高三物理高考二轮复习专题:电磁感应与电路
2024届高考物理二轮专题复习与测试第二部分物理二级结论汇总六电路和电磁感应

六 电路和电磁感应(一)恒定电流 1.I =Q t,I =neSv .2.R =ρl S,电阻率ρ与导体材料性质和温度有关,与导体横截面积和长度无关. 3.电阻串联、并联.串联:R =R 1+R 2+R 3+…+R n , 并联:1R =1R 1+1R 2+…+1R n,两个电阻并联:R =R 1R 2R 1+R 2. 二级结论为:(1)串联电路:总电阻大于任一分电阻;U ∝R ,U 1=R 1R 1+R 2U ;P ∝R ,P 1=R 1R 1+R 2P .(2)并联电路:总电阻小于任一分电阻;I ∝1R ,I 1=R 2R 1+R 2I ;P ∝1R ,P 1=R 2R 1+R 2P .(3)和为定值的两个电阻,阻值相等时并联电阻值最大. (4)电阻估算原则:串联时,大为主;并联时,小为主. 4.欧姆定律.(1) 部分电路欧姆定律:I =UR ,U =IR ,R =U I.(2) 闭合电路欧姆定律:I =ER +r.路端电压U =E -Ir =IR ,输出功率P 出=IE -I 2r =I 2R ,电源热功率P r =I 2r ,电源效率η=P 出P 总=U E =R R +r. 二级结论为:①并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流减小,与它并联的电阻上电流变大.②外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大.5.电功和电功率.电功W =IUt ;电热Q =I 2Rt ;电功率P =IU . 6.画等效电路:电流表等效短路;电压表、电容器等效断路;等势点合并.7.R =r 时输出功率最大P =E 24r.8.R 1≠R 2,分别接同一电源:当R 1R 2=r 2时,输出功率P 1=P 2. 9.纯电阻电路的电源效率:η=RR +r.10.含电容器的电路中,电容器是断路,其电压值等于与它并联的电阻上的电压,稳定时,与它串联的电阻是虚设.电路发生变化时,有充放电电流.11.含电动机的电路中,电动机的输入功率P 入=UI ,发热功率P 热=I 2r ,输出机械功率P 机=UI -I 2r . 12.欧姆表.(1)指针越接近中值电阻R 中误差越小,一般应在R 中10至10R 中范围内(13~23满偏),R 中=R 0+R g +r =EI g.(2)R x =E I x -E I g;红黑笔特点:红进(正)黑出(负).(3)选挡,换挡后均必须重新进行欧姆调零才可测量,测量完毕,旋钮置OFF 或交流电压最高挡. (二)电磁感应 1.楞次定律.口诀:增反减同、来拒去留、增缩减扩.具体表现为:(1)内外环电流方向:“增反减同”;自感电流的方向:“增反减同”. (2)磁铁相对线圈运动:“你追我退,你退我追”.(3)通电导线或线圈旁的线框,线框运动时:“你来我推,你走我拉”. (4)电流变化时:“你增我远离,你减我靠近”.2.直杆平动垂直切割磁感线时所受的安培力:F A =B 2L 2v R 总.达到稳定时的速度:v m =FR 总B 2L2 ,其中F 为导体棒所受除安培力外其他外力的合力. 3.转杆(轮)发电机:E =12BL 2ω.4.感生电量:q =n ΔΦR 总.甲图中线框在恒力作用下穿过磁场:进入时产生的焦耳热小于穿出时产生的焦耳热. 乙、丙图中两线框下落过程:重力做功相等,乙落地时的速度大于丙落地时的速度. 5.计算通过导体截面的电荷量的两个途径.q =I -t →⎩⎪⎨⎪⎧I =E R ,E =n ΔΦΔt ⇒q =n ΔΦR 总=n BL Δx R 总F A =BIL ,F A·Δt =Δp ⇒q =ΔpBL(三)交变电流1.中性面垂直磁场方向,Φ与e 为互余关系(相差π2相位),此消彼长.最大电动势:E m =nBSω=nΦm ω.2.线圈从中性面开始转动:e =nBSω·sin ωt =E m ·sin ωt . 安培力:F A =nBI m L ·sin ωt .3.线圈从中性面的垂面开始转动:e =nBSω·cos ωt =E m ·cos ωt . 安培力:F A =nBI m L ·cos ωt .4.正弦交流电的有效值:I 2RT =U 2RT =Q ,Q 为一个周期内产生的总热量.5.变压器原线圈相当于电动机;副线圈相当于发电机.6.理想变压器原、副线圈相同的量:U n ,T ,f ,ΔΦΔt ,P 入=P 出.U 1U 2=n 1n 2,注意:U 1、U 2为线圈两端电压 I 1I 2=n 2n 1,注意:原、副线圈各一个. 7.远距离输电计算的思维模式:P 输=U 输I 输,U 线损=I 输R 线,P 线损=I 2输R 线=(P 输U 输)2R 线,U 用=U 输-U 线损,P 用=P 输-P 线损. (四)电磁波理论 1.电磁振荡. 周期T =2πLC ,f =12πLC .2.麦克斯韦电磁场理论.变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.3.电磁场.变化电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场总是相互联系成为一个完整的整体,这就是电磁场.4.电磁波.(1)电磁场在空间由近及远的传播,形成电磁波.(2)电磁波的传播不需要介质,可在真空中传播,在真空中不同频率的电磁波传播速度是相同的(都等于光速).(3)不同频率的电磁波,在同一介质中传播,其速度是不同的,频率越高,波速越小.(4)v=λf,f是电磁波的频率.5.电磁波的发射.(1)发射条件:开放电路和高频振荡信号,所以要对传输信号进行调制(包括调幅和调频).(2)调制方式.①调幅:使高频电磁波的振幅随信号的强弱而变.调幅广播(AM)一般使用中波和短波波段.②调频:使高频电磁波的频率随信号的强弱而变.调频广播(FM)和电视广播都采用调频的方法调制.6.无线电波的接收.(1)当接收电路的固有频率跟接收到的无线电波的频率相等时,激起的振荡电流最强,这就是电谐振现象.(2)使接收电路产生电谐振的过程叫作调谐.能够调谐的接收电路叫作调谐电路.(3)从经过调制的高频振荡中“检”出调制信号的过程,叫作检波.检波是调制的逆过程,也叫作解调.。
高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。
由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。
从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。
考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。
二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。
2.电磁感应与电路知识的综合。
3.电磁感应中的动力学问题。
4.电磁感应中动量定理、动能定理的应用。
5.电磁感应中的单金属棒的运动及能量分析。
6.电磁感应中的双金属棒运动及能量分析。
7.多种原因引起的电磁感应现象。
(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中有电动势的正方向。
以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。
2025年高考二轮复习物理专题分层突破练11 电磁感应规律及综合应用5

专题分层突破练11电磁感应规律及综合应用选择题:每小题6分,共60分基础巩固1.(2024辽宁朝阳二模)如图所示,薄玻璃板上放有两个粗细相同的玻璃水杯,杯中装入质量相等的纯净水,其中右侧水杯内的底部平放一薄铜片,在两个水杯中都放入温度传感器用来测水的温度。
在玻璃板的下方,一装有多个磁体的塑料圆盘旋转起来,经过一段时间,可以观测到右侧水杯中水的温度明显上升,而左侧水杯中水的温度没有变化,这是()A.磁体使水杯中的水产生涡流引起的B.磁体使水杯底部的铜片产生涡流引起的C.磁体与空气摩擦生热引起的D.磁体使水杯底部的铜片磁化引起的答案B解析纯净水是绝缘体,磁体不能使水产生涡流,A错误;磁体在转动过程中,通过铜片的磁通量发生变化,在铜片中产生涡流,电流生热使水的温度升高,B正确;若磁体与空气摩擦生热,对两侧水杯中水的温度的影响应该是一样的,不能仅一侧升温明显,C错误;磁体不能使铜片磁化,且磁化也不能产生热量,D错误。
⏜是半径为R的半圆弧,b为圆弧的2.(2024湖南卷)如图所示,有一硬质导线Oabc,其中abc中点,直线段Oa长为R且垂直于直径ac。
该导线在纸面内绕O点逆时针转动,导线始终在垂直纸面向里的匀强磁场中。
则O、a、b、c各点电势关系为()A.φO>φa>φb>φcB.φO<φa<φb<φcC.φO>φa>φb=φcD.φO<φa<φb=φc答案C解析本题考查导体切割磁感线产生感应电动势。
如图所示,该导线在纸面内绕O点逆时针转动,相当于Oa、Ob、Oc导体棒转动切割磁感线,根据右手定则可知O点电势最Bωl2,又l Ob=l Oc=√5R>l Oa,所以0<U Oa<U Ob=U Oc,得φO>φa>φb=φc,故选高;根据E=Blv=12项C正确。
3.(2024四川绵阳一模)如图所示的电路中,A1、A2和A3是三个阻值恒为R且相同的小灯泡,L是自感系数相当大的线圈,其直流电阻也为R。
老高考适用2023版高考物理二轮总复习第1部分题突破方略专题4电路与电磁感应第1讲直流电路与交流电路

第一部分专题四第1讲基础题——知识基础打牢1.(2022·四川自贡三诊)如图甲所示为一种自耦变压器(可视为理想变压器)的结构示意图.线圈均匀绕在圆环型铁芯上,滑动触头P在某一位置,在BC间接一个交流电压表和一个电阻R.若AB间输入图乙所示的交变电压,则( C )A.t=2×10-2 s时,电压表的示数为零B.电阻R中电流方向每秒钟改变50次C.滑动触头P逆时针转动时,R两端的电压增大D.滑动触头P顺时针转动时,AB间输入功率增大【解析】电压表的示数是交流电的有效值,则t=2×10-2s时,电压表的示数不为零,选项A错误;交流电的周期为0.02 s,一个周期内电流方向改变2次,则电阻R中电流方向每秒钟改变100次,选项B错误;滑动触头P逆时针转动时,次级匝数变大,则次级电压变大,即R两端的电压增大,选项C正确;滑动触头P顺时针转动时,次级匝数减小,次级电压减小,次级消耗的功率减小,则AB间输入功率减小,选项D错误.2.(2022·四川成都三诊)发电站通过升压变压器和降压变压器给某用户端供电,发电机组输出交变电压的有效值恒定,输电线总电阻r保持不变.当用户端用电器增加后( A )A.若滑片P位置不变,则输电线上损失的功率变大B.若滑片P位置不变,则用户端电压升高C.若将滑片P上移,则用户端电压可能不变D.若将滑片P上移,则输电线上损失的功率可能减小【解析】若滑片P位置不变,当用户端用电器增加后,用户端总功率变大,发电机的输出功率增大,输电线的电流变大,ΔU=Ir,输电线两端承担的电压变大,损耗的功率增大;发电机的输入电压不变,升压变压器、降压变压器的匝数不变,故用户端电压降低,A正确,B 错误;若将滑片P 上移,升压变压器的副线圈与原线圈的匝数比变小,副线圈两端电压变小,若用户端电压不变,则降压变压器的输入电压不变,用电器变多,则用户端电流变大,输电线上电流变大,输电线上电压变大,则升压变压器副线圈电压应变大矛盾,故C 错误;若将滑片P 上移,用户端用电器增加,功率变大,输电线上电流变大,输电线上损失的功率变大,D 错误.3.(多选)(2022·河南押题卷)图甲是一种振动式发电机的截面图,半径r =0.1 m 、匝数n =30的线圈位于辐射状分布的磁场中,磁场的磁感线沿半径方向均匀分布,线圈所在位置的磁感应强度大小均为B =12πT .如图乙,施加外力使线圈沿轴线做往复运动,线圈运动的速度随时间变化的规律如图丙中正弦曲线所示.发电机通过灯泡L 后接入理想变压器,对图乙中电路供电,三个完全相同的小灯泡均正常发光,灯泡的阻值R L =1 Ω,电压表为理想电压表,线圈及导线电阻均不计.下列说法正确的是( AC )A .发电机产生电动势的瞬时值为e =6sin 5πt (V)B .变压器原、副线圈的匝数之比为1∶3C .每个小灯泡正常发光时的功率为2 WD .t =0.1 s 时电压表的示数为6 V【解析】 由图丙可知,线圈运动的速度最大值v m =2 m/s ,速度变化周期为T =0.4 s ,则线圈运动的速度瞬时值v =v m sin 2πTt =2sin 5πt (m/s),发电机产生电动势的瞬时值为e =nB ·2πr ·v =6sin 5πt (V),A 正确;设灯泡正常发光时通过灯泡的电流为I ,则通过原线圈的电流I 1=I ,通过副线圈的电流I 2=2I ,变压器原、副线圈的匝数之比为n 1n 2=I 2I 1=21,B 错误;根据能量关系可知,U 出I 1=3I 2R L ,其中U 出=E m 2=62 V =3 2 V ,I 1=I ,解得I = 2 A ,每个小灯泡正常发光时的功率为P L =I 2R L =2 W ,C 正确;电压表示数为发电机两端电压的有效值,即电压表示数为U =E 2=62V =3 2 V ,D 错误.故选AC . 4.(多选)(2022·四川巴中一诊)在如图所示的电路中,定值电阻R 1=R 4=3 kΩ,R 2=2kΩ,R 3=R 5=12 kΩ,电容器的电容C =6 μF,电源的电动势E =10 V ,内阻不计,当开关S 1闭合电流达到稳定时,处在电容器中间带电量q =2×10-3C 的油滴恰好保持静止,当开关S 2闭合后,则以下判断正确的是( BD )A .电容器上极板是高电势点B .带电油滴加速向下运动C .a 、b 两点的电势差U ab =8 VD .通过R 3的电量Q =4.8×10-5C 【解析】 当开关S 2闭合后,由电路图可知,电容器上极板是低电势点,A 错误;当开关S 1闭合电流达到稳定时,处在电容器中油滴保持静止,而开关S 2闭合后,电容器上极板是低电势点,油滴受到的电场力方向发生变化,故可得带电油滴加速向下运动,B 正确;由电路图可知,a 、b 两点的电势差为U R 5-U R 2=8 V -4 V =4 V ,C 错误;由开关S 1闭合电流达到稳定时,再到当开关S 2闭合后的过程中,通过R 3的电量为Q =Q 1+Q 2=4×6×10-6C +(8-4)×6×10-6 C =4.8×10-5 C ,D 正确.5.(多选)(2022·天津南开二模)如图甲所示电路中,L 1为标有“4 V,2 W”字样的小灯泡,L 2、L 3为两只标有“8 V,6 W”字样的相同灯泡,变压器为理想变压器,各电表为理想电表,当ab 端接如图乙所示的交变电压时,三只灯泡均正常发光.下列说法正确的是( ACD )A .电流表的示数为1.5 AB .交变电压的最大值U m =28 VC .变压器原、副线圈的匝数之比为3∶1D .电压表的示数为24 V【解析】 L 2、L 3的额定电流为I 23=P 23U 23=34A ,所以电流表的示数为I 2=2I 23=1.5 A ,故A 正确;通过原线圈的电流等于L 1的额定电流,为I 1=P 1U 1′=0.5 A ,所以变压器原、副线圈的匝数之比为n 1n 2=I 2I 1=31,故C 正确;副线圈两端电压等于L 2和L 3的额定电压,为U 2=8 V ,所以电压表的示数,即原线圈两端电压为U 1=n 1n 2U 2=24 V ,故D 正确;根据闭合电路欧姆定律可得U m 2-U 1′=U 1,解得U m =28 2 V ,故B 错误.故选ACD . 6.(多选)(2022·广西桂林模拟)在一小型交流发电机中,矩形金属线圈abcd 的面积为S ,匝数为n ,线圈总电阻为r ,在磁感应强度为B 的匀强磁场中,绕轴OO ′(从上往下看逆时针转动)以角速度ω匀速转动,从如图甲所示的位置作为计时的起点,产生的感应电动势随时间的变化关系如图乙所示,矩形线圈与阻值为R 的电阻构成闭合电路,下列说法中正确的是( AD )A .在t 1~t 3时间内,穿过线圈的磁通量的变化量大小为2BSB .在t 1~t 3时间内,通过电阻R 电流方向先向上然后向下C .t 4时刻穿过线圈的磁通量的变化率大小为E 0D .在t 1~t 3时间内,通过电阻R 的电荷量为2E 0R +r ω【解析】 由图乙可知t 1和t 3时刻,线圈的感应电动势都为0,可知这两个时刻穿过线圈的磁通量一正一负,大小均为BS ,故此过程穿过线圈的磁通量的变化量大小为ΔΦ=BS -(-BS )=2BS ,A 正确;由图乙可知,在t 1~t 3时间内,线圈中的电流方向不变,根据右手定则可知通过电阻R 电流方向始终向上,B 错误;由图乙可知,t 4时刻的感应电动势为E 0,根据法拉第电磁感应定律可得E 0=n ΔΦΔt 可得穿过线圈的磁通量的变化率大小为ΔΦΔt =E 0n,C 错误;在t 1~t 3时间内,通过电阻R 的电荷量为q =n ΔΦR +r =2nBS R +r,又E 0=nBSω,联立可得q =2E 0R +r ω,D 正确.故选AD . 7.(2022·山东菏泽一模)一交流电源电压u =2202sin 100πt (V),通过理想变压器对下图电路供电,已知原、副线圈匝数比为10∶1,L 1灯泡的额定功率为4 W ,L 2灯泡的额定功率为20 W ,排气扇电动机线圈的电阻为1 Ω,电流表的示数为2 A ,用电器均正常工作,电表均为理想电表,则( C )A .流过L 1的电流为20 AB .排气扇电动机的发热功率2 WC .整个电路消耗的功率44 WD .排气扇电动机的输出功率20 W【解析】 由于电流表的示数I 2=2 A ,由I 1I 2=n 2n 1可得变压器原线圈的电流I 1=0.2 A ,即流过L 1的电流为0.2 A ,A 错误;交流电源电压有效值为220 V ,L 1两端的电压U L1=P L1I 1=40.2 V =20 V ,故原线圈两端的电压U 1=200 V ,由U 1U 2=n 1n 2可得变压器副线圈两端的电压U 2=20 V ,流过灯泡L 2的电流I L2=P L2U 2=2020A =1 A ,则流过排气扇的电流I M =I 2-I L2=1 A ,排气扇电动机的发热功率为P 热=I 2M r =12×1 W=1 W ,排气扇的电功率为P 电=U 2I M =20 W ,则排气扇电动机的输出功率为P 出=P 电-P 热=19 W ,B 、D 错误;整个电路消耗的功率为P 总=P L1+P L2+P 电=4 W +20 W +20 W =44 W ,C 正确.8.(多选)(2022·辽宁鞍山预测)如图甲所示,理想变压器的原副线圈匝数之比n 1∶n 2=2∶1,定值电阻R 1和R 2的阻值分别为5 Ω和3 Ω,电表均为理想交流电表,电源输出的电流如图乙所示,图中的前半周期是正弦交流的一部分,后半周期是稳恒直流的一部分,则( BD )A .电流表示数为2 AB .电压表示数为6 VC .R 1的功率为10 WD .R 2的功率为12 W【解析】 设电源输出电流的有效值即电流表示数为I 1,根据等效热值法可得I 21RT =⎝ ⎛⎭⎪⎫i m 22RT2+i 2m ·RT2,解得I 1= 3 A ,故A 错误;由于变压器不能对稳恒直流电进行变压,所以每个周期内有半个周期副线圈无电流,设副线圈中电流的有效值为I 2,根据等效热值法有⎝⎛⎭⎪⎫n 1n 2·i m 22RT2=I 22RT ,解得I 2=2 A ,电压表示数为U 2=I 2R 2=6 V ,故B 正确;R 1的功率为P 1=I 21R 1=15 W ,故C 错误;R 2的功率为P 2=I 22R 2=12 W ,故D 正确.故选BD .9.(多选)(2022·湖南押题卷)如图所示在竖直平面的电路,闭合开关S 1和S 2后,带电油滴在电容器内部处于静止状态,R 1为滑动变阻器,R 2为定值电阻,二极管为理想二极管,电容器的下极板接地,则下列说法正确的是( AC )A .滑动变阻器的滑动头P 向右滑动,油滴向上运动B .滑动变阻器的滑动头P 向左滑动,油滴向下运动C .极板M 向上运动,M 板的电势升高D .断开S 2,油滴不动【解析】 滑动变阻器的滑动头P 向右滑动,则R 1阻值减小,回路电流变大,则R 2两端电压变大,则电容器要充电,此时电容器两板电压变大,场强变大,则油滴向上运动,选项A 正确;滑动变阻器的滑动头P 向左滑动,则R 1阻值变大,回路电流变小,则R 2两端电压变小,则电容器要放电,但是由于二极管的单向导电性使得电容器不能放电,则使得电容器两板电压不变,则油滴仍静止,选项B 错误;极板M 向上运动,根据C =εr S 4πkd可知电容器电容减小,则带电量应该减小,但是由于二极管的单向导电性使得电容器不能放电,则两板间电量不变,结合E =U d =Q Cd =Q εr S 4πkd d =4πkQ εr S 可知两板间场强不变,则根据U =Ed 可知,两板电势差变大,则M 板的电势升高,选项C 正确;断开S 2,则电容器两板间的电压等于电源的电动势,即电压变大,电容器充电,两板间场强变大,则油滴向上运动,选项D 错误.故选AC .10.(多选)(2022·山东威海二模)如图所示为远距离输电的原理图,升压变压器T 1、降压变压器T 2均为理想变压器,T 1、T 2的原、副线圈匝数比分别为k 1、k 2.输电线间的总电阻为R 0,可变电阻R 为用户端负载.U 1、I 1分别表示电压表V 1、电流表A 1的示数,输入电压U 保持不变,当负载电阻R 减小时,理想电压表V 2的示数变化的绝对值为ΔU ,理想电流表A 2的示数变化的绝对值为ΔI ,下列说法正确的是( BD )A .R 0=U 1I 1B .R 0=ΔU ΔI k 22C .电压表V 1示数增大D .电流表A 1的示数增加了ΔI k 2【解析】 设降压变压器T 2原线圈电压为U 3,副线圈电压为U 2,根据题意可知,电阻R 0两端的电压等于U R 0=U 1-U 3,则R 0=U 1-U 3I 1,故A 错误;设降压变压器T 2原线圈电压变化为ΔU 3,则ΔU 3ΔU =k 2,设降压变压器T 2原线圈电流变化为ΔI 3,则ΔI 3ΔI =1k 2,可得ΔI 3=ΔI k 2,升压变压器T 1副线圈电压不变,则ΔUR 0=ΔU 3,根据欧姆定律得ΔU 3=ΔI 3R 0,即k 2ΔU =ΔI k 2R 0,解得R 0=ΔU ΔIk 22,故B 、D 正确;输入电压不变,升压变压器T 1原副线圈匝数比不变,则升压变压器T 1副线圈的电压不变,电压表V 1示数不变,故C 错误.故选BD .应用题——强化学以致用11.(多选)(2022·安徽合肥预测)如图所示,理想变压器的原、副线圈分别接有R 1=250 Ω与R 2=10 Ω的电阻.当原线圈一侧接入u =311sin 100πt (V)的交流电时,两电阻消耗的功率相等,则有( AC )A .原、副线圈的匝数比为5∶1B .电阻R 1两端电压有效值是电阻R 2两端电压有效值的2倍C .电阻R 2消耗的功率为48.4 WD .1 s 内流过电阻R 2的电流方向改变200次【解析】 设原线圈电流为I 1,副线圈电流为I 2,由题意可知I 21R 1=I 22R 2,故n 1n 2=I 2I 1=R 1R 2=5,A 正确;电阻R 1两端电压有效值和电阻R 2两端电压有效值之比为U R 1U R 2=I 1R 1I 2R 2=5,B 错误;设原线圈输入电压为U 1,副线圈输出电压为U 2,故U 1U 2=n 1n 2=5,解得U 1=5U 2,又U R 1=I 1R 1,U 2=I 2R 2,又因为U =U R 1+U 1,外接交流电压有效值为220 V ,联立代入数据解得U 2=110U =22 V ,电阻R 2消耗的功率为P =U 22R 2=48.4 W ,C 正确;由题意可知,交流电的频率为f =ω2π=50 Hz ,变压器不改变交流电的频率,一个周期内电流方向改变2次,故1 s 内流过电阻R 2的电流方向改变100次,D 错误.故选AC .12.(多选)(2022·湖北恩施预测)为了适应特高压输电以实现地区间电力资源的有效配置,需要对原来线路中的变压器进行调换.某输电线路可简化为如图所示,变压器均为理想变压器,调换前后发电机输出电压、输电线电阻、用户得到的电压均不变,改造后输送电压提升为原来的5倍,假设特高压输电前后输送的功率不变,下列说法正确的是( AB )A .线路改造后升压变压器原、副线圈的匝数比改变B .线路上电阻的功率变为原来的125C .特高压输电后,电压损失变为原来的125D .线路改造后用户端降压变压器匝数比不变【解析】 发电机输出电压不变,应改变升压变压器原、副线圈的匝数比,故A 项正确;根据线路上功率的损失ΔP =I 22r ,输送功率不变,电压提升为原来的5倍,输送的电流变为原来的15,线路电阻不变,损失的功率变为原来的125,故B 项正确;输电线上的电压损失为ΔU =I 2r ,输送功率为P 2=U 2I 2则输送功率不变,电压增为原来的5倍,电流变为原来的15,损失的电压变为原来的15,故C 项错误;用户端的降压变压器改造前后输出端电压U 4不变,输入端电压U 3变大,根据U 3U 4=n 3n 4,可得原、副线圈的匝数比一定变化,故D 项错误.故选AB .13.(多选)(2022·广东广州预测)如图所示,变压器为理想变压器,原、副线圈的匝数比为2∶1,原线圈的输入端接有正弦交变电流.已知L 1、L 2、L 3是相同的电灯且灯丝的电阻不随温度变化,灯丝不会被烧断.下列说法正确的是( BD )A .L 1、L 2中的电流之比为1∶2B .L 1、L 2中的电流之比为1∶1C .L 1两端的电压与原线圈两端的电压之比为2∶1D .L 1两端的电压与原线圈两端的电压之比为1∶2【解析】 原、副线圈的匝数比为2∶1,则原、副线圈中的电流之比为1∶2,由于L 2与L 3并联,因此L 1、L 2中的电流之比I 1∶I 2=1∶1,选项A 错误,B 正确;原、副线圈的匝数比为2∶1,则原、副线圈两端的电压之比为2∶1,设电灯的电阻为R ,因此原线圈两端的电压U =2I 2R ,L 1两端的电压U 1=I 1R ,结合I 1∶I 2=1∶1,解得U 1U =12,选项C 错误,D 正确.故选BD .14.(多选)(2022·湖北襄阳模拟)如图所示,矩形线圈abcd 在匀强磁场中绕垂直于磁场的轴OO ′匀速转动,线圈的电阻为R ,线圈共N 匝,理想变压器原、副线圈的匝数比为1∶2,定值电阻R 1=R ,当线圈转速为n 时,电压表的示数为U ,则( ACD )A .电流表的示数为2U RB .从线圈转动到图示位置开始计时,线圈中产生的电动势的瞬时表达式为e =52U cos 2πntC .线圈在转动过程中通过线圈磁通量的最大值为52U 4Nn πD .当线圈转动的转速为2n 时,电压表的示数为2U 【解析】 依题意有I 2=U R 1=U R ,I 1∶I 2=2∶1则有I 1=2I 2=2U R,故A 正确;根据欧姆定律,发电机产生的感应电动势的最大值为E m ,有E m 2=R ×I 1+U 1,U 1U =12,ω=2n π rad/s,从线圈转动到图示位置开始计时,线圈中产生的电动势的瞬时表达式为e =E m cos ωt =52U 2cos 2n πt ,故B 错误;依题意有,线圈在转动过程中通过线圈磁通量的最大值为Φm ,则有52U 2=NΦm 2n π,解得Φm =52U 4Nn π,故C 正确;当线圈转动的转速为2n 时,线圈中产生的电动势的最大值为E m ′=NΦm 4n π,因52U 2=NΦm 2n π=E m ,所以E m ′=52U ,其有效值为5U ,假定电压表示数为U 2′,则有5U =I 1′R +U 1′=2U 2′R 1×R +U 1′=12U 2′+2U 2′=52U 2′,解得U 2′=2U ,当线圈转动的转速为2n 时,电压表的示数为2U ,故D 正确.故选ACD .。
专题五 电路与电磁感应 (2)——2023届高考物理大单元二轮复习讲重难

【例 1】答案:D 解析:A. 外壳不能使用金属材料,若使用金属材料外壳也会发生电磁感应,形成回路,消 耗能量,故 A 错误; B. 通过楞次定律结合右手螺旋法则,知电流由 d 流出,相当于电源正极, d 点电势高于 c 点,故 B 错误; C. 在送电线圈电压不变的情况下,增加送电线圈匝数不改变送电线圈的电流和周围的磁场, 不可以提高受电线圈的电压,故 C 错误; D. 根据电磁感应原理可知,接收线圈中交变电流的频率与发射线圈中交变电流的频率相同, 故 D 正确。
(1)解决电磁感应图象问题的一般步骤 ①明确图象的种类,即是 B t 图象还是 t 图象或者是 E t 图象、 I t 图象等。 ②分析电磁感应的具体过程。 ③用右手定则或楞次定律确定方向对应关系。 ④结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等写出函数关系式.平张号 ⑤根据函数关系式,进行数学分析,如分析斜率的变化、截距等。 ⑥应用图象信息画图象、判断图象或讨论各物理量的变化。
(2) B t I t 如图 1,规定垂直纸面向里为磁场正方向,顺时针为电流正方向,根据 B t 图象画出 I t 图象,如图 2。
为方便记忆,我们设定:伸出右手,让大拇指指向磁场正方向,环绕四指,如果四指 环绕方向为线圈中电流正方向,则称为“B、I 二者满足右手”;若环绕方向为线圈中电流负 方向,则称为“B、I 二者不满足右手”。
专题五 电路与电磁感应 (2)
第十讲 电磁感应及应用
——2023届高考大单元二轮复习讲重难
一、核心思路
二、重点知识
1.“三定则、一定律”的应用 (1)安培定则:判断运动电荷、电流产生的磁场方向。 (2)左手定则:判断磁场对运动电荷、电流的作用力的方向。 (3)右手定则:判断部分导体切割磁感线产生感应电流的方向。 (4)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的方向。 2.求感应电动势的两种方法 (1) E n ,用来计算感应电动势的平均值。
【红对勾讲与练】新课标高三物理二轮专题复习四 电路和电磁感应课件1-4-2

间电压如图b () 所示.已知线圈内部的磁场与流经线圈的电 流 成 正 比 , 则 下 列 描 述 线 圈 中 , 可 能 正 确 的 是 ( ) a b 中 电 流 随 时 间 变 化 关 系 的 图
高三二轮 · 新课标 · 物理
ΔB E=nS 求 感 应 电 动 势 时 , Δt
S 为 线 圈 在 磁
q 仅与 n、ΔΦ 和 回 路 电 阻
R
n ΔΦ n ΔΦ q= I Δt= Δt= R . ΔtR
专题四 第二讲
系列丛书
1.2 ( 0 1 芯 上 . 在
4 ·课标卷Ⅰ)如 图a ( ) , 线 圈 a b 、cd 绕 在 同 一 软 铁 a b 线 圈 中 通 以 变 化 的 电 流 . 用 示 波 器 测 得 线 圈 cd
高三二轮 · 新课标 · 物理
专题四
第二讲
系列丛书
右 手 定 则 : 常 用 于 情 况 楞 次 定 律 : 常 用 于 情 况 2.感 应 电 动 势 的 计 算 1 ( ) 法 拉 第 电 磁 感 应 定 律 :
①; ②.
ΔΦ E=n .若 B 变 , 而 S不 变 , Δt ΔS E=nB .常 用 于 计 算 平 Δt
ΔB 则 E=n S; 若 S 变而 B 不 变 , 则 Δt 均 电 动 势 .
2 ( ) 导体垂直切割磁感线运动:E=Blv, 主 要 用 于 求 电 动 势 的 瞬 时 值 .
高三二轮 · 新课标 · 物理
专题四
第二讲
系列丛书
二 、 方 法 技 巧 总 结 1.楞 次 定 律 推 广 的 三 种 表 述 1 ( ) 阻 碍 原 磁 通 量 的 变 化 2 ( ) 阻 碍 相 对 运 动 3 ( ) 阻 碍 原 电 流 的 变 (增 反 减 同 ). ). ).
高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
高考二轮复习资料专题五1电磁感应中的电路问题

高考二轮复习资料专题五5.1 电磁感应中的电路问题例1 匀强磁场磁感应强度 B =0.2T ,磁场宽度 L =3m , 一正方形金属框边长 ab =r =1m , 每边电阻R =0.2Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图5-1,求:⑴画出金属框穿过磁场区的过程中,金属框内感应电流I 随时间t 的变化图线.(要求写出作图的依据) ⑵画出两端电压U 随时间t 的变化图线.(要求写出作图的依据)例2 如图5-2,两个电阻的阻值分别为R 和2R ,其余电阻不计,电容器电容量为C ,匀强磁场的磁感应强度为B ,方向垂直纸面向里,金属棒ab 、cd 的长度均为l ,当棒ab 以速度v 向左切割磁感线运动,棒cd 以速度2v 向右切割磁感线运动时,电容器的电量为多大?哪一个极板带正电?例3 把总电阻为2R 和R 的两条粗细均匀的电阻丝焊接成走直径分别是2d 和d 的两个同心圆环,水平固定在绝缘桌面上,在大小两环之间的区域穿过一个竖直向下,磁感应强度为B 的匀强磁场,一长度为2d 、电阻等于R 的粗细均匀的金属棒MN 放在圆环上,与两圆环始终保持良好接触,如图5-3,当金属棒以恒定的速度v 向右运动并经过环心O 时,试求:⑴金属棒MN 产生的总的感应电动势; ⑵金属棒MN 上的电流大小和方向; ⑶棒与小环接触点F 、E 间的电压; ⑷大小圆环的消耗功率之比.L图5-1图5-2图5-3图5-1-35.1 电磁感应中的电路问题1.如图5-1-1,粗细均匀的电阻丝绕制的矩形导线框abcd 处于匀强磁场中,另一种材料的导体棒MN 可与导线框保持良好的接触并做无摩擦滑动,当导体棒MN 在外力作用下从导线框左端开始做切割磁感线的匀速运动一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为 ( )A .逐渐增大B .先增大后减小C .先减小后增大D .增大、减小、再增大、再减小2.一环形线圈放在匀强磁场中,设在第1s 内磁场方向垂直于线圈平面向内,如图5-1-2甲所示,若磁感应强度B 随时间t 的变化关系如图5-1-2乙所示,那么在第2s内,线圈中感应电流的大小和方向是( )A .大小恒定,逆时针方向B .大小恒定,顺时针方向C .大小逐渐增加,顺时针方向D .大小逐渐减小,逆时针方向3.如图5-1-3,水平光滑U 形框架中串入一个电容器,横跨在框架上的金属棒ab 在外力作用下,以速度v 向右运动一段距离后突然停止,金属棒停止后不再受图中以外的物体作用,导轨足够长,由以后金属棒的运动情况是 ( ) A .向右做初速度为零的匀加速运动B .先向右做初速度为零的匀加速运动,后作减速运动C .在某一位置附近振动D .向右先做加速度逐渐减小的加速运动,后做匀速运动4.如图5-1-4,PQRS 为一正方形导线框,它以恒定速度向右进入以为边界 MN 的匀强磁场,磁场方向垂直于线框平面,MN 线与线框的边成45°角,E 、F 分别为PS 和PQ 的中点,则线圈中感应电流最大值出现在 ( ) A .P 点经过边界MN 时 B .E 点经过边界MN 时 C .F 点经过边界MN 时 D .Q 点经过边界MN 时5.如图5-1-5,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当棒下滑到稳定状态时,小灯泡获得的功率为P ,除灯泡外,其他电阻不计,要使稳定状态灯泡的功率变为2P,下列措施正确( )的是A .一个电阻为原来一半的灯泡B .把磁感应强度增为原来的2倍C .换一根质量为原来的2倍的金属棒D .把导轨间的距离增大为原来的21倍6.如图5-1-6,粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其线框的一边a 、b两点间的电势差大的是A C DM N a b c d图5-1-1B甲图5-1-2a bN图5-1-4图5-1-5图5-1-77.用单位长度电阻为R 0的电阻丝制成半径分别为2r 和r 的两只圆环,在它们的切点处剪断,形成很小一个间隙,再将大小圆环分别焊接起来形成如图5-1-10所示回路,现使两圆环处在同一平面内,垂直此平面加一个磁感应强度按B=kt 均匀增强、方向如图的匀强磁场,求图中间隙M 、N 点之间的电势差.8.如图5-1-8,在磁感应强度为B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m 的平行金属导轨MN 与PQ ,导轨的电阻忽略不计,在两根导轨的端点N 、Q 之间连接着一阻值R=0.3Ω的电阻,导轨上跨放着一根长l =0.2m ,每米长电阻r =2Ω的金属棒,与导轨正交放置,交点为c 、d ,当金属棒以速度v =4m/s 向左作匀速运动时,试求:⑴电阻中的电流大小和方向;⑵金属棒两端的电势差.9.如图5-1-9,匀强磁场中固定的金属棒框架ABC ,导线棒DE 在框架ABC 上沿图示方向匀速平移,框架和导体材料横截面积均相同,接触电阻不计,试证明电路中的电流恒定.10.如图5-1-10,长为l ,电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是l ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0. 5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面,现以向右恒定的外力F 使金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.⑴此满偏电表是什么表?说明理由. ⑵拉动金属棒的外力F 多大⑶若此时撤去外力 F ,金属棒的运动将逐渐慢下来,最终停止在导轨上,求从撤去外力到金属棒停止运动的过程中通过电阻的电量.11.如图5-1-11,MN 、PQ 为相距l 的光滑平行导轨,导轨平面与水平面夹角为θ,导轨处于磁感应强度为B 、方向垂直于导轨平面向上的匀强磁场中,在两导轨的M 、P 两端间接有一电阻为R 的定值电阻,质量为m 的导体棒由静止开始下滑,经一段时间到达位置cd 处,这一过程通过截面的电量为q ,回路中产生的内能为E ,设除R 外,回路其余电阻不计,求ab 通过位置cd 时回路的电功率.QR图5-1-6图5-1-8图5-1-9图5-1-10P Q图5-1-1112.如图5-1-12为某一电路装置的俯视图,mn 、xy 为水平放置的很长的平行金属板,两板间距为L ,板间有匀强磁场,磁感应强度为B ,裸导线ab 电阻为R 0,电阻R 1=R 2=R ,电容器电容C 很大,由于棒匀速滑行,一不计重力的带正电粒子以初速度v 0水平射入两板间可做匀速直线运动.问:⑴棒向哪边运动,速度为多大?⑵棒如果突然停止运动,则在突然停止运动时作用在棒上的安培力多大?5.2电磁感应中的力学问题例1 如图5-4固定在水平桌面上的金属框cdef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上可无摩擦地滑动,此时构成一个边长为L 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B⑴若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向;⑵在上述情况中,始终保持静止,当t =t 1s 末时需加的垂直于棒的水平拉力为多大? ⑶若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?例2 如图5-5电容为C 的电容器与竖直放置的金属导轨EFGH纸面向里,磁感应强度为B 的匀强磁场中,金属棒ab 且金属棒ab 的质量为m 、电阻为R ,金属导轨的宽度为L ,现解除约束让金属棒ab 开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度.例3 图5-6在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,d c ef图5-4图5-6图5-1-12方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m 、边长也为l 的正方形框(设电阻为r ),以速度V 进入磁场时,恰好做匀速直线运动,若当边到达gg '与ff '中间位置时线框又恰好做匀速运动,则⑴当边刚越过时,线框加速度的值为多少?⑵求线框从开始进入磁场到到达与中点过程中产生的热量是多少?5.2电磁感应中的力学问题1.如图5-2-1水平放置的光滑平行轨道左端与一电容器C 相连,导体棒ab 的 电阻为R ,整个装置处于竖直向上的匀强磁场中,开始时导体棒ab 向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下列结论的有( )A .此后ab 棒将先加速后减速B .ab 棒的速度将逐渐增大到某一数值C .电容C 带电量将逐渐减小到零D .此后磁场力将对ab 棒做正功 2.如图5-2-2将铝板制成“U ”形框后水平放置,一质量为m 的带电小球用绝缘细线悬挂在框的上方,让整体在垂直于水平方向的匀强磁场中向左以速度v 匀速运动,悬线的拉力为T ,则A .悬线竖直,T=mgB .悬线竖直,T <mg( ) C .选择v 的大小,可以使T=0 D. 因条件不足,T 与的关系无法确定 3.如图5-2-3两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向垂直,从磁场外同一高度开始同时下落,则( )A .两线框同时落地B .粗线框先着地C .细线框先着地D .线框下落过程中损失的机械能相同 4.如图5-2-4,CDEF 是固定的、水平放置的、足够长的“U ”型金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架一个金属棒,在极短时间内给棒一个向右的速度,棒将开始运动,最后又静止在导轨上,则棒在运动过程中,就导轨光滑和粗糙两种情况比较 ( )A . 培力对做的功相等 B.电流通过整个回路所做的功相等 C.整个回路产生的总热量相等 D.棒的动量改变量相等5.用同种材料粗细均匀的电阻丝做成ab 、cd 、ef 三根导线,ef 较长,分别放在电阻可忽略的光图5-2-1图5-2-2B图5-2-3图5-2-4a b d c ef图5-2-5滑的平行导轨上,如图5-2-5,磁场是均匀的,用外力使导线水平向右作匀速运动(每次只有一根导线在导轨上),而且每次外力做功功率相同,则下列说法正确的是 ( ) A.ab 运动得最快 B.ef 运动得最快 C.导线产生的感应电动势相等 D.每秒产生的热量相等6.如图5-2-6甲,闭合线圈从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,在边刚进入磁场到边刚进入磁场的这段时间内,线圈运动的速度图象可能是图5-2-6乙中的哪些图( )7.如图5-2-7,在光滑的水平面上有一半径为r =10cm ,电阻R=1Ω,质量m =1kg 的金属圆环,以速度v =10m/s 向一有界磁场滑去,匀强磁场垂直纸面向里,B =0.5T ,从环刚进入磁场算起,到刚好有一半进入磁场时,圆环释放了3.2J 的热量,求:⑴此时圆环中电流的瞬时功率; ⑵此时圆环运动的加速度.8.如图5-2-8,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1=1m ,bc 边的边l 2=0.6m ,线框的质量m =1kg ,电阻R =0.1Ω,线框通过细线与重物相连,重物质量M =2kg ,斜面上ef 线(ef ∥gh )的右端方有垂直斜面向上的匀强磁场,B=0.5T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 线的距离s =11.4m ,(取g =10m/s 2),试求:⑴线框进入磁场时匀的速度v 是多少?⑵ab 边由静止开始运动到gh 线所用的时间t 是多少?9.如图5-2-9,两根光滑的平行金属导轨处于同一平面内,相距l =0.3m ,导轨的左端M 、N 用0.2Ω的电阻R 连接,导轨电阻不计,导轨上停放着一金属杆,杆的电阻r 为0.1Ω,质量为0.1kg ,整个装置处于竖直向下的匀强磁场中,磁感应强度B 为0.5T ,现对金属杆施加适当的水平拉力使它由静止开始运动,问:⑴杆应如何运动才能使R 上的电压每1s 均匀地增加0.05V ,且M 点的电势高于N 点? ⑵上述情况下,若导轨足够长,从杆开始运动起第2s 末拉力的瞬时功率多大?bcA B CDcd 图5-2-6甲乙图5-2-7图5-2-8图5-2-910.如图5-2-10,质量为m 、边长为L 的正方形线框,在有界匀强磁场上方h 高处由静止自由下落,线框的总电阻为R ,磁感应强度为B 的匀强磁场宽度为2L ,线框下落过程中,ab 边始终与磁场边界平行且处于水平方向,已知ab 边刚穿出磁场时线框恰好做匀速运动,求:⑴cd 边刚进入磁场时线框的速度; ⑵线框穿过磁场过程中,产生的焦耳热.11.如图5-2-11, 电动机用轻绳牵引一根原来静止的长l =1m ,质量m =0.1kg 的导体棒AB ,导体棒的电阻R =1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B =1T 的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A 和U =10V ,电动机自身内阻r =1Ω,不计框架电阻及一切摩擦,取g =10m/s 2,求:导体棒到达的稳定速度?12.如图5-2-12,光滑弧形轨道和一足够长的光滑水平轨道相连,水平轨道上方有一足够长的金属杆,杆上挂有一光滑螺线管,在弧形轨道上高为H 的地方无初速释放一磁铁(可视为质点),下滑至水平轨道时恰好沿螺线管的轴心运动,设的质量分别为M 、m ,求:⑴螺线管获得的最大速度⑵全过程中整个电路所消耗的电能5.3 交变电流与电磁波例1 如图5-7,正方形线框abcd 边长l =0.2m ,每边电阻均为1Ω,在磁感应强度B =3T 的匀强磁场中绕垂直于磁场的轴cd 顺时针匀速转动,转速为2400r/min ,t =0时,线框平面与磁场垂直,电阻R 的阻值也是1Ω,交流电流表与交流电压表为理想电表,求:⑴电压表和电流表的示数⑵线框转动一周时间里电流所做的功L图5-2-10图5-2-12图5-7B图5-2-11例2 内阻为1Ω的发电机供给一学校照明用电,如图5-8,升压变压器匝数之比为1∶4,降压变压器匝数之比为4∶1,输电线总电阻R =4Ω,全样共有32个班,每班有“220V ,40W ”的灯泡6盏,若保证全部电灯正常发光,则:⑴发电机的输出功率多大? ⑵发电机电动势多大? ⑶输电效率多少?⑷若使用灯数减半并正常发光,发电机的输功率是否减半?例3 如图5-9甲,A 、B 表示真空中水平放置的相距为d 的平行金属板,板长为L ,两板加电压后板间电场可视为匀强电场,如图5-9乙,表示一周期性的交变电压波形,在t =0时,将图5-9乙的交变电压加在两板间,此时恰有一质量为m 、电量为q 的粒子在板间中央沿水平方向以速度v 0射入电场,若此粒子在离开电场时恰恰相反能以平行于A 、B 两板的速度飞出,求:⑴两板上所加的交变电压的频率应满足的条件 ⑵该交变电压的值U 0的取值范围(忽略粒子的重力)5.3 交变电流与电磁波1.如图5-3-1,在内壁光滑、水平放置的玻璃圆环内有一直径略小于环口径的带正电的小球,正以速率沿逆时针方向匀速转动,若在此空间突然加上方向坚直向上,磁感应强度为随时间成正比例增加的变化磁场,设运动过程中小球的带电量不变,那么( )A .小球对玻璃环的压力不断增大B .小球受到的磁场力不断增大C .小球先沿逆时针方向做减速运动,过一段时间性后沿顺时针方向做加速运动D .磁场力对小球一直不做功图5-8U -U A Bv 0甲 乙图5-9图5-3-12.如图5-3-2甲,A 、B 为两个相同的环形线圈,共轴并靠近放置,线圈中通有如图乙的电流,则( )A .t 1到t 2时间内A 、B 两线圈相互吸引 B .在t 2到t 3时间内A 、B 两线圈相互排斥C .t 1时刻两线圈间的作用力为零D .t 2时刻两线圈间的吸引力最大3.家用电子调光灯的调光原理旧用电子线路将输入的正弦交流电压的波形截去一部分来实现的,由截去部分的多少来调节电压,从而实现灯光的可调,比过去用变压器调压方便且体积小,某电子调光灯经调整后电压波形如图5-3-3所示,则灯泡两端的电压为 ( )A .22U m B .42U m C .21U m D .41U m4.矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势e 随时间t的变化规律如图5-3-4所示,下列说法正确的是( )A .t 1时刻通过线圈的磁通量为零B .t2时刻通过线圈的磁通量绝对值最大C .t 3时刻通过线圈的磁通量变化率的绝对值最大D.每当e 的方向变化时,通过线圈的磁通量绝对值都为最大5.如图5-3-5,理想变压器的副线圈上通过输电线接有两个相同的灯泡L 1和L 2,输电线的等效电阻为R ,开始时,开关S 断开,当S 接通时,以下说法正确的是 ( )A .副线圈两端M 、N 的输出电压减小B .副线圈输电线等效电阻R 上的电压增大C .通过灯泡L 1的电流减小D .原线圈中的电流增大6.如图5-3-6,在绕制变压器时,某人误将两个线圈绕在图示变压器铁芯的左右两个臂上,当通交变电流时,每个线圈产生的磁通量都只有一半通过另一个线圈,另一半通过中间的臂,已知线圈1、2的匝数之比为N 1∶N 2=2∶1,在不接负载的情( )A .当线圈1输入电压22V0时,线圈2的输出电压110VB .当线圈1输入电压220V 时,线圈2的输出电压55VC .当线圈2输入电压110V 时,线圈1的输出电压220VD .当线圈2输入电压110V 时,线圈1的输出电压110V7.下列关于电磁波的说法正确的是 ( )A .电磁波是由电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度均为3.00×108m/sC .电磁波由真空进入介质传播时,波长将变短D .电磁波不能产生干涉、衍射现象8.如图5-3-7,理想变压器有两个副线圈,匝数分别为n 1和n 2,所接负载4R 1=R 2,当只闭合图5-3-2U 图5-3-4图5-3-5图5-3-6图5-3-7S 1时,电流表示数为1A ,当S 1和S 2都闭合时,电流表示数为2A ,则n 1∶n 2 ( ) A .1∶1 B .1∶2 C .1∶3 D .1∶49.如果你通过同步卫星转发的无线电话与对方通话,则在你讲完话后,至少要等多长时间才能听到对方的回话?(已知地球的质量M =6.0×1024kg ,地球的半径R =6.4×106m ,万有引力恒量G =6.67×10-11N ·m 2/kg 2)10.如图5-3-8,一个半径为r 的半圆形线圈,以直径ab 为轴匀速转动,转速为n ,的左侧有垂直纸面向里的匀强磁场(与垂直),磁感应强度为B ,M 和N 是两个集流环,负载电阻为R ,线圈、电流表和连接导线电阻不计,求:⑴从图示位置起转过1/4转时间内负载电阻R 上产生的热量 ⑵从图示位置起转过1/4转时间内通过负载电阻R 上产生的电量 ⑶电流表的示数11.某发电厂通过两条输电线向远处的用电设备供电,当发电厂输出的功率为P 0时,额定电压为U 的用电设备消耗的功率为P 1,若发电厂用一台升压变压器T 1先把电压升高,仍通过原来的输电线供电,到达用电设备所在地,再通过一台降压变压器T 2把电压降到用电设备的额定电压供用电设备使用,如图5-3-9,这样改变后,当发电厂输出的功率仍为P 1,用电设备可获得的功率增加至P 2,试求所用升压变压器的原线圈与副线圈的匝数比N 1/N 2以及降压变压器T 2N 3/N 4各为多少?12.如图5-3-10,在真空中速度为v =6.4×107m/s 电子束连续地射入两平行 极板之间,极板长度为l=8.0×10-2m ,间距为d =5.0×10-3m ,两极板不带电时,电子束将沿两极板间的中线通过,在两极板上加一切50H Z 的交变电压u =U 0sin ωt ,如果所加电压的最大值U 0超过某一值U C 时,将开始出现以下现象:电子束有时通过两极板;有时间断,不能通过.求:⑴U C 的大小.⑵U 0为何值时才能使通过的时间(△t )通跟间断的时间(△t )断之比为2∶1参考答案T 2 图5-3-8图5-3-9v图5-3-105.1 例题1、、37CBlv 右极板3、Bdv ,R 76 N →F 、R 7 F →E , 7Bdv, 9∶2; 习题 1、BCD 2、A 3、D 4、AB 5、CD 6、B 7、2k πr 2 8、0.4A N →Q ,0.32v 9、略 10、电压表,1.6N ,0.25C 11、2B l gqsin θ-mREl B 222 12、右、Rv R R 00)(+,200222R R R Rv L B +;5.2 例题1、r kL 2 b →a ,(B+kt 1)rkL 3,vtL BL + 2、222L B C m mg + 3、3gsin θ,23215sin 23mv mgL +θ; 习题 1、BD 2、A 3、A 4、CD 5、BD 6、ACD 7、0.36W ,0.6m/s 2 方向向左 8、6m/s ,2.5s 9、向右以0.33m/s 2的加速度匀加速运动,0.056W 10、gL L B R g m 244222-,mg (h+3L )-442232L B R g m 11、4.5m/s 12、mM gHm +2,mM MmgH +5.3 例题 1、3.05V 、3.05A ,3.3J 2、5424W ,322V ,97%,不是减半 3、f=Lnv 0(n=1、2、3……),U 0≤222qL mv nd (n=1、2、3……); 习题 1、CD 2、ABC 3、C 4、D 5、BCD 6、BD 7、B 8、AC 9、0.48s 10、Rnr B 8424π,RBr 22π,RnBr 222π 11、1020P P P P --,201012P P P P P P -- 12、91V ,105V ;-1s。
2023届高考物理二轮专题复习:电磁感应+电容+试题

电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。
(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。
模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。
电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。
金属棒运动时,金属棒与导轨始终垂直且接触良好。
请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
请分析导体棒的运动情况。
4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。
两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。
炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S 接1,使电容器完全充电。
2024届高考物理二轮复习专题课件:+电磁感应

【考向】自感、互感
A.如图甲,人造地球卫星经过地面跟踪站上空,地面接收到信号频 率先增大后减小 B.如图乙,A、B两灯均发亮,若断开开关,A灯和B灯都会立即熄灭 C.如图丙,高频感应炉是利用炉外线圈产生的热量使炉内的金属熔 化 D.如图丁,利用该装置验证向心力与角速度的关系时,要保持皮带 连接的两个塔轮半径相同
A.线圈abcd中的电流方向为顺时针B.线圈abcd中的电流
方向为逆时针C.线圈abcd受到的安培力方向与车前行方向
一致D.线圈abcd受到的安培力方向与车前行方向相反
【答案】BC 【详解】AB.当汽车保险杠撞上前面的障碍物C时,电磁缓冲器是磁场相对于保 险杠上的线圈运动,可以反过来以磁场为参考系,则保险杠上的线圈abcd相对于 磁场反方向运动,根据右手定则或楞次定律,可知线圈abcd中的电流方向为逆时 针,故A错误,B正确; CD.根据左手定则可知bc边受到的安培力方向与车前行方向一致,故C正确,D 错误。故选BC。
二、网络构建、知识梳理
“三个定则”“一个定律”的比较
名称 电流的磁效应 磁场对电流的作用
电磁感应
应用的定则或定律 安培定则 左手定则 右手定则 楞次定律
基本现象 运动电荷、电流产生磁场 磁场对运动电荷、电流有作用力 部分导体做切割磁感线运动
闭合回路磁通量变化
自感、互感问题
通电自感和断电自感的比较
B.闭合回路中的感应电动势为 k S1 2S2
C.定值电阻两端的电流大小为 k S1 S2
D.定值电阻两端的电压为
Rk
S1
R
2S2
r
Rr
例2、如图所示,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ, 它们的电阻可忽略不计,在M和P之间接有阻值为R的定值电阻,导体棒ab长 L=0.5m,其电阻为r,与导轨接触良好,整个装置处于方向竖直向上的匀 强磁场中,磁感应强度B=0.4T,现使ab以=10m/s的速度向左做匀速运动.
2023版高考物理二轮总复习第1部分题突破方略专题4电路与电磁感应第1讲直流电路与交流电路课件

命题热点•巧突破
考点一 直流电路的计算与分析
考向1 直流电路的动态分析
1.(2021·广东广州模拟)如图所示的电路中,当变阻器R1的滑动触
头向上滑动时,A、B两灯亮度的变化情况为
(A )
A.A灯和B灯都变亮
B.A灯和B灯都变暗
C.A灯变亮,B灯变暗
D.A灯变暗,B灯变亮
【解析】 “串反并同”指的是在一个闭合回路中某一个电学元件 的阻值发生了变化,则与其并联的电学元件的电学量的变化趋势与其相 同,与其串联的电学元件的电学量的变化趋势与其相反,这里的并联是 指两电学元件之间没有电流的流进流出关系,串联指的是电流有流进流 出关系.当变阻器R1的滑动触头向上滑动时,滑动变阻器的阻值增大, 根据“串反并同”规律可知A、B灯泡与之并联,则两灯都变亮,所以A 正确,B、C、D错误.故选A.
则下列描述电阻R两端电压UR随时间t变化的图象中,正确的是 (A )
【解析】 当电容器两端电压变化时,电容器由于充放电,电路中 会有电流 I=ΔΔQt =CΔΔtU,而充电放电时,电流方向相反,电阻 R 两端电 压 UR=IR=CΔΔtUR,由图(b)可知,(1~2)s 电容器充电,(3~5)s 过程电 容放电,且放电时电流为充电时的一半,故选 A.
( AD )
A.若将电容器上极板上移少许,则液滴的电势能增大
B.若减小电容器两极板的正对面积,则液滴向下加速运动
C.闭合 S,则电路稳定后电容器所带电荷量比原来增加C3E
D.闭合 S,若电路稳定后液滴还在板间运动,则其加速度大小为13g
【解析】 若将电容器上极板上移少许,和电容并联部分电路没有 发生改变,电容器两端的电压不变,根据 E=Ud 可知电场强度变小,则油 滴所受向上电场力变小,油滴向下运动,电场力做负功,油滴的电势能 增大,故 A 正确;若减小电容器两极板的正对面积,不改变极板间的电 场强度,则油滴所受向上电场力不变,油滴仍然静止,故 B 错误;
高考物理二轮复习 第一部分 专题六 电磁感应和电路 第2讲 直流电路和交流电路课件

a.①②两条曲线不同是________(选填E或R)的改变造成的; b.电容器有时需要快速充电,有时需要均匀充电。依据a中的结论,说明 实现这两种充电方式的途径。
两端电压增大而增大;对于(2)中电源,由于内阻不计,故其两端电压等于电动
势而保持恒定,通过电源的电流满足E=UC+IR,即I=
E-UC R
,可见电流会随
着电容器两端电压的增大而减小。
12/8/2021
[答案]
(1)u-q图线如图
1 2CU
2
(2)a.R b.减小电阻R,可以实现对电容器更快速充电; 增大电阻R,可以实现更均匀充电。
1 2
12/8/2021
[解析] 题图乙所示电流的最大值为 Im=0.5 A,由欧姆定律得 Um=ImR=2.5
V,周期为 T=0.01 s,ω=2Tπ=200π rad/s,所以 R 两端电压的表达式为 u=
2.5sin200πt(V),A
项正确;该电流的有效值为
I=
Im ,电阻 2
R
消耗的电功率为
答案
12/8/2021
AD
考向3 理想变压器和远距离输电问题 变压器各物理量间的制约关系
12/8/2021
例 4 (2018·天津卷)教学用发电机能够产生正弦式交变电流。利用该发电 机(内阻可忽略)通过理想变压器向定值电阻 R 供电,电路如图所示,理想交流电 流表 A、理想交流电压表 V 的读数分别为 I、U,R 消耗的功率为 P。若发电机 线圈的转速变为原来的12,则( )
第2讲 直流电路和交流电路
2021届高考物理二轮复习专题四 电路与电磁感应(考点+习题)含解析

专题四电路与电磁感应1.恒定电流(1)闭合电路中的电压、电流关系:E=U外+U内,I=,U=E-Ir。
(2)闭合电路中的功率关系:P总=EI,P内=I2r,P出=IU=I2R=P总-P内。
(3)直流电路中的能量关系:电功W=qU=UIt,电热Q=I2Rt。
(4)纯电阻电路中W=Q,非纯电阻电路中W>Q。
2.电磁感应(1)判断感应电流的方向:右手定则和楞次定律(增反减同、来拒去留、增缩减扩)。
(2)求解感应电动势常见情况与方法(3)自感现象与涡流自感电动势与导体中的电流变化率成正比,线圈的自感系数L跟线圈的形状、长短、匝数等因素有关系。
线圈的横截面积越大,线圈越长,匝数越多,它的自感系数就越大。
带有铁芯的线圈其自感系数比没有铁芯时大得多。
3.交变电流(1)交变电流的“四值”①最大值:为U m、I m,即交变电流的峰值。
②瞬时值:反映交变电流每瞬间的值,如e=E m sinωt。
③有效值:正弦式交变电流的有效值与最大值之间的关系为E=、U=、I=;非正弦式交变电流的有效值可以根据电流的热效应来求解。
计算交变电流的电功、电功率和测定交流电路的电压、电流都是指有效值。
④平均值:反映交变电流的某物理量在t时间内的平均大小,如平均电动势E=n。
(2)理想变压器的基本关系式①功率关系:P入=P出;②电压关系:=;③电流关系:=。
(3)远距离输电常用关系式(如图所示)①功率关系:P1=P2,P3=P4,P2=P线+P3。
②电压损失:U损=I2R线=U2-U3。
③输电电流:I线===。
④输电导线上损耗的电功率:P损=I线U损=R线=R线。
高考演练1.(2019江苏单科,1,3分)某理想变压器原、副线圈的匝数之比为1∶10,当输入电压增加20 V时,输出电压()A.降低2 VB.增加2 VC.降低200 VD.增加200 V答案D依据理想变压器原、副线圈的电压比与匝数比关系公式可知,=,则ΔU 2=ΔU1,得ΔU2=200 V,故选项D正确。
2025届高三物理二轮专项复习课件:电磁感应问题

B.导体框可能匀速穿过整个磁场区域
L
C.导体框穿过匀强磁场的过程中,电阻产
生的热量为mg(L+h) 产生的热量=重力势能的较少量
D.导体框进入磁场的过程中,通过某个横
a
截面的电荷量为
∆∅
=
=
=
c
d
h
b
B
7.如图所示的电路中,电感L的自感系数很大,电阻可以忽略,D为理想二极
管,则下列说法正确的是( BD)
A.当S闭合时, 立即变亮, 逐渐变亮
B.当S闭合时, 一直不亮, 逐渐变亮
C.当S断开时, 立即熄灭
D.当S断开时, 突然变亮,然后逐渐变暗至熄灭
D
E
S
8.(2019.河北月考)如图所示,两根光滑平行金属导轨固定在倾角为° 的
斜面上,导轨间距为L,导轨下端连接一个阻值为R的定值电阻,空间中有一
磁感应强度大小为B,方向垂直导轨所在平面向上的匀强磁场,在斜面上平行
斜面固定一个轻弹簧,弹簧的劲度系数为K,弹簧上端与质量为m电阻为r,长
为L的导体杆相连,杆与导轨垂直且接触良好,导体杆中点系一轻细线,细线
平行于斜面,绕过一个光滑定滑轮后悬挂一个质量也为m的物块,初始时用
F
B
4.在导体棒ab产生的感应电流方向
是( A )
A. → . →
F
O
O
F
T
A
t O
F
T
B
t
O
F
C
T t
【红对勾讲与练】新课标高三物理二轮专题复习四 电路和电磁感应课件1-4-1

(多 选 )如 图 所 示 的 电 路 ,
L1、L2、L3 是 3 只 P位 于 中 点 位
小 电 灯 , R是 滑 动 变 阻 器 , 开 始 时 , 它 的 滑 片 置 . 当 S闭 合 时 ,
3只 小 电 灯 都 发 光 . 现 使 滑 动 变 阻 器 的 滑 L1、L2、L3 的 变 化 情 况 ( )
有 效 电 阻 变 大 , 导 致 外 电 路 的 总 电 阻 增 大 . 由 闭 合 电 路 的 欧 姆 定 律 I= E 知 , 总 电 流 减 小 , 路 端 电 压 R+ r L1 灯 的 电 流 变 小 , U=E-Ir 将 ቤተ መጻሕፍቲ ባይዱ L1 灯 变 暗 . U=UL1+
高三二轮 · 新课标 · 物理
专题四
电路与电磁感应
系列丛书
3 .必 须 明 确 的 四 个 易 错 易 混 点 1 ( ) 电 功 、 电 热 的 区 别 与 联 系 . 2 ( ) 平 均 值 与 有 效 值 的 计 算 与 用 途 . 3 ( ) 理 想 变 压 器 原 线 圈 与 副 线 圈 的 电 压 、 电 流 、 功 率 的 制 约 关 系 . 4 ( ) 右 手 定 则 与 楞 次 定 律 的 区 别 .
高三二轮 · 新课标 · 物理
专题四
第一讲
系列丛书
高三二轮 · 新课标 · 物理
专题四
第一讲
系列丛书
2.直 流 电 路 的 动 态 分 析 技 巧 1 ( ) 当 电 路 中 某 一 部 分 发 生 变 化 时 , 应 先 由 局 部 的 变 化 推 出 总 电 流 的 变 化 、 路 端 电 压 的 变 化 , 再 由 此 分 析 对 其 他 各 部 分 电 路 产 生 的 影 响 , 确 定 电 流 变 化 时 , 一 般 是 先 分 析 固 定 电 阻 支 路 再 分 析 变 化 电 阻 支 路 . 2 ( ) 一 个 闭 合 电 路 就 是 一 个 整 体 , 在 研 究 电 路 的 动 态 问 题 时 , 一 定 要 弄 清 电 路 的 串 并 联 结 构 , 同 时 要 用 整 体 的 观 点 来 看 问 题 , 还 要 善 于 转 换 思 维 的 角 度 “电 压 不 行 看 电 流 ”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010高考物理第二轮复习 专题四 电磁感应与电路[方法归纳]电磁感应是电磁学中最为重要的内容,也是高考的热点之一。
电磁感应是讨论其他形式能转化为电能的特点和规律;电路问题主要是讨论电能在电路中传输、分配并通过用电器转化成其他形式能的特点和规律,本专题的思想是能量转化与守恒思想。
在复习电磁感应部分时,其核心是法拉第电磁感应定律和楞次定律;这两个定律一是揭示感应电动势的大小所遵循的规律;一个是揭示感的电动势方向所遵循的规律,法拉第电磁感定律的数学表达式为:ntε∆Φ=∆,磁通量的变化率越大,感应电动势越大.磁通量的变化率越大,外界所做的功也越大.楞次定律的表述为:感应电流的磁场总要阻碍引起感应电流的磁通量的变化,从楞次定律的内容可以判断出:要想获得感应电流就必须克服感应电流的阻碍,需要外界做功,需要消耗其他形式的能量.在第二轮复习时如果能站在能量的角度对这两个定律进行再认识,就能够对这两个定律从更加整体、更加深刻的角度把握.电路部分的复习,其一是以部分电路欧姆定律为中心,包括六个基本物理量(电压、电流、电阻、电功、电功率、电热),三条定律(部分电路欧姆定律、电阻定律和焦耳定律),以及串、并联电路的特点等概念、定律的理解掌握和计算;其二是以闭合电路欧姆定律为中心讨论电动势概念、闭合电路中的电流、路端电压以及闭合电路中能量的转化;其三,对高中物理所涉及的三种不同类别的电路进行比较,即恒定电流电路、变压器电路、远距离输电电路,比较这些电路哪些是基本不变量,哪些是变化量,变化的量是如何受到不变量的制约的.其能量是如何变化的.在恒定电流电路中,如果题目不加特殊强调,电源的电动势和内电阻是基本不变量,在外电阻改变时其他量的变化受到基本不变量的制约.在变压器电路中,如果题目不加特殊强调,变压器的输入电压不变,其他量改变时受到这个基本不变量的制约.在远距离输电电路中,如果题目不加特殊强调,发电厂输出的电功率不变,其他量改变时受到这个基本不变量的制约. [典例分析]1.电磁感应的图象问题方法:图象问题有两种:一是给出电磁感应过程选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应的物理量.其思路是:利用法拉第电磁感应定律计算感应电动势.感应电流的大小,利用楞次定律或右手定则判定感应电流的方向,利用图象法直观,明确地表示出感应电流的大小和方向.掌握这种重要的物理方法.例1、如图4—1(a )所示区域(图中直角坐标系x O y 的1、3象限)内有匀强磁场,磁感应强度方向垂直于图面向里,大小为B ,半径为l ,圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在图面内沿逆时针方向匀速转动,导线框回路电阻为R .(1)求线框中感应电流的最大值I 0和交变感应电流的频率f . (2)在图(b )中画出线框转一周的时间内感应电流I 随时间t 变化的图象.(规定在图(a )中线框的位置相应的时刻为t =0)2、电路的动态分析方法:利用欧姆定律,串、并联电路的性质,闭合电路的欧姆定律;明确不变量,以“从局部到整体再到局部”,“从外电路到内电路再到外电路”的顺序讨论各物理量的变化情况.例2、如图4—3所示的电路中,电源的电动势为E ,内阻为r .当可变电阻的滑片P 向b 移动时,电压表V 1的读数U 1与电压表V 2的读数U 2的变化情况是( )A .U 1变大,U 2变小B .U 1变大,U 2变大C .U 1变小,U 2变小B .U 1变小,U 2变大 3、电磁感应与力学综合方法:从运动和力的关系着手,运用牛顿第二定律(1)基本思路:受力分析→运动分析→变化趋向→确定运动过程和最终的稳定状态→由牛顿第二定律列方程求解.(2)注意安培力的特点:(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发导体运动v 感应电动势E 感应电流I 安培力F磁场对电流的作用电磁感应阻碍闭合电路欧姆定律(a ) (b ) 图4—1 2πω图4—3生变化,在分析问题时要注意上述联系.例3、如图4—4所示,两根相距为d 的足够长的平行金属导轨位于水平x O y 平面内,左端接有阻值为R 的电阻,其他部分的电阻均不计.在x >0的一侧存在垂直x O y 平面且方向竖直向下的稳定磁场,磁感强度大小按B =kx 规律变化(其中k 是一大于零的常数).一根质量为m 的金属杆垂直跨搁在光滑的金属导轨上,两者接触良好.当t =0时直杆位于x =0处,其速度大小为v 0,方向沿x 轴正方向,在此后的过程中,始终有一个方向向左的变力F 作用于金属杆,使金属杆的加速度大小恒为a ,加速度方向一直沿x 轴的负方向.求:(1)闭合回路中感应电流持续的时间有多长?(2)当金属杆沿x 轴正方向运动的速度为2v时,闭合回路的感应电动势多大?此时作用于金属杆的外力F 多大?4、电磁感应与动量、能量的综合 方法:(1)从动量角度着手,运用动量定理或动量守恒定律①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.(2)从能量转化和守恒着手,运用动能定律或能量守恒定律①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.②能量转化特点:其它能(如:机械能)−−−−−−→安培力做负功电能−−−−−→电流做功内能(焦耳热)图4—4例4、如图4—6所示,在空间中有一水平方向的匀强磁场区域,区域的上下边缘间距为h ,磁感应强度为B .有一宽度为b (b <h )、长度为L 、电阻为R 、质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场下边缘时,恰好开始做匀速运动.求:(1)线圈的MN 边刚好进入磁场时,线圈的速度大小. (2)线圈从开始下落到刚好完全进入磁场所经历的时间.例5、两根足够长的固定的平行金属导轨位于同一水平内,两导轨间的距离为l ,导轨上面横放着两根导体棒ab 和cd 构成矩形回路,如图4—7所示.两根导体棒的质量皆为m ,电阻皆为R ,磁感应强度为B ,设两导体棒均为沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度(如图所示),若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当ab棒的速度变为初速度的34时,cd 棒的加速度是多少?图4—6图4—75、电磁感应与电路综合方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路图.(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.例6、如图4—8所示,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为2L.磁场的磁感强度为B,方向垂直纸面向里.现有一段长度为2L,电阻为2R的均匀导体棒MN架在导线框上,开始时紧靠ac,然后沿bc方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触,当MN滑过的距离为3L时,导线ac中的电流为多大?方向如何?6、交变电流的三值(1)最大值:mE NBSω=,最大值(、)m m mE V I与线圈的形状,以及转轴的位置图4—8无关,但转轴应与磁感线垂直.(2)有效值:交流电的有效值是根据电流的热效应来定义的.即在同一时间内,跟某一交流电一样能使同一电阻产生相等热量的直流的数值,叫做该交流电的有效值.正弦交流电的有效值与最大值之间的关系为:E U I ===各种交流电器设备上标准值及交流电表上的测量值都是指有效值.(3)平均值 ntϕε∆=∆ (4)最大值、有效值和平均值的应用①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算.正弦交变电流的有效值为I =,其他交流电流的有效值只能根据有效值的定义来计算.②求一段时间内通过导体横截面的电量时要用平均值来计算.,q It =而,E I E nR t∆Φ==∆. 注意122E E E +≠,平均值不等于有效值.③在考虑电容器的耐压值时,则应根据交流电的最大值.例7、边长为a 的N 匝正方形线圈在磁感应强度为B 的匀强磁场中,以角速度ω绕垂直于磁感线的转轴匀速转动,线圈的电阻为R .求:(1)线圈从中性面开始转过90°角的过程中产生的热量.(2)线圈从中性面开始转过90°角的过程中,通过导线截面的电量.7、电容、电路、电场、磁场综合方法:从电场中的带电粒子受力分析入手,综合运用牛顿第二定律;串、并联电路的性质、闭合电路欧姆定律和法拉第电磁感应定律进行分析、计算,注意电容器两端的电压和等效电路.例8、如图4—11所示,光滑的平行导轨P 、Q 相距l =1m ,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C 两极板间距离d =10mm ,定值电阻R 1=R 3=8Ω,R 2=2Ω,导轨电阻不计,磁感应强度B =0.4T 的匀强磁场竖直向下穿过导轨平面,当金属棒ab 沿导轨向右匀速运动(开关S 断开)时,电容器两极板之间质量m =1×10-14kg ,带电荷量q =-1×10-25C 的粒子恰好静止不动;当S 闭合时,粒子以加速度a =7m/s 2向下做匀加速运动,取g =10m/s 2,求:(1)金属棒ab 运动的速度多大?电阻多大?(2)S 闭合后,使金属棒ab 做匀速运动的外力的功率多大?8、电磁感应与交流电路、变压器综合方法:①变压器遵循的是法拉第电磁感应定律,理想变压器不考虑能量损失,即输入功率等于输出功率.②理想变压器原线圈的电压决定着负线圈的电压,而副线圈上的负载反过来影响着原线圈的电流,输入功率.③远距离输电是以电功率展开分析的,其中损失功率是最为关键的因素.④在供电电路、输电电路、用电回路所构成的输电电路中, 输出电路中的电流和输电回路中的损失电压是联系其余两回路的主要物理量.n 1︰n 2 1n '︰2n ' 图4—12例9、有条河流,流量Q =2m 3/s ,落差h =5m ,现利用其发电,若发电机总效率为50%,输出电压为240V ,输电线总电阻R=30Ω,允许损失功率为输出功率的6%,为满足用电的需求,则该输电线路所使用的理想电压、降压变压器的匝数比各是多少?能使多少盏“220V 、100W ”的电灯正常发光.R R图4—11[跟踪练习]1.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感强度B随时间变化的图象如图4—13所示.t=0时刻,磁感强度的方向垂直于纸面向里.在0~4s时间内,线框的ab边受力随时间变化的图象(力的方向规定以向左为正方向),可能如图4—14中的()A. B. C. D.2.如图4—14甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R,ab=bc=cd=da=l.现将线框以与ab垂直的速度v匀速穿过一宽为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=0,电流沿abcda流动的方向为正.(1)求此过程中线框产生的焦耳热;(2)在图乙中画出线框中感应电流随时间变化的图象;(3)在图丙中画出线框中a、b两点间电势差U ab随时间t变化的图象.图4—143.如图4—15所示,T为理想变压器,A1、A2图4—13~R1A1R2 R3A2T图4—15a bc ditO图甲图乙U abtO图丙l为交流电流表,R 1、R 2为定值电阻,R 3为滑动变阻器,原线圈两端接恒压交流电源,当滑变阻器的滑动触头向下滑动时( ) A .A 1的读数变大,A 2读数变大 B .A 1的读数变大,A 2读数变小 C .A 1的读数变小,A 2读数变大 D .A 1的读数变小,A 2的读数变小4.如图4—16所示:半径为r 、电阻不计的两个半圆形光滑导轨并列竖直放置,在轨道左上方端点M 、N 间接有阻值为R 的小电珠,整个轨道处在磁感强度为B 的匀强磁场中,两导轨间距为L ,现有一质量为m ,电阻为R 的金属棒ab 从M 、N 处自由静止释放,经一定时间到达导轨最低点O 、O ′,此时速度为v . (1)指出金属棒ab 从M 、N 到O 、O ′的过程中,通过小电珠的电流方向和金属棒ab 的速度大小变化情况.(2)求金属棒ab 到达O 、O ′时,整个电路的瞬时电功率.(3)求金属棒ab 从M 、N 到O 、O ′的过程中,小电珠上产生的热量.5.如图4—17所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B .一根质量为m 的金属杆从轨道上静止自由滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大 B .如果α变图4—16 图4—17大,v m 将变大C .如果R 变小,v m 将变大D .如果m 变小,v m 将变大6.如图4—18所示a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用两杆的重力的功率的大小和回路电阻上的热功率.7.光滑曲面与竖直平面的交线是抛物线,如图4—19所示,抛物线的方程是y =x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中虚线所示),一个小金属环从抛物线上y =b (y >a )处以速度v 沿抛物线下滑,假设抛物线足够长,金属环沿抛物线下滑后产生的焦耳热总量是( ) A .mgb B .212mv C .mg (b -a ) D .21()2mg b a mv -+8.如图4—20所示,长为L 、电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F 使金属棒右移,当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏,问:(1)此满偏的电表是什么表?说明理由. (2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外图4—18图4—19图4—20力到金属棒停止运动的过程中通过电阻R的电量.9.高频焊接是一种常用的焊接方法,其焊接的原理如图所示.将半径为10cm的待焊接的圆形金属工件放在导线做成的1000匝线圈中,然后在线圈中通以高频的交变电流,线圈产生垂直于金属工件所在平面的变化磁场,磁场的磁感应强度B的变化率为10002sin tπωT/s.焊接处的接触电阻为工件非焊接部分电阻的 99倍.工作非焊接部分每单位长度上的电阻为3110mRπ--=Ω,焊接的缝宽非常小,求焊接过程中焊接处产生的热功率.(取2π=10,不计温度变化对电阻的影响)图4—2110.如图所示,与光滑的水平平行导轨P、Q相连的电路中,定值电阻R1=5Ω,R2=6Ω;电压表的量程为0~10V,电流表的量程为0~3A,它们都是理想电表;竖直向下的匀强磁场穿过水平导轨面,金属杆ab横跨在导轨上,它们的电阻均可不计,求解下列问题:(1)当滑动变阻器的阻值R0=30Ω时,用水平恒力F1=40N 向右作用于ab,在ab运动达到稳定状态时,两个电表中有一个电表的指针恰好满偏,另一个电表能安全使用.试问:这时水平恒力F1的功率多大?ab的速度v1多大?(2)将滑动变阻器的电阻调到R0=3Ω,要使ab达到稳定运动状态时,两个电表中的一个电表的指针恰好满偏,另一个电表能安全使用,作用于ab的水平恒力F2多大?这时ab的运动速度v2多大?图4—22R0 R xR111.两只相同的电阻,分别通过简谐波形的交流电和方形波的交流电.两种交变电流的最大值相等,波形如图4—23所示.在简谐波形交流电的一个周期内,简谐波形交流电在电阻上产生的焦耳热Q1与方波形交流电在电阻上产生的焦耳热Q2之比为12QQ等于()A.3︰1 B .1︰2C.2︰1 D.4︰312.曾经流行过一种向自行车车头灯供电的小型交流发电机,图4—24甲为其结构示意图.图中N、S是一对固定的磁极,abcd为固定在转轴上的矩形线框,转轴过bc边中点、与ab边平行,它的一端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘相接触,如图4—24乙所示.当车轮转动时,因摩擦而带动小轮转动,从而使线框在磁极间转动.设线框由N=800匝导线圈组成,每匝线圈的面积S=20cm2,磁极间的磁场可视为匀强磁场,磁感强度B=0.010T,自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm(见图乙).现从静止开始使大齿轮加速运动,问大齿轮的角速度为多大时才能使发电机输出电压的有效值U=3.2V?(假定摩擦小轮与自行车轮之间无相对滑动)图4—24图4—2313.如图4—25所示,两块水平放置的平行金属板间距为d ,定值电阻的阻值为R ,竖直放置线圈的匝数为n ,绕制线圈导线的电阻为R ,其他导线的电阻忽略不计.现在竖直向上的磁场B 穿过线圈,在两极板中一个质量为m ,电量为q ,带正电的油滴恰好处于静止状态,则磁场B 的变化情况是( )A .均匀增大,磁通量变化率的大小为2mgdnqB .均匀增大,磁通量变化率的大小为mgdnq C .均匀减小,磁通量变化率的大小为2mgdnqD .均匀减小,磁通量变化率的大小为mgdnq14.如图4—26所示,水平面中的光滑平行导轨P 1、P 2相距l =50cm ,电池电动势E ′=6V ,电阻不计;电容C =2 F ,定值电阻R =9Ω;直导线ab 的质量m =50g ,横放在平行导轨上,其中导轨间的电阻R ′=3Ω;竖直向下穿过导轨面的匀强磁场的磁感应强度B =1.0T ;导轨足够长,电阻不计.(1)闭合开关S ,直导线ab 由静止开始运动的瞬时加速度多大?ab 运动能达到的最大速度多大?(2)直导线ab 由静止开始运动到速度最大的过程中,电容器的带电荷量变化了多少?15.如图4—27所示的四个图中,a 、b 为输入端,接交流电源、cd 为输出端,下列说法中错误..的是( )A B C D A .A 图中U ab <U cd B .B 图中U ab >U cd C .C 图中U ab <U cd D .D 图中U ab >U cd16.某电站输送的电功率是500kW ,当采用6kV 电压输电时,安装在输电线路起点的电度表和终点的电度表一昼夜读数相差4800kWh (即4800度),试求:(1)输电线的电阻;(2)若要使输电线上损失的功率降到输送功率的2.304%,应图4—25~ a b d~ a b d c ~ a b d ~ a bd cE ′ P 1 P 2 图4—26采用多高的电压向外输电?专题四 电磁感应与电路典型例题【例1】 解析:在从图中位置开始(t =0)匀速转动60°的过程中,只有OQ 边切割磁感线,产生的感应电动势2112E Bl ω=,由右手定则可判定电流方向为逆时针方向(设为正方向).根据欧姆定律得,211(0)23E Bl I t R R ωπω==<≤.导线框再转过30°的过程中,由于∆Φ=0,则22350(),()32226Bl I t I t R ππωππωωωω=<=<≤≤顺时针方向.245540()()623Bl I t I t R ππωππωωωω=<=<≤≤逆时针方向267433110()()32226Bl I t I t R ππωππωωωω=<=<≤≤顺时针方向81120()6I t ππωω=<≤综合以上分析可知,感应电流的最大值202Bl I Rω=,频率f πω=.其I —t 图象如图4—2所示.答案:(1)20;2Bl I f R ωπω==(2)如图4—2所示.【例2】 解析:P 向b 移动,电路中总电阻变大,由闭合电路的欧姆定律、欧姆定律以及电路的性质从而可以判断U 1、U 2的变化情况.当P 向b 移动时,电路中总电阻变大,由闭合电路的欧姆定律可知电路中总电路I 变小,由欧姆定律得U 2=IR 变小,再由闭合电路欧姆定律得U 1=E -Ir 变大,故本题正确答案应选A .【例3】 解析: (1)由题意可知,金属杆在磁场中的运动分为两个阶段:先沿x 轴正方向做匀减速运动,直到速度为零;然后x 轴负方向做匀加速直线运动,直到离开磁场,其速度一时间图象如图4—5所示.金属杆在磁场中运动切割图4—2磁感线,闭合回路产生感应电流,所以回路中感应电流持续的时间0122v t t a==. (2)当金属杆沿x 轴正方向运动的速度为02v 时,对应的x 坐标x 1`满足:2001()2,2v v ax =-解得x 1=2038v a.则在x 1处的磁感强度201138kv B kx a==此时回路中的感应电动势,30013216v kdv E B d a==金属杆所受的安培力大小25201129128k v d E F BId B d R a R===安 方向沿x 轴负方向由牛顿第二定律得F +F 安=ma所以,此时作用于金属杆的外力252029128k v dF ma a R=-方向沿x 轴负方向.答案:(1)02v a (2)325200239;16128kdv k v d ma a a R- 【例4】 解析: (1)设线圈匀速穿出磁场的速度为v ′,此时线圈中产生的感应电动势为E BLv '=. ① 产生的感应电流为E I R=②线圈受到的安培力为F =BIL ③此过程线圈受到的重力与安培力平衡mg =F ④ 联立①②③④式,得22mgR v B L '=⑤设线圈的上边刚好进入磁场时速度为v ,线圈全部在磁场里运动的过程中,根据能量守恒定律2211()22mg h b mv mv '-=- ⑥ 联立⑤⑥解得222()2()mgRv g h b B L =-- ⑦ (2)设线圈从开始下落到刚好完全进入磁场所用时间为t ,根据动量定理0F mgt I mv -=- ⑧根据法拉第电磁感应定律BLbE t t∆Φ==⑨ 线圈中产生的平均电流EI R=⑩ 故安培力的冲量F I Ft BLIt == ○11联立⑨⑩○11得,22F B L b I R= ○12图4—5将⑦和○12代入⑧解得2222442()B L b m R h b tmgRgB L-=+-【例5】解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,再棒以相同的速度v做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒的动量守恒,有2mv mv=.根据能量守恒,整个过程中产生的总热量22200111(2)224Q mv m v mv=-=(2)设ab棒的速度为初速度的34时,cd棒的速度为v′,则由动量守恒可知0034mv m v mv'=+.此时回路中感应电动势和感应电流分别为3(),42EE v v Bl IR'=-=.此时cd棒所受的安培力F=IBl,cd棒的加速度Fam=.由以上各式可得224B l vamR=.答案:(1)214mv(2)224B l vmR【例6】解析:MN滑过的距离为3L时,它与bc的接触点为P,如图4—9所示.由几何关系可知,MP的长度为3L,MP相当于电路中的电源,其感应电动势13E BLv=,内阻13r R=.等效电路如图4—10所示.图4—9 图4—10 外电路并联电阻为1223312933R R R⨯==+并由闭合电路欧姆定律可得,MP中的电流EIR r=+并ac 中的电流23ac I I =联立以上各式解得25ac BLvI R=根据右手定则,MP 中的感应电流方向由P 流向M ,所以电流I ac 的方向由a 流向c .答案:25ac BLvI R=,方向由a 流向c . 【例7】 解析:(1)线圈中产生的热量应用转动过程中产生的交变电流的有效值来计算.因线圈中感应电动势的峰值为2m E NBa ω=,故线圈中电流的有效值为2I ===,线圈转过90°角经历的时间为42T t πω==. 所以此过程中产生的热量22424N B a Q I Rt Rπω==.(3)线圈转过90°角的过程中,感应电动势和感应电流的平均值分别为222222NBa NBa E NBa E N I t R Rωωπππω∆Φ=====∆所以通过导体截面的电量为2NBa q It R==答案:(1)2244N B a Q R πω=(2)2NBa q R=【例8】 解:(1)带电粒子在电容器两极板间静止时,受向上的电场力和向下的重力作用而平衡1U mg qd= 求得电容器两极板间的电压:14115110100.011V 10mgd U q --⨯⨯⨯=== 由于粒子带负电,可知上极板电势高.由于S 断开,R 1上无电流,R 2、R 3上电压等于U 1,电路中的感应电流. 即通过R 2、R 3的电流强度为:112310.1A 82U I R R ===++ 由闭合电路欧姆定律可知:ab 切割磁感线运动产生的感应电动势为:1U Ir ε=+ ①其中r 为ab 金属棒的电阻.当闭合S 后,带电粒子向下做匀加速运动,根据牛顿第二定律有:2U mg q ma d-= 求得S 闭合后电容器两极板间的电压14215()10(107)0.010.3V 10m g a d U q ---⨯-⨯===。