.C.3D.2.如图,∽,若,,,则AB的长是()A.3B.2C.5D.43.如图,∽,则下列式子:①;②;③其中一定成立的有()A.3个B.1个C.2个D.0个4.如图,平行四边形ABCD中,,,点E,F分别在AD,AB上,若,∽,则()A.1B.2C.4D.5二、填空题:本题共5小题,每小题3分,共15分。

5.如果两个三角形相似,其中一个三角形两个内角分别是、,那么另一个三角形的最大角为______度.6.如图,∽,,,,CA的长为______.7.在中,,,若和它相似的最长的一边是36,则最短的一边是______.8.的三边长分别为,,2,的两边长分别为1和,如果∽,那么的第三边的长应等于______.9.如图,在矩形ABCD中,点E、F分别在边AD、DC上,∽,,,,则______.三、解答题:本题共5小题,共40分。

解答应写出文字说明,证明过程或演算步骤。

10.本小题8分如图所示,已知:∽,,,,,求AB的长;求CD的长;求的大小.11.本小题8分如图,BC,AD相交于点C,∽,,,求CE的长;求证:12.本小题8分如图,正方形ABCD的边长为1,E是边CD上的一点,F是边CB延长线上的一点,如果∽∽,且、、是对应角.求DE的长.13.本小题8分如图,在中,AD平分交BC于点点E、F分别在边AB、AC上,且,交线段AD于点G,连接BG、求证:四边形BGFE是平行四边形;若∽,,,求线段BE的长.14.本小题8分如图,与中,,,,如果图中的两个直角三角形相似,求AD的长.答案和解析1.【答案】B【解析】解:∽,,,,故选:根据相似三角形的对应边的比相等解答即可.本题考查了全等三角形的性质,属于基础题型.2.【答案】D【解析】解:∽,,,,,,解得:故选:直接利用相似三角形的性质得出对应边之间的关系进而得出答案.此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.3.【答案】B【解析】解:∽,:::BC,,只有②正确.故选:由∽,根据相似三角形的对应边成比例,可得AC:::BC,继而求得答案.此题考查了相似三角形的性质.此题比较简单,注意掌握数形结合思想的应用.4.【答案】B【解析】解:∽,,,,,把它们代入比例式中,故选:根据相似三角形的性质可得边的比相等,将线段的长代入比例式即可求得.本题主要利用平行四边形中的对边相等,相似三角形的对应边成比例.5.【答案】80【解析】解:根据三角形的内角和是,求得其中一个三角形的第三个角是,其中角最大,根据相似三角形的性质,得:另一个三角形的最大角为可根据三角形内角和定理,求出其中一个三角形的第三角的度数,然后找出其中最大角的度数.根据相似三角形的对应角相等,即可求出另一个三角形的最大角的度数.本题主要考查了三角形的内角和定理以及相似三角形的性质.6.【答案】24【解析】解:∽,,,,,,解得:故答案为:直接利用相似三角形的性质得出对应边的比值相等进而得出答案.此题主要考查了相似三角形的性质,正确得出对应边的关系是解题关键.7.【答案】18【解析】解:设最短的一边是x,在中,,,,若和它相似的最长的一边是36,,解得:故答案为:设最短的一边是x,由相似三角形的性质得到,即可求出x,得到最短的边.本题主要考查相似三角形对应边成比例的性质,解此题的关键是正确列出方程.8.【答案】【解析】解:的三边长分别为,,2,的三边长之比为,1::,的两边长分别为1和,∽,的第三边的长应等于故答案为:先求出三边之比,再根据相似三角形对应边成比例解答即可.本题考查了相似三角形对应边成比例的性质,求出的三边之比是解题的关键.9.【答案】2【解析】解:四边形ABCD是矩形,;∽,,即,解得;在中,,,由勾股定理得:故答案为:已知∽,那么点A、D对应,点B、E对应,点E、F对应,首先根据相似三角形得到的比例线段求出DF的长,再由勾股定理求得EF的值.此题主要考查的是相似三角形的性质,找准对应顶点是解题的关键.10.【答案】解:∽,,,,,解得:;∽,即,解得:;∽,,,,,【解析】由∽,,,,根据相似三角形的对应边成比例,即可得,则可求得AB的长;根据相似三角形的对应边成比例,即可得,则可求得DC的长;根据相似三角形的对应角相等,可得,,继而可求得的大小.此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例,对应角相等.11.【答案】解:∽,又,,;∽,,,,【解析】根据相似三角形的性质解答即可;根据相似三角形的性质和平角的定义解答即可.此题考查相似三角形的性质,关键是根据相似三角形的性质解答.12.【答案】解:正方形ABCD的边长为1,,∽,,设,则,,,∽,,即,解得:,舍去,【解析】首先由正方形ABCD的边长为1,∽,证得,然后设,可得,,,又由∽,可得,即可得方程,解此方程即可求得答案.此题考查了相似三角形的性质、正方形的性质以及一元二次方程的解法.此题难度适中,解题的关键是注意数形结合思想与方程思想的应用.13.【答案】证明:,,,,,又,四边形BGFE为平行四边形.解:∽,,即,,,【解析】根据,又AD平分,可证得,,从而得:,又因为,所以可知四边形BGFE是平行四边形;根据∽,可得,求出AF的长,再由的结论:,即可得BE的长.解决此类题目,要掌握平行四边形的判定及相似三角形的性质.14.【答案】解:,,,,若∽,则,即,解得:;若∽,则,即,解得:;AD的长为:或【解析】此题考查了相似三角形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.由与中,,,,可求得BC的长,然后分别从∽或∽,根据相似三角形的对应边成比例,即可求得答案.。

浙教版初三上册数学第四章微专项相似三角形判定的综合随堂练习(解析版)

浙教版初三上册数学第四章微专项相似三角形判定的综合随堂练习(解析版)

浙教版初三上册数学第四章微专项相似三角形判定的综合随堂练习(解析版)一 相似三角形的判定教材P136作业题第5题)如图1,在△ABC 中,D 是AC 上一点.已知AB2=AD ·AC ,∠AB D =40°.求∠C 的度数.图1解:在△ABD 与△ACB 中,∠A =∠A.由AB2=AD ·AC ,得AB AC =AD AB ,∴△ABD ∽△ACB ,∴∠C =∠ABD =40°.【思想方法】 判定两个三角形相似的常规思路:①先找两对对应角相等;②若只能找到一对对应角相等,则判定相等的角的两边是否对应成比例;③若找不到角相等,就判定三边是否对应成比例.如图2,在△ABC 中,点D 在AB 上,下列条件能使△BCD 和△BAC 相似的是( D )图2A .∠ACD =∠B B .∠ADC =∠ACBC .AC2=AD ·AB D .BC2=BD ·BA 【解析】 若BC2=BD ·BA ,则有BC BA =BD BC ,∵∠B =∠B ,∴△BCD ∽△BAC.故选D.[2021·长春]如图3,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE.EF 与CD 交于点G .图3(1)求证:BD ∥EF ; (2)若DG GC =23,BE =4,求EC 的长.解:(1)证明:∵在▱ABCD 中,AD ∥BC ,∴DF ∥BE ,又∵DF =BE ,∴四边形DBEF 为平行四边形,∴BD ∥EF ;(2)∵AD ∥BC ,∴∠F =∠GEC ,∵∠DGF =∠CGE ,∴△DFG ∽△CEG ,∴DG CG =DF CE =23,∴EC =6.[2021·甘肃]如图4,已知EC ∥AB ,∠EDA =∠ABF.(1)求证:四边形ABCD 为平行四边形;图4(2)求证:OA2=OE ·OF.证明:(1)∵EC ∥AB ,∴∠EDA =∠DAB ,∵∠EDA =∠ABF ,∴∠DAB =∠ABF ,∴AD ∥BC ,∵DC ∥AB ,∴四边形ABCD 为平行四边形;(2)∵EC ∥AB ,∴△OAB ∽△OED ,∴OA OE =OB OD ,∵AD ∥BC ,∴△OBF ∽△ODA ,∴OB OD =OF OA ,∴OA OE =OF OA ,∴OA2=OE ·OF.如图5,在△ABC 中,∠ACB =90°,AC =BC ,点D 在边AB上,连结CD ,将线段CD 绕点C 顺时针旋转90°至CE 的位置,连结AE.图5(1)求证:AB ⊥AE ;(2)若BC2=AD ·AB ,求证:四边形ADCE 为正方形.证明:(1)∵∠ACB =90°,AC =BC ,∴∠B =∠BAC =45°.∵线段CD 绕点C 顺时针旋转90°至CE 位置,∴∠DCE =90°,CD =CE ,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE , 在△BCD 和△ACE 中,⎩⎪⎨⎪⎧BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE(SAS),∴∠B =∠CAE =45°,∴∠BAE =∠BAC +∠CAE =45°+45°=90°,∴AB ⊥AE ;(2)∵BC2=AD ·AB ,AC =BC , ∴AC2=AD ·AB ,则AD AC =AC AB .又∵∠DAC =∠CAB ,∴△DAC ∽△CAB ,∴∠CDA =∠BCA =90°.又∵∠DAE =90°,∠DCE =90°,∴四边形ADCE 为矩形.又∵CD =CE ,∴四边形ADCE 为正方形.[2021·宿迁]如图6,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.图6(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.证明:(1)∵AB =AC ,∴∠B =∠C ,∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,∵∠DEF =∠B ,∴∠BDE =∠CEF ,∴△BDE ∽△CEF ;(2)∵△BDE ∽△CEF ,∴BE CF =DE EF ,∵点E 是BC 的中点,∴BE =CE ,∴CE CF =DE EF ,∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF ,∴∠DFE =∠CFE ,∴FE 平分∠DFC.[2021·宁波]从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把那个三角形分割成两个小三角形,假如分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做那个三角形的完美分割线.(1)如图7①,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:CD 为△ABC 的完美分割线;(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数;(3)如图②,在△ABC 中,AC =2,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.图7解:(1)证明:∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线;(2)①当AD =CD 时,如答图①,∠ACD =∠A =48°,变形6答图①∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°;②当AD =AC 时,如答图②,∠ACD =∠ADC =180°-48°2=66°,变形6答图②∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,如答图③,∠ADC =∠A =48°,变形6答图③∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍去.综上所述,∠ACB =96°或114°;(3)∵△BCD ∽△BAC , ∴BC BA =BD BC ,设BD =x ,∵AC =AD =2,∴(2)2=x(x +2),∵x >0,∴x =3-1,即BD =3-1,∵△BCD ∽△BAC , ∴CD AC =BD BC =3-12, ∴CD =3-12×2=6- 2. 二 圆中的相似教材P133作业题第4题)已知:如图8,在⊙O 中,弦AB 与弦CD 交于点P.(1)求证:△ADP ∽△CBP ;(2)判定AP ·BP =DP ·CP 是否成立,并给出证明.图8解:(1)证明:由题意,得∠DAP =∠BCP ,∠ADP =∠CBP ,∴△ADP ∽△CBP ;(2)成立.证明:∵△ADP ∽△CBP , ∴AP CP =DP BP ,∴AP ·BP =DP ·CP.【思想方法】 证明圆中的两三角形相似常用的定理是同弧所对的圆周角相等.[2021·丽水]如图9,已知⊙O 是等腰直角三角形ABC 的外接圆,D 是AC ︵上一点,BD 交AC 于点E ,若BC =4,AD =45,则AE 的长是( C)图9A .3B .2C .1D .1.2【解析】 ∵△ABC 为等腰直角三角形,BC =4,∴AB 为⊙O 的直径,AC =4,AB =42,∴∠D =90°,∵在Rt △ABD 中,AD =45,AB =42,∴BD =285,∵∠D =∠C ,∠DAC =∠CBE ,∴△ADE ∽△BCE ,∵AD ∶BC =45∶4=1∶5,∴△ADE 与△BCE 的相似比为1∶5,设AE =x ,则BE =5x ,DE =285-5x ,∴CE =28-25x ,∵AC =4,∴x +28-25x =4,解得x =1,即AE =1.故选C.[2021·海南]如图10,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,直径 DE ⊥AC 于点 P ,若点 D 在优弧ABC 上,AB =8,BC =3,则 DP =__5.5____.图10【解析】 ∵AB 和DE 是⊙O 的直径,∴OA =OB =OD =4,∠C =90°, 又∵DE ⊥AC ,∴OP ∥BC ,∴△AOP ∽△ABC ,∴OP BC =AO AB ,即OP 3=48,∴OP =1.5.∴DP =OP +OD =5.5.[2021·阳谷二模]如图11,四边形ABCD 内接于圆,延长AD ,BC 相交于点E ,点F 是BD 的延长线上的点,且AB =AC.图11(1)求证:DE 平分∠CDF ;(2)若AC =3 cm ,AD =2 cm ,求DE 的长.解: (1)证明:∵∠ABC +∠ADC =180°,∠CDE +∠ADC =180°, ∴∠CDE =∠ABC ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠EDF =∠ADB =∠ACB ,∴∠EDF =∠CDE ,∴DE 平分∠CDF ;(2)∵∠ADB =∠ABC ,∠DAB =∠BAE ,∴△ABD ∽△AEB ,∴AB AE =AD AB ,∵AB =AC =3,AD =2,∴AE =AB2AD =92,∴DE =92-2=52(cm).如图12,△ABC 是⊙O 的内接三角形,AE 是⊙O 的直径,AF是⊙O 的弦,AF ⊥BC ,垂足为D.图12(1)求证:∠BAE =∠CAD ;(2)若⊙O 的半径为4,AC =5,CD =2,求CF 的长.解: (1)证明:∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠BEA =90°,∵AF ⊥BC ,∴∠ADC =90°,∴∠ACD +∠CAD =90°,又∵∠BEA =∠ACD ,∴∠BAE =∠CAD ;(2)∵∠ABE =∠ADC =90°,∠BEA =∠ACD ,∴△ABE ∽△ADC ,∴BE CD =AE AC ,即BE 2=85,解得BE =165,由(1)得∠BAE =∠CAD ,∴BE ︵=CF ︵,∴CF =BE =165.。

浙教版数学九年级上册 第四章 相似三角形 综合测试卷(原卷+答案)

浙教版数学九年级上册  第四章 相似三角形  综合测试卷(原卷+答案)

第四章综合测试卷 相似三角形班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1.己知 ab =25,则a +b b的值为( )A 25B 35C 75D 232.如图,已知△ABC∽△DEF,AB:DE=1:2,则下列等式一定成立的是( )A.BC DF=12 B.∠A 的度数∠D 的度数=12C.△ABC的面积△def 的面积= 12 D. △ABC 的周长△def 的周长= 123.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(4,3),B(3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比 13的位似图形△OCD,则点C 坐标为( )A. (-1,-1)B.(−43,−1)C.(−1,−43) D. (-2,-1)4. 如图,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出 △ABP 与△ECP 相似的是( )A.∠APB=∠EPCB. ∠APE=90°C. 点 P 是BC 的中点D. BP: BC=2:35.如图,在△ABC 中,点D 在BC 边上,连结AD,点E 在AC 边上,过点E 作EF∥BC,交 AD 于点F,过点E 作EG∥AB,交BC 于点G,则下列式子一定正确的是( ) A.AE EC=EF CDB.EF CD=EG ABC.AFFD=BG GCD.CG BC=AF AD6. 如图,小明为了测量一凉亭的高度AB(顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE(DE=BC=0.5m ,A ,B ,C 三点共线),把一面镜子水平放置在平台上的点 G 处,测得CG=15m ,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得 EG=3m ,小明身高EF=1.6m,则凉亭的高度AB 约为( )A. 8.5mB. 9mC. 9.5mD. 10m7. 在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似( )A. ①处B. ②处C. ③处D. ④处8. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A ,D 为圆心,以大 12AD 的长为半径在AD 两侧作弧,交于两点M ,N第二步,连结MN 分别交AB,AC 于点E,F;第三步,连结DE,DF.若BD=6,AF=4,CD=3,则BE 的长是( )A. 2B. 4C. 6D. 89. 如图,在△ABC 中,点 D 为BC 边上的一点,且AD=AB=2,AD⊥AB,过点 D 作DE⊥AD,DE 交AC 于点E,若DE=1,则△ABC 的面积为( )A. 2B. 4C.25D. 810. 在四边形 ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分 AC,点 H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图所示,点 E 是平行四边形ABCD 的边BC 延长线上一点,连结AE ,交 CD 于点F ,连结BF.写出图中任意一对相似三角形: .12. 已知 a6=b5=c4,且a+b-2c=6,则a 的值为 .13. 如图,在平行四边形ABCD 中,AB=10,AD=6,点E 是AD 的中点,在AB 上取一点F,使△CBF∽△CDE,则 BF 的长是 .14. 如图,在一块斜边长为30cm 的直角三角形木板(Rt△ACB)上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若AF :AC=1:3,则这块木板截取正方形 CDEF 后,剩余部分的面积为 .15.如图①,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图②是此时的示意图,则图②中水面高度为16. 如图所示,在直角坐标系中有两点A(4,0),B(0,2).如果点C 在x 轴上,且点 C 与点O 及点A 不重合,当点 C 的坐标为 时,使得由点B ,O ,C 构成的三角形与△AOB 相似(至少找出两个符合条件的点).三、解答题(本大题有8小题,共66分)17.(6分)如图,在△ABC中,DE‖BC,EF‖AB,求证:△ADEO△EFC.18. (6分)如图,一块材料的形状是锐角三角形 ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?19.(6分)如图,点 P 是⊙O的直径AB 延长线上一点,且AB=4,点 M为A AB上一个动点(不与A,B重合),射线 PM与⊙O交于点 N(不与M重合).(1)当M在什么位置时,△MAB的面积最大? 并求出这个最大值;(2)求证:△PAN∽△PMB.20. (8 分)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.21. (8分)如图,在△ABC中,点 D,E分别在边AB,AC上,且∠ABE=∠ACD,BE,CD交于点G,连结DE.(1)求证:△AEDO△ABC;(2)如果BE平分∠ABC,求证:DE=CE.22.(10分)如图,在 △ABC 中,点D,E,F 分别在AB,BC,AC 边上, DE‖AC,EF‖AB.(1)求证: △BDEO △EFC.(2)设AF FC=12,①若. BC =12,,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.23.(10分)在矩形ABCD 中,AE⊥BD 于点E,点 P 是边AD 上一点.(1)若BP 平分∠ABD,交 AE 于点G,PF⊥BD 于点F,如图①,证明四边形 AGFP 是菱形;(2)如图②,若PE⊥EC,求证:AE·AB=DE·AP;(3)在(2)的条件下,若AB=1,BC=2,求AP 的长.24.(12分)如图,已知 △ABC 是边长为6cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB,BC 匀速运动,其中点 P 运动的速度是 1cm/s,点 Q 运动的速度是2cm/s,当点 Q 到达点C 时,P ,Q 两点都停止运动.设运动时间为t(s),解答下列问题:(1) 当 t =2时,判断 △BPQ 的形状,并说明理由;(2)设 △BPQ 的面积为 S (cm²),求S 与t 的函数表达式;(3)如图,作 QR//BA 交AC 于点R,连结PR,当t 为何值时,△APR∽△PRQ?第四章综合测试卷 相似三角形1. C2. D3. B4. C5. C6. A7. B8. D9. B 10. D 11. △ADF∽△ECF(答案不唯一)12. 12 13. 1.8 14. 100cm² 15.24516. (-1,0)或(1,0)或(-4,0)(答案不唯一)17. 证明:∵DE∥BC,∴△ADE∽△ABC,∵EF∥AB,∴△EFC∽△ABC,∴△ADE∽△EFC.18. 解:设这个正方形零件的边长为 xmm ,则△AEF 的边EF 上的高AK=(80-x) mm.∵四边形EF-HG是正方形,∴EF∥GH,即 EF∥BC.∴△AEF CABC.∴EF BC=AK AD,即 x 120=80−x 80⋅∴x =48.∴这个正方形零件的边长是48mm.19. (1)解:当点 M 在 AB 的中点处时,△MAB 的面积最大,此时( OM⟂AB,∵OM =12AB =12×4=2,∴S ABM =12AB ⋅OM =12×4×2=4. (2)证明:∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.20. 解: ∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD.∵BC=4,∴CD=4.∵AB∥ CD,∴ABECDE,∴AB CD=AE CE,∴84=AE CE,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.21. 证明:(1)∵∠ABE=∠ACD,且∠A 是公共角, ∴ABEACD.∴AE AD=AB AC,即AEAB =ADAC ,又∵∠A 是公共角,∴△AED∽△ABC. (2)∵∠ABE=∠ACD,∠BGD=∠CGE,∴△BGD∽ CGE.:DG EG=BG CG,即DG BG=EG CG.又∵∠DGE=∠BGC,∴△DGE∽△BGC.∴∠GBC=∠GDE,∵BE 平分∠ABC,∴∠GBC=∠ABE,∵∠ABE=∠ACD,∴∠GDE=∠ACD.∴DE=CE.22. (1)证明:∵DE∥AC,∴∠BED=∠C.∵EF∥AB,∴∠B=∠FEC,∴△BDE∽△EFC.(2)解:①∵EF//AB,∴BE EC=AF FC=12.∵BC = 12,∴BE12−BE =12,∴BE =4.②∵EF∥AB,∴△EFC∽△BAC,∴S△BC= (EC BC)2⋅∴BE EC=12,∴EC BC=23.又∵△EFC 的面积是20, ∴20SABC=(23)2,∴SABC=45,即△ABC 的面积是45.23. (1)证明:∵四边形 ABCD 是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵BP 平分∠ABD,∴∠ABG=∠PBD.∵∠AGP=∠BAG+∠ABG,∠APB =∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP 平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP 是平行四边形,∵PA=PF,∴四边形AGFP 是菱形.(2)证明:∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴DE·AP.(3)解:∵四边形 ABCD 是矩形,∴AD=BC=2,∠BAD=90°,∴BD=√AB²+AD² =5,∵AE ⊥BD,∴S ABD =12⋅BD ⋅AE = 12⋅AB ⋅AD,∴AE =255,∴DE =AD 2−AE 2=455,∵AE ⋅AB =DE ⋅AP,∴ AP =255×1455=12.24. 解:(1)△BPQ 是等边三角形.当t=2时,AP=21 =2( cm),BQ=2×2=4( cm),∴BP=AB-AP=6-2=4( cm),∴BQ=BP,又∵∠B = 60°,∴△BPQ 是等边三角形.(2)如图,过点 Q 作QE⊥AB,垂足为 E,由 QB=2tcm,∠B=60°,∠BEQ=90°,得 QE =3tcm,由AP= tcm,得 PB =(6−t )cm,∴S =12BP ⋅QE = 12×(6−t )×3t =−32t 2+33t.(3)∵QR‖BA,∴∠QRC=∠A=60°,∠RQC=∠B=60°,∴△QRC是等边三角形,∴QR=RC=QC=(6-2t)cm⋅:BE=12BQ=12×2t=t(cm),∴EP=AB−AP−BE=6−t−t=6−2t(cm),∵EP‖QR,EP=QR,∴四边形 EPRQ是平行四边形,∴PR=EQ3tcm.又∵∠PEQ=90°,∴∠APR∠PRQ=90°,∴△APR∽△PRQ,∴∠QPR=∠A=60∘,QRPR=6−2t3t=3,解得t=65.∴当t=65时,△APR∽△PRQ.。

浙教版九年级数学上《4.3相似三角形》同步练习含答案

浙教版九年级数学上《4.3相似三角形》同步练习含答案

4.3.相似三角形一.选择题1.下列命题中,是真命题的是( )A.锐角三角形都相似B. 直角三角形都相似C. 等腰三角形都相似D. 等边三角形都相似2.已知△ABC ∽△DEF ,∠A=∠D=o 30,∠B=o 50,AC 与DF 是对应边,则∠F=( )A. o 50B. o 80C. o 100D. o 1503. △ABC ∽△DEF,且相似比为2,则( )A. ∠A 是∠E 的2倍B. ∠F 是∠A 的2倍C. AB 是DE 的2倍D.DE 是AB 的2倍4.如图,△ADE ∽△ACB,且∠ADE=∠C,则下列等式成立的是( ) A. AC AE AB AD = B. BD AD BC AE = C. AB AE BC DE = D. ABAD BC DE = 5.△ABC 的三. 边分别是262,,,△DEF 的两边分别为1,3,如果△ABC ∽△DEF ,那么△DEF 的第三边长可能是( ) A. 2 B.22 C. 26 D.33 二.填空题6. 已知△ABC ∽△'''C B A ,且相似比是31,若''B A =2,则AB=_______ 7. △ABC ∽△DEF,且,△ABC 与△DEF 的相似比为73,则_______=AB DE 8.三角形的三条中位线所形成的三角形与原三角形的相似比是___________9.如图,△DGH ∽△DEF,则图中的对应边是_________________,对应角是________________10.如图,△A BC ∽△DAC, ∠B=∠DAC,DC=1,BD=3,△DAC 与△ABC 的相似比_______(第4题) (第9题) (第10题)三.解答题11.如图,△ABC 是直角三角形,∠B=o90,试在图中画出Rt △ACD ,使△ACD 与△ABC相似,使AC 为公共边(要求画出不同的三个)12.如图,已知△ABC ∽△ADE, DE ⊥AB,BC ⊥AD,垂足分别是E,C.(1)写出这两个相似三角形对应边的比例式(2)若AE=5,AD=13,CD=3,求BC 的长13.如图,已知△ABC ∽△ACD,且AD=9,BD=3,求AC 的长14.如图,Rt △ABC 与Rt △ADE 相似,且∠B=o 60,CD=2,DE=1,求BC 的长15如图,在直角坐标系xOy 中,直线221+=x y 与x 轴,y 轴交于A,B 两点,以AB 为边在第二象限内作矩形ABCD,使AD=5(1)求点A ,B 的坐标,并求AB 的长(2)过点D 作DH ⊥x 轴,垂足为H,若△ADH ∽△BAO,求点D 的坐标4.3.相似三角形1—5 DCCCA 6. 32 7.37 8.21 9略 10. 21 11. 略 12 24)2()1(AD AB DE BC AE AC == 13. 36 14.334 15.()()()()()2525220041,,,-=-D AB B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:相似三角形及其判定一.选择题1. 如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. :2B. 1:C. :D. :22.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A. (1,)B. (,)C. (,2)D. (,2)3.P是△ABC一边上的一点(点P不与点A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有()A.1条B.2条C.3条D.4条4.在等边三角形ABC中,D为AC上一点,且,要在AB上取一点E,使△ADE∽△CDB,则等于()A. B. C. D. 15. 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC 于点E.若AB=10,BC=16,则线段EF的长为().A.2B.3C.4D.56. 在△ABC中,AB=m,AC=n,P是AB的中点,过点P的直线交边AC于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为()A. B. C.或 D.或7. 如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于点H,若=2,则的值为()A. B. C. D.8. 如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OB=BC=1,则PD的长为()A. B. C. D.二.填空题9. 如图,在△ABC中,∠ABC=60°,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=____.10. 如图,在▱ABCD中,AC是对角线,∠BAE=∠DAC,已知AB=7,AD=10,则CE=____.11. 如图,正方形CDEF的顶点D、E在半圆O的直径上,顶点C、F在半圆上,连接AC、BC,则=____.12. 如图,已知△ABC、△DCE、△FEG、△HGI是4个全等的等腰三角形,底边BC、CE、EG、GI在同一直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=____.13. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时,的值为______;当时,为______.(用含n的式子表示)14. 如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6,△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=______.15. 如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E点,且AB=BD,EC=1,则AD的长为()16. 如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于点H,点O是AB中点,连接OH,则OH=___________.三.解答题17. 在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△BED.18. 如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.19. 在矩形ABCD中,E为CD的中点,H为BE上的一点,=3,连结CH并延长交AB于点G,连结GE并延长交AD的延长线于点F.(1)求证:=.(2)若∠CGF=90°,求的值.20.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:=GE·GF.21.已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.22. 如图,△ABC内接于⊙O,AB=AC,过点C作CD平行于AB交⊙O于点D,过点D作DE 垂直于点E,且CD=DE(1)求证:AD2=2AE•AB;(2)若△ABC的面积是50,求△ACD的面积.23. △ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.24. 如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1) 点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2) 在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.25.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图2,在△ABC中,AC=2,,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形.求完美分割线CD的长.参考答案1. D 2. B 3. C 4. C 5.B 6.D 7. B8.C9. 4.10. 5.1.11. .12..13. ,.14. 1或.15.,16. .17.证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴,∵点E是AD的中点,∴AE=ED,∴,又∵∠FED=∠DEB,∴△DEF∽△BED.18. (1)证明:∵BF∥DE,∴==.∵AD=BD,∴AC=CG,AE=EF.在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5.∵点的是AB的中点,∴CD=AD=BD=AB=2.5,∴∠DCB=∠DBC.∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,,∴△BCP≌△BCD(AAS),∴BP=BD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,则BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.19. 解:(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴=;(2)作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得:==3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴=,∴EG·EF=DE·EC,∵CD∥AB,∴==,∴=,∴EF=EG,∴EG·EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a ,∴==3.20.解析(1)根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∵DG=DG,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴=,∴=GE·GF.21. 证明:∵△ACD∽△ABC,∴∠ADF=∠ACG,∵=,∴△ADF∽△ACG,∴∠DAF=∠CAF,即∠BAG=∠CAG,AG是∠BAC的平分线,∴,∴,∴CG2=DF•BG.22. 解:(1)连接BD,∵AB∥DC,∴∠ACD=∠BAC,∴=,∴=,∴BD=AC,∴BD=AC=AB,∵△BED为直角三角形,∴BD2=BE2+DE2,BD2=AB2=(AB-AE)2+DE2=AB2-2AB•AE+AE2+DE2,2AE•AB=AE2+DE2,∵△AED为直角三角形,∴AD2=AE2+DE2,∴AD2=2AE•AB;(2)过C作CF⊥AB,则BF=AE,CD=EF,∴BE=CD+BF=CD+AE,∴(CD+AE)2+DE2=AC2,即[CD+(AB-CD)]2+CD2=AB2,即3AB2-2AB•CD-5CD2=0,∴(3AB-5CD)•(AB+CD)=0,∵CD 不等于负数,∴CD=AB,∵DE⊥AB,∴DE⊥CD,∴S△ABC=AB•DE=50,∴S△ACD=DC•DE=AB•DE=S△ABC=30.23.(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BME=∠NEC,而∠B=∠C=45°,∴△BEM∽△CNE.(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE又∵BE=EC,∴ECCN =EMNE则△ECN与△MEN中有ECCN =EMNE,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.24. (1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.25.(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,.∴∠ACD=∠A=40°,∴△ACD为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC.∴CD是△ABC的完美分割线.(2)当AD=CD时(如图①),∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.当AD=AC时(如图②),.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.当AC=CD时(如图③),∠ADC=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC=∠BCD=48°与∠ADC>∠BCD矛盾,舍去.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,,设BD=x(x>0),,解得,∵x>0,.∵△BCD∽△BAC,,.。

相关文档
最新文档