实验中学2018-2019学年八年级上学期期中考试数学试卷
河南省实验中学2018-2019学年八年级上学期数学期中考试试卷及参考答案
![河南省实验中学2018-2019学年八年级上学期数学期中考试试卷及参考答案](https://img.taocdn.com/s3/m/9e213ecd76c66137ef061991.png)
一、单选题
1. 以下列长度的线段为边,能构成直角三角形的是( ) A . 1,2,3 B . 3,4,5 C . 5,6,7 D . 7,8,9 2. 在实数 ,- , , 中,是无理数的是( ) A. ,B.- ,C. D. 3. 如图,在数轴上表示 的点在哪两个字母之间( )
2.
3.
4.
5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
17.
18.
19. 20. 21. 22.
23.
(1) 填空:a=;b=;m=. (2) 若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离. (3) 在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为分钟. 23. 如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10 .点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重 合时停止运动,运动时间为t秒.
解决.
(1) 请你根据上述的规律写出下一组勾股数:11、、;
(2) 若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个
数有这样的规律
,
,
……,于是他很快表示了第二数为 ,则用含a的代数式表示第三个
数为;
(3) 用所学知识证明你的结论. 22. “低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同 时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同 一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
北师大版-学年度上学期八年级期中数学试卷A(含解析)
![北师大版-学年度上学期八年级期中数学试卷A(含解析)](https://img.taocdn.com/s3/m/c12060c685254b35eefdc8d376eeaeaad1f31614.png)
北师大版2018-2019学年八年级上数学期中试卷一一.选择题(共10小题,满分30分,每小题3分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.如果点A(﹣3,b)在第三象限,则b的取值范围是()A.b<0 B.b≤0 C.b≥0 D.b>03.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5中,能确定△ABC是直角三角形的有()A.1个B.2个C.3个D.4个4.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0 B.2 C.4 D.65.在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)6.正比例函数如图所示,则这个函数的解析式为()A.y=x B.y=﹣x C.y=﹣2x D.y=﹣x7.已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.﹣≤m<4 C.﹣≤m≤4 D.m8.估计2﹣2的值介于下列哪两个整数之间()A.2和3 B.3和4 C.4和5 D.5和69.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m﹣1,﹣m﹣)(其中m为实数),当PM的长最小时,m的值为()A.﹣B.﹣C.3 D.410.把一次函数y=x+1的图象绕点(1,0)旋转180°,则所得直线的表达式为()A.y=x+1 B.y=﹣x﹣1 C.y=x﹣3 D.y=﹣x+3二.填空题(共6小题,满分18分,每小题3分)11.下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有(填序号).12.如图,在平面直角坐标系xOy中,点B(﹣1,4),点A(﹣7,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为.13.点P(﹣3,4)到x轴和y轴的距离分别是.14.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax ﹣2的解为x=.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n C n,则A3的坐标为,B5的坐标为.三.解答题(共8小题,满分72分)17.(20分)化简计算①π0+2﹣1﹣﹣|1﹣|②﹣2③﹣(+2)④3﹣9+3⑤÷﹣×+.18.(6分)请你给如图建立平面直角坐标系,使文化宫的坐标为(﹣3,1),超市的坐标为(2,﹣3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)直接写出由超市、文化馆、市场围成的三角形的面积.19.(6分)已知|a﹣3|+,求()2和b a的值.20.(6分)已知一次函数y=(2m﹣3)x+2﹣n满足下列条件,分别求出m,n的取值范围.(1)使得y随x增加而减小.(2)使得函数图象与y轴的交点在x轴的上方.(3)使得函数图象经过一、三、四象限.21.(7分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.22.(7分)如图,矩形A1B l C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG 折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连接B1B;判断△B1BG的形状,并写出判断过程.23.(9分)甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是,B点表示的实际意义是;(2)求线段BC对应的函数关系式和D点坐标;(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.24.(11分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.参考答案与试题解析1.解:∵=,而(0<x<150)是一个整数,且x为整数,∴5×5×2×3x一定可以写成平方的形式,所以可以是6,24,54,96共有4个.故选:B.2.解:∵点A(﹣3,b)在第三象限,∴b<0,故选:A.3.解:①∠A+∠B=∠C时,∠C=90°,是直角三角形,②∠C=90°,是直角三角形,③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形,故选:C.4.解:从点﹣1到点2019共2020个单位长度,正方形的边长为8÷4=2(个单位长度),2020÷8=252余4,故数轴上表示2019的点与正方形上表示数字4的点对应,故选:C.5.解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.6.解:设这个函数的解析式为y=kx,∵函数图象经过(1,﹣1),∴﹣1=k,∴这个函数的解析式为y=﹣x.故选:B.7.解:根据题意得,解得﹣≤m<4.故选:B.8.解:∵3.5<<4,∴7<﹣1<8,∴5<2﹣2<6,即2﹣2在5和6之间,故选:D.9.解:由两点间的距离公式可知:PM2=(m﹣1)2+(﹣m﹣﹣2)2=(m+)2+16,∵>0,∴当m=﹣时,PM2最小.故选:B.10.解:令x=0,则y=1,即直线y=x+1与y轴交点为(0,1);令y=0,则x=﹣1,即直线y=x+1与x轴交点为(﹣1,0).点(0,1)绕点(1,0)旋转180°变为(2,﹣1);点(﹣1,0)绕点(1,0)旋转180°变为(3,0).设旋转后所得直线的表达式为y=kx+b,则有,解得:.故旋转后所得直线的表达式为y=x﹣3.故选:C.11.解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③12.解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(3,﹣2),取AA′的中点K(﹣2,﹣1),直线BK与直线y=x﹣2的交点即为点P.∵直线BK的解析式为y=5x+9,由,解得,∴点P坐标为(﹣,﹣),故答案为(﹣,﹣).13.解:点P(﹣3,4)到x轴的距离为4,到y轴的距离是3,故答案为:4;3.14.解:∵直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,∴当x=﹣2时,3x+b=ax﹣2,∴关于x的方程3x+b=ax﹣2的解为x=﹣2.故答案为﹣2.15.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B3(2+1+=,),A3(,0),B4(+=,),A4(,0),B5(+=,).故答案为:(,0),(,).17.解:①原式=1+﹣﹣(﹣1)=2﹣.②原式=2+1﹣2=1.③原式=2﹣2﹣2=﹣2.④原式=12﹣3+6=15.⑤原式=4﹣+2=4+.18.解:(1)画坐标轴如图所示,火车站(0,0),体育场(﹣4,3),医院(﹣2,﹣2);(2)三角形的面积=7×6﹣×5×4﹣×2×6﹣×2×7,=42﹣10﹣6﹣7,=42﹣23,=19.19.解:由题意得a﹣3=0,a+b﹣1=0,解得a=3,b=﹣2,则()2=()2=5,b a=(﹣2)3=﹣8.20.解:(1)∵一次函数y=(2m﹣3)x+2﹣n的图象y随x的增大而减小,∴2m﹣3<0,解得m<,n取一切实数;(2)∵y=(2m﹣3)x+2﹣n,∴当x=0时,y=2﹣n,由题意,得2﹣n>0且2m﹣3≠0,∴m≠,n<2;(5)∵该函数的图象经过第一、三、四象限,∴2m﹣3>0,且2﹣n<0,解得m>,n>2.21.解:(1)令y=0,得x=﹣1.5,∴A点坐标为(﹣1.5,0),令x=0,得y=3,∴B点坐标为(0,3);(2)设P点坐标为(x,0),∵OP=2OA,A(﹣1.5,0),∴x=±3,∴P点坐标分别为P1(3,0)或P2(﹣3,0).∴S△ABP1=×(1.5+3)×3=6.75,S△ABP2=×(3﹣1.5)×3=2.25,∴△ABP的面积为6.75或2.25.22.(1)证明:显然,BE∥GF,根据对称性得∠1=∠2,∠3=∠4∵A1D1∥B1C1∴∠1+∠2=∠3+∠4∴∠1=∠2=∠3=∠4∴EF∥BG∴四边形BEFG是平行四边形;(2)解:△B1BG是直角三角形,理由:∵A1D1∥B1C1∴∠4=∠6∴∠3=∠6∴BF=FG∵B1F与BF关于EF对称∴B1F=BF∴B1F=BF=FG∴△B1BG是直角三角形.23.解:(1)B(15,0),B点表示的实际意义是:甲乙两人工作15分钟时,加工零件的数量相同故答案为:(15,0);甲乙两人工作15分钟时,加工零件的数量相同;(2)由图形可知:甲因故障停止加工15﹣10=5分钟后又继续按原速加工,甲105分钟时,完成任务,即甲100分钟,加工600个零件,甲加工的速度:=6,设乙每分钟加工a个零件,15a=10×6,a=4,600﹣105×4=600﹣420=180,∴C(105,180),设BC的解析式为:y=kx+b,把B(15,0)和C(105,180)代入得:,解得:,∴线段BC对应的函数关系式为:y=2x﹣30(15≤x≤105),=150,∴D(150,0);(3)当x=10时,y=6×10﹣4×10=20,∴A(10,20),易得CD:y=﹣4x+600,当y=100时,﹣2x﹣30=100,x=65,﹣4x+600=100,x=125,综上所述,乙在加工的过程中,65分钟或125分钟时比甲少加工100个零件;(4)设丙应在第x分钟时开始帮助乙,>15,∴x>15,由题意得:4x+(3+4)(105﹣x)=600,x=45,则丙应在第45分钟时开始帮助乙;丙帮助后y与x之间的函数关系的图象如右图所示.24.解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PA•cos(90°﹣)=PA•sin,∴PP′=2PA•sin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.。
2018-2019学年河北省邢台市宁晋县八年级(上)期中数学试卷(附答案详解)
![2018-2019学年河北省邢台市宁晋县八年级(上)期中数学试卷(附答案详解)](https://img.taocdn.com/s3/m/084f4994b84ae45c3a358c51.png)
2018-2019学年河北省邢台市宁晋县八年级(上)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列图形中,有且只有2条对称轴的是()A. B. C. D.2.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()m C. 3m D. 6mA. 2mB. 523.下列条件,不能判定两个直角三角形全等的是()A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A. 8B. 9C. 10D. 115.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为()A. 40°B. 80°C. 120°D. 不能确定6.如图,已知△ABC和△A′B′C′关于直线l对称,下列选项中的结论不正确的是()A. △ABC≌△A′B′C′B. ∠BAC=∠B′A′C′C. 直线l垂直平分CC′D. 直线BC和B′C′的交点不一定在直线l上7.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A. 20°B. 30°C. 40°D. 50°8.如图,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是()A. BC=EC,∠B=∠EB. BC=EC,AC=DCC. ∠B=∠E,∠A=∠DD. BC=EC,∠A=∠D9.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BE=2,BC=6,则△BDE的周长为()A. 6B. 8C. 10D. 1410.甲和乙下棋,甲执白子,乙执黑子.如图,共下了7枚棋子,棋盘中心黑子的位置用(−1,0)表示,其右下角黑子的位置用(0,−1)表示.甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (−1,1)B. (−2,1)C. (1,−2)D. (−1,−2)11.如图,有两个三角锥ABCD、EFGH,其中甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.若∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则下列叙述何者正确()A. 甲、乙全等,丙、丁全等B. 甲、乙全等,丙、丁不全等C. 甲、乙不全等,丙、丁全等D. 甲、乙不全等,丙、丁不全等12.如图,在△ABC中,∠BAC=90°,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A. 3个B. 4个C. 5个D. 6个13.如图是将一多边形剪去一个角,则新多边形的内角和()A. 比原多边形少180°B. 与原多边形一样C. 比原多边形多360°D. 比原多边形多180°14.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A. 13B. 8C. 6D. 515.如图,将△ABC纸片沿DE折叠使点A落在点A′处,且BA′平分∠ABC,CA′平分∠ACB,若∠BA′C=112°,则∠1+∠2的大小为()A. 44°B. 41°C. 88°D. 82°16.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC为一个等腰三角形,满足条件的点C有()A. 2个B. 4个C. 6个D. 8个二、填空题(本大题共3小题,共12.0分)17.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为______.18.如图,已知AB//CD,以点A为圆心,小于AC的长为半径作圆弧,分别交AB,AC于EF长为半径作圆弧,两条弧交于点G,F,E两点,再分别以E,F为圆心,以大于12作射线AG交CD于点H,若∠C=120°,则∠AHD=______.19.如图,已知在△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D为AB的中点,如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过______s后,△BPD≌△CQP;(2)若点Q的运动速度与点P的运动速度不相等,且在某时刻△BPD与△CQP全等,则点Q的运动速度为______cm/s.三、解答题(本大题共7小题,共66.0分)20.按要求完成下列各小题:(1)在△ABC中,∠A=∠B+∠C,∠B=2∠C−6°,求∠C的度数;(2)如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.21.如图,△ABC的顶点分别为A(−4,4),B(−3,1),C(3,−1).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;(2)用尺规在图中作出△ABC的BC边上的高AD.(不要求写步骤,保留作图痕迹)22.如图,已知在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,若△ADE的周长为8cm,△OBC的周长为18cm.(1)求线段BC的长;(2)连接OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.23.如图,淇淇从点A出发,前进10米后向右转20°,再前进10米后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)淇淇一共走了多少米?说明理由.(2)求这个多边形的内角和.24.如图,已知:点P(2m−1,6m−5)在第一象限角平分线OC上,∠BPA=90°,角两边与x轴、y轴分别交于A点、B点.(1)求点P的坐标.,0),求点B的坐标.(2)若点A(3225.如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.(1)当∠BAD=60°,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.26.(1)如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明.(提示:延长CD到G,使得DG=BE)(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD∠BAD,上述结论是否仍然成立,并说明理由;上的点,且∠EAF=12(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西20°的A处,舰艇乙在指挥中心南偏东60°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(可利用(2)的结论)答案和解析1.【答案】A【解析】解:A、矩形有两条对称轴,符合题意.B、平行四边形不是轴对称图形,没有对称轴,不符合题意.C、正方形有4条对称轴,不符合题意.D、圆有无数条对称轴,不符合题意.故选:A.根据轴对称图形的定义即可判断.本题考查轴对称图形的定义,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.【答案】C【解析】解:根据三角形三边关系可得:2x>10−2x,2x<10解得:5>x>2.5,故选:C.根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,可选出答案.此题主要考查了三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】B【解析】【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、符合判定HL,故本选项正确,不符合题意;B、全等三角形的判定必须有边的参与,故本选项错误,符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定SAS,故本选项正确,不符合题意.故选B4.【答案】A【解析】解:多边形的外角和是360°,根据题意得:180°⋅(n−2)=3×360°解得n=8.故选:A.根据多边形的内角和公式及外角的特征计算.本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.5.【答案】B【解析】【分析】本题考查了全等三角形的性质,解题的关键是找到两全等三角形的对应角.由△ABC≌△ADE,得∠BAC=∠DAE,则∠BAD=∠CAE,再由∠BAC=∠BAE−∠CAE,即可得出答案.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE−∠CAE=120°−40°=80°.故选:B.6.【答案】D【解析】解:∵△ABC和△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∠BAC=∠B′A′C′,直线l垂直平分线段CC′,直线BC和直线B′C′的交点在对称轴l上,故A,B,C正确,不符合题意;D不正确,故符合题意.故选:D.根据轴对称的性质一一判断即可.本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是掌握轴对称的性质,属于中考常考题型.7.【答案】D【解析】解:∵AE平分∠BAC,∠1=30,∴∠CAE=∠1=30°,∴∠DAE=∠CAE−∠2=10°,∴∠BAE=∠1+∠DAE=40°.∵AD⊥BC,∴∠ADB=90°,∴∠B=180°−∠BAD−∠ADB=50°.故选:D.利用角平分线的定义结合∠1的度数可得出∠CAE的值,进而可得出∠DAE、∠BAD的值,在△ABD中利用三角形内角和定理可求出∠B的值,此题得解.本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.8.【答案】D【解析】【分析】直接利用三角形全等的判定条件进行判定,即可求得答案;注意而SSA是不能判定三角形全等的.此题考查了全等三角形的判定.注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.【解答】解:A.添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B.添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B选项正确;C.添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C选项正确;D.添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D选项错误.故选:D.9.【答案】B【解析】【分析】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.根据角平分线的性质得到CD=DE,根据三角形的周长公式计算即可.【解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=8,故选:B.10.【答案】A【解析】解:如图所示:甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形,他放的位置是:(−1,1).故选:A.首先确定原点位置,再利用轴对称图形的性质得出答案.此题主要考查了轴对称图形的性质以及点的坐标,正确得出原点位置是解题关键.11.【答案】B【解析】解:∵∠ACB=∠CAD=70°,∠BAC=∠ACD=50°,AC为公共边,∴△ABC≌△CDA,即甲、乙全等;△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,∴△EFG不全等于△EGH,即丙、丁不全等.综上所述甲、乙全等,丙、丁不全等,B正确,故选B.根据题意直接运用判定定理判断甲、乙是否全等,丙、丁是否全等即可.本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.找到∠EGH=70°≠∠EHG=50°,即EH≠EG是正确解决本题的关键.12.【答案】A【解析】解:如图,∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.本题考查了直角三角形的性质,直角三角形的两锐角互余.13.【答案】D【解析】【分析】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,取决于其边数增加还是减少.是解决本题的关键.根据多边形的内角和定理求解可得.【解答】解:按如图所示方式将一多边形剪去一个角,则新多边形的边数增加一条,所以其内角和比原多边形的内角和多180°,故选D.14.【答案】B【解析】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中,{∠B=∠C∠A=∠DEC AE=DE,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间.本题考查全等三角形的判定和性质,路程,速度时间的关系等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.【答案】C【解析】解:如图,连接AA′.∵∠BA′C=112°,∴∠A′BC+∠A′CB=180°−∠BA′C=68°.∵BA′平分∠ABC,CA′平分∠ACB,∴∠ABC=2∠A′BC,∠ACB=2∠A′CB.∴∠ABC+∠ACB=2∠A′BC+2∠A′CB=2(∠A′BC+∠A′CB)=136°.∴∠BAC=180°−(∠ABC+∠ACB)=44°.由题意得:△ADE≌△A′DE.∴∠DAE=∠DA′E=44°.∵∠1=∠DAA′+∠AA′D,∠2=∠EAA′+∠AA′E,∴∠1+∠2=∠DAA′+∠EAA′+∠DA′A+∠EA′A=∠DAE+∠DA′E=2∠DAE=88°.故选:C.由题意得△ADE≌△A′DE,那么∠DAE=∠DA′E.如图,连接AA′.根据三角形外角的性质,得∠1=∠DAA′+∠AA′D,∠2=∠EAA′+∠AA′E,那么∠1+∠2=∠DAE+∠DA′E=2∠DAE.欲求∠1+∠2,需求∠DAE.由三角形内角和定理得∠DAE=180°−∠ABC−∠ACB.由BA′平分∠ABC,CA′平分∠ACB,得∠ABC=2∠A′BC,∠ACB=2∠A′CB,那么∠ABC+∠ACB=2∠A′BC+2∠A′CB=2(∠A′BC+∠A′CB).由∠BA′C=112°,得∠A′BC+∠A′CB=180°−∠BA′C=68°,从而解决此题.本题主要考查三角形内角和定理、角平分线的定义、图形折叠的性质,三角形外角的性质,熟练掌握三角形内角和定理、角平分线的定义、图形折叠的性质,三角形外角的性质是解决本题的关键.16.【答案】D【解析】解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.以A为圆心,AB长为半径画弧;以B为圆心,AB长为半径画弧,再作AB的垂直平分线分别找出交l1、l2点的个数即可.此题主要考查了等腰三角形的判定,关键是掌握两边相等的三角形是等腰三角形.17.【答案】(−2,3)【解析】解:点A(2,3)关于y轴对称点的坐标为B(−2,3).故答案为:(−2,3).根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.【答案】150°【解析】解:由作图可知,AH平分∠CAB,∴∠CAH=∠HAB,∵CH//AB,∴∠C+∠CAB=180°,∵∠C=120°,∴∠CAB=60°,∴∠CAH=∠HAB=30°,∴∠AHD=∠C+∠CAH=150°,故答案为:150°.由作图可知,AH平分∠CAB,利用平行线的性质求出∠CAH=30°,再利用三角形的外角的性质求解即可.本题考查作图−复杂作图,平行线的性质,角平分线的定义等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.19.【答案】1154【解析】解:(1)经过1秒后,△BPD≌△CQP,理由如下:经过1秒后,PB=3cm,CQ=3cm,∴PB=CQ,∵BC=8cm,∴PC=5cm,∵AB=AC=10cm,D为AB的中点,∴∠B=∠C,BD=5cm,∴BD=PC,∴在△BPD和△CQP中,{BD=PC ∠B=∠C BP=CQ,∴△BPD≌△CQP(SAS).故答案为:1.(2)设点Q的运动速度为x(x≠3)cm/s,经过t s后△BPD与△CQP全等;则可知PB=3t cm,PC=(8−3t)cm,CQ=xt cm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8−3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8−3t,解得:x=154;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为154cm/s时,能够使△BPD与△CQP全等.故答案为:154.(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3t cm,PC=(8−3)tcm,CQ=xt cm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.【答案】(1)解:如图所示,∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即∠B+∠C=90°,∵∠B=2∠C−6°,∴2∠C−6°+∠C=90°,∴∠C=32°;(2)证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,∵∠A=∠D=90°,所以在Rt△ABC和Rt△DEF中{BC=EFAB=DE,∴Rt△ABC≌Rt△DEF(HL).【解析】(1)根据三角形内角和定理得出∠A+∠B+∠C=180°,求出∠A=∠B+∠C= 90°,再根据∠B=2∠C−6°得出2∠C−6°+∠C=90°,再求出答案即可;(2)求出BC=EF,再根据两直角三角形全等的判定定理HL推出即可.本题考查了三角形内角和定理和全等三角形的判定定理,能熟记三角形内角和定理和直角三角形全等的判定定理是解此题的关键,注意:①三角形的内角和等于180°,②两直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.21.【答案】解:(1)如图,△A1B1C1即为所求,A1,(4,4),B1(3,1),C1(−3,−1).(2)如图线段AD即为所求.【解析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)取格点R,连接AR交CB的延长线于点D,线段AD即为所求.本题考查作图−轴对称变换,平面直角坐标系等知识,解题的关键是掌握轴对称变换的性质,属于中考常考题型.22.【答案】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=8(cm);(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=18cm,∴OA=OB=OC=5(cm);(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC−∠BAD−∠EAC=60°.【解析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.本题考查的是线段的垂直平分线的性质等几何知识.熟记线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.23.【答案】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米).答:淇淇一共走了180米.(2)根据题意,得(18−2)×180°=1880°,答:这个多边形的内角和是2880°.【解析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.24.【答案】解:(1)作PE⊥y轴于E,PF⊥x轴于F,如图所示:根据题意得:PE=PF,∴2m−1=6m−5,∴m=1,∴P(1,1);(2)由(1)得:∠EPF=90°,∵∠BPA=90°,PE=PF=1,∴∠EPB=∠FPA,在△BEP和△AFP中,{∠PEB=∠PFA=90° PE=PF ∠EPB=∠FPA ,∴△BEP≌△AFP(ASA),∴BE=AF=OA−OF=0.5,∴B(0,0.5).【解析】(1)作PE⊥y轴于E,PF⊥x轴于F,由角平分线的性质得出PE=PF,得出方程2m−1=6m−5,解方程求出m=1,即可得出结果;(2)由ASA证明△BEP≌△AFP,得出BE=AF=OA−OF=0.5,即可得出结果.本题考查了全等三角形的判定与性质、坐标与图形性质、角平分线的性质;证明三角形全等是解决问题(2)的关键.25.【答案】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=105°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC.∵∠B=∠C,∠ADE=∠AED,∴∠ADC−∠EDC=105°−∠EDC=45°+∠EDC,解得:∠CDE=30°;(2)∠CDE=12∠BAD,理由:设∠BAD=x,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=45°+x,∵∠AED是△CDE的外角,∴∠AED=∠C+∠CDE,∵∠B=∠C,∠ADE=∠AED,∴∠ADC−∠CDE=45°+x−∠CDE=45°+∠CDE得:∠CDE=12∠BAD【解析】(1)先根据三角形外角的性质得出∠ADC=∠B+∠BAD=∠B+60°=105°,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论;(2)利用(1)的思路与方法解答即可.本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.26.【答案】解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,{DG=BE∠B=∠ADG AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,{AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,{DG=BE∠B=∠ADG AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,{AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°−60°)=140°,∠EOF=70°,∴∠EOF=12∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°−20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1×(60+80)=140(海里).答:此时两舰艇之间的距离是140海里.【解析】(1)根据全等三角形对应边相等解答;(2)延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;∠AOB,判断出符合探索延伸(3)连接EF,延长AE、BF相交于点C,然后求出∠EAF=12的条件,再根据探索延伸的结论解答即可.本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.。
2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析
![2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析](https://img.taocdn.com/s3/m/4a7cf28cd15abe23492f4d55.png)
2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。
2018-2019学年河南省驻马店市泌阳县八年级(上)期中数学试卷(解析版)
![2018-2019学年河南省驻马店市泌阳县八年级(上)期中数学试卷(解析版)](https://img.taocdn.com/s3/m/4f1f3812e009581b6ad9eb54.png)
2018-2019学年河南省驻马店市泌阳县八年级第一学期期中数学试卷一、选择题(共10小题).1.四个数0,1,,中,无理数的是()A.B.1C.D.02.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=13.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>257.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.12.计算:已知:a+b=3,ab=1,则a2+b2=.13.若x2+kx+81是完全平方式,则k的值应是.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是(填上所有正确答案的序号).三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣920.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.参考答案一、选择题(每小题3分,共30分)1.四个数0,1,,中,无理数的是()A.B.1C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0,1是整数,属于有理数;是分数,属于有理数;无理数有,共1个.故选:B.2.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.3.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.【分析】根据绝对值的定义即可得出答案.解:∵在数轴上,一个数的绝对值指的是这个数到原点的距离,∴表示1﹣的点到原点的距离为|1﹣|=,故选:B.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x的值,然后再求出的值,最后求平方根即可.解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选:D.5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>25【分析】要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致.解:当4>﹣5,而42<25,则“x>﹣5,则x2>25”是假命题,故选:A.7.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种【分析】能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.解:该指数可能是2、4、6、8、10五个数.故选:D.8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个【分析】由在△ABC中,∠A=36°,∠C=72°°,BD平分∠ABC,DE∥BC,可求得∠ABD=∠EDB=∠DBC=∠A=36°,∠BDC=∠ABC=∠C=72°,∠AED=∠ADE,即可得△ABC,△ABD,△EBD,△BCD,△AED是等腰三角形.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个【分析】由∠1=∠2,可得∠BAC=∠EAD,又由于AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠B=∠E,就可以用AAS判定△ABC≌△AED;加④∠C=∠D,就可以用ASA判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等,其中能使△ABC≌△AED的条件有:①③④.故选:C.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4【分析】把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选:B.二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=5.【分析】直接利用幂的乘方运算法则将原式变形进而得出m,n的值即可.解:∵2m=4n﹣1,27n=3m﹣1,∴2m=22n﹣2,33n=3m﹣1,故,解得:,故n﹣m=5.故答案为:5.12.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:713.若x2+kx+81是完全平方式,则k的值应是±18.【分析】利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是19cm、19cm.【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.解:该三角形是等腰三角形,当底边长为12cm时,其它两条边为(50﹣12)÷2=19(cm),即三边长分别为12cm、19cm、19cm,能组成三角形.当腰长为12cm时,底边长为50﹣2×12=26(cm),即三边长分别为12cm,12cm,26cm,不能组成三角形.综上,另两边长是19cm、19cm.故答案为:19cm、19cm.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为3.【分析】估算出+的取值范围可以得到答案.解:∵3<+<4,∴[+]的值为3.故答案为:3.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS)∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是②④(填上所有正确答案的序号).【分析】①将i3表示成i2•i即可;②将i4表示成i2•i2即可;③利用多项式乘以多项式的法则计算即可;④利用式子的规律即依次每四项的和为0进行计算即可.解:①∵i3=i2•i,i2=﹣1,∴i3=﹣i.∴①不正确;②∵i4=i2•i2,i2=﹣1,∴i4=1×1=1.∴②正确;③∵(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=7﹣i,∴③不正确;④∵i+i2+i3+i4=i﹣1﹣i=1=0,∴i5+i6+i7+i8=i4(i+i2+i3+i4)=0.∴i+i2+i3+i4+…+i2019=i2017+i2018+i2019=i2016(i+i2+i3)=i﹣1+i=﹣1,∴④正确.综上,正确的是:②④.故答案为:②④.三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.【分析】(1)先计算算术平方根、立方根,再计算加减即可;(2)先根据绝对值的性质去绝对值符号,再计算加减即可;(3)先计算多项式乘多项式,再去括号、合并同类项即可;(4)先利用平方差公式和完全平方公式及单项式乘多项式法则计算,再去括号、合并同类项即可.解:(1)原式=0.5+0.5+2=3;(2)原式=﹣1+﹣+2﹣=1;(3)原式=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=3xy﹣9x2﹣2y2+6xy﹣6x2﹣2xy+3xy+y2=10xy﹣15x2﹣y2;(4)原式=2(4x2﹣1)+5x2﹣15xy﹣(x2﹣4xy+4y2)=8x2﹣2+5x2﹣15xy﹣x2+4xy﹣4y2=12x2﹣11xy﹣4y2﹣2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣9【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.解:(1)原式=b(a2﹣b2)=b(a+b)(a﹣b);(2)原式=﹣[(x2+2)2﹣6(x2+2)+9]=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2.20.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.解:(1),验证:====,∵,∴;(2)==(n为整数)22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.【分析】先由△BEO≌△DFO,即可得出OF=OE,DO=BO,进而得到AO=CO,再证明△ABO≌△CDO,即可得到AB=CD.【解答】证明:∵△BEO≌△DFO,∴OF=OE,DO=BO,又∵AF=CE,∴AO=CO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP =∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣(180°﹣α)=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。
2018-2019学年上学期八年级 数学期中考试卷含答案
![2018-2019学年上学期八年级 数学期中考试卷含答案](https://img.taocdn.com/s3/m/dcbf162f43323968011c926d.png)
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
上海市松江区2018-2019八年级上期中数学卷(含答案)
![上海市松江区2018-2019八年级上期中数学卷(含答案)](https://img.taocdn.com/s3/m/cd7e3b39804d2b160b4ec0b8.png)
2018学年第一学期八年级期中考试数学试卷时间:90分钟 满分:100分 2018.11 题号一 二 三 四 得分 得分一、填空题(每题2分,共30分)1.如果12-a 有意义,那么a 的取值范围是 .2.计算:2)2(-=. 3.计算:62⋅= .4.若最简二次根式a +4与1-2a 是同类二次根式,则=a. 5.不等式x x 22-<的解集是______________.6.方程()()525-=-x x x 的根是 .7.若方程()01312=+--x x n 是关于x 的一元二次方程,则n .8.已知关于x 的方程()0122=+--x x k 有两个不相等的实数根,则k 的取值范围是. 9.函数x x y -52-=的定义域是 .10.已知函数xx x f 1)(-=,若2)(=x f ,则________=x . 11.已知y 与x 成正比例,当8=x 时,12-=y ,则y 与x 的函数的解析式为 .12. 在实数范围内分解因式:=--342x x .13.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是 .14. 如果()()k k x k y 222-+-=是正比例函数,则k=.15. 已知a ,b 是实数,且()()11122=++++b b a a ,问a ,b 之间有怎样的关系: .二、选择题(每题3分,共15分)16. 下列根式中,能与3合并的二次根式为………………………… ( )A.24B.23 C.12 D. 18 17. 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是…… ( )A. 042=+xB. 01442=+-x xC. 032=++x xD. 01-22=+x x18. 下列各式中,一定成立的是………………………… ( )A. ()b a b a +=+2B. ()11222+=+a aC. 1112-⋅+=-a a aD. ab bb a 1= 19. 下列说法正确的个数是………………………… ( )①2+x 是x 的函数;②等腰三角形的面积一定,它的底边和底边上的高成正比例;③在函数x y 2-=中,y 随x 的增大而增大;④已知0<ab ,则直线x ba y -=经过第二、四象限. A. 1个 B.2个 C.3个 D. 4个20. 等腰ABC ∆的一边长为4,另外两边的长是关于x 的方程0012=+-m x x 的两个实数根,则等腰三角形底边的值是………………………… ( )A.4B.25C.4或6D. 24或25三、简答题(每题5分,共20分)21. 计算:233-3135.012+-+ 22. 计算:()0312323>÷⎪⎭⎫ ⎝⎛-⋅a a b b a ab b23. 用配方法解方程02532=--x x 24. 解方程:()()33-2)23(2+=-x x x四、解答题(第25、26题每题6分,第27、28题每题7分,第29题9分,共35分) 25. 先化简,再求值:已知2231+=x ,求()2441-122--++-x x x x x 的值26. 已知y 与1-x 成正比例,且当3=x 时,4=y .(1)求y 与x 之间的函数解析式;(2)当1-=x 时,求y 的值;(3)当53-<<y 时,求x 的取值范围.27. 已知直线kx y =过点()12,-, A 是直线kx y =图像上的点,若过A 向x 轴作垂线,垂足为B ,且90=∆AB S ,求点A 的坐标.28. 某商店购进一种商品,进价30元。
2018-2019学年天津市南开区八年级(上)期中数学试卷
![2018-2019学年天津市南开区八年级(上)期中数学试卷](https://img.taocdn.com/s3/m/ff74d64627d3240c8447ef20.png)
2018-2019学年天津市南开区八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)如图图案是轴对称图形的是()A.B.C.D.2.(3分)如图,若AB=AD,则添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.∠BAC=∠DAC B.∠BCA=∠DCA C.CB=CD D.∠B=∠D=90°3.(3分)下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2+a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣14.(3分)在下列说法中,正确的是()A.如果两个三角形全等,则它们必是关于直线成轴对称的图形B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形C.等腰三角形是关于底边中线成轴对称的图形D.一条线段是关于经过该线段中点的直线成轴对称的图形5.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A .4对B .5对C .6对D .7对6.(3分)如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB=( )A .40°B .30°C .20°D .10°7.(3分)计算()2003×1.52002×(﹣1)2004的结果是( )A .B .C .﹣D .﹣8.(3分)如图所示,有两个长度相同的滑梯(即BC=EF ),左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等,则下列结论:(1)AB=DE ;(2)∠ABC +∠DFE=90°;(3)∠ABC=∠DEF 中正确的有( )A .1个B .2个C .3个D .0个9.(3分)如果x 2+6x +k 2恰好是一个整式的平方,那么常数k 的值为( )A .3B .﹣3C .±3D .910.(3分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:511.(3分)如图,已知∠ACB=60°,PC=12,点M ,N 在边CB 上,PM=PN .若MN=3,则CM 的长为( )A.3B.3.5C.4D.4.512.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的是()A.①②B.①③C.①②③D.①②③④二、填空题:本大题共6小题,每小题3分,共18分13.(3分)若点P(a+2,3)与点Q(﹣1,b+1)关于y轴对称,则ab=.14.(3分)计算:20182﹣2017×2019=.15.(3分)如图,在△ABC中,AB=AC=10,△BEC的周长是17,DE垂直平分AB,交AB于点D,交AC于点E,则BC=.16.(3分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.18.(3分)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P 到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.三、解答题:(本大题共6小题,共46分)19.(10分)计算:(1)(3x2y)2•(﹣15xy3)÷(﹣9x4y2)(2)(2a﹣3)2﹣(1﹣a)2(3)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.20.(7分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1的坐标(直接写答案):C1;(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.21.(6分)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.22.(7分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠BFC度数.23.(8分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.(8分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.2018-2019学年天津市南开区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)如图图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义,结合各选项所给图形进行判断即可.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,若AB=AD,则添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.∠BAC=∠DAC B.∠BCA=∠DCA C.CB=CD D.∠B=∠D=90°【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;C、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故C选项不符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(3分)下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2+a2b=4abC.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣a2+ab,错误;B、原式=4a2b2+a2b,错误;C、原式=6a2b,正确;D、原式=﹣a2+2a﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)在下列说法中,正确的是()A.如果两个三角形全等,则它们必是关于直线成轴对称的图形B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形C.等腰三角形是关于底边中线成轴对称的图形D.一条线段是关于经过该线段中点的直线成轴对称的图形【分析】根据图形成轴对称和轴对称图形的定义逐一判断即可,全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的.【解答】解:A、全等的三角形不一定是成轴对称,而成轴对称的两个三角形一定是全等的;故A错误.B、成轴对称的两个三角形一定是全等的;故B正确.C、等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称;故C错误.D、成轴对称的图形必须是两个,一个图形只能是轴对称图形;故D错误.故选:B.【点评】本题考查了轴对称和轴对称图形的定义和性质,对于这两个概念要掌握其区别和联系.5.(3分)如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对B.5对C.6对D.7对【分析】由条件可判定四边形ABCD为平行四边形,则可知O为AC、BD、EF的中点,可知△ABO≌△CDO,△ABC≌△CDA,△AEO≌△CFO,△EOD≌△FOB,△AOD≌△BOC,△ABD≌△CDB,共6组.【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理可得△ABC≌△CDA,∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴OA=OC,OB=OD,在△AOB和△COD中,,∴△AOB≌△BOD(SAS),同理可得△BOC≌△DOA,由平行四边形的性质可得AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),同理可得△DOE≌△BOF,所以共有六组.故选:C.【点评】本题主要考查全等三角形的判定方法,由条件得到四边形ABCD为平行四边形是解题的关键.6.(3分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.7.(3分)计算()2003×1.52002×(﹣1)2004的结果是()A.B.C.﹣D.﹣【分析】将原式化为同底数幂的乘法解答.【解答】解:()2003×1.52002×(﹣1)2004=×[()2002×1.52002]×(﹣1)2004=×(×)2002=×1=.故选:A.【点评】本题考查了乘方、积的乘方,理清指数的变化是解题的关键.8.(3分)如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,则下列结论:(1)AB=DE;(2)∠ABC+∠DFE=90°;(3)∠ABC=∠DEF中正确的有()A.1个B.2个C.3个D.0个【分析】利用HL证明△ABC≌△DEF,根据全等三角形的性质,可判断各结论.【解答】解:∵在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).则(1)AB=DE,正确;(2)∠ABC+∠DFE=90°,正确;(3)∠ABC=∠DEF.故选:C.【点评】本题考查了全等三角形的应用,解答本题的关键是判断△ABC ≌△DEF ,注意掌握全等三角形的性质:对应边相等、对应角相等.9.(3分)如果x 2+6x +k 2恰好是一个整式的平方,那么常数k 的值为( )A .3B .﹣3C .±3D .9【分析】本题考查完全平方公式的灵活应用,中间项为两平方项乘积的2倍,由此可得出k 的值.【解答】解:∵x 2+6x +k 2是完全平方式,∴6x=2×|k |x ,解得k=±3.故选:C .【点评】本题主要考查完全平方公式,比较简单,根据一个平方项及中间项确定这个数.10.(3分)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵点O 是内心,∴OE=OF=OD ,∴S △ABO :S △BCO :S △CAO =•AB•OE :•BC•OF :•AC•OD=AB :BC :AC=2:3:4, 故选:C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.11.(3分)如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3B.3.5C.4D.4.5【分析】首先过点P作PD⊥CB于点D,利用直角三角形中30°所对边等于斜边的一半得出CD的长,再利用等腰三角形的性质求出CM的长.【解答】解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.【点评】此题主要考查了直角三角形中30°所对边等于斜边的一半得出CD的长以及等腰三角形的性质,得出CD的长是解题关键.12.(3分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE ⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的是()A.①②B.①③C.①②③D.①②③④【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt △DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS 判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH 垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【解答】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.二、填空题:本大题共6小题,每小题3分,共18分13.(3分)若点P(a+2,3)与点Q(﹣1,b+1)关于y轴对称,则ab=﹣2.【分析】根据关于y轴的对称点的坐标特点分别求出a,b,根据有理数的乘法法则计算.【解答】解:∵点P(a+2,3)与点Q(﹣1,b+1)关于y轴对称,∴a+2=1,b+1=3,解得,a=﹣1,b=2,则ab=﹣2,故答案为:﹣2.【点评】本题考查的是关于y轴的对称点的坐标特点,掌握关于y轴的对称点的坐标特点是横坐标互为相反数,纵坐标不变是解题的关键.14.(3分)计算:20182﹣2017×2019=1.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20182﹣(2018﹣1)×(2018+1)=20182﹣20182+1=1,故答案为:1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.(3分)如图,在△ABC中,AB=AC=10,△BEC的周长是17,DE垂直平分AB,交AB于点D,交AC于点E,则BC=7.【分析】求出AE=BE,求出△BEC的周长=AB+BC,代入求出即可.【解答】解:∵DE垂直平分AB,交AB于点D,交AC于点E∴AE=BE,∵AB=AC=10,∴△BEC的周长是BE+CE+BC=AE+CE+BC=AC+BC=17,∴BC=7,故答案为:7.【点评】本题考查了线段垂直平分线的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.(3分)在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标(1,5)或(1,﹣1)或(5,﹣1).【分析】根据题意画出符合条件的所有情况,根据点A、B、C的坐标和全等三角形性质求出即可.【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).【点评】本题考查了全等三角形性质和坐标与图形性质的应用,关键是能根据题意求出符合条件的所有情况,题目比较好,但是一道比较容易出错的题目.17.(3分)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC 于点N,连接MN,则△AMN的周长为6.【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【解答】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【点评】此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.18.(3分)已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P 到达点B时,P、Q两点停止当t=1或2时,△PBQ是直角三角形.【分析】本题涉及的是一道有关等边三角形的性质和勾股定理来解答的数形结合试题,根据等边三角形的性质可以知道这个直角三角形∠B=60°,所以就可以表示出BQ与PB的关系,要分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可.【解答】解:根据题意得AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=3﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒).答:当t=1秒或t=2秒时,△PBQ是直角三角形.故答案为:1或2.【点评】本题主要考查了直角三角形的判定、勾股定理等知识点.考查学生数形结合的数学思想方法.三、解答题:(本大题共6小题,共46分)19.(10分)计算:(1)(3x2y)2•(﹣15xy3)÷(﹣9x4y2)(2)(2a﹣3)2﹣(1﹣a)2(3)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.【分析】(1)根据积的乘方和同底数幂的乘除法可以解答本题;(2)根据完全平方公式可以解答本题;(3)根据平方差公式和多项式乘多项式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)(3x2y)2•(﹣15xy3)÷(﹣9x4y2)=9x4y2•(﹣15xy3)÷(﹣9x4y2)=15xy3;(2)(2a﹣3)2﹣(1﹣a)2=4a2﹣12a+9﹣1+2a﹣a2=3a2﹣10a+8;(3)(2+x)(2﹣x)+(x﹣1)(x+5)=4﹣x2+x2+4x﹣5=4x﹣1,当x=时,原式=4×﹣1=6﹣1=5.【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.20.(7分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点C1的坐标(直接写答案):C1(1,﹣1);(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.【分析】(1)分别作出点A、B、C关于y轴的对称点A1、B1、C1即可.(2)根据点C1的位置即可解决问题.(3)利用分割法计算即可.(4)连接BC1与y轴的交点即为所求的点P.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图象可知:C1(1,﹣1);故答案为(1,﹣1).(3)S=3×5﹣×1×5﹣×2×3﹣×2×3=;故答案为.(4)如图,连接BC1与y轴的交点为P,点P即为所求.【点评】本题考查作图﹣轴对称变换,最短问题等知识,解题的关键是熟练掌握对称作图,学会利用对称的性质,解决最短问题,属于中考常考题型.21.(6分)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD ≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.(7分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠BFC度数.【分析】(1)根据HL证明Rt△ABE≌Rt△CBF;(2)因为△ABC是等腰直角三角形,所以∠BAC=45°,得∠BAE=20°,由(1)中的全等得:∠BCF=∠BAE=20°,从而得出结论.【解答】(1)证明:∵∠ABC=90°,∴∠ABC=∠CBF=90°,在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=∠ACB=45°,∵∠CAE=25°,∴∠BAE=45°﹣25°=20°,∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=20°,∴∠BFC=90°﹣20°=70°.【点评】本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是45°,除了熟知三角形一般的全等判定方法外,还要掌握直角三角形的全等判定HL:即有一直角边和斜边对应相等的两直角三角形全等.23.(8分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE ≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.24.(8分)如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点.【分析】(1)直接运用直角三角形30°角的性质即可.(2)连接OD,易证△ADO为等边三角形,再证△ABD≌△AEO即可.(3)作EH⊥AB于H,先证△ABO≌△AEH,得AO=EH,再证△AFD≌△EFH即可.【解答】(1)解:∵在Rt△ABO中,∠BAO=30°,∴AB=2BO=2;(2)证明:连接OD,∵△ABE为等边三角形,∴AB=AE,∠EAB=60°,∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,∴∠DAO=60°.∴∠EAO=∠NAB又∵DO=DA,∴△ADO为等边三角形.∴DA=AO.在△ABD与△AEO中,∵,∴△ABD≌△AEO(SAS).∴BD=OE.(3)证明:作EH⊥AB于H.∵AE=BE,∴AH=AB,∵BO=AB,∴AH=BO,在Rt△AEH与Rt△BAO中,,∴Rt△AEH≌Rt△BAO(HL),∴EH=AO=AD.又∵∠EHF=∠DAF=90°,在△HFE与△AFD中,,∴△HFE≌△AFD(AAS),∴EF=DF.∴F为DE的中点.【点评】本题主要考查全等三角形与等边三角形的巧妙结合,来证明角相等和线段相等.。
山西省实验中学2018-2019学年八年级下学期期中考试数学试题
![山西省实验中学2018-2019学年八年级下学期期中考试数学试题](https://img.taocdn.com/s3/m/c739fe906c175f0e7dd13730.png)
山西省实验中学2018~2019 学年第二学期期中考试试题数学试卷第一卷(客观题)说明:本试卷为闭卷笔答,考试时不允许携带科学计算器,时间90 分钟,满分100 分一.选择题(本大题共10 个小题,每小题 3 分,共30 分)在下列每小题给出的四个选项中,只有一个符合要求,请选出并填入下表相应位置.1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是( )A.B.C.D.2.若x>y ,则下列变形正确的是( )A.2x +3 > 2y + 3 B.x -b <y -b C.-3x >-3y D.-x>-y3 3 3.如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为( )4.下列命题中逆命题是真命题的是( )A.若a > 0 , b > 0 ,则a ⋅b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等5.如图, 天平托盘中的每个砝码的质量都是 1 千克, 则图中显示物体质量范围是( )A .大于 2 千克B .小于 3 千克C .大于 2 千克且小于 3 千克D .大于 2 千克或小于 3 千克6.如图, ∆ABC 中, A B = AC ,点 D 是 B C 边的中点,若 D E ⊥ AB , D F ⊥ AC ,垂足分别是 E 、 F ,则下列结论不一定正确的是()A . ∠B = ∠CB . D E = DFC . B E = CFD . AE = BE7. 关于等边三角形,下列说法中错误的是( )A .等边三角形中,各边都相等B .等腰三角形是特殊的等边三角形C .两个角都等于60︒ 的三角形是等边三角形D .有一个角为60︒ 的等腰三角形是等边三角形8.如图,在∆ABC 中,∠BAC = 90︒ ,∠C = 30︒ , AD ⊥ BC 于 D ,BE 是∠ABC 的平分线, 且交 AD 于 P ,如果 AP = 2 ,则 AC 的长为A .2B .4C .6D .89.某商品的进价为800 元,出售时标价1200 元,商场准备打折销售,但要保证利润不少于5% ,则商场可打的折扣最多为A.6 折B.7 折C.8 折D.9 折10.如图,∆ABC 是等腰直角三角形,BC 是斜边,点P 是∆ABC 内部一点,将∆ABP 绕点A 逆时针旋转后,能与∆ACP'重合,如果AP = 3 ,那么PP'的长等于3二.填空题(每空3 分,共18 分)11.命题“两直线平行,同旁内角互补”的逆命题是.12.“x 与3的和不小于-6 ”,用不等式表示为.13.用反证法证明命题“在一个三角形中,至少有一个内角大于或等于60° ”时,应首先假设.14.如图,在∆ABC 中,B C 的垂直平分线分别交A C ,BC 于点D,E.若∆ABC 的周长为30,B C =10 ,则∆ABD 的周长为.15.如图,在∆ABC中,AB=AC,∠A=40︒,将∆ABC绕点B逆时针旋转得到△A'BC',若点C 的对应点C'落在A B 边上,则旋转角为.⎨⎪16.如图,直线 y 1 = k 1x + b 1 与坐标轴交于点(-4, 0) 和(0, 2.5) ;直线 y 2 = k 2 x + b 2 与坐标轴交三.简答题(共 52 分) (4 分) (1)解不等式: 2x - 7 < 5 - x ,并把它的解集表示在数轴上. ⎧3 - 2x ≤ 5(5 分) (2)解不等式组: ⎪x x + 1-< 0 ⎩ 2 3(8 分)(1)画出将∆ABC 向下平移 4 个单位长度后的三角形∆A 1B 1C 1 ; (2)画出将∆ABC 绕点O 顺时针旋转 90°后的∆A 2 B 2C 2 ; (3) ∆ABC 绕点B 旋转 180°后的∆A 3 B 3C 3 中C 3 的坐标为.(本题 6 分)如图,在∆ABC 中, AB = AC , AD 是高, AM 是∆ABC 外角∠CAE 的平分线. (1)用尺规作图方法,作∠AD C的平分线D(保留作图痕迹,不写作法和证明) (2)设 DN 与 AM 交于点 F ,判断并说明∆ADF 的形状. (6 分)已知购买1 个足球和 1 个篮球共需 130 元,购买2 个足球和 1 个篮球共需 180 元.(1)求每个足球和每个篮球的售价; (2)如果某校计划购买这两种球共 54 个,总费用不超过 4000 元,问最多可买多少个篮球?(8 分)如图,在∆ABC 中, ∠C = 90︒ , A D 是∠BAC 的平分线, D E ⊥ AB 于 E , F 在AC 上,且 BD = DF .(1)求证: CF = EB ;(2)试判断 AB 与 AF , EB 之间存在的数量关系.并说明理由.(7 分)2018 年4月22 日是第49 个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30 元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?(8 分)如图 1,在∆ABC 中, ∠ACB = 90︒ , A C = BC , ∠EAC = 90︒ ,点 M 为射线 A E 上任意一点(不与 A ,连接 C M ,将线段 C M 绕点 C 按顺时针方向旋转90︒ 得到线段 CN ,直线 NB 分别交直线CM 、射线 AE 于点 F 、D . (1)直接写出∠NDE 的度数; (2)如图 2、图 3,当∠E A C为锐角或钝角时,其他条件(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图 4,若∠EAC = 15︒ , ∠ACM = 60︒ ,直线 CM 与 AB 交于 G , BD = 他条件不变,求线段 AM 的长.6 + 2 ,其 2。
精品解析:河南省实验中学2019-2020学年八年级上学期期中考试数学试题(解析版)
![精品解析:河南省实验中学2019-2020学年八年级上学期期中考试数学试题(解析版)](https://img.taocdn.com/s3/m/fbc292c2d1f34693daef3e91.png)
2019-2020学年八年级上学期期中考试数学试题一、选择题(每小题3分,共30分)1.下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,因此是轴对称图形的有2个,故选B.2.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【答案】D【解析】∵5<AB<25,∴A、B间的距离不可能是5,故选D.3.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°【答案】C【解析】因为∠ADE是△DEB的外角,所以∠ADE=∠DEB+∠EBD=45°+90°=135°,故选C.4.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SASB.ASAC.AASD.SSS【答案】D【解析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.5.已知点P(-6,3)关于x轴的对称点Q的坐标(a,b),则M(-a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵点P(-6,3)关于x轴的对称点Q的坐标(a,b),∴a=-6,b=-3,∴M(-a,b)为M(6,-3),在第四象限,故选D.6.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.①②⑤B.①②③C.①④⑥D.②③④【答案】D【解析】在A选项中,根据SAS可证明△ABC≌△DEF;在B选项中,根据SSS可证明△ABC≌△DEF;在C选项中,根据AAS可证明△ABC≌△DEF;在D选项中,只满足SSA,而SSA不能判定两个三角形全等,所以以D选项中的三个已知条件,不能判定△ABC和△DEF全等,故选D.7.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC【答案】D【解析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选B.8.已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A.10B.6C.4或6D.6或10【答案】A【解析】设腰长为a,则底边长为a+6或a-6,若底边长为a+6,则有2a+a+6=24,a=6,此时底边长为12,6+6=12,构不成三角形;若底边长为a-6,则有2a+a-6=24,a=10,综上,所以三角形的腰长为10,故选A.9.如图,在正方形网格中,网格线的交点称为格点.已知A,B是两格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合题意的点C有()A.6个B.7个C.8个D.9个【答案】C【解析】试题分析:如图:分情况讨论①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选A.考点:1.等腰直角三角形;2.勾股定理.【此处有视频,请去附件查看】10.如图,每个小方格都是边长为1的小正方形,△ABC是格点三角形(即顶点恰好是小正方形的顶点),在图中与△ABC全等且有一条公共边的所有格点三角形的个数是()A.5B.4C.3D.2【答案】B【解析】考点:全等三角形的判定。
2018-2019学年山西省运城实验中学八年级(下)期中数学试卷
![2018-2019学年山西省运城实验中学八年级(下)期中数学试卷](https://img.taocdn.com/s3/m/cf4dc6f26037ee06eff9aef8941ea76e58fa4a27.png)
2018-2019学年山西省运城实验中学八年级(下)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2018春•胶州市期中)已知实数a、b满足a+2>b+2,则下列选项错误的为()A.a>b B.a+1>b+1C.﹣a<﹣b D.2a>3b2.(3分)(2018•北塔区模拟)下列四个图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2012•凉山州)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.(3分)(2018春•大田县期中)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6B.8C.D.55.(3分)(2019春•新罗区期中)如图,将周长为8的△ABC沿BC方向向右平移2个单位长度,得到△DEF,连接AD,则四边形ABFD的周长为()A.6B.8C.10D.126.(3分)(2020秋•莒南县期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC=15,则CD的长为()于点D,AB=10,S△ABDA.3B.4C.5D.67.(3分)(2019春•平度市期中)如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.728.(3分)(2015•辽阳)如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1B.x≥3C.x≤﹣1D.x≤39.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)10.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.B.C.D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)(2015春•崇明区期末)将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是.12.(3分)(2019春•峄城区期中)如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=.13.(3分)(2019春•市中区期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC,AB=3,将△ABC沿AB方向平移得△DEF,若△ABC与△DEF重叠部分的面积为2,则AD=.14.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=.15.(3分)(2018春•太原期中)如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(2019春•盐湖区校级期中)解答下列各题:(1)解不等式:2x+1≤3(3﹣x);(2)解不等式组,并将其解集表示在如图所示的数轴上.17.(10分)(2019春•盐湖区校级期中)在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.18.(10分)(2018秋•饶平县期末)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.19.(9分)(2018春•胶州市期中)已知:如图,△ABC中,D是AB上一点,DE⊥BC于E,DF⊥AC于F,点G在AC上,且DG=DB,FG=BE.求证:CD平分∠ACB.20.(8分)(2019春•岱岳区期末)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?21.(10分)(2018春•胶州市期中)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(10分)(2020•灌阳县一模)某电器超市销售每台进价分别为200元,170元的A、B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(10分)(2018春•胶州市期中)如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.2018-2019学年山西省运城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由不等式的性质得a>b,a+1>b+1,﹣a<﹣b.故选:D.2.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选:A.4.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.5.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=8+2+2=12.故选:D.6.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.7.【解答】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选:B.8.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.9.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.10.【解答】解:连接AD,∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:AD===8,∵S=,△ADB∴DE===,故选:D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.【解答】解:将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2).12.【解答】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴4∠B=90°∴∠B=22.5°故答案为22.5°.13.【解答】解:由平移可得∠BDG=∠A=45°=∠ABC,∴△BDG是等腰直角三角形,∵△ABC与△DEF重叠部分的面积为2,∴DG×BG=2,∴DG=BG=2,∴BD==2,∴AD=AB﹣BD=3﹣2=,故答案为:.14.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=30°,AD=BD,∴DA=DC,∴BC=DC+2DC=15,∴CD=5,故答案为5.15.【解答】解:过D作DH⊥BC于H,∵DC=DE=10,∴EH=HC,∵∠CDE=120°,∴∠DCH=30°,∴CH=EH=5,∴CE=10,∴BE=BC﹣CE=24﹣10,∵F是BE的中点,∴BF==12﹣5,过A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=BC=12,AM=12,∴FM=BM﹣BF=12﹣(12﹣5)=5,由勾股定理得:AF====13.故答案为:13.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.【解答】解:(1)去括号得:2x+1≤9﹣3x,移项合并得:5x≤8,解得:x≤1.6;(2),由①得:x>﹣2,由②得:x≤15,则不等式组的解集为﹣2<x≤15.17.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;18.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.19.【解答】证明:∵DE⊥BC于E,DF⊥AC于F,∴∠DEB=∠DFG=90°,在Rt△DBE与Rt△DGF中,∴Rt△DBE≌Rt△DGF(HL),∴DE=DF,∴CD平分∠ACB.20.【解答】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1﹣y2=﹣x+20,∵x>15,∴﹣x<﹣15,∴﹣x+20<5,若y1<y2,则﹣x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则﹣x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则﹣x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.21.【解答】解:如图所示,△ABC即为所求.22.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.23.【解答】解:(1)PD=PE,理由如下:连接PC,如图连接PB∵△ABC是等腰直角三角形,P是AB中点∴CP⊥AB,∠ACP=∠BCP=∠ACB=45°∴∠ACP=∠B=∠BCP=45°∴BP=CP∵∠DPC+∠CPE=90°=∠BPE+∠CPE∴∠DPC=∠PBE且BP=CP,∠ACP=∠B∴△DPC≌△PEB∴DP=PE(2)∵AC=BC=2,∠C=90°∴AB=2∴AP=BP=CP=△PCE是等腰三角形当PC=PE=时,即B,E重合,BE=0当PC=CE=时,E在线段BC上,则BE=2﹣当PE=EC,且∠PCB=45°∴∠PEC=90°∴EC=1∴BE=1。
2018-2019学年福建省福州市仓山区八年级(上)期中数学试卷(解析版)
![2018-2019学年福建省福州市仓山区八年级(上)期中数学试卷(解析版)](https://img.taocdn.com/s3/m/ad18405fd1f34693dbef3ee9.png)
2018-2019学年福建省福州市仓山区八年级第一学期期中数学试卷一、选择题(共10题,每题4分,满分40分.)1.下列图形具有稳定性的是()A.B.C.D.2.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.3.如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC=()A.4cm B.5cm C.6cm D.无法确定4.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°5.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135°D.180°6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°8.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是()A.2B.3C.4D.69.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙10.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()A.AC B.AD C.BE D.BC二、填空题:本题共8小题,每小题4分,共32分11.一个三角形的两边长分别是2和7,最长边a为偶数,则这个三角形的周长为.12.在平面直角坐标系中,点P(﹣4,3)关于y轴的对称点坐标为.13.如果将一副三角板按如图方式叠放,那么∠1=.14.某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足分别为D、E,若BD=3,CE=2,则DE=.17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是.18.如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于H.①△BCE≌△ACD;②CF=CH;③△CFH为等边三角形;④FH∥BD;⑤AD与BE的夹角为60°,以上结论正确的是.三、解答题。
八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)
![八年级2018-2019学年度上学期期中考试 数学试题(word版,含答案)](https://img.taocdn.com/s3/m/1da52c6c2b160b4e777fcf19.png)
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
2018-2019学年重庆八中八年级(上)期中数学试卷含答案
![2018-2019学年重庆八中八年级(上)期中数学试卷含答案](https://img.taocdn.com/s3/m/397f38d881c758f5f61f67d9.png)
2018-2019学年重庆八中八年级(上)期中数学试卷一、选择题(每小题4分,共10小题,共40分)1.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)2.要使式子有意义,则x的取值范围是()A.x>﹣2B.x>2C.x≤2D.x<23.若点A(n,﹣3)在y轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.若2y﹣3x=7,则代数式5﹣2y+3x的值为()A.﹣12B.﹣2C.2D.125.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x﹣k的图象大致是()A.B.C.D.6.将直线y=﹣2x+3沿y轴向下平移3个单位后与y轴的交点坐标为()A.(0,﹣6)B.(0,0)C.(0,6)D.(0,9)7.如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,∠ABC=90°,则四边形ABCD的面积为()A.B.4C.1D.28.已知点M(a,1),N(3,1),且MN=2,则a的值为()A.1B.5C.1或5D.不能确定9.根据下表中一次函数自变量x与因变量y的对应值,可得P的值为()A.3B.2C.1D.010.如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端的滑动距离()A.等于1米B.大于1米C.小于1米D.不能确定二、填空题(共6小题,每小题4分,满分24分)11.计算=.12.若关于x的函数y=(m+1)x+2是一次函数,则m=.13.若点P(2,a)为直线y=2x+1上一点,则点P关于x轴的对称点Q的坐标是.14.如图,等腰△ABC底边上的高AD=BC,AB=2,那么△ABC的周长为.15.直线y=x+1与y=﹣2x+a的交点在x轴上,则a的值是.16.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,经过计算发现,它的最短路径是20cm,则这个正方体的棱长为cm.三、解答題:(17题8分,18题8分,19题10分,20题10分,共36分)17.计算:(1)﹣×(﹣4)2+|﹣|×6(2)(﹣1)2﹣(+)(﹣)18.解二元一次方程组:(1)(2)19.如图,已知点A的坐标为(1,2),点B的坐标为(﹣2,3).(1)请你根据题目条件,画出平面直角坐标系,并写出点C,点D的坐标;(2)连接AC,CD,AD,请画出△ACD关于x轴的对称△A′C′D′.20.如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x轴、y轴分别交于A、B两点,与直线l2:y=3x交于点C,其中点C的坐标为(,c),点B的坐标为(0,3).(1)求点C的坐标;(2)求直线l1的表达式;(3)在x轴上有一点D(3,0),求△BCD的面积.四、填空题(每小题4分,共5个小题,共20分)21.对于两个实数a,b(其中a>b),定义一种新运算:a⊗b=,如:9⊗5==7,那么(﹣3)⊗(﹣5)=.22.如图,在△ABC中,线段AE,BF,CG分别为中线,且相交于点M,若AM=15,BM=9,GM=6,则△ABM的面积为.23.若关于x,y的方程的解满足x﹣y=4,则m=.24.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第一次碰到长方形边上的点的坐标为(3,0),则第21次碰到长方形边上的点的坐标为.25.如图,已知矩形ABCD,点E在边AD上,连接BE将△ABE沿BE翻折,得到△MBE,且点M是CD 中点,取BM中点N,点P为线段BE上一动点,连接PN,PM,若AD长为2,则PM+PN的最小值为.五、解答题:(26题10分,27题10分,28题10分,共30分)26.如图①,A、B、C三地依次在一直线上,两辆汽车甲、乙分别从A、B两地同时出发驶向C地,如图②,是两辆汽车行驶过程中到C地的距离s(km)与行驶时间t(h)的关系图象,其中折线段EF﹣FG是甲车的图象,线段OM是乙车的图象.(1)图②中,a的值为;点M的坐标为;(2)当甲车在乙车与B地的中点位置时,求行驶的时间t的值.27.阅读下列材料:问题:某班在购买啦啦操比赛的物资时,准备购买红色、黄色,蓝色三种颜色的啦啦球,其颜色不同则价格不同,第一次买了15个红色啦啦球、7个黄色啦啦球、11个蓝色啦啦球共用1084元,第二次买了2个红色啦啦球、4个黄色啦啦球、3个蓝色啦啦球共用304元,试问第三次买了红、黄、蓝啦啦球各一个共需多少元?(假定三次购买红、黄、蓝啦啦球单价不变)解:设购买红、黄、蓝啦啦球的单价分别为x、y、z元,依题意得:上述方程组可变形为:设x+y+z=m,2x+z=n,上述方程组又可化为:①+4×②得:m=,即x+y+z=;答:第三次购买红、黄、蓝啦啦球各一个共需元.阅读后,细心的你,可以解决下列问题:某同学买13支黑笔、5支红笔、9个笔记本,共用去92.5元:如果买2支黑笔、4支红笔、3个笔记本,则共用去32元,试问只买一支黑笔、一支红笔、一个笔记本,共需多少钱?28.如图,在△ABC中,CD⊥AB于点D,AE⊥BC于点E,AE、CD交于点F,且∠DBF=45°.(1)若AF=,BF=,求AB的长;(2)求证:AB﹣CF=BF.2018-2019学年重庆八中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共10小题,共40分)1.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【分析】直接利用已知平面直角坐标系分析得出答案.【解答】解:如图所示:点P的坐标为:(3,﹣4).故选:A.【点评】此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.2.要使式子有意义,则x的取值范围是()A.x>﹣2B.x>2C.x≤2D.x<2【分析】根据被开方数大于等于0列式求解即可.【解答】解:依题意得:2﹣x≥0,解得x≤2.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.若点A(n,﹣3)在y轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案.【解答】解:∵点A(n,﹣3)在y轴上,∴n=0,则点B(n﹣1,n+1)为:(﹣1,1),在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确得出n的值是解题关键.4.若2y﹣3x=7,则代数式5﹣2y+3x的值为()A.﹣12B.﹣2C.2D.12【分析】根据“2y﹣3x=7”,得到:﹣2y+3x=﹣7,代入代数式5﹣2y+3x,即可得到答案.【解答】解:∵2y﹣3x=7,∴﹣2y+3x=﹣7,原式=5+(﹣7)=﹣2,故选:B.【点评】本题考查了代数式求值,正确掌握整体代入思想是解题的关键.5.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x﹣k的图象大致是()A.B.C.D.【分析】由正比例函数图象在第二、四象限可得出k<0,由1>0,﹣k>0,利用一次函数图象与系数的关系,即可找出一次函数y=x﹣k的图象经过的象限,此题得解.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0.∵1>0,﹣k>0,∴一次函数y=x﹣k的图象经过第一、二、三象限.故选:A.【点评】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b 的图象在一、二、三象限”是解题的关键.6.将直线y=﹣2x+3沿y轴向下平移3个单位后与y轴的交点坐标为()A.(0,﹣6)B.(0,0)C.(0,6)D.(0,9)【分析】利用一次函数平移规律得出平移后解析式,进而得出图象与x轴的交点.【解答】解:∵直线y =﹣2x +3沿y 轴向下平移3个单位, ∴平移后的解析式为:y =﹣2x , 当x =0,则y =0,∴平移后直线与y 轴的交点坐标为:(0,0). 故选:B .【点评】此题主要考查了一次函数图象与几何变换,得出平移后解析式是解题关键.7.如图,在四边形ABCD 中,AB =BC =2,CD =1,AD =3,∠ABC =90°,则四边形ABCD 的面积为( )A .B .4C .1D .2【分析】根据勾股定理求出AC ,根据勾股定理的逆定理求出∠ACD =90°,根据三角形的面积公式分别求出△ABC 和△ACD 的面积,即可得出答案. 【解答】解:在Rt △ABC 中,由勾股定理得:AC ==2,∵CD =1,AD =3,AC =2,∴AC 2+CD 2=AD 2, ∴∠ACD =90°, ∴四边形ABCD 的面积: S =S △ABC +S △ACD =AB •BC +AC •CD =×2×2+×1×2=2+故选:D .【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD 是直角三角形是解此题的关键. 8.已知点M (a ,1),N (3,1),且MN =2,则a 的值为( ) A .1B .5C .1或5D .不能确定【分析】依据平面直角坐标系中两点间的距离公式,即可得到a 的值.【解答】解:∵M(a,1),N(3,1),且MN=2,∴|a﹣3|=2,解得a=1或5,故选:C.【点评】本题主要考查了坐标与图形性质,掌握两点间的距离公式是解决问题的关键.9.根据下表中一次函数自变量x与因变量y的对应值,可得P的值为()A.3B.2C.1D.0【分析】设一次函数的解析式为:y=kx+b,把(﹣2,3)和(0,﹣1)代入,用待定系数法求得k和b 的值,即可得到一次函数的解析式,把(﹣1,P)代入,即可得到P的值.【解答】解:设一次函数的解析式为:y=kx+b,把(﹣2,3)和(0,﹣1)代入得:,解得:,即一次函数的解析式为:y=﹣2x﹣1,把(﹣1,P)代入得:P=﹣2×(﹣1)﹣1=1,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握待定系数法是解题的关键.10.如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端的滑动距离()A.等于1米B.大于1米C.小于1米D.不能确定【分析】根据题意画出图形,利用勾股定理求出底端到墙的距离BE与BF的长,滑动的距离即BF﹣BE 的值.【解答】解:如图,AC=EF=10米,AB=8米,AE=1米,求CF;∵∠B=90°,由勾股定理得,BC=6米,又∵AE=1米,BE=7米,EF=10米,由勾股定理得,BF=米,∵>,即>7,∴﹣6>1.故选:B.【点评】此题主要考查学生对勾股定理在实际生活中的运用能力,做此题时要注意弄清题意,明白是要求梯足又向后移了多少即CF的长,而不是BF的长.二、填空题(共6小题,每小题4分,满分24分)11.计算=2.【分析】先求﹣2的平方,再求它的算术平方根,进而得出答案.【解答】解:==2,故答案为:2.【点评】本题考查了二次根式的性质与化简,注意算术平方根的求法,是解此题的关键.12.若关于x的函数y=(m+1)x+2是一次函数,则m=1.【分析】根据一次函数的定义即可求出m的值.【解答】解:由题意可知:,解得:m=1故答案为:1.【点评】本题考查一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.13.若点P(2,a)为直线y=2x+1上一点,则点P关于x轴的对称点Q的坐标是(2,﹣5).【分析】把点P(2,a)代入y=2x+1,得到a的值,即可得到点P的坐标,关于x轴对称点Q的坐标为:点P的横坐标不变,纵坐标为点P纵坐标的相反数.【解答】解:把点P(2,a)代入y=2x+1得:a=2×2+1=5,即点P的坐标为:(2,5),点P关于x轴的对称点Q的坐标为:(2,﹣5),故答案为:(2,﹣5).【点评】本题考查了一次函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标,解题的关键是:正确掌握代入法和求点关于x轴,y轴对称的点的坐标.14.如图,等腰△ABC底边上的高AD=BC,AB=2,那么△ABC的周长为4+4.【分析】根据等腰三角形的性质得到BD=DC,根据题意得到AD=BD=DC,根据等腰直角三角形的性质计算即可.【解答】解:∵AB=AC,AD⊥BC,∴BD=DC,∵AD=BC,∴AD=BD=DC,∴∠B=45°,∴BD=AB=2,∴BC=2BD=4,∴△ABC的周长=AB+AC+BC=4+4,故答案为:4+4.【点评】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键.15.直线y=x+1与y=﹣2x+a的交点在x轴上,则a的值是﹣2.【分析】根据x轴上的点的纵坐标为0,利用直线y=x+1求出交点坐标,再把交点坐标代入直线y=﹣2x+a计算即可得解.【解答】解:∵交点在x轴上,∴x+1=0,解得x=﹣1,∴交点坐标为(﹣1,0),把交点坐标代入直线y=﹣2x+a得,2+a=0,解得a=﹣2.故答案为:﹣2.【点评】本题考查了两直线相交或平行的问题,根据x轴上的交点的纵坐标为0,利用直线y=x+1求出交点坐标是解题的关键.16.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,经过计算发现,它的最短路径是20cm,则这个正方体的棱长为4cm.【分析】先把正方体展开,根据两点之间线段最短,即可得出由A爬到B的最短途径.【解答】解:如图,将正方体展开,则线段AB即为最短的路线,设这个正方体的棱长为xcm,∴AB==x=20,∴x=4,∴这个正方体的棱长为4cm,故答案为:4.【点评】本题考查平面展开最短路径问题,关键是知道两点之间线段最短,找到起点终点,根据勾股定理求出.三、解答題:(17题8分,18题8分,19题10分,20题10分,共36分)17.计算:(1)﹣×(﹣4)2+|﹣|×6(2)(﹣1)2﹣(+)(﹣)【分析】(1)先乘方、化简绝对值,再乘法,最后求和;(2)先用完全平方公式、平方差公式分别计算(﹣1)2和(+)(﹣),再求和.【解答】解:(1)原式=﹣×16+×6=﹣8+15=7;(2)原式=3﹣2+1﹣(2﹣2)=4﹣2﹣3=1﹣2.【点评】本题考查了有理数的混合运算和二次根式的混合运算.掌握实数的运算顺序和运算法则是解决本题的关键.运用公式可以使运算简便.18.解二元一次方程组:(1)(2)【分析】(1)利用加减消元法解之即可,(2)利用加减消元法解之即可.【解答】解:(1),①+②得:3x=10,解得:x=,把x=代入②得:﹣y=1,解得:y=,方程组的解为:,(2)原方程组可变形为:,②﹣①得:7y=﹣7,解得:y=﹣1,把y=﹣1代入①得:x+2=4,解得:x=2,方程组的解为:.【点评】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.19.如图,已知点A的坐标为(1,2),点B的坐标为(﹣2,3).(1)请你根据题目条件,画出平面直角坐标系,并写出点C,点D的坐标;(2)连接AC,CD,AD,请画出△ACD关于x轴的对称△A′C′D′.【分析】(1)依据点A的坐标为(1,2),点B的坐标为(﹣2,3),即可得到平面直角坐标系,并点的点C,点D的坐标;(2)连接AC,CD,AD,依据轴对称的性质,即可得到△ACD关于x轴的对称△A′C′D′.【解答】解:(1)平面直角坐标系如图所示,点C的坐标为(4,3),点D的坐标为(2,5);(2)如图所示,△A′C′D′即为所求.【点评】本题主要考查了利用轴对称变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照轴对称的性质确定对应点后,再顺次连接对应点即可得到图形.20.如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x轴、y轴分别交于A、B两点,与直线l2:y=3x交于点C,其中点C的坐标为(,c),点B的坐标为(0,3).(1)求点C的坐标;(2)求直线l1的表达式;(3)在x轴上有一点D(3,0),求△BCD的面积.【分析】(1)把点C的坐标(,c)代入y=3x即可得到结论;(2)把点C(,)和点B(0,3)代入y=kx+b解方程组即可得到结论;(3)在y=﹣3x+3中,令y=0,则x=1,得到A(1,0),根据三角形的面积公式即可得到结论.【解答】解:(1)把点C 的坐标(,c )代入y =3x 得,c =,∴点C 的坐标为(,); (2)把点C (,)和点B (0,3)代入y =kx +b 得,∴,∴直线l 1的表达式为:y =﹣3x +3;(3)在y =﹣3x +3中,令y =0,则x =1,∴A (1,0),∴△BCD 的面积=S △ABD ﹣S △ACD =×2×3﹣×2×=.【点评】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,交点坐标适合两个解析式是解题的关键.四、填空题(每小题4分,共5个小题,共20分)21.对于两个实数a ,b (其中a >b ),定义一种新运算:a ⊗b =,如:9⊗5==7,那么(﹣3)⊗(﹣5)= ﹣4 . 【分析】直接利用已知运算法则计算得出答案.【解答】解:(﹣3)⊗(﹣5)==﹣=﹣4.故答案为:﹣4. 【点评】此题主要考查了实数运算,正确掌握运算规律是解题关键.22.如图,在△ABC 中,线段AE ,BF ,CG 分别为中线,且相交于点M ,若AM =15,BM =9,GM =6,则△ABM 的面积为 54 .【分析】过M 作MH ⊥AB 于H ,设AG =BG =x ,根据勾股定理列方程得到AB =6,MH =,根据三角形的面积公式即可得到结论.【解答】解:过M 作MH ⊥AB 于H ,∵CG是AB的中线,∴AG=BG,设AG=BG=x,∴AM2﹣AH2=GM2﹣GH2,BM2﹣BH2=GM2﹣GH2,即,解得:x=3,GH=,∴AB=6,MH=,∴△ABM的面积=AB•MH=×6×=54.故答案为:54.【点评】本题考查了三角形的面积,三角形的中线,勾股定理,正确的作出辅助线是解题的关键.23.若关于x,y的方程的解满足x﹣y=4,则m=﹣1.【分析】利用加减消元法解方程组,得到含有m得x和y的值,根据“x﹣y=4”,得到关于m的一元一次方程,解之即可.【解答】解:,①+②得:3x=3m+3,解得:x=m+1,把x=m+1代入②得:m+1+y=3m﹣1,解得:y=2m﹣2,∵x﹣y=4,∴(m+1)﹣(2m﹣2)=4,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.24.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第一次碰到长方形边上的点的坐标为(3,0),则第21次碰到长方形边上的点的坐标为(8,3).【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出21次碰到长方形边上的点的坐标.【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵21÷6=3…3,∴第21次碰到长方形边上的点的坐标为(8,3),故答案为:(8,3).【点评】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.25.如图,已知矩形ABCD,点E在边AD上,连接BE将△ABE沿BE翻折,得到△MBE,且点M是CD 中点,取BM中点N,点P为线段BE上一动点,连接PN,PM,若AD长为2,则PM+PN的最小值为2.【分析】作点N关于BE的对称点N',连接PN',由轴对称的性质可得PN+PM=PN'+PM,依据当N',P,M三点共线时,PM+PN的最小值为N'M的长,即可得到PM+PN的最小值为2.【解答】解:如图,作点N关于BE的对称点N',连接PN',由折叠可得,BE平分∠ABM,AB=MB,∴点N'在AB上,又∵N是BM的中点,∴N'是AB的中点,由轴对称的性质可得PN=PN',∴PN+PM=PN'+PM,∴当N',P,M三点共线时,PM+PN的最小值为N'M的长,又∵四边形ABCD是矩形,M是CD的中点,∴四边形ADMN'是矩形,∴MN'=AD=2,∴PM+PN的最小值为2,故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.五、解答题:(26题10分,27题10分,28题10分,共30分)26.如图①,A、B、C三地依次在一直线上,两辆汽车甲、乙分别从A、B两地同时出发驶向C地,如图②,是两辆汽车行驶过程中到C地的距离s(km)与行驶时间t(h)的关系图象,其中折线段EF﹣FG是甲车的图象,线段OM是乙车的图象.(1)图②中,a的值为240;点M的坐标为(4,240);(2)当甲车在乙车与B地的中点位置时,求行驶的时间t的值.【分析】(1)先求出直线EF的解析式,进而求出点N的坐标,再根据点N的坐标求出直线OM的解析式,进而求出直线FG的解析式,即可得出a的值;(2)根据乙车行驶的路程与行驶时间的关系求解即可.【解答】解:(1)设EF的解析式为y=k1x+150,因为直线EF经过(2.5,0),所以2.5k1+150=0,解得k1=﹣60,所以EF的解析式为y=﹣60x+150;因为点M在EF上,所以点N的纵坐标为:﹣60×1.25+150=75,因为点N的坐标为(1.25,75);设直线OM的解析式为y=k2x,因为直线OM经过点N,所以1.25k2=75,解得k2=60,所以直线OM的解析式为y=60x,所以直线FG的解析式为y=60x﹣150,所以点G的纵坐标,即a=60×6.5﹣150=240,所以点M的横坐标为240÷60=4,即点M的坐标为(4,240).故答案为:240;(4,240);(2)由点M的坐标可知乙车的速度为240÷4=60(千米/时)当甲车在乙车与B地的中点位置时,行驶的时间t的值为.【点评】本题主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.27.阅读下列材料:问题:某班在购买啦啦操比赛的物资时,准备购买红色、黄色,蓝色三种颜色的啦啦球,其颜色不同则价格不同,第一次买了15个红色啦啦球、7个黄色啦啦球、11个蓝色啦啦球共用1084元,第二次买了2个红色啦啦球、4个黄色啦啦球、3个蓝色啦啦球共用304元,试问第三次买了红、黄、蓝啦啦球各一个共需多少元?(假定三次购买红、黄、蓝啦啦球单价不变)解:设购买红、黄、蓝啦啦球的单价分别为x、y、z元,依题意得:上述方程组可变形为:设x+y+z=m,2x+z=n,上述方程组又可化为:①+4×②得:m=100,即x+y+z=100;答:第三次购买红、黄、蓝啦啦球各一个共需100元.阅读后,细心的你,可以解决下列问题:某同学买13支黑笔、5支红笔、9个笔记本,共用去92.5元:如果买2支黑笔、4支红笔、3个笔记本,则共用去32元,试问只买一支黑笔、一支红笔、一个笔记本,共需多少钱?【分析】阅读:由关于m,n的方程组,利用①+4×②可求出m=100,进而可得出x+y+z=100,此问得解;解决问题:设购买1支黑笔需要x元,购买1支红笔需要y元,购买1个笔记本需要z元,根据“买13支黑笔、5支红笔、9个笔记本,共用去92.5元:买2支黑笔、4支红笔、3个笔记本,共用去32元”,即可得出关于x,y,z的三元一次方程组,将其拆解换元后可得出关于m,n的二元一次方程组,利用①+4×②可求出m的值,及x+y+z的值,此题得解.【解答】解:阅读:∵,∴①+4×②得:m=100,即x+y+z=100.故答案为:100;100;100.解决问题:设购买1支黑笔需要x元,购买1支红笔需要y元,购买1个笔记本需要z元,依题意得:,上述方程组可变形为:,设x+y+z=m,2x+z=n,上述方程组又可化为:,①+4×②得:m=10.5,即x+y+z=10.5.答:只买一支黑笔、一支红笔、一个笔记本共需10.5元.【点评】本题考查了二元一次方程组的应用以及解三元一次方程组,利用换元法将原三元一次方程组转化为二元一次方程组是解题的关键.28.如图,在△ABC中,CD⊥AB于点D,AE⊥BC于点E,AE、CD交于点F,且∠DBF=45°.(1)若AF=,BF=,求AB的长;(2)求证:AB﹣CF=BF.【分析】(1)由等腰直角三角形的性质和勾股定理可求DF=BD=1,由勾股定理可求AD=2,即可求AB的长;(2)由“AAS”可证△ADF≌△BCD,可得AD=CD,即可证等式成立.【解答】解:(1)∵∠DBF=45°,CD⊥AB,∴∠DFB=∠DBF=45°,∴DF=DB,∵DF2+DB2=BF2,且BF=∴DF=BD=1,在Rt△ADF中,AD===2∴AB=AD+DB=2+1=3(2))∵∠DBF=45°,CD⊥AB,∴∠DFB=∠DBF=45°,∴DF=DB,∴BF=DF∵AE⊥BC,CD⊥AB∴∠ABC+∠EAB=90°,∠ABC+∠DCB=90°,∴∠EAB=∠DCB,且DF=DB,∠ADF=∠CDB=90°,∴△ADF≌△BCD(AAS)∴AD=CD,∵AB﹣CF=AD+DB﹣CF=DF+BD=2DF=BF。
2018-2019学 年八年级上学期期中考试数学试题(含答案)
![2018-2019学 年八年级上学期期中考试数学试题(含答案)](https://img.taocdn.com/s3/m/d6a8b4721eb91a37f0115c0d.png)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
八年级数学上册期中考试试卷
![八年级数学上册期中考试试卷](https://img.taocdn.com/s3/m/f36ac902c4da50e2524de518964bcf84b9d52d08.png)
八年级数学上册期中考试试卷有很多的成绩不好就是因为数学的成绩不好,所以大家一定要多多来参考一下,今天小编就给大家来看看八年级数学,有机会大家一起看看哦八年级数学上期中模拟试卷阅读一.选择题(共12小题,满分36分)1.(3分)下面有4个图案,其中有( )个是轴对称图形.A.一个B.二个C.三个D.四个2.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE3.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为( )A.48°B.54°C.74°D.78°4.(3分)若等腰三角形的两边长分别为4和9,则它的周长为( )A.22B.17C.13D.17或225.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BFB.∠ACE=∠ACBC.AE=BED.CD⊥BE6.(3分)到三角形三个顶点的距离相等的点是三角形( )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高7.(3分)如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE8.(3分)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()[来源:学科网]A.∠B=∠CB.AD=AEC.BD=CED.BE=CD9.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有( )①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.[来源:]A.4个B.3个C.2个D.1个10.(3分)等腰三角形的一个角是50°,则它的底角是( )A.50°B.50°或65°C.80°D.65°11.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A. B. C. D.12.(3分)平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( )A.4个B.8个C.10个D.12个二.填空题(共8小题,满分24分,每小题3分)13.(3分)从一个十二边形的同一个顶点出发,分别连接这个顶点与其余各点,可以把这个多边形分割成个三角形.14.(3分)如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=.[来源:学科网ZXXK]15.(3分)在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=.16.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.17.(3分)已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.18.(3分)如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD 的面积为15,则△ACD的面积为.19.(3分)∠A+∠B+∠C+∠D+∠E+∠F的度数= .20.(3分)如图,△ABC中,AB=63,AC=50,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC 于点N,则△AMN的周长为.三.解答题(共6小题,满分60分)21.(8分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.22.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠B>∠C,试探求∠DAE、∠B、∠C之间的数量关系.23.(10分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.24.(10分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.[来源:学科网]25.(12分)如图.(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各顶点坐标;(2)求△A1B1C1的面积.26.(12分)如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,求证:∠AFG+∠BEF=∠GFE.参考答案一.选择题1.B;2.D;3.B;4.A;5.C;6.B;7.A;8.D;9.B;10.B;11.B;12.C;[来源:Z,xx,]二.填空题13.10;14.32°;15.90°;16.60°或120°;17.(﹣2,﹣1);18.10;19.360°;20.113;三.解答题略八年级数学上册期中模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )A. B.4 C.4或 D.以上都不对2.(3分)3的算术平方根是( )A.±B.C.﹣D.93.(3分)在直角三角形中,若勾为3,股为4,则弦为( )A.5B.6C.7D.84.(3分)点P(x﹣1,x+1)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)﹣3的相反数是( )A.3B.﹣3C.D.﹣6.(3分)如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是( )A.6cmB.7cmC.8cmD.9cm7.(3分)将△ABC的三个顶点坐标的横坐标都乘以﹣1,纵坐标不变,则所得图形与原图的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将图形向下平移一个单位8.(3分)若a,b为实数,且|a+1|+=0,则﹣(﹣ab)2018的值是( )A.1B.2018C.﹣1D.﹣20189.(3分)点A(1,m)为直线y=2x﹣1上一点,则OA的长度为( )A.1B.C.D.10.(3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共4小题,满分16分,每小题4分)11.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.12.(4分)已知一次函数的图象与直线y=x+3平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为.13.(4分)如图,△ABO的边OB在数轴上,AB⊥OB,且OB=2,AB=1,OA=OC,那么数轴上点C所表示的数是.14.(4分)如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.三.填空题(共5小题,满分20分,每小题4分)15.(4分)若x的平方根是±4,则的值是.16.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x的方程k1x+b1=k2x+b2的解是.17.(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.18.(4分)如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD 的面积为15,则△ACD的面积为.19.(4分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.四.解答题(共2小题,满分18分)20.(12分)计算:.21.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.五.解答题(共4小题,满分36分)22.(8分)对有序数对(m,n)定义“f运算”:,其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(﹣2,4)= ;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a= ,b= .23.(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.24.(10分)如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.(1)求线段BE的长;(2)连接BF、GF,求证:BF=GF;(3)求四边形BCFE的面积.25.(10分)已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.六.解答题(共1小题,满分8分,每小题8分)26.(8分)(1)已知x2﹣1=35,求x的值.(2)在数轴上画出表示的点.七.解答题(共2小题,满分10分)27.(10分)如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.28.问题:如图①,点E,F分别在正方形ABCD的边BC、CD 上,且∠EAF=45°,试探究BE、EF、FD 三条线段之间存在的等量关系.【发现】小聪把△ABE绕点A逆时针旋转90°至△ADG,探究发现:EF=BE+FD.试利用图②证明小聪的结论.【应用】如图②,点E、F分别在正方形ABCD的边BC、CD 上,且∠EAF=45°,BE=2,EC=4,则EF长为(直接写出结果) 【拓展】如图③,在△ABC中,∠BAC=90°,AB=AC,点D在边BC 上,点E在边BC的延长线上,且∠DAE=45°,试探究BD、DE、CE三条线段之间存在的等量关系,并说明理由.参考答案一.选择题1.A;2.B;3.A;4.D;5.A;6.B;7.B;8.C;9.C;10.C;二.填空题11.﹣1;12.y=﹣3;13.﹣;14.17;三.填空题15.4;16.x=2;17.y=;18.10;19.32019;有关八年级数学上期中考试试卷一、选择题(每小题4分,共60分)1.以下列各组数为边长,能构成直角三角形的是( )A.、、B.、、C.7、8、9D.32、42、522.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个B.3个C.2个D.1个3.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2C.D.4.下列函数中,y是x的正比例函数的是( )A.y=2x﹣1B.y=C.y=2x2D.y=﹣2x+15.设,a在两个相邻整数之间,则这两个整数是( )A.1和2B.2和3C.3和4D.4和56.若点A(2,m)在x轴上,则点B(m﹣1,m+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限7.下列说法中:①不带根号的数都是有理数; ②﹣8没有立方根;③平方根等于本身的数是1;④有意义的条件是a为正数;其中正确的有( )A.0个B.1个C.2个D.3个8.已知x,y为实数,且+(y+3)2=0,则(x+y)2015的值为( )A.±1B.0C.1D.﹣19.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是( )A.5mB.12mC.13mD.18m10.若式子在实数范围内有意义,则x的取值范围是( )A.x<2B.x>2C.x≤2D.x≥211.如图,将正方形OABC放在平面直角坐标系中,O是原点,A 的坐标为(1,),则点C的坐标为( )A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)12.如果点P在第二象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为( )A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)13.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为( )A.(﹣3,4)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)14.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )A.10cmB.12cmC.19cmD.20cm15.函数已知一次函数y=kx+b,y随x的增大而减小,且kb<0则在直角坐标系内大致图象是( )A. B. C. D.二、填空题(每小题4分,共20分)16.﹣的相反数是、绝对值是、倒数是.17.已知x轴上点P到y轴的距离是3,则点P坐标是.18.如图,在三角形纸片ABC中,∠A=90°、AB=12、AC=5.折叠三角形纸片,使点A在BC边上的点E处,则AD= .19.一次函数y=2x﹣1的图象经过点(a,3),则a= .20.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .三、解答题(共70分)21.计算(每小题4分,共24分)(1)×﹣3(2)3﹣+(3)+3(4)(﹣1)2﹣(3+2)(3﹣2)(5)(+)(﹣)﹣(6)解方程:22.(6分)如图四边形ABCD是实验中学的一块空地的平面图,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m现计划在空地上植上草地绿化环境,若每平方米的草皮需150元;问需投入资金多少元?23.(8分)如图,在平面直角坐标系中,A(3,4)B(1,2),C(5,1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1:,B1:,C1:;(3)求△ABC的面积.24.(6分)已知等边△ABC,AB=BC=AC=6,建立如图的直角坐标系,点B与坐标原点O重合,边BC在x轴上,求点A、C的坐标.25.(8分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(4)在(3)的条件下,求出△AOB的面积;26.(6分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?27.(6分)阅读下列解题过程:===﹣=﹣2;===﹣.请回答下列问题:(1)观察上面的解题过程,请直接写出式子= ;(2)利用上面所提供的解法,请化简++++…+的值.28.(6分)如图,已知在平面直角坐标系中,A(0,﹣1)、B(﹣2,0)C(4,0)(1)求△ABC的面积;(2)在y轴上是否存在一个点D,使得△ABD是以AB为底的等腰三角形,若存在,求出点D坐标;若不存,说明理由.(3)在第二象限有一个P(﹣4,a),使得S△PAB=S△ABC,请你求出a的值.参考答案1-10、ACDBC BADDD 11-15、ACAAC16、17、(3,0)或(-3,0)秋季八年级数学上期中质量试题一、单项选择题(下列各题的四个选项中,只有一项是最符合题意的,请你将该选项代号写在答题框的对应题号下,每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A. B. C. D.2.下列各组条件中,能够判定△ABC≌△DEF的是A.∠A=∠D,∠B=∠E,∠C=∠FB.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DFD.∠A=∠D,AB=DF,∠B=∠E3.下列计算错误的是A.2m + 3n=5mnB.C.D.4.计算-2a(a2-1)的结果是A. -2a3-2aB.-2a3+2aC.-2a3+aD.-a3+2a5.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的A点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是A.SSSB.ASAC.AASD.SAS6.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=A.25°B.45°C.30°D.20°7.已知(x-m)(x+n)=x2-3x-4,则m-n的值为A.1B.-3C.-2D.38.如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B 和C两点,∠B=β,∠C=α,则∠DAE的度数分别为A. B. C. D.9.已知10x=5,10y=2,则103x+2y-1的值为A.18B.50C.119D.12810.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①BE=CG;②DF=DH;③BH=CF;④AF=CH.其中正确的是A.①②③④B.①②④C.①③④D.②③④得分评卷人二、填空题(每题3分,共18分)11.已知点P关于y轴的对称点P1的坐标是(-1,2),则点P的坐标是.12.计算: = .13.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是.14.如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(-2,0),点B的坐标为(0,6),则点C的坐标为.15.如图,在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等(不与△ABO重合),则点C的坐标为。
2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷
![2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷](https://img.taocdn.com/s3/m/5d27aeedac51f01dc281e53a580216fc700a5324.png)
2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)若二次根式有意义,则x的取值范围为()A.x<2B.x>2C.x≤2D.x≥22.(3分)下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.74.(3分)用配方法解方程x2﹣4x=1时,原方程应变形为()A.(x﹣2)2=1B.(x+2)2=5C.(x﹣2)2=5D.(x+2)2=1 5.(3分)学习组织“超强大脑”答题赛,参赛的11名选手得分情况如表所示,那么这11名选手得分的中位数和众数分别是()分数(分)60809095人数(人)2234A.86.5和90B.80和90C.90和95D.90和906.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°7.(3分)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m的值是()A.﹣1B.0C.1D.28.(3分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角9.(3分)如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直=3,S△BOF=5,则平行四边形ABCD的面线EF分别交AD于点E,BC于点F,S△AOE积()A.24B.32C.40D.4810.(3分)如图,在▱ABCD中,P是对角线BD上的一点,过点作EF∥AB与AD和BC 分别交于点E和点F,连接AP,CP.已知AE=4,EP=2,∠ABC=60°,则阴影部分的面积是()A.2B.4C.4D.8二、填空题(共6小题,每小题4分,共24分):11.(4分)化简=.12.(4分)一组数据1、2、3、4、5的方差是.13.(4分)公园新增设了一台滑梯,该滑梯高度AC=1米,滑梯AB的坡比是1:3,则该滑梯AB的长是米.14.(4分)已知一个正多边形的每一个外角都是30°,则这个正多边形是正边形.15.(4分)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价元.16.(4分)如图,已知∠ACB=90°,AC=4,∠CAB=60°,D为AC的中点,E为AB上的一动点,以AD、DE为一组邻边构造▱ADEP,连接CP,则CP的最小值是.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.(8分)计算:(1);(2)﹣.18.(8分)解方程:(1)2x2﹣10x=0;(2)2(x+2)2﹣18=0.19.(6分)如图,在所给的6×6方格中,每个小正方形的边长都是1.按要求画多边形,使它的各个顶点都在方格的顶点上.(1)在图甲中画一个面积为5的平行四边形.(2)在图乙中画一个平行四边形使它的周长不是整数.20.(6分)某班进行“闪亮之星”的推选工作,经过自荐和第一轮筛选后,甲、乙两位同学进入终选.如表为甲、乙两位同学的得分情况.其中人气分的计算方法是:根据班级主科老师和同学的投票结果,老师一票记10分,同学一票记2分,两个分数相加即为人气分.学生人气分学习行规工作分分分老师票数学生票数分数甲420a859585乙22570909290(1)a=,b=;(2)经全班同学讨论决定,候选人的最终得分将根据如图所示的百分比折算后计入总分,经计算,甲同学的最终得分为87分,请你求出乙同学的最终得分,并判断哪位同学当选.21.(7分)某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.22.(11分)如图,在Rt△AOB中,点C为线段AB的中点,OB=4,∠A=30°,点P从点O出发以每秒1个单位的速度先沿OB方向运动到点B,再沿BA方向运动到终点A,设点P运动时间为t秒,以OP,OC为邻边构造▱OPDC.(1)当点P在线段OB上时,S▱OPDC=(用含t的代数式表示);(2)在整个运动过程中,当▱OPDC的面积为6时,求t的值;(3)连接OD,作点C关于直线OD的对称点C′(点C与点C′不重合),当点C′落在△AOB的边上时,求t的值(直接写出答案).2018-2019学年浙江省温州市鹿城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.4.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.【点评】本题考查中位数和众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.【点评】本题考查了平行四边形的性质,注意掌握平行四边形的对角相等、邻角互补的性质是解题的关键.7.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,注意若一元二次方程有两个相等的实数根,则可得△=0.8.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.9.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.10.【点评】本题考查了平行四边形的判定与性质、平行线的性质、三角函数定义、三角形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题(共6小题,每小题4分,共24分):11.【点评】本题考查了根据二次根式的意义与化简,二次根式规律总结:当a≥0时,=a;当a<0时,=﹣a.12.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【点评】此题主要考查了解直角三角形的应用,正确得出BC的长是解题关键.14.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.16.【点评】本题考查了平行四边形的性质,直角三角形的性质,解决本题的关键是利用全等三角形的性质求出OP的长,也考查了垂线段最短.三、解答题(第17、18题各8分,19题、20题各6分21题7分22题11分共46分):17.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【点评】本题考查了解一元二次方程,解决本题的关键是掌握解一元二次方程的方法.19.【点评】本题考查作图﹣应用与设计,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【点评】本题考查了加权平均数,熟记公式是解题的关键.21.【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了含30度角的直角三角形的性质,翻折的性质,等边三角形的性质和判定,平行四边形的性质,根据题意画出符合题意的图形是解题的关键.。
山西省太原市2018-2019学年八年级上学期数学期中考试试卷及参考答案
![山西省太原市2018-2019学年八年级上学期数学期中考试试卷及参考答案](https://img.taocdn.com/s3/m/818fadaea26925c52dc5bf01.png)
山西省太原市2018-2019学年八年级上学期数学期中考试试卷一、单选题 1.的相反数是( ) A . B . C . D . 2. 有理数9的平方根是( )A . ±3B . ﹣3C . 3D . ±3. 如图,点A 的坐标(﹣1,2),点A 关于y 轴的对称点的坐标为( )A . (1,2)B . (﹣1,﹣2)C .(1,﹣2) D . (2,﹣1)4. 与无理数 最接近的整数是( )A . 4B . 5C . 6D . 75. 回顾学习函数的过程,由函数的表达式通过列表、描点、连线画出函数的图象,再利用函数图象研究函数的性质.这个过程中主要体现的数学方法是( )A . 数形结合B . 类比C . 公理化D . 归纳6. 下列各点在一次函数y=2x ﹣3的图象上的是( )A . (2,3)B . (2,1)C . (0,3)D . (3,07. 中国象棋是中华民族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点( )A . (﹣1,1)B . (﹣2,﹣1)C . (﹣3,1)D . (﹣2,1)8. 将一块体积为1000cm 的正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为( )A . 5cmB . 6cmC . 7cmD . 8cm9. 如图是一块长方形地砖ABCD ,测得AB =12,AD =16,现将它切割成一块平行四边形地砖EFGH ,要求点E ,F ,G ,H 依次是边AD ,BC ,CD ,DA 的中点,切割后的四边形地砖EFGH 的周长为( )A . 20B . 28C . 40D . 5610. 一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h ,水流速度为5km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是( )3A .B .C .D .11. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有( )A . 1个B . 2个C . 3个D . 4个二、填空题12. 计算( +1)( -1)的结果为________.13. 在函数y=2x 中,y 的值随x 值的增大而________.(填“增大”或“减小”)14. 在平面直角坐标系的第二象限内有一点,点 到轴的距离为,到轴的距离为 ,则点M 的坐标是________.15. 如图,在Rt △ABC 中,AB=BC=1,∠ABC=90°,点A ,B 在数轴上对应的数分别为1,2.以点A 为圈心,AC 长为半径画弧,交数轴的负半轴于点D ,则与点D 对应的数是________.16. 在同一平面直角坐标系中,一次函数y=k x+2(k <0)与y=k x+6(k >0)的图象的交点在第________象限.17. 如图,已知a,b ,c 分别是Rt △ABC 的三条边长,∠C=90°,我们把关于x 的形如y= 的一次函数称为“勾股一次函数”,若点P (1,)在“勾股一次函数”的图象上,且Rt △ABC 的面积是5,则c 的值是________.三、解答题18. 计算(1)(2)(3+ )( ﹣2)(3) ( + ﹣ )÷19. 交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16,其中v 表示车速(单位:km/h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数.在某次交通事故中,测得d=6m ,f=1.5,求肇事汽车的车速.20. 如图,在四边形ABCD 中,∠D=90°,AB=15,BC=20,CD=7,AD=24.1122(1) 求对角线AC 的长;(2) 求四边形ABCD 的面积.21. 2016年5月27日,太原与大同之间开通了“点对点”的云冈号旅游列车(中间不停车),该列车为空调车,由6节硬座车厢、1节软卧车厢、1节硬卧车厢组成.行驶的路程约300km ,该旅游列车从太原站出发,以平均速度110km/h 开往大同.用x (h )表示列车行驶的时间,y (km )表示列车距大同的距离.(1) 写出y 与x 之间的函数关系式;(2) 当该旅游列车距大同就还有80km 时,求行驶了多长时间.22. 如图,在△ABC 中,AB=AC=6,BC=4.以点B 为坐标原点,BC 所在的直线为x 轴建立平面直角坐标系.(1) 请在图中画出符合条件的直角坐标系;(2) 求点A 的坐标.23. 在12世纪印度数学家婆什迦罗的著作中,有一首诗,也称“荷花问题”:平平湖水清可鉴,面上半尺生荷花;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”这首诗的大意是:在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.此时,捕鱼的人发现,花在水平方向上离开原来的位置2尺远,求湖水的深度.24. 阅读材料:小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2 =1+2+( )=(1+ ) . 于是 = =1+ .善于思考的小明继续深入探索;当a+b =(m +n )时(其中a ,b ,m ,n 均为正整数),则a+b=m+2 mn+2n . 此时,a=m +2n , b=2mn ,于是, =m+n .请你仿照小明的方法探索并解决下列问题:(1) 设a ,b ,m ,n 均为正整数且=m+n ,用含m ,n 的式子分别表示a ,b 时,结果是a=,b=;2222222(2)利用(1)中的结论,选择一组正整数填空: =+ ;(3)化简:.25. 如图,直线l:y=﹣ x+2与x轴,y轴分別交于点A,B,在y轴上有一点C(0,4),动点M从点A出发以毎秒1个単位长度的速度沿x轴向左运动,设运动的时间为t秒.(1)求点A的坐标;(2)请从A,B两题中任选一题作答.A.求△COM的面积S与时间t之间的函数表达式;B.当△ABM为等腰三角形时,求t的值.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉中市实验中学2018--2019学年第一学期 八年级数学期中考试试卷
时间:100分钟 满分:120分 出题、校对: 一、选择题(共10小题,每小题3分,计30分) 1、在-2
,4 3.14, 327-,
5
π
,这6个数中,无理数共有( )
A .1个
B .2个
C .3个
D .4个 2、以下列数组作为三角形的三条边长,其中能构成直角三角形的是( ) A .1,
,3 B .
,
, 5 C . 1.5,2,2.5 D .,,
3、无理数312-的大小在以下两个整数之间( ) A .1与2
B .2与3
C .3与4
D .4与5
4、在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是和﹣1,
则点C 所对应的实数是( ) A .1+
B .2+
C .2
﹣1 D .2
+1
5、下列各曲线中表示y
是x 的函数的是(
)
A . B
. C . D .
6、如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积是( ) A .π82cm B .π122cm C .π162cm D .π182cm
7、如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C
的坐标为( ) A .(﹣,1) B .(﹣1,) C .(,1) D .(﹣,﹣1)
(第6题) (第7题) (第9题) 8、点M (﹣3,﹣5)是由N 先向上平移4个单位,再向左平移3个单位而得到,则点N 的坐标为( )
A .(0,﹣9)
B .(﹣6,﹣1)
C .(1,﹣2)
D .(1,﹣8) 9、如图,在直角坐标系中,△AOB 是等边三角形,若B 点的坐标是(2,0),则A 点的坐标是( )
A. (2,1)
B.(1,2)
C.(3,1 )
D.(1,3 ) 10、在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于( ) A .10 B .8 C .6或10 D .8或10 二、填空题(共6小题,每小题3分,计18分) 11、
的相反数是 ;倒数是 ;绝对值是 .
12、若a 、b 为实数,且4b =+,则a+b 的值为 .
13、已知)5,1(1-a P 和)1,2(2-b P 关于x 轴对称,则2015
)
(b a +的值为 .
14、在平面直角坐标系中,点P (m ,3)在第一象限的角平分线上,点Q (2,n )在第四象限角平分线上,则m+n 的值为_________.
15、已知A (2,0),B (0,2),在x 轴上确定点M ,使三角形MAB 是等腰三角形,则M 点的坐标为 (任写一个).
16、如图,Rt △ABC 中,AC=5,BC=12,分别以它的三边为 直径向上作三个半圆,则阴影部分面积为_____. 三、解答题:(共8小题,计72分)
17、(8分)
(1)
)459(43332⨯ (2)631
45
520⨯-+ 18、(10分)
(1))2738
1
4
483(122--⨯
(2)2
31|32|)23()21)(21(0-
+
-
+++-
+
19、(6分)在数轴上画出表示10的点.(不写做法,保留作图痕迹)
20、(8分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?
21、(9分)△ABC 在直角坐标系内的位置如图所示. (1)分别写出A 、B 、C 的坐标
(2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标;
(3)请在这个坐标系内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 关于原点对称,并写出A 2的坐标;
22、(9分)已知,如图在平面直角坐标系中,ABO S =6, OA =OB ,BC =12, 求△ABC 三个顶点的坐标.
23、(10分)如图,D 为△ABC 的BC 边上的一点,AB=10,AD=6,DC=2AD ,BD=DC .
(1)求BD 的长; (2)求△ABC 的面积.
24、(12分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x 吨,应交水费y 元. (1)若0<x ≤6,请写出y 与x 的函数关系式. (2)若x >6,请写出y 与x 的函数关系式.
(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
姓名| | | | | | | | | | |
20、(6分)
21、(8分)
21、(9分)
22、(9分)
23、(10分)
24、(12分)
汉中市实验中学2018--2019学年第一学期
八年级数学期中考试答案
一、选择题
1.B
2.C
3.A
4.D
5.D
6.D
7.B
8.B
9.D 10.C
二、填空题
11.
12. 3
13. -1
14. 1
15.
16. 24
三、解答题
17. (1)(2)
18. (1)(2)
19. 略
20. 5m
21.(1)A(0,3) B(-4,4) C(-2,1) (2)(4,4) (3)(0,-3)
22.
23.(1)8 (2)60
24.(1)y=2x (0<x≤6)(2)y=3x-6 (x>6)(3)11吨。