第一章 信号与系统的概念

合集下载

信号与系统

信号与系统

第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。

信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。

二、信号的分类(1) 确定信号与随机信号。

按信号随时间变化的规律来分,信号可分为确定信号与随机信号。

实际传输的信号几乎都是随机信号。

因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。

但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。

随机信号是统计无线电理论研究的对象。

本书中只研究确定信号。

(2)连续时间信号与离散时间信号。

按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。

(3)周期信号与非周期信号。

设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。

从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。

2) 随时间变化的规律必须具有周期性,其周期为T。

3) 在各周期内信号的波形完全一样。

(4) 正弦信号与非正弦信号。

(5) 功率信号与能量信号。

三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。

2. 有始信号与有终信号设t1为实常数。

若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。

信号与系统基本概念

信号与系统基本概念

(1)
o t0
t
(t)(t
t0 )dt 0, (t
1 t0 )
31
冲激函数的性质
为了信号分析的需要,人们构造了 t 函数,它属于广 义函数。就时间 t 而言, t 可以当作时域连续信号处
理,因为它符合时域连续信号运算的某些规则。但由于
t 是一个广义函数,它有一些特殊的性质。
1.抽样性 2.奇偶性
41
系统方框图(基本元件)
1.加法器 e1t
r t
e1t r t
2.乘法器
e2 t e1 t
e2 t
e2t rt e1t e2 t
r t
rt e1t e2 t
3.微分器
et
d
r t
d
rt de(t)
dt
4.积分器
et
rt
t
r(t) e( )d
42
§1.6 线性时不变系统
线性系统与非线性系统
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1(t ) e2 (t )
r1 r2
(t) (t )
e1(t )
e2
(t)
r1(t )
r2
(t
)
43
判断方法
先线性运算,再经系统=先经系统,再线性运算
若 HC1 f1t C2 f2t C1H f1t C2H f2t
(t)具有筛选f (t)在t 0处函数值的性质 (t t0 )具有筛选f (t)在t t0处函数值的性质 33
奇偶性
(t) (t)
•由定义2,矩形脉冲本身是偶函数,故极限

信号与系统基础知识-精选.pdf

信号与系统基础知识-精选.pdf

时间(电压从 10%上升至 90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过
冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果
被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。
信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信
f (t) 0
F (k 1) k1
t
0
图 1-2 周期矩形波信号的时域和频域
信号和系统分析还有复频域分析的方法,对于连续信号和系统,基于拉普拉斯变换,称为
s 域分析;对
于离散信号和系统,基于 z变换,称为 z 域分析。基于复频域分析,能够得到信号和系统响应的特征参数,
即频率和衰减,分析系统的频率响应特性和系统稳定性等;复频域分析也能简化系统分析,将在时域分析
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统
输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的
重要差别。本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析, 即分析信号随时间变化的波形。 例如, 对于一个电压测
f a (t ) 是一个电压信号或电
流信号,它作用在一个 1Ω 电阻上时所消耗的能量为信号能量。
一个离散信号 f d ( n) 的能量定义为
Ed
n
2
fd (n)
当 f d ( n) 为复信号时,
2
fd (n)
f d (n) fd (n) 。

信号与系统第1章总结

信号与系统第1章总结

第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。

例如,光信号、声信号和电信号等。

二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。

信号与系统的概念

信号与系统的概念

f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))

a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5

信号与系统的基本概念

信号与系统的基本概念

是管道,我们必须弄明白管道是怎样改变声音的。
定义时间常数:
定义单边指数函数:
(1-6)
• t=0 时刻 f (t) = K,称为
信号的初始值; • t=t 时刻 f (t) = 0.368K; • t=4t 时刻 f (t)=0.0183K, t > 4t 后工程上近似认为 f (t) = 0。
以上过程包含了三个概念:
声音:信号; —— 语言:消息 —— 意思:信息
老师讲课,通过语言表达意思:信号的物理形式是声音,声音 本课程中,将“消息”和“信息”合并理解,通称为“ 信息”。 信号所承载的是老师对课程内容的理解; 以上过程简化为:甲通过声音 信号向乙表达了意甲比赛信息。
编码:声音—语言—含义,不同语言可以表达同样的意思。
01:16 6
• 简单时域信号举例: 正弦信号 简单时域信号举例: 指数信号
(1-1) (1-2)
01:16
7
§1.2.2 信号的分类
1. 确定性信号和随机信号
每次说“你好”,记录的信号都不完全相同,是一个典型的 可以表示为确定的时间函数的信号,称为“确定性信号”。 “随机信号”, 但每次记录的信号又有类似的规律。 每一时刻的取值都依某一概率取值的信号叫作随机信号。
01:16
8
2.
连续时间信号和离散时间信号
连续时间信号:任意时刻的函数值都有定义,简言之,可用连
续函数表示的信号, 可以是确定信号或者随机信号: 离散时间信号:只在一些不连续的时刻信号值才有定义的信号,
简言之,就是一系列不连续的数值,也叫作“时间序列”。 例:每日温度记录——典型的离散时间信号 离散数值:即取值范围不连续。例如,4位A/D转换: 数字信号:时间和取值都离散的信号。 计算机只能处理数字信号:通过A/D转换,连续的电压信号以

《信号与系统》课件第1章 (3)

《信号与系统》课件第1章 (3)
41
4. 指数信号 指数信号的一般数学表达式为
f(t)=Aest
根据式中s的不同取值,可以分下列两种情况讨论: (1) s=σ时,此时为实指数信号,即
(1-23)
f(t)=Aeσt
(1-24)
当σ>0时,信号呈指数规律增长;当σ<0时,信号随指数规律
衰减;当σ=0时,指数信号变成恒定不变的直流信号,如图1-
16所示。
42
图1-16 实指数信号
43
(2) s=σ+jω,此时为复指数信号。利用欧拉公式,可以进 一步表示为
(1-25) 可见,复指数信号的实部和虚部都是振幅按指数规律变化的 正弦振荡,当σ>0(σ<0)时,其实部和虚部的振幅按指数规律增 长(衰减);当σ=0时,复指数信号变为虚指数信号
(1-26) 此时信号的实部和虚部都是等幅振荡的正弦波。复指数信号 虚部的波形如图1-17所示。
f(t)δ(t)=f(0)δ(t)
若f(t)在t=t0时连续,则有
f(t)δ(t-t0)=f(t0)δ(t-t0)
(1-16) (1-17)
36
对上面两式取积分,可得到下面两个重要的积分结果: (1-18) (1-19)
式(1-19)说明,δ(t)函数可以把信号f(t)在某时刻的值采样(筛选) 出来,这就是δ(t)的筛选性。
11
图1-4 非周期能量信号
12
图1-5 非周期功率信号
13
图1-6 非功率非能量信号
14
1.2.2 几种常用的基本信号 1. 单位斜变信号 斜变信号是指从某一时刻开始随时间成正比例增加的信
号。斜变信号也称斜坡信号。若斜变信号增长的变化率为1, 斜变的起始点发生在t=0时刻,就称其为单位斜变信号(如图 1-7所示),其数学表达式为

第1章信号与系统的基本概念

第1章信号与系统的基本概念

第 1 章 信号与系统的基本概念 3. 一个连续信号f(t),若对所有t均有
f(t)=f(t+mT) m=0, ±1, ±2, … 则称f(t)为连续周期信号,满足上式的最小T值称为f(t)的周期。 一个离散信号f(k),若对所有k均有
f(k)=f(k+mN) m=0, ±1, ±2, … (1.1-7) 就称f(k)为离散周期信号或周期序列。满足式(1.1- 7)的最小N 值称为f(k)的周期。
第 1 章f (信t) 号与系统的基本概念
f (k )
-2 0
2
t
f (t- 2)
-3 0
3
k
f (k - 2)
0
2 4t
f (t+ 2)
-20 2 4 6 k f (k + 2)
-4 -2 0 (a )
t
-6-4-20 2 4
k
图 1.3-4 信号的平移 (b )
第 1 章 信号与系统的基本概念
本书只讨论一维信号。为了方便起见,一般都将信号 的自变量设为时间t或序号k。 通常,还将信号的图形表示称为波形或波形图。
第 1 章 信号与系统的基本概念
1.1.2 信号的分类(4种分类法)
1. 任一由确定时间函数描述的信号,称为确定信号或规则 信号。对于这种信号,给定某一时刻后,就能确定一个相应 的信号值。
如果信号是时间的随机函数,事先将无法预知它的变化规 律,这种信号称为不确定信号或随机信号。
第 1 章 信号与系统的基本概念 图 1.1-1 噪声和干扰信号
第 1 章 信号与系统的基本概念
2. 连续信号与离散信号 一个信号,如果在某个时间区间内除有限个间断点外都有 定义, 就称该信号在此区间内为连续时间信号,简称连续信 号。 例:正弦信号,其表达式为

信号与系统第一章课件

信号与系统第一章课件

系统的传递函数
传递函数是描述线性时不变系统的复数域数学模型 ,它包含了系统的频率响应信息。
复数域分析的优势与应用
复数域分析方法可以方便地处理具有非线性 特性的系统和信号,广泛应用于控制工程、 电路分析等领域。
04 线性时不变系统
线性时不变系统的定义与性质
线性
系统的输出与输入成正比 关系,比例系数为常数。
系统的频率响应
系统的频率响应是描述系统对不同频率信号的响 应特性,通过频率响应曲线可以了解系统的性能。
3
频域分析的优势与应用
频域分析方法可以方便地处理复杂信号和系统, 广泛应用于信号处理、通信、雷达等领域。
系统的复数域分析
拉普拉斯变换与复频域分 析
拉普拉斯变换将信号从时域转换到复频域, 通过复频域分析可以了解系统的动态特性和 稳定性。
系统的定义与分类
定义
系统是指一组相互关联的元素或组成部分,它们共同完成某为线性系统和非线性系统;根据系统的动态行为,可 以分为时不变系统和时变系统。
信号与系统的重要性及应用领域
重要性
信号与系统是通信工程、电子工程、 自动控制工程等领域的核心基础,是 实现信息传输、处理、控制和应用的 关键。
要点三
信号与系统的重要意 义
信号与系统作为现代工程和科学研究 的重要基础,其发展对于推动科技进 步和产业升级具有重要意义。未来, 信号与系统的理论和技术将继续发挥 重要作用,为人类社会的进步和发展 做出贡献。
THANKS FOR WATCHING
感谢您的观看
因果性
系统的输出只与过去的输入 有关,与未来的输入无关。
时不变
系统的特性不随时间变化。
稳定性
系统在受到外部激励时, 其输出不会无限增长。

信号与系统基本概念精品PPT课件

信号与系统基本概念精品PPT课件
第 1 章 信号与系统的基本概念
第 1 章 信号与系统的基本概念 1.1 信号的描述、分类、典型示例 1.2 信号的运算与变换 1.3 奇异信号 1.4 信号的分解 1.5 系统模型及分类 1.6 线性时不变系统 1.7 线性时不变系统分析方法概述
第 1 章 信号与系统的基本概念
内容和要求
信号及其分类;系统及其性质;线性 时不变系统的数学模型。

01 2 3 45
n
单边指数序列
f (n) eanu(n) a 0
第 1 章 信号与系统的基本概念
3)周期信号和非周期信号
a)连续周期信号: f (t) f (t mT ) m 0, 1, 2
b)离散周期信号: f (t)
f (k) f (k mf (Nk)) m 0, 1, 2
第 1 章 信号与系统的基本概念
1.2.1 信号的代数运算
•信号的加减运算: f (t) f1(t) f2 (t)
注意要在对应的时间上进行加减运算。
1
t1 0
t2
1 0
-1
相加
2
1 t1
0
t2
-1
第 1 章 信号与系统的基本概念
•信号的相乘运算: f (t) f1(t) f2 (t)
4)实信号和复信号
a)实信号:物理上可实现的信号,各时刻的函数值为实数。 (如正弦信号、单边指数信号)
b)复信号:物理上不可实现的抽象信号,各时刻的函数值为复数 (是分析的工具)
F (t) Ae( j)t
第 1 章 信号与系统的基本概念 5)能量信号和功率信号
归一化的能量或功率: 信号在单位电阻上消耗的能量或功率。
第 1 章 信号与系统的基本概念

信号与系统概论第一章

信号与系统概论第一章
持续时间无限短、取值无限大、对时间积分有限。
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案

信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。

在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。

下面是信号与系统第三版课后习题的答案。

第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。

系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。

2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。

离散时间信号是在离散时间范围内定义的信号,可以用数列表示。

3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。

非周期信号是指不具有周期性的信号。

4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。

偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。

5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。

6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。

7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。

第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。

奇偶分解的目的是简化信号的处理和分析。

2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。

卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。

3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。

冲激响应可以用来描述系统的特性和性能。

4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。

单位阶跃响应可以用来描述系统的稳定性和响应速度。

5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。

单位斜坡响应可以用来描述系统的积分特性。

信号与系统PPT课件

信号与系统PPT课件
f(t) 1
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。

信号与系统_第一章(重点PPT)

信号与系统_第一章(重点PPT)
5
5
解 (1) costδ(t)=δ(t), 因为cos0=1。 (2) (t-1)δ(t)=-δ(t), 因为(t-1)|t=0=-1。
(3) ∫ (t 2 + 2t + 1)δ (t )dt = 1因为(t 2 + 2t + 1) |t =0 = 1
5 5
5
(4) ∫ (t 2 + 2t + 1)δ (t 6)dt = 0因为δ (t 6) 不在积分区间内。
序列x(n)
第1章 信号与系统 章
信号分类
1. 确定性信号与随机信号
信号可以用确定的时间函数来表示的, 是确定性信号, 也称规则信 号。 如正弦信号、 单脉冲信号、 直流信号等。
信号不能用确定的时间函数来表示, 只知其统计特性, 如在某时刻 取某值的概率的,则是随机信号。
第1章 信号与系统 章
2. 周期信号与非周期信号
ke at sin ωt f (t ) = 0
t>0 t<0
k f (t)
0
t
-k
第1章 信号与系统 章
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt
1 -2
τ
- 2
τ2
0
τ2
τ
2
τ1
2
t
第1章 信号与系统 章
单位冲激函数一般定义为
∞ t = 0 δ (t ) = 0 t ≠ 0 ∞ ∫∞ δ (t )dt = 1
0
δ (t)

考研西北工业大学-《827信号与系统》-重难点解析讲义

考研西北工业大学-《827信号与系统》-重难点解析讲义

西北工业大学《827信号与系统》重难点解析第1讲第一章信号与系统的基本概念一、信号的主要分类(1)连续时间信号:自变量的取值是连续的离散时间信号:自变量的取值是离散的(2)周期信号:具有周期性,且是无始无终信号非周期信号:不具有周期性(3)因果信号:t<0时,f( t) =0;t>0时,f( t) ≠0的信号非因果信号:t>0时,f( t) =0的信号(4)功率信号:平均功率为有限值,能量趋近于无穷;能量信号:平均功率为0,能量为有限值的信号注意:(1)两个连续周期信号的和不一定是周期信号,只有当这两个信号的周期比为有理数时,该信号才是周期信号,且周期为原信号周期的最小公倍数;(2)直流信号和有界的周期信号均为功率信号;阶跃信号和有始周期信号也是功率信号;有界的非周期信号均为能量信号;无界的周期信号和无界的非周期信号均为非功率非能量信号。

一个信号只能是功率信号和能量信号两者之一,不会两者都是,但可以两者都不是,也就是非周期非能量信号。

【例1】判断下列各信号是否为周期信号后,若为周期信号,求出其周期。

(1)f( t) =cos8t-sin12t(2)f(k) =cos k+2sin2πk解:(1) T1==T2==由于=,故f( t)为周期信号,其周期为T1和T2的最小公倍数,即T=(2) cos k为周期信号,N1==842π2π故f(k)为周期信号,为N1和N2的最小公倍数,即N=8个间隔2cos2πk为周期信号,N2==1三、δ(t )和 δ′( t ) 函数的性质【例 2】 (3t -2)[ δ(t ) + δ(t -2) ]dtt 2 -2t + 3) δ'( t -2)dt(3t -2) δ(t -2)dt= -2 + (3 ×2 -2) = 2(2) 原式 = - ( t 2 + 3 -2t ) ' t =2 = - (2t -2) t =2 = -2四、系统的分类(1)线性系统:同时满足齐次性和叠加性的系统 非线性系统:不能同时满足以上两个条件的系统 (2)时不变系统:满足时不变的系统 时变系统:不满足时不变的系统(3)因果系统:响应不产生激励之前的系统 非因果系统:响应产生于激励之前的系统(4)稳定系统:系统的激励有界,响应也有界的系统 非稳定系统:系统的激励有界,响应无界的系统【例 3】 已知系统:a :y ( t ) =2f ( t ) +3 b :y ( t ) =f (2t ) c :y ( t ) =f ( -t ) d :y ( t ) =tf ( t ) 试判断上述哪些系统满足下列条件: (1)不是线性系统的是: (2)不是稳定系统的是: (3)不是时不变系统的是: (4)不是因果系统的是:解:(1) a (2)d (3)b ,c ,d (4)b ,c五、线性时不变系统的性质f ( t ) →y ( t ),f 1 ( t ) →y 1 ( t ),f 2 ( t ) →y 2 ( t ), A 1,A 2,A 为任意常数,常见性质如下: 1.齐次性:Af ( t ) →Ay ( t )2.叠加性:f 1 ( t ) +f 2 ( t ) →y 1 ( t ) +y 2 ( t )5 555西北工业大学《827 信号与系统》重难点解析3.线性:A 1f 1 ( t ) +A 2f 2 ( t ) →A 1 y 1 ( t ) +A 2 y 2 ( t ) 4.时不变性:f ( t -τ) →y ( t -τ) 5.微分性:→6.积分性:)d τ→)d τ【例 4】 一阶系统的初始状态为 y (0 - ),激励与响应分别为f ( t ),y ( t ) 。

信号与系统分析PPT全套课件可修改全文

信号与系统分析PPT全套课件可修改全文

1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。

第一章 信号与系统的基本概念

第一章 信号与系统的基本概念

第一章信号与系统的基本概念§1.1 绪言信号与系统是一门重要的专业基础课。

是许多专业(通信、信息处理、自动化、计算机、系统工程)的必修课。

重要性体现在两个方面:一是我们将来从事专业技术工作的重要理论基础;二是上述各类专业硕士研究生入学考试课程。

在教学计划中起着承前启后的作用,前期课程是高数、微分方程、差分方程、工程数学中的积分变换(傅立叶变换和拉普拉斯变换),还有电路分析基础;而其本身是后续专业课(通信原理、数字信号处理)的基础。

信号研究的主要内容:顾名思义系统合成:信号一个典型的电系统—通信系统信息源转换电信号电信号还原受信者(声音、文字、图象)/响应通信系统○1系统:控制系统抽象为理想化的模型,讨论激励与响应的关系经济系统○2信号:时间的函数f(t),一维函数,确定信号* 信号与系统的关系:互相依存信号是运载消息的工具,要很好的利用信号,需经过系统的传输、处理.系统则是为传输信号或对信号进行处理而由元器件构成的某种组合。

离开了信号,系统就失去了意义.§1.2 信号一.定义:信号是带有信息的(如声音、图象等)随时间(或空间)变化的物理量。

本课程主要研究电信号(电流、电压)。

二.信号的分类:从不同的角度1 从函数的定义域(时间)是否连续:○1连续时间信号:在连续的时间范围内有定义。

t是连续的,f (t)可是,也可不是表达方式时间的函数(解析式),如f(t)=Asinπt波形图表示:上述两种表达方式,可以互换。

信号和函数两个词可互相通用○2离散时间信号:在一些离散的瞬间才有定义。

t=kT点上有定义,其余无定义序列f (k )=2k ,k ≥0 表达方式 图形表示:序列值f (k )={0、1、2、4、8、……}2 从信号的重复性:○1 周期信号:定义在(-∞,+∞)区间,每隔一定时间T 重复变化连续f (t )=f (t+mT )离散f (k )=f (k+mK ) K 为整数 ○2 非周期信号:不具有周期性的信号 例:正弦序列f (k )=sink β β为角频率,反映周期性重复的速率, 决定序列是否具有周期性按定义:sink β=sin(β·k+m ·2π) β=6π时,βπ2 =12,为整数,是周期序列,k =12β=318π时,βπ2=431,为有理数,是周期序列,k =31β=21时,βπ2 =4π,为无理数,是非周期序列tf (kt )−−→−简化f (k ) 0 T 2T 3T间隔相等 kT3 实信号:物理可实现的复信号:实际上不能产生,但理论分析重要——复指数信号 表达式:f (t )=e st ,-∞<t <+∞, δ= σ+j ω f (t )=e (σ+j ω)t =e σ t ·e j ωt = e σ t cos ωt+j e σ t sin ωt σ>0,增幅振荡 σ<0,衰减振荡 σ=0,等幅振荡当ω=0,f (t )= e σt 为实指数信号当σ=ω=0,f (t )=1,为直流信号 重要特性:对时间的微分和积分仍然是复指数信号。

信号系统第一章信号与系统PPT课件

信号系统第一章信号与系统PPT课件

系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据信号所占时间范围可将信号分为: 因果信号、逆因果信号
在信号处理中,常将信号值不恒为零的持续时间, 称为信号持续时间(signal duration)。
下面简要给出与信号持续时间有关的几个术语, 这些术语在后面的讨论中将得到应用。
1.因果信号
当 t 0 时,若信号 f (t ) 0,则称为因果信号 (causal signal) 。
复信号的典型例子是正弦信号。
将正弦信号描述为 f (t ) a (t ) cos[0t (t )] Re{a (t )e j0t j ( t ) }
Re{a (t )e j ( t ) e j0t }
令复信号为 v(t ) a(t )e j (t )
a(t ) cos( (t )) ja(t )sin( (t ))
抽样信号(函数)
sin(t ) Sa(t ) t
抽样信号是信号处理中的一个重要信 号,在t 0时,函数取得最大值1, 而在 t k 时(为非零整数),函数 值为0,如图1.2.5所示。
Sa(t)
(1.2.3)
1
4
3 2

0

2
3
4
t
图1.2.5
三角脉冲信号
2t 1 , q (t ) 0,
f(t)
0
t
图1.1.7 (d)
1.2.1 确定信号与随机信号
确定信号(deterministic signal)是指可以用一个 确定的数学表达式来描述的信号。
f (t ) t 2et是确定信号。
f1 (t ) 1 0
t f 2 (t )
f 3 (t ) 1
t
2
0
0
2
t
图1-1 确定性信号
对有界量 t 2 ,当时 t t2 ,若信号 f (t ) 0,则称 为左边信号(left-sided signal) 。
f(t)
0
t2
t
图1.1.7 (c)
结论:逆因果信号一定是左边信号。
6.双边信号
若信号不恒为零值的时间范围延伸到正、负无穷 大,则称信号是双边信号(two-sided signal)。
系统分析方法
参考书目
1、信号与系统(第二版)上、下册
郑君里 应启珩 杨为理
高等教育出版社
2、Signals & Systems (Second edition) Alanv.Oppenheim Alans.Willsky
清华大学出版社
信号与系统
Signals and Systems
第一章 信号与系统的概念 The conception of Signals and systems



由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦 序列不一定是周期序列。 ②两连续周期信号之和不一定是周期信号, 而两周期序列之和一定是周期序列。
1.2.5 能量信号与功率信号
对连续时间信号 率分别定义为
f (t ) ,离散时间信号 f [n] ,信号的瞬时功
p(t ) f (t )
f (t )
频率
T
(如图1—5所示)

-3 -2 -1 0
1 1 -1 2

3 4
t
图1-5
连续周期信号
离散的周期信号f[n]=f[n+N],N为周期。
f [n] 2 1 ... -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 1 1 2 1 1 2 1 ...
k
图1-6
离散周期信号
例2 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k) 解(1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周 期分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列。
t 0
0
t
(d) 图1-2 随机信号
(e)
t
1.2.2 连续时间信号与离散时间信号
连续时间信号(continuous-time signal), 是指自变量是可以连续取值的信号。连续时间信 号有时也称为模拟信号。
注意: 信号 ,尽管在 t 0 时信号无定义,但 该信号仍是连续时间信号,因自变量 t 可取包括t 0 在 内的任意值。 f(t)
《信号与系统》课程简介
1、课程地位
《 信号与系统》课程是通信工程、电子信息工程、电 磁场与电磁波、机械自动化、计算机等专业的一门重要的 专业基础课程。 该课程也是研究生入学考试的必考课程 之一。
2、主要研究的内容 基本概念(第1章):信号 线性时不变系统
系统分析方法(第2--第7章):信号经过线性时不变系 统传输与处理的基本分析方法。 从时间域t到变换域(频域ω、复频域 s 及 z )、从连续 到离散、从输入 - 输出描述法到状态变量描述法,力求用 统一的观点阐明基本概念和分析方法。
v(t ) i(t ) jq(t )
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, q(t ) i 当然也可看成是由两个实信号 和(t ) 构成的,且
i(t ) a(t ) cos( (t ))
q(t ) a(t )sin( (t ))

a(t ) i (t ) q (t )
对离散时间信号 f [n],若存在一个非零的最小正整数 N ,等 式 f [n N ] f [n] 对任意时间 n 均成立,则称 f [n]是周期信号。 N 称为信号 f [n] 的基本周期,简称周期。
离散时间信号的周期是正整数。
ω 角频率
f 1

T
(弧度/秒)或(rad/s), (赫兹)或(Hz)。
24
25 23
f[n]
22
21

1 2
3
4
31
n
图1.2.2 某地7月份日平均温度是离散时间信号
计算机只能处理离散时间信号,因此,将日常的连续时 间信号(如语音信号等)送给计算机处理之前,应先将其 转换为离散时间信号。简单的方法如图1.2.3所示,以 时间 T 为间隔对连续时间信号 f (t )进行取样,则可得到 一数组 {, f (2T ), f (T ), f (0), f (T ), f (2T )} ,可表为
1
2

p ( n) f [ n]
2
对连续时间信号 f (t ) ,信号的能量定义为 E lim
T
T T
f (t ) dt
N
2
lim 2 对离散时间信号 f [n] ,信号的能量定义为 E N
3
n N

f [ n]
2
1 lim 信号的平均功率分别定义为 P T 2T
2 2
q(t ) tan[ (t )] i (t )
1.2.4 周期信号与非周期信号
对连续时间信号 f (t ),若存在一个非零的最小正数 T ,等式 f (t T ) f (t ) 对任意时间均成立,则称 f (t ) 是周期信号。 T 称为信号 f (t )的基本周期,简称周期。
1.2.1 确定信号与随机信号
随机信号(random signal)是指不能用一个确切 的数学表达式来描述的信号,信号各时刻的值是一个 随机变量,通常只能用统计方法研究其某些特征,如 概率密度函数、均值、方差、相关函数等。 电子系统中的噪声信号是一典型的随机信号。
f 4 (t )
f 5 (t )

T T
f (t ) dt
2
N 1 2 P lim f [ n] 和 N N 2 N 1 n
能量信号(finite-energy signal):若信号的能量有界,平
均功率趋于零,E , P 0 ,则称该信号为能量信号。
功率信号(finite-power ,signal):若信号的平均功率有界 能量趋于无穷大, P , E ,则称该信号为功率信号。
1.1 信号的概念 1.1.1 信号的定义
信号(signal)是运载与传递信息的工具,在数学上 表示为一个或多个自变量的函数,自变量可以是时间、 空间、位置、温度、压力等,信号表示为函数。 下面我们就列举一些典型信号。
1.1 信号的概念 1.1.1 信号的定义
例一: 正弦信号是电子系统和信号处理技术领域常用到的一 种信号,其形式为 f (t ) A cos(0t 0 )。根据不同的应用 场合和背景,正弦信号的振幅 A 、角频率 、初相 0 均可代表(运载)不同的信息。
0
例二: 频移键控(FSK)信号,常用于二进制数 字通信中 。
f(t)
0
t
0 1
T
0 2
2T
0 1 3T
0 2 4T
图1.1.2 频移键控(FSK)信号的波形
例三:周期脉冲信号
f(t)
A

T
T1 2

0
T1 2
T
t
图1.1.3 周期脉冲信号的波形
黑白图片
1
f (t )
1 t
1
0
1
t
图1.2.1 方波信号是连续时间信号
t
1.2.2 连续时间信号与离散时间信号
相关文档
最新文档