基本初等函数知识点总结 (1)
初等基本函数知识点总结
![初等基本函数知识点总结](https://img.taocdn.com/s3/m/31026d6f492fb4daa58da0116c175f0e7cd119f4.png)
初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。
初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。
本文将对这些初等基本函数的概念、性质等进行总结和介绍。
一、常数函数常数函数的定义是f(x) = c (c为常数)。
这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。
在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。
常数函数的性质有:1. 常数函数的图象是一条水平的直线。
2. 常数函数的定义域是全体实数集R,值域为{c}。
3. 常数函数的导数为0,即f'(x) = 0。
4. 常数函数是一个一一对应的函数。
5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。
二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。
在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。
一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。
2. 一次函数的定义域是全体实数集R,值域是一切实数集R。
3. 一次函数的导数为k,即f'(x) = k。
4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。
5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。
三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。
二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。
基本初等函数知识总结
![基本初等函数知识总结](https://img.taocdn.com/s3/m/291bb6a7760bf78a6529647d27284b73f24236cd.png)
1
0
x
y loga x
y log2 x
y log3 x y log1 x x
3
y log1 x
2
性 质
底数互为倒数的两个指数
一 函数的图象关于y轴对称。
底数互为倒数的两个对数 函数的图象关于x轴对称。
性
质 在 y轴的右边看图象,图象 二 越高底数越大.即底大图高
在 x=1的右边看图象,图象 越高底数越小.即底小图高
幂函数
函数y=xα叫做幂函数, 其中x是自变量, α是常 数.
对于幂函数,我们只
讨论 1, 2, 3, 1 , 1
2
时的情形
y y x3
y x2
1 -1
O1
-1
yx
1
y x2
y1 x
x
幂函数的性质
函数 性质
定义域 值域
奇偶性
单调性
公共点
y=x y=x2
R
R
R [0,+∞) 奇偶
增
[0,+∞)增
n am
同时: 0的正分数指数幂等于0; 0的负分数指数幂
没有意义
2.有理数指数幂的运算性质
a a a r s
r s(a 0,r, s Q) 同底数幂相乘,底数不变指数相加
r
a a r -s (a 0,r, s Q) 同底数幂相除, 底数不变指数相减 as
(a ) a r s
rs (a 0,r, s Q) 幂的乘方底数不变,指数相乘
o
x
①x∈ (0,+∞) ; ② y∈ R;
③过定点(1, 0)
性 ④当x> 1时,y> 0, 质 0< x< 1时, y< 0
数学必修一基本初等函数知识点
![数学必修一基本初等函数知识点](https://img.taocdn.com/s3/m/0d60b08b88eb172ded630b1c59eef8c75fbf95c6.png)
数学必修一基本初等函数知识点一、函数的概念函数是自然界和社会现象中的各种数学规律在数学上的抽象和推广。
一般来说,对于自变量x的每一个取值,都有唯一的因变量y与之对应。
数学上,函数用来描述自变量和因变量之间的对应关系。
二、函数的表示函数的一般表示形式为y=f(x),其中y为因变量,x为自变量,f(x)为函数关系式,描述了x与y之间的对应关系。
常用的函数表示形式包括算式、表格、图像和文字等。
三、函数的性质1.定义域和值域:一个函数的定义域是该函数所有可能的自变量的值的集合,值域是函数所有可能的因变量的值的集合。
2.奇偶性:如果函数满足f(-x)=-f(x)对于所有的x成立,则称该函数为奇函数;如果函数满足f(-x)=f(x)对于所有的x成立,则称该函数为偶函数。
3.单调性:如果对于自变量的每一个取值,函数的值只随着自变量的增加而增加,则称该函数为递增函数;如果对于自变量的每一个取值,函数的值只随着自变量的增加而减小,则称该函数为递减函数。
4.周期性:如果存在正数T,使得对于每一个自变量的取值x,有f(x+T)=f(x),则称该函数为周期函数。
四、函数图像函数图像是将函数的自变量和因变量之间的对应关系通过图像的方式展示出来。
通过函数图像可以直观地了解函数的各种性质。
一般来说,函数的图像在直角坐标系中表示,自变量x沿横轴,因变量y沿纵轴。
五、函数的变换函数的变换是通过改变自变量或者函数关系式的形式,对函数图像进行平移、伸缩、翻转等变换。
常见的函数变换包括平移变换、纵向伸缩变换、横向伸缩变换和翻转变换等。
六、常见的初等函数1. 一次函数:f(x)=kx+b,其中k和b为常数,k称为斜率,b称为截距。
一次函数的图像为直线,斜率决定了直线的倾斜程度,截距决定了直线与纵轴的交点。
2. 二次函数:f(x)=ax^2+bx+c,其中a、b和c为常数,a不为零。
二次函数的图像为抛物线,开口方向由a的正负确定,a越大,抛物线越开口向上。
基本初等函数(必修1)知识点与练习
![基本初等函数(必修1)知识点与练习](https://img.taocdn.com/s3/m/ca9988da4028915f804dc2be.png)
第二章 基本初等函数知识点1.指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +>∈且1)n >.0的正分数指数幂等于 .0的负分数指数幂②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.(3)分数指数幂的运算性质2指数函数及其性质3对数与对数运算(1)对数的定义.①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N的对数,作 ,其中a 叫做 ,N 叫做 .②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法: ②减法: ③数乘: ④log a Na N =⑤loglog (0,)bn a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 4对数函数及其性质(5)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于 对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.AB C5幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象,性质6〖补充知识〗二次函数图像及性质第二章 基本初等函数练习题log 1a ------= log a a ------= 12log 2------= 32log 2-------= 3log 27-------= 2log 52------=221log log 612------+= lg 25lg 4------+=2ln e -------=1. 函数y =的定义域是 ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( )A .1B . 2C .12D .84. 已知f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞, 3)内此函数 ( ) A.是增函数 B.不是单调函数 C.是减函数 D.不能确定5. 下列图形表示具有奇偶性的函数可能是 ( )6(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞7. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则 ( )A .2,2a b == B.2a b = C .2,1a b == D.a b ==8. 函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞9. 若21025x=,则10x -等于 ( )A 、15B 、15-C 、150D 、162510. 与函数()2xf x =的图像关于直线y x =对称的曲线C 对应的函数为()g x ,则1()2g 的值为 ( )AB .1;C .12; D .1-11. 已知13x x -+=,则22x x -+值为 ( )A 5B 6 C. 7 D. 812. 三个数60.70.70.76log 6,,的大小关系为 ( )A. 60.70.70.7log 66<<B. 60.70.70.76log 6<< C .0.760.7log 660.7<<D. 60.70.7log 60.76<<13. 在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( )14. 已知偶函数f (x )在区间(-∞,0]上为增函数,下列不等式一定成立的是( )A .f (-3)>f (2) B .f (-π)>f (3)C .f (1)>f (a 2+2a +3)D .f (a 2+2)>f (a 2+1)15. 函数log a y x =,log b y x =,log c y x =,log d y x =的图象如图所示,则a ,b ,c ,d 的大小顺序是 ( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b二、填空题16,已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为___ __17,不论a 为何正实数,函数12x y a +=-的图象一定通过一定点,则该定点的坐标是_____ 18,函数log (1)a y x =-恒过 点19.计算:459log 27log 8log 625⨯⨯= .20.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,a = .21,已知函数f (x )=a -121+x ,若f (x )为奇函数,则a =___ _____三、解答题22. 计算(1)4160.253216(24()849-+-⨯.(2)125552log 2log log 34e ++21log32-⨯23,函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值为25, 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.26.解不等式2121()x x a a--> (01)a a >≠且.27.设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .。
高一数学必修一第二章基本初等函数知识点总结
![高一数学必修一第二章基本初等函数知识点总结](https://img.taocdn.com/s3/m/10e9bdc9336c1eb91b375d20.png)
在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
基本初等函数知识点总结
![基本初等函数知识点总结](https://img.taocdn.com/s3/m/739f723000f69e3143323968011ca300a6c3f68b.png)
基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。
下面将对基本初等函数的知识点进行总结。
一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。
它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。
多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。
二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。
指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。
三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。
对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。
三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。
五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。
它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。
反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。
基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。
基本初等函数知识总结
![基本初等函数知识总结](https://img.taocdn.com/s3/m/8c2a9af9910ef12d2af9e7b5.png)
基本初等函数1.根式的运算性质:①当n 为任意正整数时,(n a )n =a②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a2.分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m a a Q n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+ 3.指数式与对数式的互化:log b a a N N b =⇔=4.重要公式: 01log =a ,1log =a a 对数恒等式N aNa =log5.对数的运算法则:如果0,1,0,0a a N M >≠>>有log ()log log a a a MN M N =+;log log log aa a MM N N=-;log log n a a M n M = 6.对数换底公式:aNN m m a log log log =( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)7.指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a的图象与性质x=1x=1y=1y=1在(0,+∞)内是 减函数在(0,+∞)内是 增函数在(- ∞,+∞)内是 减函数在(- ∞,+∞)内是 增函数0<x<1时,y<0;x>1时,y>0.0<x<1时,y>0;x>1时,y<0.x<0时,0<y<1;x>0时,y>1.x<0时,y>1;x>0时,0<y<1.(1,0),即x=1时,y=0.(0,1),即x =0时,y=1.(0,+∞)(0,+∞)(- ∞,+∞)(- ∞,+∞) 单调性y 值区域过定点值 域定义域图象a>10<a<1a>10<a<1a y=log a xy=a x函数11O O OO1axy1a xy1axy1a xy8.同底的指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a 互为反函数,其图象关于直线x y =对称9.幂函数y x α=的概念、图像和性质:结合函数y=x,y=x 2 ,y=x 3,y=12,y x y x--==,y=12x 的图像,了解它们的变化情况.①α>0时,图像都过(0,0)、(1,1)点,在区间(0,+∞)上是增函数; 注意α>1与0<α<1的图像与性质的区别.②α<0时,图像都过(1,1)点,在区间(0,+∞)上是减函数;在第一象限内,图像向上无限接近y 轴,向右无限接近x 轴.③当x>1时,指数大的图像在上方.幂 函 数 复 习一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
基本初等函数知识点
![基本初等函数知识点](https://img.taocdn.com/s3/m/ac732dc303d276a20029bd64783e0912a2167cd3.png)
基本初等函数知识点1.函数的定义:函数是一种特殊的关系,它将一个或多个输入数值映射到唯一的输出数值。
函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。
函数可以用图形、符号或表格来表示。
2.定义域和值域:函数的定义域是所有可输入的数值的集合,而函数的值域是所有可能的输出数值的集合。
定义域可写作D(f),值域可写作R(f)。
3.线性函数:线性函数是一种具有常数斜率的函数。
它的形式为f(x) = mx + b,其中m是斜率,b是截距。
线性函数的图形是一条直线。
4.幂函数:幂函数是一种形如f(x) = ax^b的函数,其中a和b是常数。
幂函数的图形通常是一条平滑的曲线。
当b为正偶数时,曲线在x轴的正半轴都是上升的;当b为负偶数时,曲线在x轴的正半轴是下降的。
5.指数函数:指数函数是以常数e为底的函数,它的形式为f(x)=a^x,其中a是指数底数。
指数函数的图形为一条逐渐增长(或逐渐减小)的曲线。
6.对数函数:对数函数是指以常数a为底的对数函数,它的形式为f(x) =log_a(x),其中a为底数,x为函数的输入值。
对数函数是指数函数的反函数,即f(x) = a^x的反函数。
7.三角函数:三角函数是有关三角形角度与边长之间的关系的函数。
常见的三角函数包括正弦函数、余弦函数和正切函数。
三角函数的图形是周期性的曲线,周期为2π。
8.反函数:反函数是指满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数对。
反函数可以通过交换函数的输入和输出得到。
9.复合函数:复合函数是指将一个函数的输出作为另一个函数的输入的函数关系。
复合函数可以表示为f(g(x)),其中g(x)是一个函数,f(x)是另一个函数。
10.奇偶函数:奇函数是满足f(-x)=-f(x)的函数,而偶函数是满足f(-x)=f(x)的函数。
奇函数的图形关于原点对称,偶函数的图形关于y轴对称。
这些是基本初等函数的一些常见知识点,掌握了这些知识点可以帮助你理解函数的基本概念、性质和图像,为进一步学习更高级的数学知识打下坚实的基础。
1基本初等函数的图象及函数常用知识点总结.docx
![1基本初等函数的图象及函数常用知识点总结.docx](https://img.taocdn.com/s3/m/2b2092576c175f0e7cd137f6.png)
基本初等函数的图象及函数常用知识点总结对称轴对称中心函数"力的图象关于X = d 对称o f(a + x) = f(a-x) <=> /(x) = f(2a-x)' ' 函数/(兀)的图象关于(d,Z?)对称 o f(a + x) + f(a-x) =2b<» /(x )4-f(2a-x) = 2b3.二次函数 y-ax^+bx^c ( a>0 ) )ulogx (0<Q<l\8.正弦函数卩 P*2.反比例函数xF kiu 竺(炖) -X----- >I 。
x X 尸 log/(心4) XX7.幕函数y = x" y^ax^+bx^c(a<f)) 10・正切函数函数图象变换I—平移变换y = g)鬻驚說…g+励/(*+》横塑标变为原来的丄倍y = smx -------- 纵坐标不变~ y = sin(<yx),血>0歹=sin兀纵坐蠶需製人倍》尸人sing A > 0指数运算公式7 佰-P 1a二、“;a =—a p对数运算公式①e?二砖庆log尹;② log a6f=l; ®lOg a l=0; 3④ log a mZ)w=—log a&®:log a(MN) =log a.VMogJVm©log^^og^M- logjv®log a y=^^; 3 N log b a⑧ 1 og a b=—^—;⑨二N®lo詔/⑴是奇函数o /(-X)= -/(x) O图象关于原点对称;/(X)是偶函数o /(-X)= /(x) o图象关于y轴对称奇函数+奇函数二奇函数;偶+偶二偶;奇+偶二非奇非偶;奇X奇二偶;偶X偶二偶;奇X偶二奇一元二次方程求根公式:要求单调区间,先求定义域。
增+增二增;减+减二减。
令f(x) > 0,可求增区间;若f(x)是增函数,贝护⑴> 01令f(x) < 0,可求减区间;若伦)是减函数,贝『⑴<0 导数的几何意义:fg表示函数y = /(x)在点(心%)处的切线的斜率,切线方程为y-y0= /r(x0)(x-x0)* 爲二 ny=/(x)关于》轴对称尸/(-%)------------ ►函数图像变换4伸缩变换a -a严;(『丫=cT;M =ci「b「;韦达定理X] + X2 = -- , X,X2=—复合函数同增界减。
基本初等函数知识点
![基本初等函数知识点](https://img.taocdn.com/s3/m/168cb12dae1ffc4ffe4733687e21af45b307feaa.png)
基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。
2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
3. 单调性:函数可以是单调递增或单调递减的。
单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。
二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。
根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。
2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。
3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。
4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。
5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。
三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。
幂函数的性质与指数n的奇偶性、正负有关。
2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。
常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。
必修1基本初等函数(Ⅰ)知识要点
![必修1基本初等函数(Ⅰ)知识要点](https://img.taocdn.com/s3/m/85dfdd7bc1c708a1294a4460.png)
必修1基本初等函数(Ⅰ)知识要点〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.xxxxx x(q)0x xf xfxfxxx。
基本初等函数知识点总结
![基本初等函数知识点总结](https://img.taocdn.com/s3/m/4fc69e5ca66e58fafab069dc5022aaea998f41d1.png)
基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。
表示为f(x)=c,其中c是常数。
常数函数的图像是一条平行于x轴的直线。
常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。
2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。
表示为f(x)=x²。
平方函数的图像是一条开口向上的抛物线。
平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。
3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。
表示为f(x)=x³。
立方函数的图像是一条通过原点且存在于所有象限的曲线。
立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。
4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。
表示为f(x)=,x。
绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。
绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。
5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。
表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。
指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。
表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。
对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。
基本初等函数知识点总结
![基本初等函数知识点总结](https://img.taocdn.com/s3/m/0ff093905122aaea998fcc22bcd126fff7055ddc.png)
基本初等函数知识点总结1.多项式函数多项式函数是由常数和幂函数通过加减乘除运算得到的函数,它的一般形式是f(x)=anx^n+an-1x^(n-1)+...+a1x+a0,其中an,...,a0是常数,n是非负整数。
多项式函数的最高次数决定了函数的增长速度,函数的图像通常是一个平滑的曲线。
2.指数函数指数函数的形式是f(x)=a^x,其中a是一个正实数且不等于1、指数函数的图像呈现出递增或递减的趋势,具有不断增长的特点。
指数函数的特点是:当a>1时,函数递增;当0<a<1时,函数递减;当a=1时,函数恒为1;当x=0时,函数的值为13.对数函数对数函数的形式是f(x)=log_a(x),其中a是一个正实数且不等于1,x是一个正实数。
对数函数与指数函数是互逆的关系,即对数函数是指数函数的逆函数。
对数函数的特点是:当a>1时,函数递增;当0<a<1时,函数递减;当a=1时,函数恒为0;当x=1时,函数的值为0。
4.三角函数三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
它们的图像是周期性的,周期为2π。
三角函数是以圆上的点的坐标来定义的,它们与三角关系密切相关,具有很多重要的应用,如波动、振动、旋转等。
5.反三角函数反三角函数是三角函数的逆函数,如反正弦函数arcsin(x),反余弦函数arccos(x),反正切函数arctan(x)等。
它们的定义域是[-1,1],值域是[-π/2,π/2]。
反三角函数可以用来解三角方程和求解三角函数的值,也在三角函数应用中起到重要作用。
6.指数对数函数指数对数函数是指数函数和对数函数的组合,如指数函数的反函数指数对数函数f(x)=log_a(x),对数函数的反函数指数对数函数f(x)=a^x。
指数对数函数具有特定的增长速度和性质,广泛应用于科学、金融、工程等领域。
总结起来,基本初等函数是初等函数的基础知识,包括多项式函数、指数函数、对数函数和三角函数等。
基本初等函数知识点
![基本初等函数知识点](https://img.taocdn.com/s3/m/de0e589181eb6294dd88d0d233d4b14e85243e0f.png)
基本初等函数知识点1.函数的定义与性质函数是一种将一个集合的元素映射到另一个集合的运算关系。
函数可以通过一条或多条有序对来表示,其中每个有序对由自变量和对应的函数值组成。
常见的函数表示方法有显式函数、隐式函数和参数方程等。
函数的性质有定义域、值域、奇偶性、增减性等。
其中,定义域是自变量的取值范围,值域是函数值的取值范围。
奇偶性描述了函数图像的对称性,增减性描述了函数在定义域的变化趋势。
2.常见初等函数常见的初等函数包括多项式函数、指数函数、对数函数、三角函数和双曲函数等。
-多项式函数是形如f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀的函数,其中aₙ,aₙ₋₁,...,a₁,a₀是常数,x是自变量,n是非负整数。
-指数函数是形如f(x)=aᵢx的函数,其中a是一个正常数,x是自变量。
- 对数函数是指数函数的逆运算,形如 f(x) = logₐx 的函数,其中a 是正常数,x 是自变量。
-三角函数包括正弦函数、余弦函数、正切函数等。
-双曲函数是以指数函数为基础构造的一类函数,包括双曲正弦函数、双曲余弦函数等。
3.函数的运算函数之间可以进行四则运算、函数的复合和逆函数的求解等运算。
-四则运算是指两个函数之间进行加减乘除的运算。
加法运算表示两个函数的对应值相加,减法运算表示两个函数的对应值相减,乘法运算表示两个函数的对应值相乘,除法运算表示两个函数的对应值相除。
-函数的复合是指将一个函数的输出作为另一个函数的输入。
复合函数可以通过符号f(g(x))表示,其中f和g是两个函数。
-逆函数是指将一个函数的自变量和函数值交换后得到的新函数。
逆函数可以通过符号f^(-1)(x)表示,其中f是一个函数。
4.函数的图像与性质函数的图像是函数关系在一些坐标系中的几何表现。
函数的图像可以用来研究函数的性质和变化趋势。
-函数的图像可以用点集、曲线或面积等形式来表示。
-函数的对称性可以通过图像来判断,如关于原点对称、关于x轴对称、关于y轴对称等。
高考基本初等函数知识点总结
![高考基本初等函数知识点总结](https://img.taocdn.com/s3/m/aa76d54eae1ffc4ffe4733687e21af45b307fe25.png)
基本初等函数综合复习一、知识点总结 1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 . 2. 对数函数y =log a x (a >0,且a ≠1)的图象与性质定义 y =log a x (a >0,且a ≠1)底数a >10<a <1图象定义域 值域 R单调性 在(0,+∞)上是增函数在(0,+∞)上是减函数共点性 图象过定点 ,即x =1时,y =0函数值特点x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ 对称性函数y =log a x 与y =1log ax 的图象关于 对称【易错题1】 如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在 函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________。
【题模1】 函数图象(1)底数与图像位置关系:1、指数函数图象恒过(0,1)在第一象限是“底大图高”,2、对数函数图象恒过(1,0):在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”.3、幂函数图象恒过(1,1),在(1,1)右侧:是“指大图高”.2)函数图象变换①y =f (x )―――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――→关于y 轴对称y =f (-x ). ③y =f (x )―――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )――――――――――――――――――――→a >1,横坐标缩短为原来的倍,纵坐标不变0<a <1,横坐标伸长为原来的倍,纵坐标不变 y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去 y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象 y =f (|x |). 【讲透例题】1.设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)2、不论a 为何值时,函数图象恒过一定点,这个定点坐标是 .3. 函数()2e e x xf x x--=的图像大致为 ( ) A . B . C . D .5、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |)6.(多选)若函数y =a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则下列选项中正确的有( )A .a >1B .0<a <1C .b >0D .b <07、已知指数函数()x f x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .32B .23C .33D .3【相似题练习】1. 已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥ 2.函数f (x )=ln(x 2+1)的图象大致是( )3、 已知()g x 图像与x y e =关于y 轴对称,将函数()g x 的图像向左平移1个单位长度,得到()f x ,则()f x =( )A. 1x e +B.1x e -C.1x e -+D. 1x e -- 4、(多选题)为了得到函数ln()y ex =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 5、函数y =a x -a (a >0,且a ≠1)的图象恒过定点( , ) 6、函数(其中且的图象一定不经过第 象限。
基本初等函数(一)
![基本初等函数(一)](https://img.taocdn.com/s3/m/9ccd7185453610661fd9f49e.png)
指数函数 第一课时:指数与指数幂的运算 一、学习目标:1.理解分数指数幂的概念 ; 2. 掌握有理指数幂的运算性质;3.会对根式、分数指数幂进行互化; 4.能够应用联系观点看问题二,知识要点: 1.根式的概念:一般地,若*),1(N n n a x n ∈>= 则x 叫做a 的n 次方根na 叫做根式,n 叫做根指数,a 叫做被开方数①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数记作: na x =②当n 为偶数时,正数的n 次方根有两个(互为相反数)记作: na x ±=③负数没有偶次方根,④ 0的任何次方根为02,根式的性质:① 当n 为任意正整数时,(n a )n =a.② 当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥)0()0(a a a a3,分数指数幂:(1)正数的正分数指数幂的意义是)0,,,1m na a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m nm naa m n N n a-*==>∈>.(3),零的正分数指数幂为零,零的负分数指数幂没有意义。
4,有理数指数幂的运算性质: 例题分析:例1.求值: 238, 12100-, 314-⎛⎫ ⎪⎝⎭, 341681-⎛⎫ ⎪⎝⎭. 例2. 用分数指数幂的形式表示下列各式()a o >:2a 3a .例3.计算下列各式的值(式中字母都是正数).(1)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)83184m n -⎛⎫ ⎪⎝⎭;课堂小练习:求值:第二课时:指数函数及其性质: 一.教学目标:①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③ 体会具体到一般数学讨论方式及数形结合的思想;1.指数函数的定义:函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R探究1:为什么要规定a>0,且a ≠1呢①若a=0,则当x>0时,x a =0;当x ≤0时,x a 无意义.②若a<0,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于x=41,x=21,…等等,在实数范围内函数值不存在.③若a=1,则对于任何x ∈R ,x a =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a>0且a 1何x ∈R ,x a 都有意义,且x a >0. 因此指数函数的定义域是R ,值域是(0,+∞).探究2:函数x y 32⋅=是指数函数吗指数函数的解析式y=x a 中,x a 的系数是1.有些函数貌似指数函数,实际上却不是,如y=x a +k (a>0且a ≠1,k ∈Z);有些函数看起来不像指数函数,实际上却是,如y=x a - (a>0,且a ≠1),因为它可以化为y=xa ⎪⎭⎫⎝⎛1,其中a 1>0,且a 1≠1 2.指数函数的图象和性质:例题分析:1,考察指数函数概念:若函数y=(a2-3a+3)a x是指数函数,则有()A,a=1或a=2 B,a=1 C,a=2 D,a>0,且a≠1 2,指数函数的图像过定点的问题;函数y=a x-3+3(a>0,且a≠1)的图像过定点___________3,底数a对指数函数图像的影响:如图是指数函数○1y=a x,○2y=b x,○3,y=c x,○4,y=d则a,b,c,d的与1的大小关系为__________________ 4,与指数函数有关的定义域,值域问题:求下列函数的定义域和值域:(1)y=(2)5,比较指数式的大小:(1)3.37.1和1.28.0;(2)7.03.3和8.04.36,解指数不等式:o(1),已知3x 》,求实数x 的取值范围 (2),已知<25,求实数x 的取值范围 ,课堂小练习: 1,函数1218x y -=的定义域是______;值域是______.2,求函数)5,0[,)31(42∈=-x y x x 的值域。
基本初等函数知识点
![基本初等函数知识点](https://img.taocdn.com/s3/m/86e14081ba4cf7ec4afe04a1b0717fd5370cb249.png)
基本初等函数知识点一、函数的概念:函数是自变量与因变量之间的一种对应关系。
其中,自变量是函数的输入,因变量是函数的输出。
函数可以用来描述不同变量之间的关系或者用来描述一些变量随着另一个变量的变化而发生的变化。
二、函数的表示法:函数可以用不同的表示法来表示。
最常见的表示法有解析式表示法、图像表示法和表格表示法。
例如,一元一次函数y=ax+b就是一个常见的初等函数。
三、函数的性质:1.定义域和值域:函数的定义域是自变量的取值范围,值域是函数的因变量的可能取值范围。
2.奇偶性:对于函数f(x),如果对于任意x,有f(-x)=f(x)成立,则函数具有偶性;如果对于任意x,有f(-x)=-f(x)成立,则函数具有奇性。
3.单调性:如果对于任意x1>x2,有f(x1)>f(x2)成立,则函数为递增函数;如果对于任意x1>x2,有f(x1)<f(x2)成立,则函数为递减函数。
4.周期性:如果对于任意x,有f(x+T)=f(x)成立,则函数具有周期T。
四、常见初等函数的性质和图像:1.常数函数:f(x)=c(c为常数),图像为平行于x轴的一条直线。
2. 一次函数:f(x) = ax + b(a和b为常数),图像为一条直线,斜率a决定了直线的倾斜程度,b为与y轴交点的纵坐标。
3.幂函数:f(x)=x^n(n为常数),图像的形状与n的奇偶性以及正负有关,例如,当n为正奇数时,图像的右上和左下部分都在x轴上方。
4.指数函数:f(x)=a^x(a为常数且大于0且不等于1),图像呈现出一种快速增长的趋势。
5. 对数函数:f(x) = loga(x)(a为常数且大于0且不等于1),图像为一条光滑的上升曲线,a决定了函数增长的速度。
五、初等函数的运算:1.四则运算:对于两个初等函数f(x)和g(x),可以进行加减乘除运算,得到新的初等函数。
2.复合运算:对于两个初等函数f(x)和g(x),可以将g(x)的值代入f(x)进行运算,得到新的初等函数。
基本初等函数知识点归纳
![基本初等函数知识点归纳](https://img.taocdn.com/s3/m/0f86acd708a1284ac8504364.png)
函数及其基本初等函数〖1.1〗函数及其表示 【1.1.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.(所以进行已知对应关系()f x 的函数,一定先求出函数的定义域)③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).而且无论闭区间或者开区间,,a b 均称为端点。
(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.例1 已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A 00,()0x R f x ∃∈=B 函数()y f x =的图像是中心对称图形C 若0x 是()f x 的极小值点,则()f x 在区间(-∞,0x )上单调递减D 若0x 是()f x 的极值点,则'()0f x =例2 已知偶函数()f x 在[0,)+∞上单调递减,(2)f =0,若(1)0f x ->,则x 的取值范围是( )例 3 设函数()xf x mπ=,若存在()f x 的极值点0x 满足22200[(()]x f x m +<,则m 的取值范围是( )A (-∞,-6)∪(6,+∞)B (-∞,-4)∪(4,+∞)C (-∞,-2)∪(2,+∞)D (-∞,-1)∪(1,+∞) 例4 下列函数与y=x 有相同图像的一个函数是( )A y =B 2x y x=C log (01)xy aa a =>≠且 D log xa a y =【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数(判定方法2). (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. 【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈ 【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义 函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖2.2〗对数函数【2.2.1】对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质 (5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域(即原函数的值域).(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =f(p) f (q) ()2b f a-f (p)f(q)()2bf a-f (p)f (q)()2b f a-f(p) f (q)()2b f a-0x f(p) f(q)()2b f a-0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用〖3.1〗方程的根与函数的零点 一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
基本初等函数I知识点总结
![基本初等函数I知识点总结](https://img.taocdn.com/s3/m/53bbbdab9a89680203d8ce2f0066f5335a81673e.png)
基本初等函数I知识点总结首先是常数函数,它是一个恒定的函数,其函数图像是一条水平直线。
常数函数的解析式为f(x)=c,其中c为常数。
常数函数的导数始终为0。
其次是线性函数,它是指斜率为常数的函数。
线性函数的解析式为f(x) = kx + b,其中 k 和 b 为常数,k 表示斜率,b 表示截距。
线性函数的图像为一条直线。
线性函数的导数始终等于斜率 k。
第三类基本初等函数是幂函数,它是由 x 的一些非零实数次幂构成的函数。
幂函数的解析式为 f(x) = x^n,其中 n 是实数。
当 n 为正数时,幂函数的图像呈现出递增或递减的曲线;当 n 为负数时,幂函数的图像则呈现出递增或递减的曲线,并且斜切线为 x 轴。
幂函数的导数为f'(x) = nx^(n-1)。
然后是指数函数,它是以指数为底的幂函数。
指数函数的解析式为f(x) = a^x,其中 a 是常数且 a>0,a ≠ 1、指数函数的图像在 x 轴上有一个渐近线。
指数函数的导数为 f'(x) = ln(a) * a^x。
接下来是对数函数,它是指数函数的反函数。
对数函数的解析式为f(x) = log_a(x),其中 a 是常数且 a>0,a ≠ 1、对数函数的图像以y轴为渐近线。
对数函数的导数为 f'(x) = 1 / (x * ln(a))。
最后是三角函数,它包括正弦函数、余弦函数和正切函数。
正弦函数的解析式为 f(x) = sin(x);余弦函数的解析式为 f(x) = cos(x);正切函数的解析式为 f(x) = tan(x)。
三角函数的图像具有周期性,正弦函数和余弦函数的最大值和最小值分别为1和-1,正切函数在一些点上没有定义。
三角函数的导数为 f'(x) = cos(x);f'(x) = -sin(x);f'(x) =sec^2(x)。
在学习基本初等函数时,我们还需要了解其性质。
高一必修一基本初等函数知识点总结归纳
![高一必修一基本初等函数知识点总结归纳](https://img.taocdn.com/s3/m/969d83f504a1b0717fd5dd78.png)
高一必修一函数知识点(12.1)〖1.1〗指数函数(1)根式的概念n 叫做根指数,a 叫做被开方数.②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数例:比较〖1.2〗对数函数(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②对数式与指数式的互化:log (0,1,0)x a xN a N a a N =⇔=>≠>.(2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =.(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴(6) 反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(7)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.即,若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.〖1.3〗幂函数(1)幂函数的图象(需要知道x=,1,2,3与y=的图像) (2)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.②过定点:图象都通过点(1,1).〖1.4〗二次函数(1)二次函数解析式的三种形式 ①一般式: ②顶点式: ③两根式:(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,顶点坐标是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数知识点总结
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果a x n
=,那么x 叫做a 的n 次方根,
其中n >1,且n ∈N *.
◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n
n
=,当n 是偶数时,⎩
⎨⎧<≥-==)0()0(||a a a a a a n
n
2.分数指数幂
正数的分数指数幂的意义,规定:
)
1,,,0(*>∈>=n N n m a a a
n m n
m
,
)1,,,0(1
1*>∈>=
=
-
n N n m a a a
a
n
m
n
m n
m
◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质
(1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)
s r r a a ab =)(
),,0(R s r a ∈>.
(二)指数函数及其性质
1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数的定义域为R .
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
(1)在[a ,b]上,)1a 0a (a )x (f x
≠>=且值域是)]b (f ),a (f [或
)]a (f ),b (f [;
(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x
≠>=且,总有a )1(f =;
二、对数函数 (一)对数
1.对数的概念:一般地,如果N a x
=)1,0(≠>a a ,那么数x
叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)
说明:○1 注意底数的限制0>a ,且1≠a ;
○
2 x N N a a x =⇔=log ;
○
3 注意对数的书写格式. 两个重要对数:
○
1 常用对数:以10为底的对数N lg ; ○
2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化
幂值 真数
b a = N ⇔log a N = b
底数
指数 对数
(二)对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么: ○
1 M a (log ·=)N M a log +N a log ; ○
2 =N
M
a log M a log -N a log ; ○
3 n a M log n =M a log )(R n ∈. 注意:换底公式
a
b
b c c a log log log =
(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).
利用换底公式推导下面的结论 (1)b m
n
b a n a m log log =
;
(2)a b b a log 1log =.
(二)对数函数
1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:x y 2log 2=,5
log 5x y = 都不是对数函数,而只能称
其为对数型函数.
○
2 对数函数对底数的限制:0(>a ,且)1≠a .
1、幂函数定义:一般地,形如α
x y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;
(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.。