材料力学性能-第2版课后习题答案
模块2结构材料力学性能习题答案
模块2结构材料力学性能习题答案1. 有明显屈服点的钢筋的拉伸试验过程可分为哪四个阶段?试作出其应力-应变图并标出各阶段的特征应力值。
有明显屈服点的钢筋的拉手试验阶段可分为四个阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
图 有明显屈服点钢筋的σ-ε曲线弹性阶段:a 点对应的为弹性极限σp 。
屈服阶段:b 点为屈服上限;c 点为屈服下限,即屈服极限σs 。
强化阶段:最高点e 点对应的为抗拉强度σb 。
2. 结构设计计算中,有明显屈服点的钢筋和无明显屈服点的钢筋在设计强度取值上有何不同?屈服强度是钢筋强度的设计依据。
有明显屈服点的钢筋,一般取屈服下限作为屈服强度。
无明显屈服点的钢筋,通常取残余应变为0.2%时对应的应力σ0.2作为强度设计指标,称为条件屈服强度。
3. 钢材有哪几项主要力学性能指标?各项指标可用来衡量钢材的哪些方面的性能?钢材的几项主要力学性能指标:强度、塑性、冷弯性能、冲击韧性。
强度主要是屈服点y f 和抗拉强度u f 这两项指标。
钢材的屈服点y f 是衡量结构承载力和确定强度设计值的指标;抗拉强度u f 可直接反映钢材内部组织的优劣,它是抵抗破坏的重要指标。
塑性,延伸率代表材料断裂前具有的塑性变形能力。
冷弯性能是指钢材在常温下承受弯曲变形的能力。
冲击韧性指钢材抵抗冲击荷载的能力。
4. 碳、锰、硅、硫、磷对碳素结构钢的机械性能分别有哪些影响?碳:随着含碳量的增加,钢的强度和硬度提高,塑性和韧性下降。
但当含碳量大于1.0%时,由于钢材变脆,强度反而下降。
锰:适量的锰可提高强度而不明显影响塑性,同时可消除热脆和改善冷脆倾向。
硅:适量(含量不超过0.2%时)可提高钢材强度,而对塑性、韧性和可焊性无明显不良影响。
硫:有害元素,会引起热脆性。
磷:使钢的强度、硬度提高,但显著降低钢材的塑性和韧性,会导致冷脆性。
5. 试阐述什么是应力集中。
钢结构构件中存在的孔洞、槽口、凹角、裂缝、厚度变化、形状变化、内部缺陷等使一些区域产生局部高峰应力,在另外一些区域则应力降低,此谓应力集中现象。
工程材料第二版习题(1-2)章答案
塑性变形的的物理本质: 塑性变形的的物理本质: 滑移和孪生共同产生的塑性变形。 滑移和孪生共同产生的塑性变形。 P24 滑移是晶体的一部分相对另一部分做整 体刚性移动。孪生是在切应力的作用下, 体刚性移动。孪生是在切应力的作用下,晶 体的一部分相对另一部分沿着一定的晶面 孪生面) (孪生面)产生一定角度的切变
2-13、晶粒大小对金属性能有何影响?细化 13、晶粒大小对金属性能有何影响? 晶粒方法有哪些? 晶粒方法有哪些? p17 答: 在一般情况下,晶粒愈小,则金属的强度. 在一般情况下,晶粒愈小,则金属的强度.塑 性和韧性愈好. 性和韧性愈好. 细化晶粒是提高金属性能的重要途径之一, 细化晶粒是提高金属性能的重要途径之一, 晶粒愈细,强度和硬度愈高, 晶粒愈细,强度和硬度愈高,同时塑性韧性 愈好。 愈好。 细化晶粒方法有: 细化晶粒方法有: 增大过冷度; 2.变质处理 变质处理; 3.附加振 增大过冷度; 2.变质处理; 3.附加振 动或搅动等方法; 动或搅动等方法;
5、晶粒 p11 晶粒---每个小晶体具有不规则的颗粒状外形。 ---每个小晶体具有不规则的颗粒状外形 晶粒---每个小晶体具有不规则的颗粒状外形。 何谓空间点阵、晶格、晶体结构和晶胞? 2-2、何谓空间点阵、晶格、晶体结构和晶胞? 常用金属的晶体结构是什么?划出其晶胞, 常用金属的晶体结构是什么?划出其晶胞, 并分别计算起原子半径、配位数和致密度? 并分别计算起原子半径、配位数和致密度? 1、空间点阵 p9 空间点阵-----为了便于分析各种晶体中的原子 空间点阵---为了便于分析各种晶体中的原子 排列及几何形状, 排列及几何形状,通常把晶体中的原子假想为 几何结点,并用直线从其中心连接起来,使之 几何结点,并用直线从其中心连接起来, 构成一个空间格子。 构成一个空间格子。
材料力学性能-第2版课后习题答案
第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面.6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶.8。
河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂.沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂.11。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
材料力学性能知到章节答案智慧树2023年西安工业大学
参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:
错
37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:
错
26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:
对
29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:
错
59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:
材料力学性能习题及解答库
第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。
4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。
5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。
6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。
韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。
9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。
10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。
穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。
11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。
二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。
2、σr、σ0.2、σs: σr :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
σ0.2:表示规定残余伸长率为0.2%时的应力。
σs:表征材料的屈服点。
3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。
4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。
5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。
材料力学性能学习题与解答[教材课后答案]
度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。
混凝土结构设计 第一章材料的力学性能-习题 答案要点
第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢,和硬钢。
2、对无明显屈服点的钢筋,通常取相当于残余应变为0.2%时的应力作为假定的屈服点,即条件屈服强度。
3、碳素钢可分为低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。
4、钢筋混凝土结构对钢筋性能的要求主要是强度、塑性、焊接性能、粘结力。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者之间的良好粘结力、两者相近的膨胀系数、混凝土包裹钢筋避免钢筋生锈6、光面钢筋的粘结力由胶结力、摩擦力、挤压力三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括弹性应变和塑性应变两部分。
塑性应变部分越大,表明变形能力越大,延性越好。
9、混凝土的延性随强度等级的提高而降低。
同一强度等级的混凝土,随着加荷速度的减小,延性有所增加,最大压应力值随加荷速度的减小而减小。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减小。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减小,钢筋的应力增大。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增大,钢筋的应力减小。
13、混凝土轴心抗压强度的标准试件尺寸为150*150*300或150*150*150 。
14、衡量钢筋塑性性能的指标有延伸率和冷弯性能。
15、当钢筋混凝土构件采用HRB335级钢筋时,要求混凝土强度等级不宜低于C20;当采用热处理钢筋作预应力钢筋时,要求混凝土强度不宜低C40 。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
(N)2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
材料力学性能课后习题 (1)
材料力学性能课后习题第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力达到一定的数值后沿一定的晶体学平面产生的晶体学断裂。
2.解释下列力学性能指标的意义(1)E( 弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(规定残余伸长率为0.2%的应力);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率)3.金属的弹性模量取决于什么?为什么说他是一个对结构不敏感的力学性能?取决于金属原子本性和晶格类型。
因为合金化、热处理、冷塑性变形对弹性模量的影响较小。
4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
材料物理课后答案+第二版+(熊兆贤+著)+科学出版社
l1
ε1
ε1
1-5 一陶瓷含体积百分比为 95%的 Al2O3 (E = 380 GPa)和 5%的玻璃相(E = 84
GPa),试计算其上限和下限弹性模量。若该陶瓷含有 5 %的气孔,再估算其上限
和下限弹性模量。
解:令 E1=380GPa,E2=84GPa,V1=0.95,V2=0.05。则有
上限弹性模量EH = E1V1 + E2V2 = 380 × 0.95 + 84 × 0.05 = 365.2(GPa)
5
《材料物理性能》 习题解答
解:⎪⎧C1
Q
⎪ ⎨
⎪⎪⎩C2
= =
B 2.303 fg = Bf
= 17.44(B是常数, fg 51.6(B f 是自由体积在
f g是Tg时的自由体积百分数 Tg以上的热膨胀系数 )
)
101.6 又有f = f g + B f (T − Tg ) ⇒ f g+50 = f g + 50B f = 51.6 f g
∴
ε
2=1.0E×210
4
(1-e
−10
)
=
0.01,∴ E2
= 1.0 ×106 Pa,η2
=
E2τ
=
3.6 ×109 Pa ⋅ s
1-10 当取 Tg 为参考温度时 logαT
=
− c2
c1 +
(T (T
− Ts ) − Ts )
中的
C1=17.44,C2=51.6,求以
Tg+50℃为参考温度时 WLF 方程中的常数 C1 和 C2。
3
×
4 ×10−3 6.02 ×1023
结构设计原理-第一章-材料的力学性能-习题及答案
结构设计原理-第一章-材料的力学性能-习题及答案结构设计原理-第一章-材料的力学性能-习题及答案第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________和。
2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。
3、碳素钢可分为、和。
随着含碳量的增加,钢筋的强度、塑性。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。
4、钢筋混凝土结构对钢筋性能的要求主要是、、、。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为、、6、光面钢筋的粘结力由、、三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括和两部分。
部分越大,表明变形能力越,越好。
9、混凝土的延性随强度等级的提高而。
同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
3、混凝土双向受压时强度比其单向受压时强度降低。
4、线性徐变是指徐变与荷载持续时间之间为线性关系。
5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。
6、强度与应力的概念完全一样。
7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。
8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。
9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。
10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。
材料分析方法第二版课后练习题含答案
材料分析方法第二版课后练习题含答案第一章:材料的物理化学性质分析1. 硬度测试根据维氏硬度测试的原理,硬度的数值与什么有关?答案:硬度的数值与材料的抵抗力有关。
2. 热膨胀系数测试热膨胀系数的测试方法包括哪些?答案:常用的测试方法包括极差法、压力计法、光栅测量法等。
第二章:材料的成分分析1. 光谱分析常用的光谱分析方法有哪些?答案:常用的光谱分析方法包括紫外吸收光谱、可见光吸收光谱、红外光谱、拉曼光谱、荧光光谱、原子发射光谱、质谱等。
2. 微量元素分析微量元素分析常用的方法有哪些?答案:常用的微量元素分析方法有火焰原子吸收光谱法、电感耦合等离子体发射光谱法、电感耦合等离子体质谱法等。
第三章:材料的表面形貌分析1.原子力显微镜测试原子力显微镜常用于什么领域?答案:原子力显微镜常用于材料表面形貌分析、生物医学领域等。
2.扫描电子显微镜测试扫描电子显微镜常用于哪些领域?答案:扫描电子显微镜常用于材料表面形貌分析、生物医学领域、纳米材料研究等。
第四章:材料的力学性能分析1.拉伸测试拉伸测试包括哪些参数?答案:拉伸测试包括屈服强度、抗拉强度、延伸率等参数。
2.压缩测试压缩测试的测试条件有哪些?答案:压缩测试的测试条件包括样品的几何形状和尺寸、加载速率、温度等。
第五章:材料的热力学性能分析1.热重分析热重分析的测试原理是什么?答案:热重分析利用样品在升温过程中的质量变化来研究材料的热稳定性、热降解等热力学性能。
2.热膨胀系数测试热膨胀系数的测试方法有哪些?答案:常用的测试方法包括极差法、压力计法、光栅测量法等。
总结本文主要介绍了材料分析方法第二版的课后练习题和答案。
通过练习题的学习,我们可以更好地掌握各种分析方法的原理和测试步骤,同时也能够提高自己的分析能力和实验操作技能。
我们希望读者能够认真学习、勤于实践,不断提高自己在材料分析领域的能力和水平。
工程材料力学性能 第二版 课后习题答案
《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
材料力学性能参考答案
填空:1.影响材料弹性模数的因素有键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间等。
2.提供材料弹性比功的途径有二,提高材料的弹性极限,或降低弹性模量。
3.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
4.金属材料常见的塑性变形机理为晶体的滑移和孪生两种。
5.多晶体金属材料由于各晶粒位向不同和晶界的存在,其塑性变形更加复杂,主要有各晶粒变形的不同时性和不均匀性及各晶粒变形的相互协调性的特点。
6.影响金属材料屈服强度的因素主要有晶体结构、晶界与亚结构、溶质元素、第二相、温度等。
7.产生超塑性的条件是(1)超细晶粒;(2)合适的条件,变形温度≥0.4Tm,应变速率ε≤ 10-3s-1 ;(3)应变速率敏感指数较高0.3≤m≤1 。
8.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为韧性断裂与脆性断裂;按照晶体材料断裂时裂纹扩展的途径,分为穿晶断裂和沿晶断裂;按照微观断裂机理分为剪切断裂和解理断裂;按作用力的性质可分为正断和切断。
9.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力增加;卸载时降低的的现象。
10.剪切断裂的两种主要形式为滑断(纯剪切断裂)和微孔聚集性断裂。
11.解理断口的基本微观特征为解理台阶、河流花样和舌状花样。
12.韧性断裂的断口一般呈杯锥状,由纤维区、放射区和剪切唇三个区域组成。
13.韧度是衡量材料韧性大小的力学性能指标,其中又分为静力韧度、断裂韧度和冲击韧度。
14. 材料在受到三向等拉伸应力作用时压力状态最硬,其最大切应力分量分量为零,材料最易发生脆性断裂,适用于揭示塑性较好的金属材料的脆性倾向。
单向拉伸时,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;弯曲、扭转时应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;材料的硬度试验属于三向压缩状态,应力状态非常软,可在各种材料上进行。
《材料力学》第二章课后习题及参考答案
在材料力学中,应力和应变是描述材料受力状态的基本物理量。应力表示单位面积上的 力,而应变则表示材料的变形程度。
简答题3答案
弹性力学和塑性力学是材料力学的重要分支。弹性力学主要研究材料在弹性范围内的应 力、应变和位移,而塑性力学则研究材料在塑性变形阶段的力学行为。
选择题答案
80%
选择题1答案
选择题3解析
这道题考察了学生对材料力学中 弯曲应力的理解,学生需要理解 弯曲应力的概念和计算方法,并 能够根据实际情况进行选择和应 用。
计算题解析
01
计算题1解析
这道题主要考察了学生对材料力学中拉压杆的计算能力,学生需要掌握
拉压杆的应力、应变计算方法,并能够根据实际情况进行选择和应用。
02
计算题2解析
计算题2答案
根据题意,先求出梁的剪力和弯矩,然后根据剪力和弯矩的关系 求出梁的位移分布,最后根据位移和应力的关系求出应力分布。
03
习题解析Biblioteka 简答题解析简答题1解析这道题考查了学生对材料力学 基本概念的理解,需要明确应 力和应变的概念及关系,并能 够解释在材料力学中如何应用 。
简答题2解析
这道题主要考察了学生对材料 力学中弹性模量的理解,以及 如何利用弹性模量进行相关计 算。学生需要理解弹性模量的 物理意义,掌握其计算方法。
C. 材料力学的任务之一是研究材 料的各种力学性能,包括强度、 刚度和稳定性等。
100%
选择题2答案
D. 在材料力学中,应力和应变是 描述材料受力状态的基本物理量 。
80%
选择题3答案
B. 材料力学主要研究材料的力学 性能和内部结构的关系,包括弹 性、塑性和韧性等。
计算题答案
材料力学性能课后题,参考看下
第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。
2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。
5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。
6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。
7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。
9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。
10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料——连续屑,脆性材料——断屑。
⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。
⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。
11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
材料力学性能 习题解答
第6章 热学性能 习题解答名词解释:格波:晶格振动波。
声子:晶格振动波的量子化,严格意义上是晶格简谐振动的量子化。
光子:光波的量子化。
声频支振动:晶格振动波的振动频率在声频范围。
光频支振动:晶格振动波的振动频率在声频范围。
热容: “当一系统由于加给一微小的热量dQ 而温度升高dT 时,dQ/dT 这个量即是该系统的热容。
”(GB3102.4-93)即单位温度升高时所需要的热量。
杜隆—珀替定律:无论晶体属于何种类型,其比热容(单位焦耳/(开尔文·千克))均为3R/MM ,其中R 为普适气体常数(单位焦耳/(开尔文·摩尔))MM 为摩尔质量(单位千克/摩尔)。
热膨胀系数:实际应用中,有两种主要的热膨胀系数,分别是:线性热膨胀系数(CLTE):体积热膨胀系数:热导率:单位温度梯度下,单位时间内通过单位垂直面积的热量。
热应力:温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。
又称变温应力。
综合题:1. 热容的本质是什么?dT dx Q t S λ∆⨯∆⨯∆=-答案:物体分子对热量的敏感程度和反应强度。
敏感程度决定吸收多少热;反应强度决定升高多少温度。
这些与分子结构,分子间距离有关。
2. 阐述晶态固体的热容随温度的变化规律。
用经典理论解释热容的经验理论。
❖答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。
能量均分3.德拜热容理论取得了什么成功?讨论德拜热容理论在实际应用中的优点及不足。
❖答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。
理论与实验数据符合得比较好。
计算复杂。
4.影响热容的因素有哪些?答案:过程,等温过程,等压过程。
5.什么是非简谐振动?由于非简谐振动,引起声子发生怎样的变化?答案:非简谐振动,引起声子导热。
6.阐述固体材料的热膨胀机理。
答案:固体材料中原子受力不对称,导致热膨胀。
材料力学性能-课后答案-(时海芳-任鑫)
第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。
2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e (弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b(抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率)4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。
全套课件 材料力学性能(第2版)时海芳
e l dL ln L ln L0 L ln(1 )
l0 L
L0
L0
e
F dA
A
ln
F0 A
A0
ln A0 A ln(1 )
2.试样:
K= 11.3
比例试样 l 0 K F 0
K=5.65 非比例试样
3. 加载速度: (形变速率10-2~10-4)
dP dt
屈服前 1kg/mm2·s
屈服后: 生产检验 1~3 kg/mm2·s
夹头 0.5l 0 /min
4. 环境条件:20±10℃
第一章 材料在单向静拉伸载荷下的力学性能 单向静拉伸实验演示
第一章 材料在单向静拉伸载荷下的力学性能
二、拉伸力-伸长曲线的类型 a. 脆性材料:
弹性变形
断裂
b. 有色金属:
弹性变形
u
c.高锰钢、铁青铜:
弹性变形
u
d.加工硬化不明显:
弹性变形
b
e. 纯铜、纯铝:
u
断裂
b 断裂
断裂 断裂
第一章 材料在单向静拉伸载荷下的力学性能
三、应力-应变曲线(σ-ε) 将拉伸力-伸长曲线的纵、横坐标分别用拉
绪论
3. 材料力学性能的微观机制
4. 材料力学性能的测试技术
四、研究目的和意义
1.正确地使用材料。 2. 评价材料合成与加工工艺的有效性,并通过控制材料的加工 工艺提高材料的力学性能。
3. 可在材料力学性能理论的指导下,采用新的材料成分和结 构,或新的加工和合成工艺,设计和开发出 新材料,以满足 对材料的更高需求。
第一章
材料在单向静拉伸载荷下 的力学性能
第一章 材料在单向静拉伸载荷下的力学性能
精品 课后习题及参考答案-材料性能学课后习题与解答
材料性能学课后习题与解答绪论1、简答题什么是材料的性能?包括哪些方面?[提示] 材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现。
包括○1力学性能(拉、压、、扭、弯、硬、磨、韧、疲)○2物理性能(热、光、电、磁)○3化学性能(老化、腐蚀)。
第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质。
塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。
弹性极限:弹性变形过度到弹-塑性变形(屈服变形)时的应力。
弹性比功:弹性变形过程中吸收变形功的能力。
包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力(弹性极限或屈服强度)增加;反向加载,规定残余应力降低的现象。
弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。
实质是产生100%弹性变形所需的应力。
滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
韧性:材料断裂前吸收塑性变形功和断裂功的能力。
超塑性:在一定条件下,呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
韧窝:微孔聚集形断裂后的微观断口。
2、简答(1) 材料的弹性模量有那些影响因素?为什么说它是结构不敏感指标?解:○1键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然。
○2晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性。
○3化学成分,○4微观组织○5温度,温度升高,E下降○6加载条件、负载时间。
对金属、陶瓷类材料的E没有影响。
材料力学性能学练习习题及答案
答:高分子材料的强度和模数强烈的依赖于温度和加载速率。加载速率一定时, 随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和 模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载 时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降 低。时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。 四、计算题:
cos cos
( 1) [001]方向与[111]滑移方向的夹角 λ:
cos
12 12 12
2 2 2 12 12 12 2 2 2
0 1 0 1 1 1 1 1 111 3
[001]方向与 (110) 面法线方向夹角 υ:
0 1 0 1 1 1 1 1 111 3
cos cos 70
1 1 28.6MPa 2 3
在 (111)面上的 [101] 方向的分切应力应为 28.6Mpa。 [001]方向与 [110] 滑移方向的夹角 λ:
cos
12 12 12
1.金属单晶体的塑性变形方式。 答滑移和孪生 2.什么是滑移系?产生晶面滑移的条件是什么?写出面心立方金属在室温下所 有可能的滑移系。 答:滑移系是一个滑移面和该面上一个滑移方向的组合。产生晶面滑移 的条件是在这个面上的滑移方向的分切应力大于其临界分切应力。 3.试述Zn、 α -Fe、Cu等几种金属塑性不同的原因。 答:Zn、α -Fe、Cu这三种晶体的晶体结构分别是密排六方、体心立方和面心立 方结构。 密排六方结构的滑移系少,塑性变形困难,所以 Zn的塑性差。 面心立方结构滑移系多,滑移系容易开动,所以对面心立方结构的金属Cu塑性 好。 体心立方结构虽然滑移系多,但滑移面密排程度低于 fcc,滑移方向个数少,较 难开动,所以塑性低于面心立方结构材料,但优于密排六方结构晶体,所以α -Fe的塑性较 Cu差,优于Zn。 4.孪晶和滑移的变形机制有何不同? 答:主要的不同1)晶体位向在滑移前后不改变,而在孪生前后晶体位向改变, 形成镜面对称关系。2)滑移的变形量为滑移方向原子间距的整数倍,而孪生过 程中的位移量为孪生方向的原子间距的分数倍。3)滑移是全位错运动的结果而 孪生是分位错运动的结果。 5.什么是应变硬化?有何实际意义? 答:随着应变量的增加,让材料继续变形需要更大的应力,这种现象称为应变 硬化。随变形量的增加,材料的强度、硬度升高而塑性、韧性下降的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章单向静拉伸力学性能1、 解释下列名词。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。
3•循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4•包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的现象。
11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量G 切变模量 r 规定残余伸长应力0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率n 应变硬化指数【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。
组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。
【P4】4、 现有45、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。
5、 试述韧性断裂与脆性断裂的区别。
为什么脆性断裂最危险?【P21】答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。
6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源?断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。
第二章 金属在其他静载荷下的力学性能一、解释下列名词:(1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即:(3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47P55】max13 max 2 10.523【新书P39旧书P46】六、试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点。
偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。
该试验用于检测螺栓一类机件的安全使用性能。
光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。
缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。
偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。
七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。
【P49 P57】原理布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。
洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为136。
的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。
压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。
缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。
洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。
缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。
维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。
缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。
八、今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。
(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。
(1)渗碳层的硬度分布----HK 或-显(2)淬火钢-----HRC(3)灰铸铁-----HB(4)鉴别钢中的隐晶马氏体和残余奥氏体 - ---- 显或者HK(5) 仪表小黄铜齿轮 ——HV⑹ 龙门刨床导轨- -----HS (肖氏硬度)或 HL (里氏硬度)⑺ 渗氮层-----HV(8) 高速钢刀具---- -HRC(9) 退火态低碳钢- -——HB(10)硬质合金-----HRA第三章金属在冲击载荷下的力学性能四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂 强度随温度的降低而变化不大。
当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能 力下降,因此材料屈服强度增加。
影响材料低温脆性的因素有(P63, P73):1晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。
2•化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。
3•显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。
因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。
②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。
钢中夹杂物、碳化物等第二相质点对 钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。
五•试述焊接船舶比铆接船舶容易发生脆性破坏的原因。
焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料 的脆性,容易发生脆性断裂。
第四章金属的断裂韧度5、试述应力场强度因子的意义及典型裂纹K 的表达式6、试述K 判据的意义及用途。
答:K 判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。
K 判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来, 可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。
P71/P8312. 试述Kic 的测试原理及其对式样的基本要求原理:先用一定的试样测试出 FQ 和裂纹长度a 值得到一个KQ,如果KQ 符合条件就说明测试使用的试样符合条件,如果不符合就换成较大试样重新测试。
试样要求P78三个公式答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的K 表达式,无限大板穿透裂纹:K有限宽板穿透裂纹:K、af (^);有限宽板单边直裂纹:a 时,K 1.2 a ;受弯单边裂纹梁K(几af ();无限大物体内部有椭圆片裂纹, b远处受均匀拉伸:a 2 (sin2a 2 j/42 cos ); c无限大物体表面有半椭圆裂纹,远处均受拉伸:A 点的K当b16.有一大型板件,材料的 d =1200MPa Klc=115MPa*m1/2,探伤发现有 20mm 长的横向穿透裂纹,若在平均轴向拉应力900MPa 下工作,试计算 KI 及塑性区宽度 R0,并判断该件是否安全?解:由题意知穿透裂纹受到的应力为d=900MPa根据d / d 的值,确定裂纹断裂韧度 KIC 是否休要修正 因为d / d =900/1200=〉,所以裂纹断裂韧度 KIC 需要修正对于无限板的中心穿透裂纹,修正后的KI 为:Ki =(MPa*m1/2)10-177( /s塑性区宽度为:R 0亠 比较K1与KIc : 2、2因为 K1= (MPa*m1 /2)KIc=115 (MPa*m1 ⑵所以:K1>KIc ,裂纹会失稳扩展,所以该件不安全。
第五章金属的疲劳3. 试述金属疲劳断裂的特点p96/p109(1) 疲劳是低应力循环延时断裂,机具有寿命的断裂(2) 疲劳是脆性断裂(3) 疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感4.试述疲劳宏观断口的特征及其形成过程(新书 P96~98及PPT ,旧书P109~111)答:典型疲劳断口具有三个形貌不同的区域一疲劳源、疲劳区及瞬断区。
(1)疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤 压,故显示光亮平滑,另疲劳源的贝纹线细小。
(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。
特征是:断口比较光滑并分布 有贝纹线。
断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。
贝纹线是由载荷变动引起的,如 机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。
(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域。
其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为 纤维状断口。
7. 试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法机理:1、滑移带开裂产生裂纹。
金属在循环应力长期作用下,即使其应力低于屈服应力,也会发生循环滑移并形成循环 滑移带,这种循环滑移是极不均匀的,总分布在某些局部薄弱区,这种循环滑移带具有持久驻留性,称为驻留滑移带,随着加载循环次数增加,循环滑移带会不断地加宽,当加宽到一 定程度时,由于位错的塞积和交割作用,便在驻留滑移带处形成微裂纹。