现代电力电子学培训课程
现代电力电子技术
uL
u2
E
+
-
触发电路产生的触发脉冲须满足下列要求: 足够的功率; 一定的宽度; 与主电路同步; 一定的移相范围。
产生的方式: 单结晶体管触发电路; 集成触发电路。
1
2
第3节 晶闸管触发电路
一、单结晶体管触发电路
等效电路
E
B2
B1
RB2
RB1
管内基极 体电阻
E
(发射极)
B2
(第二基极)
当 L >> R时, ILT在整个周期中可近似 看做直流。
5
晶闸管的中电流
IT =
IT =
平均值:
有效值:
晶闸管的选择
晶闸管电压 > (1.5 ~ 2)U2M
晶闸管电流
> (1.5)×
二、单相桥式半控整流电路
1、
电阻性负载桥式可控整流电路
(1)电路及工作原理
u2 > 0的导通路径:
u2 (A)
三、 特性与参数
1、特性
U
I
URSM
UFSM
URRM
IH
UFRM
IF
IG1=0A
IG2
IG3
IG3
IG2
IG1
>
>
正向
反向
2、主要参数
UFRM:
正向断态重复峰值电压。(晶闸管耐压值。 一般取 UFRM = 80% UFSM 。普通晶闸管 UFRM 为 100V~3000V)
URRM:反向重复峰值电压。(控制极断路时, 可以重复作用在晶闸管上的反向重复电 压。一般取URRM = 80% URSM。普通晶 闸管URRM为100V~3000V)
现代电力电子技术导论
现代电力电子技术导论绪论电力电子技术在现代社会中扮演着至关重要的角色。
随着电子技术的迅速发展,电力电子技术的应用范围不断扩大,涉及到能源转换、能源管理、电动车辆、可再生能源等领域。
本文将介绍现代电力电子技术的基本原理、应用和未来发展方向。
第一章:电力电子器件1.1 电力电子器件概述1.1.1 电力电子器件的定义和分类1.1.2 电力电子器件的特点和性能指标1.2 二极管和整流器1.2.1 二极管的基本原理和特性1.2.2 整流器的基本原理和分类1.3 可控硅器件1.3.1 可控硅的基本原理和特性1.3.2 可控硅的应用和发展趋势1.4 晶闸管和弱级别器件1.4.1 晶闸管的基本原理和特性1.4.2 弱级别器件的基本原理和应用第二章:电力电子转换器2.1 电力电子转换器的概述2.1.1 电力电子转换器的基本结构和工作原理 2.1.2 电力电子转换器的应用领域2.2 直流-直流变换器2.2.1 升压转换器的原理和应用2.2.2 降压转换器的原理和应用2.3 直流-交流变换器2.3.1 单相桥式可控整流器的原理和应用2.3.2 三相桥式可控整流器的原理和应用2.4 交流-交流变换器2.4.1 交流-交流变换器的基本原理和分类2.4.2 交流-交流变换器的应用和发展趋势第三章:现代电力电子应用3.1 电力电子在电能质量控制中的应用3.1.1 电能质量的定义和评价指标3.1.2 电力电子器件在电能质量控制中的应用 3.2 电力电子在电动车辆中的应用3.2.1 电动车辆的概述和分类3.2.2 电力电子技术在电动车辆中的应用3.3 电力电子在可再生能源中的应用3.3.1 可再生能源的定义和分类3.3.2 电力电子技术在可再生能源中的应用案例第四章:现代电力电子技术的发展趋势4.1 多电平和多能源的电力电子系统4.1.1 多电平变换技术的原理和应用4.1.2 多能源系统的概念和特点4.2 高频和高效率的电力电子转换技术4.2.1 高频电力电子转换技术的优势和挑战4.2.2 高效率电力电子转换技术的研究方向4.3 智能和可靠的电力电子系统4.3.1 智能电力电子系统的特点和应用4.3.2 可靠性设计在电力电子系统中的重要性结语现代电力电子技术在电力转换和能源管理方面具有重要的意义。
2024全新电工培训内容
2024全新电工培训内容标题:2024全新电工培训内容一、前言随着我国经济的持续发展,电工行业作为国民经济的重要支柱,正面临着前所未有的发展机遇。
为了适应电工行业的发展需求,提高电工队伍的整体素质,我们特别推出了2024全新电工培训内容,旨在为广大电工从业者提供更加全面、系统的培训,助力电工行业高质量发展。
二、培训目标1. 培养具备电工专业基础知识、操作技能和安全意识的电工人才。
2. 提高电工从业者的职业素质,使学员能够熟练掌握各类电工设备的操作、维护和故障处理方法。
3. 增强电工从业者的创新能力和团队协作精神,为电工行业的发展注入新的活力。
三、培训内容1. 电工基础知识(1)电路基本概念:电压、电流、电阻、功率等。
(2)常用电气图形符号和电路图识别。
(3)电工材料:导电材料、绝缘材料、磁性材料等。
(4)电气设备:电动机、变压器、高低压开关设备等。
2. 电工操作技能(1)常用电工工具和仪器仪表的使用。
(2)电气设备安装、调试和维护。
(3)电气故障诊断与处理。
(4)电气设备安全操作规程。
3. 安全生产与防护(1)电气安全知识:触电防护、电气火灾预防等。
(2)个人防护用品的正确使用。
(3)现场急救知识。
(4)安全生产法律法规。
4. 新技术、新工艺、新材料(1)智能电网技术。
(2)光伏发电技术。
(3)新能源汽车充电技术。
(4)节能环保技术。
5. 职业道德与法规(1)职业道德教育。
(2)相关法律法规。
(3)行业自律。
四、培训方式1. 面授培训:邀请具有丰富实践经验和理论知识的专家进行授课。
2. 实践操作:安排学员进行实际操作练习,提高动手能力。
3. 案例分析:通过分析典型事故案例,提高学员的安全意识和应对能力。
4. 在线学习:利用网络平台,开展线上学习,方便学员随时随地进行学习。
五、培训时间1. 面授培训:共计80学时。
2. 实践操作:共计40学时。
3. 案例分析:共计20学时。
4. 在线学习:共计60学时。
电力电子技术课程大纲
电力电子技术课程大纲一、课程简介电力电子技术是现代能源领域的重要分支,本课程旨在介绍电力电子技术的基本原理、应用场景和发展趋势,培养学生的电力电子设计和应用能力。
二、课程目标1. 了解电力电子技术的基本概念和原理;2. 熟悉电力电子器件的特性和使用方法;3. 掌握电力电子系统的设计和优化方法;4. 学会应用电力电子技术解决实际问题。
三、教学内容1. 电力电子器件1.1 二极管、晶闸管、可控硅等基本器件的原理和特性;1.2 MOSFET、IGBT等新型器件的原理和应用;1.3 调制技术在电力电子器件中的应用。
2. 电力电子转换器2.1 单相和三相整流电路的原理和控制方法;2.2 逆变电路的原理和应用;2.3 DC/DC变换器和DC/AC变换器的设计和调试。
3. 电力电子系统3.1 交流调速系统的原理和设计;3.2 UPS电源系统的结构和工作原理;3.3 电动汽车充电桩的设计与实现。
4. 典型应用案例4.1 可再生能源并网发电系统;4.2 交通运输电力电子系统;4.3 工业电力电子系统。
五、教学方法1. 理论讲授:通过课堂讲解,系统阐述电力电子技术的基本理论和原理;2. 实验操作:通过实验室实践,让学生熟悉电力电子器件的使用和系统的设计;3. 课程设计:通过综合实践项目,培养学生的应用能力和创新能力;4. 论文撰写:鼓励学生进行课程相关的研究,并撰写学术论文。
六、教材及参考资料1. 主教材:《电力电子技术导论》,作者:XXX;2. 参考资料:- 《现代电力电子技术》,作者:XXX;- 《电力电子技术应用与实践》,作者:XXX;- 《电力电子器件及其应用》,作者:XXX。
七、考核方式1. 平时成绩:包括出勤率、课堂表现和实验报告等;2. 期中考试:笔试形式,考察学生的理论基础和应用能力;3. 期末考试:笔试形式,综合考察学生的知识掌握程度和综合应用能力;4. 实践项目:要求学生完成一个与电力电子技术相关的实践项目,并撰写实践报告。
电力电子学_康勇_第1章电力电子变换和控制技术导论
电力电子学——电力电子变换和控制技术(第二版)第 1 章电力电子变换和控制技术导论1 电力电子变换和控制技术导论1.1 电力电子学科的形成1.2 电力电子变换和控制的技术经济意义1.3 开关型电力电子变换的基本原理及控制方法1.4 开关型电力电子变换器基本特性1.5 开关型电力电子变换器的应用领域课程学习要求1.1 电力电子学科的形成1.电力技术2.电子技术3.电力电子技术1.电力技术✓电力技术是一门涉及发电、输电、配电及电力应用的科学技术。
✓利用电磁学(电路、磁路、电场、磁场的基本原理),处理发电、输配电及电力应用的技术统称电力技术。
2.电子技术✓电子技术又称为电子学,它是与电子器件、电子电路以及电子设备和系统有关的科学技术。
✓电子技术是研究电子器件,以及利用电子器件来处理电子电路中电信号的产生、变换、处理、存储、发送和接收问题。
✓又称为信息电子技术或信息电子学。
(Power Electronics)3.电力电子技术✓也称为电力电子学。
✓利用电力电子开关器件组成电力开关电路,利用集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。
✓是综合了电子技术、控制技术和电力技术的新兴交叉学科。
✓电力电子技术的发展史是以电力电子器件的发展史为纲3.电力电子技术(Power Electronics)典型的电力电子系统框图1.2 电力电子变换和控制的技术经济意义✓为了满足一定的生产工艺和流程的要求,供电电源的电压、频率甚至波形都必须满足各种用电设备的不同要求。
✓将发电厂生产的单一频率和电压的电能变换为各个用电设备最佳工况所需要的另一种特性和参数(频率、电压、相位和波形)的电能,再供负载使用,用电设备可以获得更好的技术特性和更大的经济效益。
1.3 开关型电力电子变换的基本原理及控制方法1.电力变换的类型2.交流机组实现电力变换3.利用开关器件实现电力变换的基本原理1.电力变换的类型✓电源可分为两类:直流电(D.C),频率f=0交流电(A.C),频率f 0✓电力变换按电压(电流)的大小、波形及频率变换划分为四类基本变换及相应的四种电力变换电路或电力变换器。
电力电子技术学习培训教程
电力电子技术学习培训教程一、电力电子技术概述电力电子技术是一门通过电子器件(如晶体管、整流器、逆变器等)控制电能的技术,以提高能源利用率、降低能源消耗和污染,进一步推动工业化、城市化和信息化进程。
电力电子技术主要包括直流调制、交流调制、功率控制、脉宽调制等方面的内容,涉及电力电子器件的工作原理、性能参数、应用范围等。
二、电力电子技术学习培训内容1.基础知识(1)电力电子器件的分类和工作原理常见的电力电子器件包括整流管、晶闸管、场效应管、双极晶体管、可控硅等,学员需了解这些器件的工作原理、特性参数、应用范围等。
(2)电力电子电路的基本结构和原理学员需了解电力电子电路的基本结构、工作原理和常见的控制方法,如PWM调制、频率调制、谐波抑制等。
(3)电力电子系统的应用领域和发展趋势学员需了解电力电子技术在新能源发电系统、电力传输、工业控制等领域的应用情况和未来发展趋势。
2.实践技能(1)电力电子器件的选型与应用学员需要学习如何根据具体的应用需求选择合适的电力电子器件,并掌握相关的电路设计和调试技能。
(2)电力电子系统的设计与控制学员需要学习如何设计和控制电力电子系统,包括功率电子变换器、逆变器、整流器等。
(3)电力电子系统的故障诊断与维护学员需要学习如何进行电力电子系统的故障诊断和维护,掌握相关的故障排除方法和维护技能。
3.案例分析通过实际的电力电子系统案例分析,学员能够更深入地了解电力电子技术的应用和发展,并从中获取设计和应用技巧。
4.实验训练学员需要进行一定数量的实验训练,通过实际操作来掌握电力电子技术的相关知识和技能。
三、电力电子技术学习培训的要求和方法1.学员要求学员需要具有一定的电子技术和电路基础知识,具备一定的电子器件和电路设计能力,对电力电子技术感兴趣并有一定的实践动手能力。
2.培训方法(1)理论讲授通过讲师的系统讲解、理论课件、实例分析等方式向学员传授电力电子技术的基础知识和相关理论。
(2)实践操作通过实验室实践、实际案例分析、项目设计等方式,让学员进行一定数量的实际操作和应用训练。
《电力电子技术 》课件
主要器件和电路拓扑
在电力电子领域中,存在各种各样的器件和电路拓扑。我们将研究和比较这 些器件,如晶闸管、IGBT和MOSFET,并了解它们在不同电力电子应用中的使 用情况。此外,我们还将探讨各种电路拓扑,如半桥、全桥和谐振转换器。
电力电子转换技术
电力电子转换技术是将电能从一种形式转换为另一种形式的过程。我们将学 习不同类型的转换技术,如直流-直流转换器、直流-交流逆变器和交流-交流 变频器。通过研究这些技术,我们可以更好地理解电力电子在能源转换和控 制中的作用。
学习目标
通过学习《电力电子技术》,我们的目标是:
1 掌握电力电子的基础概念和原理。 3 熟悉电力电子转换技术及其应用。
2 了解主要的电力电子器件和电路拓
扑。
4 通过案例分析深入了解电力电子技
术。
电力电子基础概念
电力电子是一门研究电能的转换和控制的学科。它涉及到将电力从一种形式 转换为另一种形式的技术。我们将学习不同类型的电力电子器件和它们的工 作原理,例如功率变换器、逆变器和整流器。
总结和讨论
在这门课程的最后,我们将回顾所学的内容,并进行总结和讨论。我们将强调电力电子技术的重要性,并展望 未来的发展方向。通过本课程,我们希望能够激发学生对电力电子技术的兴趣,并为将来从事相关领域的研究 和工作打下坚实的基础。
ቤተ መጻሕፍቲ ባይዱ
《电力电子技术 》PPT课 件
欢迎来到《电力电子技术》课程的PPT课件。在本次课程中,我们将介绍电力 电子的基础概念、主要器件和电路拓扑、电力电子转换技术以及其应用领域。 通过案例分析,我们将更深入地了解这一领域。最后,我们将总结和讨论所 学内容。
课程介绍
这门课程旨在帮助学生掌握电力电子技术的基本概念和原理。我们将深入研 究不同种类的电力电子器件和电路,并了解它们在各个领域中的应用。通过 这门课程,学生将获得实际应用和解决问题的技能。
电气方面的培训课程
电气方面的培训课程电气方面的培训课程是为了让学员掌握电气工程相关的知识和技能,能够熟练应用于实际工作中。
这些课程涵盖了电气基础知识、电路理论、电气设备与控制、电力系统及其保护等内容。
下面将详细介绍一些常见的电气培训课程。
一、电气基础知识课程电气基础知识是学习电气工程的基础,包括电流、电压、电阻等基本概念的理解和计算方法的掌握。
此外,还包括电路中的串联、并联、交流电与直流电的区别等内容。
通过这门课程的学习,学员可以建立起扎实的电气基础,为后续学习打下坚实的基础。
二、电路理论课程电路理论是电气工程中的核心内容之一,包括了电路的分析、计算和设计。
学员将学习到电路中的电阻、电容、电感等元件的特性,以及电路中的电流分析、电压分析和功率分析等基本方法。
通过这门课程的学习,学员可以熟练掌握电路的分析方法,能够解决一些基本的电路问题。
三、电气设备与控制课程电气设备与控制课程主要涉及各种电气设备的工作原理和控制方法。
学员将学习到电机、发电机、变压器、开关设备等常见电气设备的结构和原理。
同时,还将学习到电气设备的安装、调试和维护等技能。
此外,还将学习到电气控制系统的设计和调试方法。
通过这门课程的学习,学员可以对各种电气设备的工作原理和控制方法有清晰的了解,并能够独立完成电气设备的安装和调试工作。
四、电力系统及其保护课程电力系统及其保护课程是电气工程中的重要内容,包括了电力系统的组成、运行原理和保护方法。
学员将学习到电力系统中的发电、输电、配电等环节的工作原理和运行方式。
同时,还将学习到电力系统的保护方法,包括过载保护、短路保护、接地保护等内容。
通过这门课程的学习,学员可以了解电力系统的运行机理,能够进行电力系统的故障分析和保护设计。
五、电气安全与维护课程电气安全与维护课程是为了让学员掌握电气安全工作的基本知识和技能。
学员将学习到电气事故的原因和防范措施,了解电气事故的危害性和应急处理方法。
同时,还将学习到电气设备的维护方法和常见故障的排除技巧。
电力电子技术课程大纲
电力电子技术课程大纲一、课程背景和目标本课程旨在介绍电力电子技术的基本原理、应用和发展趋势,培养学生熟悉电力电子技术的能力,为相关领域的工作和研究提供基础知识和技能。
二、教学内容与安排1. 电力电子基础知识1.1 电力电子的定义和分类1.2 电力电子器件及其特性1.3 电力电子电路和拓扑结构1.4 电力电子系统建模与分析方法2. 开关电源与电力因数校正技术2.1 开关电源的动态响应和稳定性分析2.2 电力因数校正技术的原理和应用2.3 无功功率补偿技术及控制策略3. 交流电力电子调节技术3.1 交流电力电子装置的原理和结构3.2 交流电力电子调制方法3.3 交流电力电子调节技术的控制与应用4. 直流电力电子调节技术4.1 直流电力电子装置的原理和结构4.2 直流电力电子调制方法4.3 直流电力电子调节技术的控制与应用5. 电力电子应用与发展趋势5.1 变频调速技术在电力电子中的应用 5.2 电力电子在新能源领域的应用5.3 电力电子技术的发展趋势与挑战三、教学方法与评价方式1. 教学方法1.1 课堂讲授结合案例分析和实验演示 1.2 小组讨论和问题解答1.3 实践实习和项目设计1.4 相关文献研读和学术研讨2. 评价方式2.1 平时表现和课堂参与度2.2 作业和实验报告2.3 期中考试和期末考试2.4 科研项目设计和报告四、教材与参考资料1. 教材1.1 《电力电子技术导论》 - 作者:张三1.2 《电力电子系统与应用》 - 作者:李四1.3 《现代电力电子技术原理与应用》 - 作者:王五2. 参考资料2.1 《电力电子技术基础》 - 作者:赵六2.2 《电力电子技术概论》 - 作者:钱七2.3 《电力电子技术发展趋势与挑战》 - 作者:孙八五、教学团队本课程由经验丰富的教师团队承担,具备电力电子技术及其应用领域的研究背景和实践经验,保证教学内容的准确性和实用性。
六、考核要求和学分分配1. 考核要求1.1 出勤率达到规定标准1.2 完成课堂作业和实验报告1.3 参加期中考试和期末考试1.4 科研项目设计和报告2. 学分分配2.1 平时表现:20%2.2 作业和实验报告:30%2.3 期中考试:20%2.4 期末考试:20%2.5 项目设计和报告:10%七、备注本大纲仅供参考,教学内容和安排可能根据实际情况进行调整和更新,希望同学们能够积极参与课程学习,不断拓展电力电子技术的知识和应用领域。
《电力电子》课件
智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。
电力电子学习PPT课件
02.12.2020
9
从工程的角度,谈谈PLC与单片机系统的选用;
1) 对单项工程或重复数极少的项目,采用PLC方案 是明智、快捷的途径,成功率高,可靠性好。
2) 对于量大的配套项目,采用单片机系统可能具有 成本低、效益高的优点,但这要有相当的研发力量 和行业经验才能使系统稳定、可靠地运行。
PLC和单片机最大的区别是PLC可靠, 抗干扰能力强,适用于工业现场。电力 系统中由于存在较大干扰,所以一般采 用PLC。
第一章 可编程控制器的基本知识
第一节 可编程控制器的产生和发展
一、可编程控制器的产生
可编程序控制器问世于1969年。是美国 汽车制造工业激烈竞争的结果。更新汽车型号 必然要求加工生产线改变。正是从汽车制造业 开始了对传统继电器控制的挑战。1968年美国 General Motors公司,要求制造商为其装配线 提供一种新型的通用程序控制器,并提出10项 招标指标。这就是著名的GM 10条。
承了传统控制线路的清晰直观,又考虑到大多数工厂企业电气技术人员 的读图习惯及编程水平,所以非常容易接受和掌握。梯形图语言的编程 元件的符号和表达方式与继电器控制电路原理图相当接近。通过阅读PLC 的用户手册或短期培训,电气技术人员和技术工很快就能学会用梯形图 编制控制程序。同时还提供了功能图、语句表等编程语言。 PLC在执行梯形图程序时,用解释程序将它翻译成汇编语言然后执行 (PLC内部增加了解释程序)。与直接执行汇编语言编写的用户程序相比, 执行梯形图程序的时间要长一些,但对于大多数机电控制设备来说,是 微不足道的,完全可以满足控制要求。 5.减少了控制系统的设计及施工的工作量
9.在扩展时,原系统只需很小变更;
10.用户程序存贮器容量至少能扩展到4K。
现代电力电子学
研究生学位课程《现代电力电子学》的学习提纲与要求一.本课程的目的与意义目前电力电子技术已成为国家经济领域中不可缺少的基础技术和重要手段,大至兆瓦级的高电压大电流的电气工程直流输电,小Array至家用的各种电器,无不渗透电力电子技术。
国际上公认电力电子技术的诞生是以1957年第一个晶闸管问世为标志的。
电力电子这一名称迟至60年代才出现1974年,美国W.E.Newell用右图的倒三角形对电力电子学进行了描述。
认为电力电子学是电力学,电子学和控制理论三个学科交叉结合形成的一门新型学科,随着科学技术的发展电力电子技术又与控制理论、材料科学、图一描述电力电子学的倒三角电机工程、微电子技术、计算机技术等许多领域密切相关。
目前,电力电子技术逐步发展成为一门多学科相互渗透的中和性学科。
可以将电力电子技术定义为:以电力为对象,利用电力电子器件对电能进行控制和转换的学科,若认为微电子技术的信息处理技术,那么电力电子技术就是电力处理技术。
电力电子学除涵括技术和应用外,还有电力电子技术和相关学科的理论问题。
目前,许多高新技术均与电网的电流、电压、频率和相位等基本参数的转换与控制相关。
现代电力电子技术能够实现对这些参数的精确控制和高效率的处理。
特别是能够实现大功率电能的频率变换,为多项新技术的发展提供了有力的支持。
因此,现代电力电子技术不仅本身是一项高新技术,而且是其它高新技术的发展基础,电力电子技术可应用到各工业、电力、交通、冶金、化工、电信、国防、家电等各个领域,尤其与微电子、计算机技术、现代控制理论相结合,其应用面越广,自动化水平,快速性和可靠性发展越来越快,技术水平越来越高,为现代生产和现代生活带来了深远的影响。
简而言之,电力电子技术应包含电力电子器件,电力电子电路,电力电子装置及其系统三方面的内容,这三者有着密不可分的关系,随着器件的不断发展,电路和装置乃至系统,更容易发展。
更加现代化。
现代电力电子技术有如下特点:1)集成化,2)高频化,3)全控化,4)电路弱电化,5)控制技术数字化,6)多功能化。
2024版《电力电子技术》PPT课件
电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。
用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。
用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。
用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。
电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。
高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。
绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。
工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。
智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。
电力电子课程设计完整版
电力电子课程设计完整版一、教学目标本课程旨在电力电子领域提供一个全面的学习框架,通过深入理解电力电子的基本原理、关键技术和应用实践,使学生能够:1.知识目标:–描述电力电子的基本概念、发展和分类。
–解释电力电子器件的工作原理和特性,包括二极管、晶闸管、GTO、IGBT等。
–阐述电力电子电路的控制策略和设计方法。
–分析电力电子系统的效率、损耗和稳定性问题。
2.技能目标:–能够识别和分析不同类型的电力电子器件和电路。
–设计简单的电力电子转换电路,如AC-DC、DC-DC和DC-AC 转换器。
–运用仿真软件对电力电子系统进行模拟和优化。
–进行电力电子设备的故障诊断和维护。
3.情感态度价值观目标:–培养对电力电子技术在现代社会应用重要性的认识。
–强化节能减排和绿色技术的意识,在设计中考虑可持续性。
–激发对电力电子领域创新的兴趣,以促进技术进步和社会发展。
二、教学内容本课程的教学内容围绕电力电子的基本理论、器件结构、电路设计及其应用展开,具体包括:1.电力电子导论:电力电子的历史、发展趋势和其在现代电力系统中的应用。
2.电力电子器件:各类电力电子器件的结构、工作原理和特性分析。
3.电力电子电路:常用电力电子电路的拓扑结构、控制策略及其性能分析。
4.功率因数校正:功率因数的概念、功率因数校正电路的设计与应用。
5.变频技术:变频器的工作原理、变频技术的应用领域。
6.电力电子仿真:使用仿真工具对电力电子电路进行模拟和分析。
三、教学方法为了提高学生的综合能力和实践技能,本课程将采用多种教学方法:1.讲授法:用于基础理论知识和关键概念的传授。
2.案例分析法:分析具体的电力电子应用案例,加深对理论的理解。
3.实验法:通过实验操作,培养学生的动手能力和问题解决能力。
4.讨论法:分组讨论,促进学生之间的交流与合作,激发创新思维。
四、教学资源为确保高质量的教学效果,将充分利用以下教学资源:1.教材:《电力电子学》及相关辅助教材。
电力电子技术培训课件PPT(共 34张)
人才培养目标
能够较熟练地操作
电气设备
能够从事电气,电
子设备的安装、 调试、运行维护
、生产等工作
能够胜任电子/电气设备制造企业的销售、跟单、 客服等岗位,具有职业生涯发展基础的高等应用型
专业技术人才 。
-4-
1.1 《电力电子技术》课程定位
供 用 电、 应 用 电 子 专 业 面 向 的 职 业 岗
-17-
2.1 教学内容选取依据
1)源于真实,能够呈现装备制造业的工作内容
和形式。
2)在装备制造业中这些任务最典型、被广泛使
用到。
3)具有结构完整的工作过程,即计划、实施和
工作成果的检查与评价,易于转换成学习性的工作任 务。
4)学生能够在完成工作任务的过程中最大程度
地获得课程相关专业知识。
5)参考维修电工国家职业标准 融合教学内容
1)感知: 使用专业软件演示感应加 热设备的熔炼、淬火、热
电气产品电加力工电与子检技测术 电气产品安装、运行及维护
电气设备销售及服务 电气产品的生产管理与设备改造升级
-5-
1.1 《电力电子应用技术》课程定位
供
电力电子技术
电、
应
电
电气产品安装、运行及维护
专
业
面 1)直接为学生二年级的《直流调速
向 系统》,三年级的顶岗实习、和最终
的 的就业服务。
本课程的教学重点:晶闸管等开关器件的功能、 开关器件的各种应用技术、新技术的应用和实践能 力的培养。
本课程的教学难点:PWM调制技术、交-交变频 技术及相关实践能力的培养。
-24-
3. 教学方法与 手段
-25-
《现代电力电子技术》课件
电力电子技术的未来发展方向
高效化
智能化
未来电力电子技术将更加注重能效的提高 ,不断推动能源转换和利用效率的提升。
随着人工智能和物联网技术的发展,电力 电子技术将更加智能化,能够实现自适应 控制和远程监控等功能。
集成化
绿色化
未来电力电子技术将更加注重集成化设计 ,实现多功能、高集成度的电力电子系统 。
05
CATALOGUE
电力电子技术的挑战与未来发 展
电力电子技术的挑战
01
02
03
技术更新换代快
随着科技的不断进步,电 力电子技术需要不断更新 换代,以满足更高的性能 和效率要求。
节能环保压力
随着能源危机和环境问题 的日益严重,电力电子技 术在节能环保方面面临更 大的压力。
市场竞争激烈
电力电子市场参与者众多 ,竞争激烈,企业需要不 断提升技术水平和产品创 新能力。
详细描述
在DC/DC转换电路中,开关电源的作用是通过控制开关 管的通断时间来调节输出电压的大小。当输入电压通过开 关管时,通过控制开关管的占空比,可以调节输出电压的 大小,从而实现将一种直流电压转换为另一种直流电压。
总结词
DC/DC转换电路的应用
详细描述
DC/DC转换电路广泛应用于各种需要不同电压等级的场 合,如通信设备、计算机、仪器仪表等。通过DC/DC转 换电路,可以将较高或较低的电压转换为所需的稳定直流 电压,满足各种设备的用电需求。
电力电子技术的应用
电力系统
电力系统中的电力电子技术应用主要涉及发 电、输电和配电环节。通过使用电力电子设 备,如可编程逻辑控制器(PLC)和智能传 感器,可以实现电网的智能化控制和优化管 理,提高电力系统的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
更多资料请访问.(.....)研究生学位课程《现代电力电子学》的学习提纲与要求一.本课程的目的与意义目前电力电子技术已成为国家经济领域中不可缺少的基础技术和重要手段,大至兆瓦级的高电压大电流的电气工程直流输电,小至家用的各种电器,无不渗透电力电子技术。
国际上公认电力电子技术的诞生是以1957年第一个晶闸管问世为标志的。
电力电子这一名称迟至60年代才出现1974年,美国W.E.Newell用右图的倒三角形对电力电子学进行了描述。
认为电力电子学是电力学,电子学和控制理论三个学科交叉结合形成的一门新型学科,随着科学技术的发展电力电子技术又与控制理论、材料科学、图一描述电力电子学的倒三角电机工程、微电子技术、计算机技术等许多领域密切相关。
目前,电力电子技术逐步发展成为一门多学科相互渗透的中和性学科。
可以将电力电子技术定义为:以电力为对象,利用电力电子器件对电能进行控制和转换的学科,若认为微电子技术的信息处理技术,那么电力电子技术就是电力处理技术。
电力电子学除涵括技术和应用外,还有电力电子技术和相关学科的理论问题。
目前,许多高新技术均与电网的电流、电压、频率和相位等基本参数的转换与控制相关。
现代电力电子技术能够实现对这些参数的精确控制和高效率的处理。
特别是能够实现大功率电能的频率变换,为多项新技术的发展提供了有力的支持。
因此,现代电力电子技术不仅本身是一项高新技术,而且是其它高新技术的发展基础,电力电子技术可应用到各工业、电力、交通、冶金、化工、电信、国防、家电等各个领域,尤其与微电子、计算机技术、现代控制理论相结合,其应用面越广,自动化水平,快速性和可靠性发展越来越快,技术水平越来越高,为现代生产和现代生活带来了深远的影响。
简而言之,电力电子技术应包含电力电子器件,电力电子电路,电力电子装置及其系统三方面的内容,这三者有着密不可分的关系,随着器件的不断发展,电路和装置乃至系统,更容易发展。
更加现代化。
现代电力电子技术有如下特点:1)集成化,2)高频化,3)全控化,4)电路弱电化,5)控制技术数字化,6)多功能化。
在本科学习阶段已对传统的电力电子技术有了基础性的学习,为了更好地掌握电力电子技术。
并能灵活应用,本门课程的目的就要进一步加强基础,拓宽知识面,提高分析和解决问题的能力,更加系统、深入、全面地掌握电力电子技术的发展和应用。
为其它学科的学习和今后的工作、开发、研究打造坚实的基础。
二、电力电子技术的学科地位倒三角的电力电子学描述已被世界普遍接受,“电力电子学”和“电力电子技术”是分别从学术和技术两个不同的角度来称呼的,电力电子学包括理论和学科的内容。
在电力电子技术属于电工学科还是属于电子学科这个问题上,我国学术界和教育界有不尽相同看法。
1980年我国成立了中国电力电子学会,当时曾为“Power Electronics”译为”功率电子学还是“电力电子学”而争论不休,后来定名为“电力电子学”。
1981年中国电工技术学会成立后,电力电子学会成为电工技术学会所属的一个专业委员会,这意味着把电力电子技术隶属于电工学科。
1997年修订研究生专业目录时,为了拓宽专业面将电力电子技术和电力传动自动化合并为“电力电子与电力传动”专业,同时也把电工学科更名为电气工程学科。
如前所述,电力电子技术是由电力学、电子学和控制理论交叉而成,这三者成为电力电子技术的三根支柱。
控制理论在电力电子装置及系统中有着广泛应用,这与控制理论在其它领域中应用并无本质差别。
电力电子装置广泛地应用于电力系统和电气工程中,这就是电力学和电力电子技术的主要关系。
在我国“电力学”这个术语已不太称呼,而是用“电工学科”或“电气工程”制造技术,另一个应用电力电子器件组成电路装置及系统的技术。
前者是电力电子技术的基础,后者是核心,是具体的应用。
电力电子电路与电子电路的许多分析方法是一致的,共同基础是电路理论,只是应用有所不同,电力电子技术用于功率变换,电子技术用于休息处理,电力电子技术除应用与电气工程外还广泛用于电子装置中,例如电源、功率放大、输出等都可以看成是电力电子电路,因此也可以把电力电子技术看成是电子技术后的一个分支。
电子技术可分为信息电子技术和电力电子技术两大分支,信息电子技术包含模拟电子技术和数字电子技术两部分,因此,电子技术是由模拟电子、数字电子、电力电子三个分支组成。
电力电子技术是弱电与强电之间的结合,是弱电控制强电的技术。
是一门实用性很强的学科直接在工业、交通、能源、信息、军事、管理、家庭等各个领域广泛应用。
三、电力电子技术的发展与应用现状及前景(一)电力电子技术的发展历史电力电子器件的发展对电力电子技术的发展起着决定性的作用,因此,电力电子技术的发展是以电力电子器件的发展为基础的。
电力电子技术的发展史,如图二所示。
一般认为,电力电子技术的开始是以1957年第一个晶闸管的诞生为标志的。
但在晶闸管出现之前,电力电子技术就已经用于电力变换了。
因此,晶闸管出现前的时期称为电力电子技术的史前期。
1876年出现了硒整流器。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开创了电子技术之先河。
1911年出现了金属封装水银整流器,它把水银封于管内,利用对其蒸气的点弧可对大电流进行有效控制,其性能与晶闸管类似。
20世纪30~50年代,是水银整流器发展迅速并广泛应用时期。
它广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动。
20世纪50年代初,1953年出现了锗功率二极管;1954年出现了硅二极管,普通的半导体整流器开始使用;1957年诞生了晶闸管,一方面由于其变换能力的突破,另一方面实现了弱电对以晶闸管为核心的强电变换电路的控制,使之很快取代了水银整流器和旋转变流机组,进而使电力电子技术步入了功率领域。
变流装置由旋转方式变为静止方式,具有提高效率、缩小体积、减轻重量、延长寿命、消除噪声、便图二 电力电子技术的发展史t(年)于维修等优点。
因此,其优越的电气性能和控制性能,在工业上引起一场技术革命。
在以后的20年内,随着晶闸管特性不断提高,晶闸管已经形成了从低电压、小电流到高电压、大电流的系列产品。
同时研制出一系列晶闸管的派生器件,如快速晶闸管(FST)、逆导晶闸管(RCT)、双向晶闸管(TRIAC)、光控晶闸管(LTT)等器件,大大地推动各种电力变换器在冶金、电化学、电力工业、交通及矿山等行业中的应用,促进了工业技术的进步,形成了以晶闸管为核心的第一代电力电子器件,也称为传统电力电子技术阶段。
晶闸管通过对门极的控制可以使其导通,而不能使其关断,因此属于半控型器件。
对晶闸管电路的控制方式主要是相位控制方式。
即使在电流、电压这2个方面,晶闸管系列器件仍然有一定的发展余地,但因下述原因阻碍了它们的继续发展:①由于它是半控器件,要想关断它必须用强迫换相电路,结果使得电路复杂、体积增大、重量增加、效率较低以及可靠性下降;②由于器件的开关频率难以提高,一般低于400Hz,大大限制了它的应用范围;③由于相位运行方式使电网及负载上产生严重的谐波,不但电路功率因数降低,而且对电网产生“公害”。
随着工业生产的发展,迫切要求新的器件和变流技术出现,以便改进或取代传统的电力电子技术。
20世纪70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(GTR)、电力场效应晶体管(Power MOSFET)为代表的第二代自关断全控型器件迅速发展。
全控型器件的特点是,通过对门极(基极、栅极)的控制既可以使其开通,又可以使其关断。
另外,这些器件的开关速度普遍高于晶闸管,可以用于开关频率较高的电路。
全控器件优越的特性使其逐渐取代了变流装置中的晶闸管,把电力电子技术推进到一个新的发展阶段。
和晶闸管电路的相位控制方式想对应,采用全控型器件的电路主要控制方式为脉冲宽度调制(PWM)方式。
PWM控制技术在电力电子变流技术中占有十分重要的地位。
它使电路的控制性能大大改善,使以前难以实现的功能得以实现,对电力电子技术的发展产生了深远的影响。
20世纪80年代,出现了以绝缘栅双极型晶体管(IGBT)为代表的第三队复合型场控半导体器件,另外还有静电感应式晶体管(SIT)、静电感应式晶闸管(SITH)、MOS晶闸管(MCT)等。
这些器件不仅有很高的开关频率,一般为几十到几百千赫兹,而且有更高的耐压性,电流容量大,可以构成大功率、高频的电力电子电路。
20世纪80年代后期,电力半导体器件的发展趋势是模块化、集成化,按照电力电子电路的各种拓扑结构,将多个相同的电力半导体器件或不同的电力半导体器件封装在一个模块中,这样可以缩小器件体积、降低成本、提高可靠性。
现在已经出现了第四代电力电子器件——集成功率半导体器件(PIC),它将电力电子器件与驱动电路、控制电路及保护电路集成在一块芯片上,开辟了电力电子器件智能化的方向,应用前景广阔。
目前经常使用的智能化功率模块(IPM),除了集成功率器件和驱动电路以外,还集成了过压、过流和过热等故障检测电路,并可将监测信号传送至CPU,以保证IPM自身不受损害。
(二)现代电力电子技术的主要特点①全控化全控化是由半控型普通晶闸管发展到各类自关断器件,是电力电子器件在功能上的重大突破。
自关断器件实现了全控化,取消了传统电力电子器件的复杂换相电路,使电路大大简化。
②集成化集成化与传统电力电子器件的分立方式完全不同,所有的全控型器件都是由许多单元器件并联在一起,集成在一个基片上。
③高频化高频化是指随着器件集成化的实现,同时也提高了器件的工作速度,例如GTR 可工作在10kHz频率以下,IGBT工作在几十千赫兹以上,功率MOSFET可达数百千赫兹以上。
④高效率化高效率化体现在器件和变换技术这2个方面,由于电力电子器件的导通压降不断减少,降低了导通损耗;器件开关的上升和下降过程加快,也降低了开关损耗;器件处于合理的运行状态,提高了运行效率;变换器中采用的软开关技术,使得运行效率得到进一步提高。
⑤变换器小型化变换器小型化是指随着器件的高频化,控制电路的高度集成化和微型化,使得滤波电路和控制器的体积大大减小。
电力电子器件的多单元集成化,减少了主电路的体积。
控制器和功率半导体器件等,采用微型化的表面贴技术使得变换器的体积得到了进一步减少,功率为10kV·A,体积只有信用卡那样大。
⑥电源变换绿色化电力电子技术中广泛采用PWM脉宽调制技术、SPWM正弦波脉宽调制和消除特定次谐波技术,采用多重化技术,使得变换器的谐波大为降低,同时也使变换器的功率因数得到提高,进而使得变换电源绿色化。
⑦改善和提高供电网的供电质量近年来出现的静止无功发生器(SVG)、有源电力滤波器等新型电力电子装置,具有优越的无功功率和谐波补偿的性能,因此大大提高了电网的供电质量。