必修5-第一章-正弦定理和余弦定理-知识点及典型例题

合集下载

正余弦定理知识点及题型归纳

正余弦定理知识点及题型归纳

正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。

下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。

2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。

3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°

余弦定理和正弦定理(一)-高考数学复习

余弦定理和正弦定理(一)-高考数学复习

>0,所以 sin C < sin B cos A ,即 sin ( A + B )< sin B cos A ,所
以 sin A cos B <0.因为 sin A >0,所以 cos B <0,即 B 为钝角,所以
△ ABC 为钝角三角形.
目录
高中总复习·数学
解题技法
判定三角形形状的两种常用途径
等或余弦定理变形公

2 + 2 −2
cos A =
等求解.
2
目录
高中总复习·数学
1. 在△ ABC 中,已知 b =40, c =20, C =60°,则此三角形的解的情
况是(

A. 有一解
B. 有两解
C. 无解
D. 有解但解的个数不确定
解析:


由正弦定理得

,∴
sin
sin
40×
余弦定理和正弦定理(一)
目录
C O N T E N T S
1
2
3
考点 分类突破
微专题 8
课时 跟踪检测
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
1
目录
高中总复习·数学
利用正、余弦定理解三角形
【例1】
(2023·天津高考16题节选)在△ ABC 中,角 A , B , C 所
对的边分别是 a , b , c .已知 a = 39 , b =2, A =120°.
π
sin B ,即 A = 或
2
A = B ,故△ ABC 为直角三角形或等腰三角形.
目录
高中总复习·数学
2.
sin

在△ ABC 中,

正弦定理和余弦定理知识点讲解+例题讲解(含解析)

正弦定理和余弦定理知识点讲解+例题讲解(含解析)

导数的概念及运算一、知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:4.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.5.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边, A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( ) 解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比. (3)已知三角时,不可求三边.(4)当b 2+c 2-a 2>0时,三角形ABC 不一定为锐角三角形. 答案 (1)× (2)√ (3)× (4)×2.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC =( ) A.π6B.π3C.2π3D.5π6解析 在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,由A ∈(0,π),得A =2π3,即∠BAC =23π. 答案 C3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析 由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形4.(2018·烟台质检)已知△ABC 中,A =π6,B =π4,a =1,则b 等于( ) A.2B.1C. 3D.2解析 由正弦定理a sin A =b sin B ,得1sin π6=bsin π4,∴112=b22,∴b = 2.答案 D5.(2018·全国Ⅱ卷)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A.4 2B.30C.29D.25解析 由题意得cos C =2cos 2 C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.答案 A6.(2019·荆州一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =22,cos A =34,sin B =2sin C ,则△ABC 的面积是________. 解析 由sin B =2sin C ,cos A =34,A 为△ABC 一内角, 可得b =2c ,sin A =1-cos 2A =74, ∴由a 2=b 2+c 2-2bc cos A , 可得8=4c 2+c 2-3c 2, 解得c =2(舍负),则b =4.∴S △ABC =12bc sin A =12×2×4×74=7. 答案 7考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)(2019·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4. 答案 (1)75° (2)B (3)C【训练1】 (1)(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12B.π6C.π4D.π3(2)(2019·北京海淀区二模)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若2cos 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D.6(3)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A.1个 B.2个 C.0个 D.无法确定解析 (1)由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝ ⎛⎭⎪⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6.(2)由2cos 2A +B 2-cos 2C =1,可得2cos 2A +B 2-1-cos 2C =0,则有cos 2C +cos C =0,即2cos 2C +cos C -1=0,解得cos C =12或cos C =-1(舍),由4sin B =3sin A ,得4b =3a ,① 又a -b =1,②联立①,②得a =4,b =3, 所以c 2=a 2+b 2-2ab cos C =16+9-12=13,则c =13.(3)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个. 答案 (1)B (2)A (3)B 考点二 判断三角形的形状【例2】 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( ) A.钝角三角形 B.直角三角形 C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.答案(1)A(2)B【训练2】若将本例(2)中条件变为“c-a cos B=(2a-b)cos A”,判断△ABC的形状.解∵c-a cos B=(2a-b)cos A,C=π-(A+B),∴由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,∴sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,∴cos A(sin B-sin A)=0,∴cos A=0或sin B=sin A,∴A=π2或B=A或B=π-A(舍去),∴△ABC为等腰或直角三角形.考点三 和三角形面积、周长有关的问题 角度1 与三角形面积有关的问题【例3-1】 (2017·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π,所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3.即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD=1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3. 角度2 与三角形周长有关的问题【例3-2】 (2018·上海嘉定区模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 解析 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22,则(b+c)2≤64,即b+c≤8(当且仅当b=c=4时等号成立),∴△ABC周长=a+b+c=4+b+c≤12,即最大值为12.答案12【训练3】(2019·潍坊一模)△ABC的内角A,B,C的对边分别为a,b,c,已知(a+2c)cos B+b cos A=0.(1)求B;(2)若b=3,△ABC的周长为3+23,求△ABC的面积.解(1)由已知及正弦定理得(sin A+2sin C)cos B+sin B cos A=0,(sin A cos B+sin B cos A)+2sin C cos B=0,sin(A+B)+2sin C cos B=0,又sin(A+B)=sin C,且C∈(0,π),sin C≠0,∴cos B=-12,∵0<B<π,∴B=23π.(2)由余弦定理,得9=a2+c2-2ac cos B.∴a2+c2+ac=9,则(a+c)2-ac=9.∵a+b+c=3+23,b=3,∴a+c=23,∴ac=3,∴S△ABC =12a a c sin B=12×3×32=334.三、课后练习1.△ABC的内角A,B,C的对边分别为a,b,c,若cos C=223,b cos A+a cosB=2,则△ABC的外接圆面积为()A.4πB.8πC.9πD.36π解析由题意及正弦定理得2R sin B cos A+2R sin A cos B=2R sin(A+B)=2(R为△ABC的外接圆半径).即2R sin C=2.又cos C=223及C∈(0,π),知sin C=13.∴2R=2sin C=6,R=3.故△ABC 外接圆面积S =πR 2=9π. 答案 C2.(2019·武汉模拟)在△ABC 中,C =2π3,AB =3,则△ABC 的周长为( ) A.6sin ⎝ ⎛⎭⎪⎫A +π3+3 B.6sin ⎝ ⎛⎭⎪⎫A +π6+3 C.23sin ⎝ ⎛⎭⎪⎫A +π3+3D.23sin ⎝ ⎛⎭⎪⎫A +π6+3解析 设△ABC 的外接圆半径为R ,则2R =3sin 2π3=23,于是BC =2R sin A =23sin A ,AC =2R sin B =23sin ⎝ ⎛⎭⎪⎫π3-A .于是△ABC 的周长为23⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π3+3. 答案 C3.(2019·长春一模)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________. 解析 因为⎝ ⎛⎭⎪⎫12b -sin C cos A =sin A cos C , 所以12b cos A -sin C cos A =sin A cosC ,所以12b cos A =sin(A +C ),所以12b cos A =sin B , 所以cos A 2=sin Bb , 又sin B b =sin A a ,a =23, 所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3, 由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12(当且仅当b =c =23时取等号), 从而△ABC 面积的最大值为12×12×32=3 3. 答案 334.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B , 得b sin A =a sin B , 又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6, 得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝ ⎛⎭⎪⎫B -π6,可得tan B = 3. 又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3, 有b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37. 因为a <c ,故cos A =27. 因此sin 2A =2sin A cos A =437, cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.5.我国南宋著名数学家秦九韶发现了由三角形三边求三角形面积的“三斜公式”,设△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为________. 解析 根据正弦定理及a 2sin C =4sin A ,可得ac =4, 由(a +c )2=12+b 2,可得a 2+c 2-b 2=4, 所以S △ABC =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222=14×(16-4)= 3. 答案3。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
第一章 §1.1 正弦定理和余弦定理
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

余弦定理(55张PPT)

余弦定理(55张PPT)

人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
须知余弦定理是勾股定理的推广,勾股定理是余弦定 a2>b2+c2 理的特例.角A为钝角⇔_____________,角A为直角⇔ a2=b2+c2 a2<b2+c2 ____________,角A为锐角⇔____________.
(2)已知两边和它们的夹角,求第三边和其他两个角 __________________.
人教A版· 数学1.1.2
系列丛书
类型一 [例1]
利用余弦定理解三角形 在△ABC中,已知b=3,c=2 3,A=30° ,求
边a、角C和角B.
人教A版· 数学· 必修5
进入导航
系列丛书
正弦定理和余弦定理
第一章
解三角形
进入导航
系列丛书
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
若a,b,c分别是△ABC的顶点A,B,C所对的边 长,则 a2=__________________ b2+c2-2bccosA ,
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
3.怎样用余弦定理判断三角形的形状?
cosA=
b2+c2-a2 2bc
提示:(1)在△ABC中,若a2<b2+c2,则0° <A<90° ;反 之,若0° <A<90° ,则a2<b2+c2. (2)在△ABC中,若a2=b2+c2,则A=90° ;反之,若A =90° ,则a2=b2+c2. (3)在△ABC中,若a2>b2+c2,则90° <A<180° ;反之, 若90° <A<180° ,则a2>b2+c2.

正余弦定理知识点+经典题(有答案)

正余弦定理知识点+经典题(有答案)

正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。

即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。

必修5_第一章_正弦定理和余弦定理_知识点及典型例题全新

必修5_第一章_正弦定理和余弦定理_知识点及典型例题全新

正弦定理和余弦定理要点梳理1.正弦定理其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题. 2.三角形面积公式S △ABC =12absin C =12bcsin A =12acsin B =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径),并可由此计算R 、r.3.余弦定理:222222222a b c 2bccos A b a c 2accos B c a b 2abcos C =+-,=+-,=+-.余弦定理可以变形为:cos A =222b c a2bc+-,cos B =222a c b 2ac +-,cos C =222a b c 2ab+-.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角. 情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.基础自测1.在△ABC 中,若b =1,c =3,C =2π3,则a = 1 .2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.3.在△AB =5,AC =5,且cos C =910,则BC = 4或5 . 4.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( C )A .2 2B .8 2 C. 2 D.222sin sin sin a b cR A B C===题型分类 深度剖析题型一 利用正弦定理求解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断. 解: 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°,c =bsin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练1 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则A =6π解析 ∵A +C =2B ,∴B =π3. 由正弦定理知sin A =a sin B b =12.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =b2a c-+.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练2已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2A2cos+cos A=02. (1)求角A 的值; (2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2A 2cos+cos A=02,得1+cos A +cos A =0,即cos A =-12. ∵0<A <π,∴A =2π3.(2)由余弦定理得, a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4,故S △ABC =12bcsin A = 3.题型三 正、余弦定理的综合应用例3. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边22sin )()sin ,A C a b B -=-已知△ABC 外接圆半径为(1)求角C 的大小; (2)求△ABC 面积的最大值.解: (1)∵△ABC 22sin )()sin ,A C a b B -=-且22))(,A C a b B -=-即∴由正弦定理得:22(),a c a b b -=-即222,a b c ab +-=由余弦定理得:222cos 2a b c C ab +-=2ab ab =12=,(0,)C π∈Q ,.3C π∴=(2)max 2S =+探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A , 即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形.思想方法 感悟提高方法与技巧1.正、余弦定理和三角形面积公式是本节课的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.4.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 失误与防范在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.过关精练一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( )A .45°或135°B .135°C .45°D .以上答案都不对 2.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( )A .60°B .45°或135°C .120°D .30°3.在ABC ∆中,ABC S bc ABC ∆∆,35,20==的外接圆半径为3,则=a ( )A .1B .2C .3D .234.在ABC ∆中,已知,45,1,2ο===B c b 则a 等于( )A .226- B .226+ C1 D .23-5.在ABC ∆中2,3,3,AB AC BA AC ==⋅=u u u r u u u r u u u r u u u r则A ∠等于( )A .120°B .60°C .30°D .150° 6.在ABC ∆中,7:5:3::=c b a , 则这个三角形的最大角为( )A .ο30 B .ο90 C .ο120 D .ο60 7.在△ABC 中,已知三边之比4:3:2::=cb a ,则=-CB A 2sin sin 2sin ( )A .1B .2C .2-D .21 8.ABC ∆中,边c b a ,,的对角分别为A 、B 、C ,且A=2B ,32a b =,cos B =( )A .21B .31C .32D .43二、填空题9.在△ABC 中,已知2sinAcosB=sinC,那么△ABC 的形状是 三角形10.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________. 11.在△ABC 中,边a ,b ,c 的对角分别为A 、B 、C ,且B C A C A 222sin sin sin sin sin =⋅-+。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

(完整版)正弦定理和余弦定理典型例题

(完整版)正弦定理和余弦定理典型例题

《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

必修五答案

必修五答案

必修5 第一章 答案必修5 第一章 解三角形1.1正弦定理和余弦定理1.1.1正弦定理【预习达标】1.a,b,sin sin b c B C =. 2.bsinA asinB ,sin b B , sin aA =sin c C ,sin bB =sin c C. 3. .bsinA asinB ,sin b B , sin b B =sin cC.【课前达标】1.D 2.A 3.A【典例解析】例1(1)C=750,(2)B ≈41.80,C ≈108.80,c ≈5.7或B ≈138.20,C ≈11.80,c ≈1.2(3)无解(4)C=450,A=150,a ≈2.2例2证明:如图在ΔABD 和ΔCAD 中,由正弦定理, 得sin sin BD AB βα=,0sin sin(180)sin DC AC ACβαα==-, 两式相除得BD ABDC AC= 【双基达标】1.(1)C=900,8 ,c=(3)B=600,C=9002.证明:设sin sin sin a b ck A B C===,则sin ,sin ,sin a k A b k B c k C === sin sin sin sin sin sin a b k A k B A B c k C C+++∴==3.(1)设A>B ,若A ≤900,由正弦函数的单调性得sinA ≥sinB,又由正弦定理得a ≥b ;若A>900,有A+B<1800,即900>1800-A>B, 由正弦函数的单调性得sin(1800-A)>sinB,即sinA>sinB, 又由正弦定理得a>b.(2)设a>b, 由正弦定理得sinA>sinB,若B ≥900,则在ΔABC 中A<900, 有sinA>sin (1800-B )由正弦函数的单调性得A>1800-B,即A+B>1800,与三角形的内角和为1800相矛盾;若A ≥900,则A>B ;若A<900,B<900, 由正弦函数的单调性得A>B.综上得,在ΔABC 中,大角对大边,大边对大角. 4.略【能力达标】1.B 2。

正弦定理-高二数学人教版(必修5)

正弦定理-高二数学人教版(必修5)

第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即____________.正弦定理对任意三角形都成立.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的____________.已知三角形的几个元素求其他元素的过程叫做____________.K 知识参考答案:1.sin sin sin a b c ==A B C2.元素 解三角形K —重点 正弦定理的变形和推广、正弦定理在解三角形中的应用 K —难点 三角形解的个数的探究、三角形形状的判断K —易错 解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++. (3)::sin :sin :sin a b c A B C =. (4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (1)已知△ABC 中,sin :sin :sin =1:2:3A B C ,则a:b:c =_____________;(2)已知△ABC 中,∠A =60︒,3a ,则++sin +sin +sin a b cA B C=_____________.【答案】(1)1:2:3;(2)2.【解析】(1)根据正弦定理的变形,可得=sin :sin :sin =1:2:3a:b:c A B C . (2)方法1:设=sin sin a b A B ==(>0)sin ck k C,则有sin sin sin a k Ab k Bc k C ===,,, 从而sin sin sin sin sin sin sin sin sin a b c k A k B k C k A B C A B C ++++++++==,又32sin sin60a k A ===︒,所以sin sin sin a b c A B C ++++=2. 方法2:根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++++==.【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.在ABC △中,求证:22sin 2sin 22sin a B b A ab C +=.【答案】证明见解析.【解析】设ABC △外接圆的半径为R ,则2sin ,2sin ,a R A b R B == 于是222222sin 2sin 2(2sin )sin 2(2sin )sin 28sin sin (sin cos cos sin )8sin sin sin 22sin 2sin sin 2sin ,a Bb A R A B R B A R A B A B A B R A B CR A R B C ab C +=+=+==⋅⋅⋅=所以22sin 2sin 22sin a B b A ab C +=. 【解题技巧】===2sin sin sin a b c R A B C的两种变形的应用: (1)(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; (2)(角化边)sin ,sin ,sin 222a b cA B C R R R===. 正弦定理在解三角形中的应用、三角形解的个数的探究1.正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看①若sin sin 1b AB=a >,则满足条件的三角形的个数为0,即无解; ②若sin sin 1b AB=a=,则满足条件的三角形的个数为1;③若sin sin 1b AB=a<,则满足条件的三角形的个数为1或2. 注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180°”等进行讨论. (2)从几何角度来看①当A 为锐角时:一解一解 两解 无解②当A 为钝角或直角时:一解 一解 无解 无解(1)已知在ABC △中,10,45,30c A C ==︒=︒,则a =_______,b =_______,B =_______;(2)已知在ABC △中,3,60,1b B c ==︒=,则a =_______,A =_______,C =_______; (3)已知在ABC △中,6,45,2c A a ==︒=,求b 和,B C .【答案】(1)102,5652+,105︒;(2)2,90︒,30︒;(3)见解析. 【解析】(1)10,45,30180()105c A C B A C ==︒=︒∴=︒-+=︒,,由sin sin a c A C =,得sin 10sin 45102sin sin 30c A a C ⨯︒===︒, 由sin sin b c B C =,得sin 10sin10562205652sin sin 304c B b C ⨯︒+===⨯=+︒.(2)∵sin 1sin 601,sin sin sin 23b c c B C B C b ⨯︒=∴===, ,60,b c B C B >=︒∴<,C 为锐角,30,90C A ∴=︒=︒,∴222=+=c b a .(3)sin 6sin 453,sin sin sin 22a c c A C A C a ⨯︒=∴===, sin ,60c A a c C <<∴=︒或120︒,∴当60C =︒时,sin 6sin 7575,31sin sin 60c B B b C︒=︒===+︒,当120C =︒时,sin 6sin1515,31sin sin 60c B B b C ︒=︒===-︒. 31,75,60b B C ∴=+=︒=︒或31,15,120b B C =-=︒=︒.【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边.(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,①当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;②当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;③然后由三角形内角和定理求出第三个角;④最后根据正弦定理求出第三条边.三角形形状的判断判断三角形形状的常用方法——边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状.一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形.在ABC △中,已知sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【答案】B【解析】设ABC △的外接圆半径为R ,由正弦定理的推广,得sin 2a A R =,sin 2bB R=,代入sin sin sin a b B a B A +=-,可得a b ba b a+=-,即22b a ab -=. 因为cos()cos 1cos 2A B C C -+=-,所以2cos()cos()2sin A B A B C -++=, 即2sin sin sin A B C =. 由正弦定理的推广可得2()222a b cR R R⋅=,所以2ab c =, 由22b a ab -=及2ab c =可得222b a c =+,所以ABC △是直角三角形. 故选B .【名师点睛】注意到a ,b ,c 在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角.通过角的特征或者关系来判断三角形的形状.忽略角的取值范围而出错在ABC △中,若3C B =,求cb的取值范围. 【错解】由正弦定理,可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 220cos 1,14cos 13B B ≤<∴-≤-<,由0,0b c >>,可得03cb<<. 故cb的取值范围为(0,3). 【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为(0,180)︒︒. 【正解】由正弦定理可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 2180,3,045,cos 12A B C C B B B ++=︒=∴︒<<︒<<, 214cos 13B ∴≤-<,即13cb<<, 故cb的取值范围为(1,3). 【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意.忽略对角的讨论而出错已知在ABC △中,4,22,30,a b B ===︒ 求角,A C 和边c .【错解】由正弦定理sin sin a b A B =可得422sin sin 30A =︒, 2sin ,452A A ∴==︒,1803045105C ∴=︒-︒-︒=︒,62,sin105sin sin 4c b C B +=︒=,sin 232sin b C c B ∴==+. 【错因分析】错解中由正弦定理求出角A 的正弦值后误认为角A 是锐角,从而导致错误. 【正解】由正弦定理,sin sin a b A B =得422sin sin 30A =︒, 2sin ,2A ∴=,45a b A >∴=︒或135︒.当45A =︒时,1803045105C =︒-︒-︒=︒,62sin ,sin105,232sin sin 4sin c b b Cc C B B+=︒=∴==+;当135A =︒时,1803013515C =︒-︒-︒=︒,62sin ,sin15,232sin sin 4sin c b b Cc C B B-=︒=∴==-. 综上,45,105,232A C c =︒=︒=+或135,15,232A C c =︒=︒=-.【名师点睛】在ABC △中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,83,6,60a b A ===︒,则sin B = A .2B 6C 2D 32.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =45B =︒,2b =,则A =A .30︒或150︒B .30︒C .150︒D .45︒3.在ABC △中,若∠A =60°,∠B =45°,BC =AC =A .B .CD 4.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知A :B :C =1:2:3,则a :b :c =A .1:2:3B .C .D .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,b =,4B π∠=,tan A =,则a =A .210B .C .10D .26.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,15,18,30a b A ===︒,则此三角形解的个数为 A .0 B .1 C .2D .不能确定8.已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A :cos B =b :a ,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若8a =,60B =︒,75C =︒,则b =______________.10.在ABC △中,角A ,C 的对边分别为a ,c ,其中1=a ,33=c 3A π=,则角=C ______________.11.在ABC △中,若B =30°,AB =23,AC =2,则ABC △的周长为______________. 12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,己知A −C =90°,a +c =2b ,求C .13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B = A 5 B 5C 5 D 5 14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π,3,23A a b ===,则B = A .π6 B .π4 C .π3D .π215.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π3,6,3a b A ===,则角B 等于 A .π4B .3π4C .π4或3π4D .以上都不正确16.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若cos (2)cos c a B a b A -=-,则ABC △是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos cos A B Ca b c==,则ABC △是 A .有一内角是30°的三角形 B .等边三角形C .等腰直角三角形D .有一内角是30°的等腰三角形18.在ABC △中,已知31,6,15b c B =-==︒,则边长a =A .31+或2B .31+C .2D .2319.在ABC △中,已知2AB AC =,30B =︒,则A =______________.20.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=︒,沿山坡前进50m 到达B 处,又测得45DBC ∠=︒.根据以上数据计算可得cos θ=______________.21.如图,在ABC △中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=,,. (1)求sin C 的值;(2)若5BD =,求AD 的长.22.(2017山东理)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =23.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12 B .π6 C .π4D .π324.(2017新课标全国Ⅱ文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =______________.25.(2017新课标全国Ⅲ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =______________.26.(2018北京理)在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ∠;(2)求AC 边上的高.1.【答案】D【解析】∵83,6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D . 2.【答案】B【解析】在ABC △中,由sin sin a b A B =得21sin sin sin 4522a A Bb ===︒,由于a b <,所以A B <,所以30A =︒,故选B . 3.【答案】B【解析】由正弦定理得23sin 60sin 45AC =︒︒,所以AC =23sin 452 2.sin 60︒=︒故选B .4.【答案】C【解析】因为在ABC △中,A +B +C =π,且A :B :C =1:2:3,所以A =6π,B =3π,C =2π,由正弦定理的变形,得a :b :c =sin A :sin B :sin C 13=1=22::1:3:2.故选C .6.【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴2sin()sin B C A +=,∴sin 1A =,∴π2A =,三角形为直角三角形.故选B . 7.【答案】C【解析】由正弦定理可得sin 18sin 303sin 155b A B a ︒===,因为b a >,所以30B A >=︒,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C .8.【答案】D【解析】由正弦定理可得cos sin cos sin A b BB a A==,即sin A cos A =sin B cos B ,所以sin2A =sin2B ,即2A =2B 或2A +2B =π,即A =B 或A +B =2π,故ABC △是等腰或直角三角形.故选D .9.【答案】46【解析】∵60B =︒,75C =︒,∴45A =︒,∵sin sin a bA B=,∴82322b=,∴46b =. 10.【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.12.【答案】o =15C .【解析】由正弦定理可得sin sin 2A C B +=,又由于o o90=180()A C B A C -=-+,,故cos sin 2)C C A C +=+o 22)22C C =+=,即22sin cos 2,22C C C +=o cos(45)cos 2C C -=. 因为o o 090C <<,所以o 2=45C C -,即o =15C . 13.【答案】B【解析】由正弦定理,得sin sin a A b B =,所以a =52b 可化为sin sin A B =52.又A =2B ,所以sin 2sin B B =52,所以cos B =54.故选B . 14.【答案】D【解析】在ABC △中,由正弦定理可得2πsin sin sin 133b B A a ==⨯=,又0πB <<,所以B =π2,故选D . 15.【答案】 A【解析】在ABC △中,∵π3,6,3a b A ===,∴36πsin sin sin sin 3a b A B B =⇒=2sin 2B ⇒=,又63b a =<=,∴π03B A <<=,∴π4B =,故选A .16.【答案】D【解析】由正弦定理和已知条件可得sin sin cos 2sin cos sin cos C A B A A B A -=-, 所以sin()sin cos 2sin cos sin cos ,A B A B A A B A +-=- 即cos (sin sin )0A B A -=,所以cos 0A =或sin sin 0B A -=,即90A =︒或=A B .故ABC △是等腰三角形或直角三角形. 故选D .18.【答案】A【解析】由正弦定理可得,sin 63sin 231c B C b ===-, 在ABC △中,c b >,60C ∴=或120.当60C =时,105A =︒,sin 6sin10531sin c A a C ︒∴===; 当120C =时,45A =︒,此时sin 6sin 452sin c A a C ︒∴===. 综上,可得31a =或2.故选A .19.【答案】105︒或15︒【解析】由正弦定理得sin sin AB AC C B =,得sin 2sin 2sin 302AB B C AC ==︒=, 由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.21.【答案】(1)45;(2)22. 【解析】(1)因为2cos ADB ∠=72sin ADB ∠= 又π4CAD ∠=,所以π4C ADB =∠-, 所以πππ722224sin sin()sin coscos sin 4445C ADB ADB ADB =∠-=∠⋅-∠⋅==. (2)在ACD △中,由sin sin AD ACC ADC =∠,可得sin 22sin AC C AD ADC⋅==∠. 22.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A . 23.【答案】B【解析】由sin()sin (sin cos )0A C A C C ++-=可得sin cos cos sin sin sin A C A C A C ++-sin cos 0A C =,即πsin (sin cos )2sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =可得223πsin sin 4C =,即1sin 2C =,因为c a <,所以C A <,所以π6C =,故选B . 24.【答案】π3【解析】由正弦定理可得12sin cos sin cos sin cos sin()sin cos 2B B A C C A A C B B =+=+=⇒=π3B ⇒=. 25.【答案】75︒【解析】由正弦定理sin sin b c B C=,可得36sin 22sin 32b C Bc ⨯===,结合b c <可得45B =︒,则18075A B C =︒--=︒. 26.【答案】(1)π3A ∠=;(2)AC 边上的高为332. 【解析】(1)在△ABC 中,因为1cos 7B =-,所以π(,)2B ∈π,所以243sin 1cos 7B B =-=. 由正弦定理7sin sin sin a b A B A =⇒=8437,所以3sin 2A =. 因为π(,)2B ∈π,所以π(0,)2A ∈,所以π3A ∠=(2)在△ABC 中,3114333sin sin()sin cos sin cos ()272714C A B A B B A =+=+=⨯-+⨯=. 如图所示,在△ABC 中,sin h C BC =,所以3333sin 7142h BC C =⋅=⨯=, 所以AC 边上的高为332.。

人教B版高中数学必修五 1.1正弦定理和余弦定理(5必修)

人教B版高中数学必修五  1.1正弦定理和余弦定理(5必修)

1.1正弦定理和余弦定理(数学5必修)1.2应用举例1.3实习作业[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.在△ABC 中,若0030,6,90===B a C ,则b c -等于()A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是()A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角A 、B 均为锐角,且,sin cos B A >则△ABC 的形状是()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=()A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于()A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A .090B .0120C .0135D .0150二、填空题(五个小题,每题6分,共30分)1. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________。

5.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。

三、解答题(四个小题,每题10分,共40分)1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

正弦定理和余弦定理应用举例 Microsoft Word 文档

正弦定理和余弦定理应用举例 Microsoft Word 文档

1、一艘轮船按照北偏西30度,的方向以每小时45海里的速度航行,一个灯塔M原来在轮船的北偏东10度的方向,经过20分钟后,灯塔在轮船的北偏东70度方向上,求灯塔和轮船原来的距离.现在这样可以用余弦定理了cos60°=(AB^2+BC^2-AC^2)/2AB*BCBC=2a,AC=15,这样肯定能用含有a的式子表示AB然后在左边那个三角形里就能根据勾股定理求出a。

但是我这种算法特别不好算,你再等等,我想一想还有什么办法。

【同步教育信息】一. 本周教学内容:1. 正弦定理和余弦定理应用举例2. 解三角形全章总结教学目的:1. 能够正确运用正弦定理、余弦定理等知识、方法解决一些与测量以及几何计算有关的实际问题。

2. 通过对全章知识的总结提高,帮助学生系统深入地掌握本章知识及典型问题的解决方法。

二. 重点、难点:重点:解斜三角形问题的实际应用;全章知识点的总结归纳。

难点:如何在理解题意的基础上将实际问题数学化。

知识分析:一. 正弦定理和余弦定理应用举例 1. 解三角形应用题的基本思路 (1)建模思想解三角形应用问题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出三角形的边角的大小,从而得出实际问题的解。

这种数学建模思想,从实际问题出发,经过抽象概括,把它转化为具体问题中的数学模型,然后通过推理演算,得出数学模型的解,再还原成实际问题的解,用流程图可表示为:(2)解三角形应用题的基本思路:−−−→−−−−→−−−−→画图解三角形检验、结论实际问题数学问题(解三角形)数学问题的解实际问题的解2. 解三角形应用题常见的几种情况:(1)实际问题经抽象概括,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解。

(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解。

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。

(完整版)正弦定理、余弦定理知识点

(完整版)正弦定理、余弦定理知识点

正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

△ABC 外接圆半径为 2 .
( 1)求角 C 的大小;
(2)求 △ABC 面积的最
大值 .
解 : ( 1 ) ∵ △ ABC 外 接 圆 半 径 为 2 ,
第7 页
且 2 2(sin 2 A sin 2 C ) ( a b)sin B ,
∴ 由 正 弦 定 理 得 : 即 (2 2 sin A)2 (2 2 sin C)2 ( a b)2 2 sin B ,
必修 5- 第一章 - 正弦定理和余弦 定理 - 知识点及典型例题
<正弦定理和余弦定理 >
要点梳理
a
b
c
2R
1.正弦定理sin A sin B sin C
其中 R 是 三角形外接圆的半径.由正弦定理可以变形 为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a=2Rsin A,b=2Rsin B,c=2Rsin C;
a b cosB 2
A. 1
2
B. 1
3
C. 2
3
D. 3
4
二、填空题
9.在△ ABC 中,已知 2sinAcosB=sinC那, 么△ ABC 的形
状是
三角形
第12 页
10.在锐角△ ABC 中, a,b,c 分别为角 A,B,C 所对 的边,且 3a=2csin A,则角 C=________.
a2=(b+c)2- bc,又
a
=2 3,b+c=4, 1
有 12=42-bc,则 bc=4,故 S△ABC=2bcsin A= 3. 题型三 正、余弦定理的综合应用
例 3. 在△ABC 中, a、b、c 分别是角 A、B、C 的对
边 已知 2 2(sin 2 A sin 2 C ) (a b)sin B ,
1 =- 2.
2 ∵ B 为三角形的内角, ∴B=3π.
(2) 将 b=
2 13,a+ c= 4,B= 3π代入
b2= a2+ c2 - 2accos
B, 得 b2 = ( a + c) 2 - 2ac - 2accos B, ∴13 = 16 -
1
1
33
2ac 1- 2 ,∴ ac= 3. ∴S△ = ABC 2acsin B= 4 .
解析 ∵A+C=2B,∴B=π3.
由正弦定理知 sin A
asin B 1 = b =2.
题型二 利用余弦定理求解三角形
例 2 在△ ABC 中,a、b、c 分别是角 A、B、C 的对边,
且ccoossBC=
b
2a c .
(1)求角 B 的大小;
(2)若 b= 13,a+c=4,求△ ABC 的面积. a2+ c2- b2
思想方法 感悟提高
第9 页
方法与技巧 1.正、余弦定理和三角形面积公式是本节课的重点,利
用三角形内角和、边、角之间的关系,三角函数的变
形公式去判断三角形的形状,求解三角形,以及利用
它们解决一些实际问题. AB
2.应熟练掌握和运用内角和定理: A+B+C=π, 2+ 2 Cπ
+ 2=2中互补和互余的情况, 结合诱导公式可以减少
解:
由正弦定理得
a
b
3
2
sin A=sin B,sin A=sin 45
,°
∴ sin A=
3 2 .∵a>b,∴A=60°或
A=120°.
当 A= 60°时, C =180°- 45°-60°= 75°, c=bssiinnBC=
6+ 2
2 ;
当 A=120°时,C=180°-45°-120°=15°,c=bssiinnBC=
A . 30
B . 90
C . 120
D. 60
7.在△ ABC 中 ,已知三边之比 a : b : c 2 : 3 : 4 ,则 sin A 2 sin B
sin 2C
()
A.1
B.2
C. 2
D. 1 2
8. ABC中,边 a , b , c 的对角分别为 A、 B、C,且 A=2B,
, ( ) 3
+c2 的值.
第13 页
13. (12 分)在△ ABC 中,角 A , B,C 的对边为 , a,b, c
向量 , , ⊥ .求角 C m (2cos C , sin( A B))
C n (cos ,2sin( A B))
m
n
2
2
第14 页
知三边问题.
基础自测
1.在△ABC 中,若 b=1,c= 3,C=23π,则 a= 1
.
2.已知 △ABC 的内角 A,B,C 的对边分别为 a,b,2 c,
若 c= 2,b= 6, B=120°,则 a=________.
3.在 △ABC 中,若 AB= 5,AC= 5,且 cos C=190, 则 BC= 4 或 5 . 4.已知圆的半径为 4,a、b、c 为该圆的内接三角形的
余弦定理可以变形为:
2
cos A= b
2
c
2
a
,cos
B=
a2
2bc
c2 b2 ,cos C= a2
2ac
b2 c2
2ab .
4.在解三角形时,正弦定理可解决两类问题:
(1)已知两角及任一边,求其它边或角; (2)已知两边
第2 页
及一边的对角,求其它边或角. 情况 (2)中结果可能有一解、 二解、无解,应注意区分. 余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题; (2)已
失误与防范 在利用正弦定理解已知三角形的两边和其中一边的对角 求另一边的对角,进而求出其他的边和角时,有时可能 出现一解、两解或无解,所以要进行分类讨论.
过关精练
一、选择题
1.在△ ABC 中, A=60°,a= 4 3,b=4 2,则 B 等于
()
A . 45°或 135° B . 135°
C . 45°
解 (1)由余弦定理知: cosB= 2ac ,
a2+b2- c2
cosB
b
cos C=
2ab
.将上式代入
cosC=-
2a+
得: c
a2+c2-b2 2ab
b
2ac
·a2+
b2-
c2=-
2a+
, c
第5 页
整理得:a2+c2-b2=- ac.
a2+ c2-b2 - ac ∴co意灵活运用,如由正、余弦 定理结合得 sin2A= sin2B+ sin2C- 2sin B·sin C·cos
A,可以进行化简或证明.
4.根据所给条件确定三角形的形状,主要有两种途径:
(1)化边为角; (2)化角为边,并常用正弦 (余弦 )定理实
施边、角转换.
第10 页
6- 2 2.
探究提高 (1) 已知两角一边可求第三角, 解这样的三角
形只需直接用正弦定理代入求解即可.
(2) 已知两边和一边对角,解三角形时,利用正弦定理求 另一边的对角时要注意讨论该角,这是解题的难点,应
第4 页
引起注意. 变式训练 1 已知 a,b,c 分别是△ ABC 的三个内角 A,
B,C 所对的边,若 a=1,b= 3,A+C=2B,则 A= 6
.
(1)求角 A 的值;
(2)若 a=2 3,b+c=4,求△ ABC
第6 页
的面积. 解 (1)由 2cos2 A +cos A=0 ,得 1+cosA+cos A=0,即 cos A
2
1 =- 2. ∵ 0<A<π,∴A=23π.
(2)由余弦定理得,
a2=
b2+
c2-
2bccosA,A=
2π 3 ,则
(3)sin A=2aR,sin B=2bR,sin C=2cR等形式,以解决不
同的三角形问题. 2.三角形面积公式
S△ABC
1 =2absin
1 C=2bcsin
1 A=2acsin
B=a4bRc=
1 2(a+
b
+ c) ·r(r 是三角形内切圆的半径 ),并可由此计算 R、r.
3.余弦定理:
. a2=b2+ c2-2bccos A,b2= a2+c2-2accos B,c2=a2+b2-2abcos C
D. 3 2
第11 页
4.在 ABC 中,已知 b 2, c 1,B 45 , 则 a 等于(

A. 6 2 2
B. 6 2 2
C. 2 1
D.3 2
5.在 中 ABC AB 2, AC 3,BA AC 3,则 A 等于(

A. 120°
B. 60°
C . 30°
D . 150°
6.在 ABC中,a : b :c 3: 5: 7 , 则这个三角形的最大角为 ( )
11.在△ ABC中,边 a,b,c 的对角分别为 A、B、C,且
。则角 B= sin 2 A sin 2 C sin A sin C sin 2 B

三、解答题 12.(12 分)已知△ ABC 的三个内角 A,B,C 所对的边分
别为 a,b,c,A 是锐角,且 3b=2a·sin B. (1) 求 A; (2) 若 a=7,△ ABC的面积为 10 3,求 b2
探究提高 (1) 根据所给等式的结构特点利用余弦定理 将角化边进行变形是迅速解答本题的关键. (2) 熟练运用余弦定理及其推论,同时还要注意整体思 想、方程思想在解题过程中的运用 .
变式训练 2 已知 A、B、C 为△ ABC 的三个内角, 其所对
的边分别为
a、b、c,且
2cos2
A 2
+cos
相关文档
最新文档