江苏省苏州市2018-2019学年上学期高一期末数学试卷(解析版)

合集下载

【优质文档】江苏省2018-2019学年度高一年级上学期数学期末考试试卷含解析

【优质文档】江苏省2018-2019学年度高一年级上学期数学期末考试试卷含解析

f (x) __________. x3 2x 1
5. 已知 lg 2 a,lg3 b, 则 lg 24 __________. 3a b
6. 若方程 3x2 (m 5)x m 2 0 的一个根在区间 0,1 上 , 另一个根在区间 1,2 上,则实
数 m 的取值范围是
__________ .
4 0,
2. 已知指数函数 y f ( x) 的图像过点 2,16 , 则 f ( x) __________ . 4x
3. 函数 y
x 2 的定义域是 __________ . 2,1 1,
x1
4. 已知函数 f (x) 是定义在 R 上的奇函数,且当 x 0 时, f ( x) x3 2x 1, 则当 x 0 时,
解:由题意知:
3
7. 已知函数 f (x) x2 x , 则 f ( x) 的单调增区间为 __________.
1 ,0 , 1 ,
2
2
8. 若三棱锥 P ABC 的侧棱两两垂直 , 且 PA PB PC 4, 则三棱锥 P ABC 的体积为
32
__________.
3
9. 已知点 P 2,2 关于直线 l :3 x
15. (本题满分 14 分)
如图, 在直三棱柱 ABC A1B1C1 中,已知 AC BC , BC CC1,设 AB1 的中点为 D , B1C BC1 E . 求证:( 1) DE // 平面 AA1C1C ;
( 2) BC1 AB1 .
16. (本题满分 14 分) 已知直线 l 与 3x 4 y 1 0 垂直 , 根据下列条件分别求直线 l 方程, (1)在 x 轴上的截距为 4; (2)与坐标轴围成的三角形面积为 24.

2018年苏州市高一数学上学期期末试卷

2018年苏州市高一数学上学期期末试卷

1.已知集合{0,1,2},{0,2,4}A B ==,则A B = . 2.函数lg(2)y x =-的定义域是 . 3.若240α=︒,则sin(150)α︒-的值等于 .4.已知角α的终边经过点(2,4)P -,则sin cos αα-的值等于 . 5.已知向量(,5)AB m = ,(4,)AC n = ,(7,6)BC =,则m n +的值为 .6.已知函数1232e ,2,()log (1),2,x x f x x x -⎧<⎪=⎨-⎪⎩≥ 则))2((f f 的值为 . 7.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为 .平方米. 8.已知函数232,1,(),1,x x f x x x -⎧=⎨>⎩≤ 则函数()()2g x f x =-的零点个数为 .9.已知函数2() 2 (0)f x x ax a =++>在区间[0,2]上的最大值等于8,则函数() ([2,1])y f x x =∈-的值域为 .10.已知函数2()22x x f x x m -=+-⋅是定义在R 上的偶函数,则实数m 的值等于 .11.如图,在梯形ABCD 中,2DC AB = ,P 为线段CD 上一点,且3DC PC =,E 为BC 的中点,若1212 (,)EP AB AD λλλλ=+∈R,则12λλ+的值为 .12.已知πtan()24α-=,则sin(2)4απ-的值等于 . 13.将函数sin y x =的图象向左平移3π个单位长度,再将图象上每个点的横坐标变为原来的1(0)ωω>倍(纵坐标不变),得到函数()y f x =的图象,若函数()y f x =在区间π(0,)2上有且仅有一个零点,则ω的取值范围为 . 14.已知,x y 为非零实数,()ππ,42θ∈,且同时满足:①sin cos y xθθ=,② 22103x y xy =+,则cos θ的值等于 .(第11题)15.已知全集U =R ,集合2,{|40}{|2}A B x x x x m x m ==-+≤≤≤. (1)若3m =,求U B ð和A B ; (2)若B A ⊆,求实数m 的取值范围; (3)若A B =∅ ,求实数m 的取值范围.16.已知函数1()41x f x a =++的图象过点3(1,)10-.(1)判断函数()f x 的奇偶性,并说明理由; (2)若1()6f x -≤≤0,求实数x 的取值范围.17.如图,在四边形ABCD 中,4,2AD AB ==.(1)若△ABC 为等边三角形,且AD BC ∥,E 是CD 的中点,求AE BD ⋅;(2)若AC AB =,3cos 5CAB ∠=,45AC BD ⋅=,求||DC .(第17题)18.某地为响应习总书记关于生态文明建设的指示精神,大力开展“青山绿水”工程,造福于民.为此,当地政府决定将一扇形(如图)荒地改造成市民休闲中心,其中扇形内接矩形区域为市民健身活动场所,其余区域(阴影部分)改造为景观绿地(种植各种花草).已知该扇形OAB 的半径为200米,圆心角60AOB ∠=︒,点Q 在OA 上,点,M N 在OB 上,点P 在弧AB 上,设POB θ∠=.(1)若矩形MNPQ 是正方形,求tan θ的值;(2)为方便市民观赏绿地景观,从P 点处向,OA OB 修建两条观赏通道PS 和PT (宽度不计),使,PS OA PT OB ⊥⊥,其中PT 依PN 而建,为让市民有更多时间观赏,希望PS PT +最长,试问:此时点P 应在何处?说明你的理由.第18题(2)(1)19.已知(2cos ,1),cos ,1)x x x ==+-a b ,函数()f x =⋅a b .(1)求()f x 在区间π[0,]4上的最大值和最小值; (2)若06()5f x =,0[,]42x ππ∈,求0cos2x 的值; (3)若函数()y f x ω=在区间(,)33π2π上是单调递增函数,求正数ω的取值范围.20.已知函数()||(,)f x x x a bx a b =-+∈R .(1)当1b =-时,函数()f x 恰有两个不同的零点,求实数a 的值;(2)当1b =时,① 若对于任意[1,3]x ∈,恒有()f x x≤a 的取值范围; ② 若0a >,求函数()f x 在区间[0,2]上的最大值()g a .2018.1一、填空题:1.{}0,22.(,2)-∞3.1- 5.8 6.2 7.120 8.2 9.7[,4]410.1-11.1313.410(,]33二、解答题:15.解:(1)当3m =时,{}|35B x x =≤≤,由240x x -≤得,04x ≤≤,所以{}|04A x x =≤≤, ……………………………………2分{}U |35B x x x =<>或ð; ………………………………………………4分{05}A B x x = ≤≤; ………………………………………………6分(2)因为A B ⊇,则0,24,m m ⎧⎨+⎩≥≤ ………………………………………………8分解得02m ≤≤. ………………………………………………10分 (3)因为A B =∅因为20m +<或4m >, ……………………………………………12分 所以2m <-或4m >. ………………………………………………14分 16.解:(1)因为()f x 的图象过点3(1,)10-, 所以13510a +=-,解得12a =-,所以11(),412x f x =-+ ……………………2分 ()f x 的定义域为R . ……………………4分因为114141()()4124122(41)x x xx x f x f x ---=-=-==-+++, ……………………7分 所以()f x 是奇函数. …………………………………………8分(2)因为1()06f x -≤≤, 所以11106412x--+≤≤, 所以1113412x +≤≤, …………………………………………10分所以2413x ≤+≤,所以142x ≤≤, ……………………………………12分解得102x ≤≤. ……………………………………14分17.(1)法一:因为△ABC 为等边△,且,AD BC ∥所以120DAB ∠=︒. ……………………………………2分又2,AD AB =所以2AD BC =, 因为E 是CD 中点,所以1()2AE AD AC =+ 1()2AD AB BC =++11()22AD AB AD =++ 3142AD AB =+. ……………………………………4分又BD AD AB =- ,所以AE BD ⋅ 31()()42AD AB AD AB =+⋅-22311424AD AB AD AB =--⋅……………………………………6分 311116442()4242=⨯-⨯-⨯⨯⨯-=11. ……………………………………8分 法二:如图,以A 为原点,AB 所在直线为x 轴,建立平面直角坐标系,则(00)(2,0)A B ,,, 因为△ABC 为等边△,且,AD BC ∥所以120DAB ∠=︒. ……………………………………2分 又24,AD AB ==所以2AB AC ==,所以(C D -,因为E 是CD 中点,所以1(2E - ………………4分所以1(2AE =-,(4BD =- ……6 分所以1((42AE BD ⋅=-⋅-1()(4)2=-⨯-=11. ………………………………8分(2)因为2AB AC AB ==,,所以2AC =, 因为4,5AC BD ⋅= 所以4(),5AC AD AB ⋅-=所以4.5AC AD AC AB ⋅-⋅= ………………………………10分又312cos 4.55AC AB AC AB CAB ⋅=∠=⨯=所以41655AC AD AC AB ⋅=+⋅= . ………………………………12分所以22222DC AC AD AC AD AC AD =-=+-⋅ 1641625=+-⨯685=.所以DC = …………………………………14分18.(1)在Rt △PON 中, 200sin ,PN θ=200cos ,ON θ=在Rt △OQM 中, 200s i n Q M P N θ==, …………………………………2分,tan 60QM OM θ=︒所以MN ON OM =-200cos θθ=, ……………………………4分 因为矩形MNPQ 是正方形,MN PN ∴=,所以200cos 200sin θθθ=, ……………………………………6分所以200cos θθ=,所以tan θ==. ………………………………………8分 (2)因为,POM θ∠=所以60POQ θ∠=︒-,200sin 200sin(60)PS PT θθ+=+︒-1200(sin sin )2θθθ=+- ……………………………………10分1200(sin )200sin(60)2θθθ=+=+︒,060θ︒<<︒. ……12分所以+60=90θ︒︒, 即=30θ︒时,PS PT +最大,此时P 是AB 的中点. ……14分 答:(1)矩形MNPQ是正方形时,tan θ=; (2)当P 是AB 的中点时,PS PT +最大. …………………………………16分 19.(1)()2cos cos )1cos2f x x x x x x =⋅=+-+a bπ2sin(2)6x =+, ………………………………………2分因为π[0,]4x ∈,所以ππ2π2663x +≤≤,所以1πsin(2)126x +≤≤,所以max min ()2,()1f x f x ==. …………………………………………4分(2)因为06()5f x =,所以0π62sin(2)65x +=,所以0π3sin(2)65x +=, 因为0ππ[,]42x ∈,所以02ππ7π2366x +≤≤,所以0π4cos(2)65x +=-, ………………………………6分所以0000πππ1πcos2cos[(2)])sin(2)66626x x x x =+-=+++413()525=-+⨯=. ………………………………………8分 (3)()n 26πsi f x x ωω⎛⎫=+ ⎪⎝⎭令222,,26πππππ2k x k k ω-++∈Z ≤≤ 得ππ6ππ3k k x ωωωω+-≤≤, ………………………………10分 因为函数()f x 在(π2,3π)3上是单调递增函数,所以存在0k ∈Z ,使得002(,)(ππππππ,)3336k k ωωωω⊆-+ 所以有00ππππ,33π2.63πk k ωωωω⎧-⎪⎪⎨⎪+⎪⎩≤≥ 即0031,614.k k ωω+⎧⎨+⎩≤≥ …………………………12分因为0,ω>所以01,6k >-又因为212332πππ2ω-⋅≤, 所以302ω<≤, 所以05.6k ≤ ………… 14分 从而有01566k -<≤,所以00k =,所以10.4ω<≤ ……………………………………16分(另解:由212332πππ2ω-⋅≤,得302ω<≤. 因为2(,)33x ππ∈,所以242(,)63636x ωωωπππππ+∈++,所以4362ωπππ+≤或23362ωπππ+≥,解得104ω<≤或2ω≥.又302ω<≤,所以10.4ω<≤)20.解:(1)当1b =-时,()(1)f x x x a x x x a =--=--,由()0f x =解得0x =或1x a -=,由1x a -=解得1x a =+或1x a =-. …………………………………………1 分 因为()f x 恰有两个不同的零点且11a a +≠-, 所以10a +=,或 10a -=,所以1a =±. ………………………………………………………………3 分 (2)当1b =时,()f x x x a x =-+, ①因为对于任意[]1,3x ∈,恒有()f x x≤即x x a xx-+≤,即1x a -≤,因为[1,3]x ∈时,10>,所以11x a --≤,即恒有11a x a x ⎧+⎪⎨-⎪⎩.≤,≥ …………………………………………………5 分令t = 当[]1,3x ∈时,t ∈,21x t =-所以222122(1)31)3x t t t +=+-=+--=≥所以2212(1)10x t t t -=-=--≤, …………………………………7 分所以0a ≤≤ ………………………………………………8 分② 2222221(1)(),,24(),,1(1)(),24a a x x a x ax x x a f x x ax x x a a a x x a ⎧++--+⎪⎧-++⎪⎪==⎨⎨-+>--⎪⎪⎩-->⎪⎩,,.≤≤ 1︒ 当01a <≤时,110,22a a a -+≤≥, 这时()y f x =在[0,2]上单调递增, 此时()(2)62g a f a ==-; ………………………………………………9 分 2︒ 当12a <<时,110222a a a -+<<<<, ()y f x =在1[0,]2a +上单调递增,在1[,]2a a +上单调递减,在[,2]a 上单调递增, 所以()1max{(),(2)}2a g a f f +=,21(1)(),(2)6224a a f f a ++==-, 而221(1)1023()(2)(62)244a a a a f f a +++--=--=2(5)484a +-=,当15a <<时,()(2)62g a f a ==-; ………………………………11 分当52a <≤时,()21(1)()24a a g a f ++==; …………………………12分 3︒ 当23a <≤时,11222a a a -+<<≤, 这时()y f x =在1[0,]2a +上单调递增,在1[,2]2a +上单调递减, 此时()21(1)()24a a g a f ++==; ………………………………………14 分 4︒ 当3a ≥时,122a +≥,()y f x =在[0,2]上单调递增, 此时()(2)22g a f a ==-; ………………………………………………15 分 综上所述,[0,2]x ∈时,()262,05,(1),53,422, 3.a a a g a a a a ⎧-<<⎪+⎪=<⎨⎪-⎪⎩≤≥ ……………………16 分。

2018-2019标准试卷(含答案)高一(上)期末数学试卷 (3)

2018-2019标准试卷(含答案)高一(上)期末数学试卷 (3)

2018-2019标准试卷(含答案)高一(上)期末数学试卷 (3)一、填空题(共14小题,每小题5分,满分70分)1. 集合共有________子集.2. 计算的值是________.3. 函数的最小正周期是________.4. 函数的定义域是________.5. 计算的值是________.6. 函数,且图象恒过的定点坐标为________.7. 已知幂函数的图象经过点,则的值是________.8. 已知,且,则的值为________.9. 在平面直角坐标系中,已知单位圆与轴正半轴交于点,为圆上一点,则劣弧的弧长为________.10. 若方程在区间上有实数根,其中为正整数,则的值为________.11. 将函数图象上每个点的横坐标变为原来的倍(纵坐标不变),再奖得到的图象向右平移个单位长度,记所得图象的函数解析式为,则的值是________.12. 已知定义在上的奇函数满足,且当时,,则的值是________.13. 已知向量,,若函数,其中,则的最大值为________.14. 如图,已知菱形中,,,是边的中点,若点是线段上的动点,则的取值范围是________.二、解答题(共6小题,满分90分)15. 已知全集,集合,.求求16. 已知向量,满足,,,,求向量,的夹角值;当时,的值.17. 已知,求的值;求的值.18. 四边形是的内接等腰梯形,为直径,且.设,的周长为.求周长关于角的函数解析式,并指出该函数的定义域;当角为何值时,周长取得最大值?并求出其最大值.19. 已知函数,其定义域为,且在定义域上是奇函数,求的值;判断函数的单调性,并用函数单调性定义证明你的结论;若函数有两个零点,求实数的取值范围.20. 已知函数.若,写出函数单调区间;设函数,且,若不等式()恒成立,求的取值范围;已知对任意的都有成立,试利用这个条件证明:当时,不等式恒成立.答案1. 【答案】【解析】对于有限集合,我们有以下结论:若一个集合中有个元素,则它有个子集.【解答】解:集合有个元素,故有个子集.故答案为:.2. 【答案】【解析】利用诱导公式化简求值即可.【解答】解:由于;故答案为:.3. 【答案】【解析】根据三角函数的周期公式进行求解即可【解答】解:由正弦函数的周期公式得函数的周期,故答案为:4. 【答案】【解析】由对数的真数大于零、偶次根号下被开方数大于等于零,求出函数的定义域.【解答】解:要使函数有意义,需满足:解得,所以函数的定义域是,故答案为:.5. 【答案】【解析】根据指数幂的运算性质进行计算即可.【解答】解:原式;故答案为:.6. 【答案】【解析】根据指数函数过定点的性质,令指数,进行求解即可.【解答】解:由得,此时,故图象恒过的定点坐标为,故答案为:7. 【答案】【解析】根据幂函数的图象经过点,求出的解析式,再计算的值.【解答】解:∵幂函数的图象经过点,∴ ,解得,∴;∴.故答案为:.8. 【答案】【解析】利用完全平方公式,先求出,即可得到结论.【解答】解:由,平方得,则,∵,∴ ,即,则,故答案为:;9. 【答案】【解析】利用弧长公式即可得出.【解答】解:,为圆上一点.∴劣弧所对的圆心角为.∴劣弧的弧长.故答案为:.10. 【答案】【解析】方程在区间上有实数根可化为函数在区间上有零点,从而由零点的判定定理求解.【解答】解:方程在区间上有实数根可化为函数在区间上有零点,函数在定义域上连续,,;故方程在区间上有实数根,故的值为;故答案为:.11. 【答案】【解析】按照左加右减的原则,求出将函数图象上每个点的横坐标变为原来的倍(纵坐标不变),得到的函数解析式,再求出将得到的图象向右平移个单位长度,所得图象的函数解析式,即可代入求值.【解答】解:将函数图象上每个点的横坐标变为原来的倍(纵坐标不变),得到的函数解析式为:;再将得到的图象向右平移个单位长度,记所得图象的函数解析式为:,则.故答案为:.12. 【答案】【解析】先根据得到,所以可以变成.【解答】解:由得:;∴ .故答案为:.13. 【答案】【解析】由已知将两个向量进行数量积的运算,然后利用倍角公式等化简三角函数式微一个角的一个三角函数的形式,然后由角度的范围求最大值.【解答】解:由已知,,因为,所以,所以的最大值为;故答案为:.14. 【答案】【解析】因为菱形中,,,是边的中点,所以,所以以为原点,,所在是直线分别为,轴建立坐标系,分别写出所求中向量的坐标,利用坐标运算解答.【解答】解:因为菱形中,,,是边的中点,所以,所以以为原点,,所在是直线分别为,轴建立坐标系,因为菱形中,,,是边的中点,所以,,,设,其中,所以,,,所以,,所以,当且仅当,即时等号成立,当时,,所以的取值范围为;故答案为:.15. 【答案】解:由题意得,.所以; 因为,所以【解析】求出集合,,利用集合的基本运算进行求解即可.;【解答】解:由题意得,.所以; 因为,所以16. 【答案】解:由已知,,得,,所以向量,的夹角余弦值为,所以;由可知,当时,得,所以.【解析】由已知求出向量,的坐标,然后解答.【解答】解:由已知,,得,,所以向量,的夹角余弦值为,所以;由可知,当时,得,所以.17. 【答案】解: ∵,∴ .∵ ,,∴,.; ∵,,∴,∴ ,∴ ,∴.【解析】利用二倍角公式求出,利用同角三角函数的基本关系求出的值.; 根据角的范围求出,可得的值,进而求得的值,根据范围求出的大小.【解答】解: ∵,∴ .∵ ,,∴,.; ∵,,∴,∴ ,∴ ,∴.18. 【答案】解:由题意可知,,.,.∴周长关于角的函数解析式为:;;由.当,即,时,.∴当时,周长取得最大值.【解析】由三角形中的正弦定理得到.再由直角三角形中的边角关系求得.则周长关于角的函数解析式可求,并结合实际意义求得函数的定义域;; 把化为关于的二次函数,利用配方法求得当,即时,周长取得最大值.【解答】解:由题意可知,,.,.∴周长关于角的函数解析式为:;;由.当,即,时,.∴当时,周长取得最大值.19. 【答案】解:因为函数是定义域为上的奇函数,所以,即,…所以,即,则,得或;当时,无意义,所以;…(注:若用解得,未加以代入检验扣分); 由知函数,该函数是定义域上的减函数;…证明:设、为区间上的任意两个值,且,则,…;…因为,所以,又因为,所以;则,,所以;所以函数是定义域上的减函数;…; (3),要使有两个零点,即关于的方程有两个互异实根,…?当时,在区间上单调减,所以函数的值域为;…‚当时,在区间上单调增,所以函数的值域为;…所以实数的取值范围为.…【解析】由奇函数的定义,得,求出的值;; 函数单调性的定义,判断并证明在定义域上的单调性即可;; 考查函数的图象与性质,得出有两个零点,即关于的方程有两个互异实根,?求出满足条件的的取值范围即可.【解答】解:因为函数是定义域为上的奇函数,所以,即,…所以,即,则,得或;当时,无意义,所以;…(注:若用解得,未加以代入检验扣分); 由知函数,该函数是定义域上的减函数;…证明:设、为区间上的任意两个值,且,则,…;…因为,所以,又因为,所以;则,,所以;所以函数是定义域上的减函数;…; (3),要使有两个零点,即关于的方程有两个互异实根,…?当时,在区间上单调减,所以函数的值域为;…‚当时,在区间上单调增,所以函数的值域为;…所以实数的取值范围为.…20. 【答案】解:当时,,所以函数的单调减区间为,增区间为.); 因为,所以,设则,∴ ()可化为.令,其对称轴为,①当,即时,在上单调递增,所以,由得,所以;②当即时,函数在上递减,在上递增,所以.由,解得.所以.③当,即时,函数在,递减,所以,由,得,舍去.综上:.; ?当时,,由题意都有成立,可得时,,∴ ,当时,恒成立,所以恒成立,即恒成立,所以恒成立.‚当时,,由题意可得,,因为,,当当时,恒成立,所以,即恒成立,所以恒成立,综上,恒成立.【解析】原函数化简为,根据二次函数的图象和性质即可得到单调区间;; 先求出的值域,原不等式可化为,构造函数,根据二次函数的性质分类讨论,求出函数的最小值,再解不等式,即可得到答案;;分别根据当或,充分利用所给的条件,根据判别式即可证明.【解答】解:当时,,所以函数的单调减区间为,增区间为.); 因为,所以,设则,∴ ()可化为.令,其对称轴为,①当,即时,在上单调递增,所以,由得,所以;②当即时,函数在上递减,在上递增,所以.由,解得.所以.③当,即时,函数在,递减,所以,由,得,舍去.综上:.; ?当时,,由题意都有成立,可得时,,∴ ,当时,恒成立,所以恒成立,即恒成立,所以恒成立.‚当时,,由题意可得,,因为,,当当时,恒成立,所以,即恒成立,所以恒成立,综上,恒成立.。

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

18.已知向量 =( x,﹣ 1), =( x﹣2 ,3), =( 1﹣ 2x, 6). ( 1)若 ⊥( 2 + ),求 | | ; ( 2)若 ? < 0,求 x 的取值范围.
2
19.已知函数 f( x)=Asinx+cosx, A> 0. ( 1)若 A=1,求 f ( x)的单调递增区间;

22. 解: Ⅰ)若 a=1,则 f( x)=

函数 f ( x)的图象如下图所示:

(Ⅱ)若 f( x) ≥2﹣ x 对任意 x∈[1,2] 恒成立, 即 x2﹣ 4ax+3a2≥2﹣ x 对任意 x∈[1 ,2] 恒成立, 即 x2+( 1﹣4 a) x+(3a2﹣ 2) ≥0对任意 x∈[1 , 2]恒成立,
( 2)函数 f( x)在 x=x0 处取得最大值
,求 cosx0 的值.
20.已知 f ( x)是定义在 R上的偶函数,当 x ≥0时, f( x) =xa( a∈R),函数 f( x)的图象经过点( ( 1)求函数 f ( x)的解析式; ( 2)解不等式 f ( x2)﹣ f(﹣ x2+x﹣ 1)> 0.
4, 2).
3
21.已知向量 =( sinx ,﹣ 1), =( cosx , m),m∈ R.
( 1)若 m= ,且 ∥ ,求
的值;
( 2)已知函数 f ( x) =2( + ) ? ﹣2m2﹣ 1,若函数 f( x)在 [ 0, ] 上有零点,求 m 的取值范围.
22. 设函数 f ( x) =
由 y=x2+( 1﹣ 4a) x+( 3a2﹣ 2)的图象是开口朝上,且以直线 x=
为对称轴的抛物线,

2018-2019学年江苏省苏州市高一下学期期末数学试题(解析版)

2018-2019学年江苏省苏州市高一下学期期末数学试题(解析版)

江苏省苏州市高一下学期期末数学试题一、单选题1.在平面直角坐标系xOy 中,直线:0l x y -=的倾斜角为( ) A .0︒ B .45︒C .90︒D .135︒【答案】B【解析】设直线:0l x y -=的倾斜角为θ,[0θ∈︒,180)︒,可得tan 1θ=,解得θ. 【详解】设直线:0l x y -=的倾斜角为θ,[0θ∈︒,180)︒.tan 1θ∴=,解得45θ=︒.故选:B . 【点睛】本题考查直线的倾斜角与斜率之间的关系、三角函数求值,考查推理能力与计算能力,属于基础题.2.从A ,B ,C 三个同学中选2名代表,则A 被选中的概率为( ) A .13B .14C .12D .23【答案】D【解析】先求出基本事件总数,A 被选中包含的基本事件个数2,由此能求出A 被选中的概率. 【详解】从A ,B ,C 三个同学中选2名代表, 基本事件总数为:,,AB AC BC ,共3个,A 被选中包含的基本事件为:,AB AC ,共2个,A ∴被选中的概率23p =. 故选:D . 【点睛】本题考查概率的求法,考查列举法和运算求解能力,是基础题.3.正方体1111ABCD A B C D -中,异面直线1AA 与BC 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D【解析】利用异面直线1AA 与BC 所成角的的定义,平移直线BC ,即可得答案. 【详解】在正方体1111ABCD A B C D -中,易得190A AD ∠=︒.//AD BC Q∴异面直线1AA 与BC 垂直,即所成的角为90︒.故选:D . 【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.4.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是( )A .甲B .乙C .丙D .丁【答案】C【解析】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选. 【详解】Q 甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小, 说明丙的成绩最稳定,∴综合平均数和方差两个方面说明丙成绩即高又稳定, ∴丙是最佳人选,故选:C .【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.5.在平面直角坐标系xOy 中,点P (2,–1)到直线l :4x –3y +4=0的距离为( ) A .3 B .115C .1D .【答案】A【解析】由点到直线距离公式计算. 【详解】3d ==.故选:A . 【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点00(,)P x y 到直线0Ax By C ++=的距离为d =.6.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2a =,3A π=,则sin c C的值为( ) A .4 B.3C.D.4【答案】B【解析】由正弦定理可得,sin sin a cA C=,代入即可求解. 【详解】 ∵2a =,3A π=,∴由正弦定理可得,sin sin a cA C=,则sin c C ==故选:B . 【点睛】本题考查正弦定理的简单应用,考查函数与方程思想,考查运算求解能力,属于基础题. 7.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A .B C .4D .2【答案】C【解析】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为212 ,所以直观图的面积是12244⨯⨯ 选C.点睛:本题考查直观图画法,考查基本求解能力.8.某超市收银台排队等候付款的人数及其相应概率如下:则至少有两人排队的概率为( ) A .0.16 B .0.26C .0.56D .0.74【答案】D【解析】利用互斥事件概率计算公式直接求解. 【详解】由某超市收银台排队等候付款的人数及其相应概率表,得: 至少有两人排队的概率为:1(0)(1)P P X P X =-=-=10.10.16=--0.74=.故选:D . 【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题. 9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-【答案】D【解析】解:由正弦定理可得;sinA :sinB :sinC=a :b :c=2:3:4 可设a=2k ,b=3k ,c=4k (k >0)由余弦定理可得,CosC=1-4,选D 10.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于( ) A .49π B .494πC .14πD .143π【答案】C【解析】设长方体过一个顶点的三条棱长分别为a ,b ,c ,由已知面积求得a ,b ,c 的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求. 【详解】设长方体过一个顶点的三条棱长分别为a ,b ,c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,解得2a =,1b =,3c =. ∴.则长方体的外接球的半径为2, ∴此长方体的外接球的表面积等于24142ππ⨯=.故选:C . 【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.11.已知平面α⊥平面β,直线m ⊂平面α,直线n ⊂平面β,l αβ=I ,在下列说法中,①若m n ⊥,则m l ⊥;②若m l ⊥,则m β⊥;③若m β⊥,则m n ⊥. 正确结论的序号为( ) A .①②③ B .①②C .①③D .②③【答案】D【解析】由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③. 【详解】平面α⊥平面β.直线m ⊂平面α,直线n ⊂平面β,l αβ=I , ①若m n ⊥,可得m ,l 可能平行,故①错误;②若m l ⊥,由面面垂直的性质定理可得m β⊥,故②正确; ③若m β⊥,可得m n ⊥,故③正确. 故选:D . 【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.12.已知ABC V 中,2AB =,3BC =,4CA =,则BC 边上的中线AM 的长度为( ) A .312B .31C .231D .314【答案】A【解析】利用平行四边形对角线的平方和等于四条边的平方和,求AM 的长. 【详解】延长AM 至D ,使MD AM =,连接BD 、CD ,如图所示;由题意知四边形ABDC 是平行四边形,且满足22222()AD BC AB AC +=+, 即22223(2)2(24)AM +=+,解得31AM =, 所以BC 边上的中线AM 的长度为312. 故选:A . 【点睛】本题考查平行四边形对角线的平方和等于四条边的平方和应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.二、填空题13.在平面直角坐标系xOy 中,若直线22x ay a +=+与直线10x y ++=平行,则实数a 的值为______. 【答案】1【解析】由10a -=,解得a ,经过验证即可得出. 【详解】由10a -=,解得1a =.经过验证可得:1a =满足直线22x ay a +=+与直线10x y ++=平行, 则实数1a =. 故答案为:1. 【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题. 14.如图,某人在高出海平面方米的山上P 处,测得海平面上航标A 在正东方向,俯角为30°,航标B 在南偏东60︒,俯角45︒,且两个航标间的距离为200米,则h =__________米.【答案】200【解析】根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出h 的值. 【详解】航标A 在正东方向,俯角为30°,由题意得60APC ∠=︒,30PAC ∠=︒. 航标B 在南偏东60︒,俯角为45︒,则有30ACB ∠=︒,45CPB ∠=︒. 所以BC PC h ==,3tan 30PCAC h ==︒;由余弦定理知2222cos AB BC AC BC AC ACB =+-∠g g ,即223400003232h h h h =+-g g , 可求得200h =(米). 故答案为:200. 【点睛】本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题. 15.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E ,F 、1E ,1F ,则AEEB的值是__________.21【解析】设AE k AB =,则EFk BC=,由题意得:111111212AEF A E F ABC A B C V k V --==,由此能求出AE EB 的值. 【详解】设AE k AB =,则EFk BC=, 由题意得:1111111211sin 1212sin 2AEF A E F ABC A B C AE EF AEF AA V k V AB BC ABC AA --⨯⨯⨯∠⨯===⨯⨯⨯∠⨯,解得2k =, ∴22122AE EB ==-. 21. 【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.16.在平面直角坐标系xOy 中,已知直角ABC V 中,直角顶点A 在直线60x y -+=上,顶点B ,C 在圆2210x y +=上,则点A 横坐标的取值范围是__________. 【答案】[4,2]--【解析】由题意画出图形,写出以原点为圆心,以25为半径的圆的方程,与直线方程联立求得x 值,则答案可求. 【详解】如图所示,当点A 往直线两边运动时,BAC ∠不断变小,当点A 为直线上的定点时,直线,AB AC 与圆相切时,BAC ∠最大, ∴当ABOC 为正方形,则25OA =,则以O 为圆心,以25为半径的圆的方程为2220x y +=.联立22620y x x y =+⎧⎨+=⎩,得2680x x ++=. 解得4x =-或2x =-.∴点A 横坐标的取值范围是[4,2]--.故答案为:[4,2]--.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.三、解答题17.在平面直角坐标系xOy 中,已知点P 是直线20x y -=与直线30x y +-=的交点. (1)求点P 的坐标;(2)若直线l 过点P ,且与直线3210x y +-=垂直,求直线l 的方程. 【答案】(1)(1,2);(2)2340x y -+=【解析】(1)由两条直线组成方程组,求得交点坐标;(2)设与直线3210x y +-=垂直的直线方程为230x y m -+=,代入点P 的坐标求得m 的值,可写出l 的方程. 【详解】(1)由直线20x y -=与直线30x y +-=组成方程组,得2030x y x y -=⎧⎨+-=⎩,解得12x y =⎧⎨=⎩,所以点P 的坐标为(1,2);(2)设与直线3210x y +-=垂直的直线l 的方程为230x y m -+=, 又直线l 过点(1,2)P ,所以260m -+=,解得4m =, 直线l 的方程为2340x y -+=. 【点睛】本题考查直线方程的求法与应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知30A =︒,105B =︒,10a =. (1)求c :(2)求ABC V 的面积.【答案】(1)(2)25+【解析】(1)由已知可先求C ,然后结合正弦定理可求c 的值;(2)利用两角和的正弦函数公式可求sin B 的值,根据三角形的面积公式即可计算得解. 【详解】(1)30A =︒Q ,105B =︒,45C ∴=︒,10a =Q ,由正弦定理sin sin a c A C =,可得:10sin 21sin 2a Cc A===g .(2)sin105sin(6045)sin 60cos 45cos 60sin 454︒=︒+︒=︒︒+︒︒=Q ,11sin1025224ABCS ac B∆∴==⨯⨯=.【点睛】本题考查正弦定理,三角形的面积公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.19.某地区2012年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:(1)已知y与x线性相关,求y关于x的线性回归方程;(2)利用(1)中的线性回归方程,预测该地区2020年农村居民家庭人均纯收入.(附:线性回归方程ˆy bx a=+中,()()()1122211n ni i i ii in ni ii ix y nxy x x y ybx nx x x====---==--∑∑∑∑,a y bx=-,其中,x y为样本平均数)【答案】(1)ˆ0.5 2.3y x=+;(2)6.8千元.【解析】(1)由表中数据计算x、y,求出回归系数,得出y关于x的线性回归方程;(2)利用线性回归方程计算2020年对应9x=时ˆy的值,即可得出结论.【详解】(1)由表中数据,计算1(1234567)47x=⨯++++++=,1(2.9 3.3 3.6 4.4 4.8 5.2 5.9) 4.37y=⨯++++++=,71()()i iix x y y=--∑3( 1.4)(2)(1)(1)(0.7)00.510.92 1.6314=-⨯-+-⨯-+-⨯-++⨯+⨯+⨯=,7222222221((3)(2)(1)0)12328iixx==-+-+-++++=-∑,71721()()140.528()iii ii x x y y b x x ==--∴===-∑∑, 4.30.54 2.3a y bx =-=-⨯=,y ∴关于x 的线性回归方程为:ˆ0.5 2.3y x =+;(2)利用线性回归方程,计算9x =时,ˆ0.59 2.3 6.8y =⨯+=(千元), ∴预测该地区2020年农村居民家庭人均纯收入为6.8千元.【点睛】本题考查线性回归方程的求法与应用问题,考查函数与方程思想、转化与化归思想,考查数据处理.20.如图,在直三棱柱111ABC A B C -中,AC BC =,2AB =,12AA =,点N 为AB 中点,点M 在边AB 上.(1)当点M 为AB 中点时,求证:1//C N 平面1ACM ; (2)试确定点M 的位置,使得1AB ⊥平面1ACM . 【答案】(1)见解析;(2)见解析【解析】(1)推导出1//C N CM ,由此能证明1//C N 平面1ACM . (2)当点M 是AB 中点时,推导出1AA CM ⊥,AB CM ⊥,从而CM ⊥平面11AA B B ,进而1A M CM ⊥,推导出△11AA M BAB ∆∽,从而11AB A M ⊥,由此能证明1AB ⊥平面1ACM . 【详解】(1)Q 在直三棱柱111ABC A B C -中, 点N 为11A B 中点,M 为AB 中点,1//C N CM ∴,1C N ⊄Q 平面1ACM ,CM 平面1ACM , 1//C N ∴平面1ACM . (2)当点M 是AB 中点时,使得1AB ⊥平面1ACM . 证明如下:Q 在直三棱柱111ABC A B C -中,AC BC =,2AB =,1AA ,点N 为11A B 中点,点M 是AB 中点,1AA CM ∴⊥,AB CM ⊥,1AA B A A ⋂=Q ,CM ∴⊥平面11AA B B , 1A M ⊂Q 平面11AA B B ,1A M CM ∴⊥,Q 1A M ==1AB ==∴111A M AA AB AB=,∴△11AA M BAB ∆∽, 11AA M BAB ∴∠=∠,11AMA AB B ∠=∠,11AB A M ∴⊥,1A M CM M ⋂=Q ,1AB ∴⊥平面1ACM . 【点睛】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.在平面直角坐标系xOy 中,已知点(0,6)P ,圆22:10100C x y x y +++=. (1)求过点P 且与圆C 相切于原点的圆的标准方程; (2)过点P 的直线l 与圆C 依次相交于A ,B 两点. ①若AO PB ⊥,求l 的方程;②当ABC V 面积最大时,求直线l 的方程.【答案】(1)22(3)(3)18x y -+-=;(2)①85300x y -+=;②0x =或48655y x =+. 【解析】(1)设所求圆的圆心为1C ,而所求圆的圆心与C 、O 共线,故圆心1C 在直线y x =上,又圆1C 同时经过点O 与点(0,6)P ,求出圆1C 的圆心和半径,即可得答案;(2)①由题意可得OB 为圆C 的直径,求出B 的坐标,可得直线l 的方程;②当直线l 的斜率不存在时,直线方程为0x =,求出A ,B 的坐标,得到ABC ∆的面积;当直线l 的斜率存在时,设直线方程为6y kx =+.利用基本不等式、点到直线的距离公式求得k ,则直线方程可求. 【详解】(1)由2210100x y x y +++=,得22(5)(5)50x y +++=,∴圆C 的圆心坐标(5,5)--,设所求圆的圆心为1C .而所求圆的圆心与C 、O 共线,故圆心1C 在直线y x =上, 又圆1C 同时经过点O 与点(0,6)P ,∴圆心1C 又在直线3y =上,则有:3y xy =⎧⎨=⎩,解得:33x y =⎧⎨=⎩,即圆心1C 的坐标为(3,3),又1||OC ==r =, 故所求圆1C 的方程为22(3)(3)18x y -+-=;(2)①由AO PB ⊥,得OB 为圆C 的直径,则OB 过点C ,OB 的方程为y x =,联立22(5)(5)50y xx y =⎧⎨+++=⎩,解得(10,10)B --, ∴直线l 的斜率10681005k --==--,则直线l 的方程为865y x =+,即85300x y -+=;②当直线l 的斜率不存在时,直线方程为0x =,此时(0,0)A ,(0,10)B -,(5,5)C --,1105252ABC S ∆=⨯⨯=;当直线l 的斜率存在时,设直线方程为6y kx =+.再设直线被圆所截弦长为2a ,则圆心到直线的距离d ,则12252ABCS a ∆===g . 当且仅当2250a a =-,即5a =时等号成立. 此时弦长为10,圆心到直线的距离为55=,解得4855k =.直线方程为48655y x =+. ∴当ABC ∆面积最大时,所求直线l 的方程为:0x =或48655y x =+. 【点睛】本题考查圆的方程的求法、直线与圆的位置关系应用,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力. 22.在平面直角坐标系xOy 中,已知点(2,0)A ,(10,0)B ,(11,3)C ,(10,6)D .(1)①证明:cos cos 0ABC ADC ∠+∠=;②证明:存在点P 使得PA PB PC PD ===.并求出P 的坐标;(2)过C 点的直线l 将四边形ABCD 分成周长相等的两部分,产生的另一个交点为E ,求点E 的坐标.【答案】(1)①见解析;②见解析,(6,3);(2)143(,)55. 【解析】(1)①利用夹角公式可得cos cos 0ABC ADC ∠+∠=;②由条件知点P 为四边形ABCD 外接圆的圆心,根据0AB BC =u u u r u u u rg ,可得AB BC ⊥,四边形ABCD 外接圆的圆心为AD 的中点,然后求出点P 的坐标;(2)根据条件可得9ED AE =uu u r uu u r ,然后设E 的坐标为(,)x y ,根据109(2)69x x y y -=-⎧⎨-=⎩,可得E 的坐标. 【详解】(1)①(2,0)A Q ,(10,0)B ,(11,3)C ,(10,6)D ,∴(8,0)BA =-u u u r ,(1,3)BC =u u u r ,(8,6)DA =--u u u r ,(1,3)DC =-u u u r,∴cos 10||||BA BC ABC BA BC ∠===-u u u r u u u r g u u u u r u u u u u r ,cos ||||DA DC ADC DA DC ∠===u u u r u u u r g u u u u u r u u u u u r ,cos cos 0ABC ADC ∴∠+∠=;②由PA PB PC PD ===知,点P 为四边形ABCD 外接圆的圆心,Q (8,0)AB =u u u r ,(0,6)BC =u u u r ,∴0AB BC =u u u r u u u rg ,AB BC ∴⊥,四边形ABCD 外接圆的圆心为AD 的中点,∴点P 的坐标为(6,3);(2)由两点间的距离公式可得,8AB =,BC CD ==,10AD =,Q 过C 点的直线l 将四边形ABCD 分成周长相等的两部分,∴9ED AE =uu u r uu u r ,设E 的坐标为(,)x y ,则(10,6)ED x y =--u u u r ,(2,)AE x y =-u u u r,∴109(2)69x x y y -=-⎧⎨-=⎩,∴14535x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点E 的坐标为143(,)55.【点睛】本题考查向量的夹角公式、向量相等、向量的运算性质、两点间的距离公式等,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.。

【优质文档】江苏省苏州市2018-2019学年上学期高一期末数学试卷(原卷版)(2)

【优质文档】江苏省苏州市2018-2019学年上学期高一期末数学试卷(原卷版)(2)

高一数学第Ⅰ卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与角终边相同的最小正角是()A. B. C. D.2.函数的零点是()A. B. C. D.3.要得到函数的图象,只需将函数的图象()A. 向左平移个单位B. 向左平移个单位C. 向右平移个单位D. 向右平移个单位4.已知角,是中的两个内角,则“”是“”的()条件A. 充分不必要B. 必要不充分C. 既不充分又不必要D. 充要5.已知函数的零点,则整数的值为()A. B. C. D.6.一个单摆如图所示,以为始边,为终边的角与时间的函数满足:,则单摆完成次完整摆动所花的时间为().A. B. C. D. .7.已知若角的终边经过点,则的值为()A. B. C. D.8.已知函数,,则方程的解的个数为()A. B. C. D.二、填空题(将答案填在答题纸上)9.已知圆心角为的扇形,其半径为,则该扇形的面积为___.10.若点,均在幂函数的图象上,则实数_____.11.已知,则____.12.计算:_____.13.已知函数,若对任意都有恒成立,则实数的取值范围为____.14.求值:_____.15.已知,,则_____.16.某辆汽车以的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求)时,每小时的油耗(所需要的汽油量)为,其中为常数.若汽车以的速度行驶时,每小时的油耗为,欲使每小时的油耗不超过...,则速度的取值范围为___.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.设全集,集合,.(1)当时,求集合;(2)若,求实数的取值范围.18.已知,均为锐角,,.(1)求的值;(2)求的值.19.某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如表:(1)求函数的解析式,并补全表中其它的数据;(2)在给定的坐标系中,用“五点法”画出函数在一个周期内的图象;(3)写出函数的单调减区间.20.已知函数.(1)若的定义域为(是自然对数的底数),求函数的最大值和最小值;(2)求函数的零点个数.21.开发商现有四栋楼,,,楼位于楼间,到楼,,的距离分别为,,,且从楼看楼,的视角为.如图所示,不计楼大小和高度.(1)试求从楼看楼,视角大小;(2)开发商为谋求更大开发区域,拟再建三栋楼,,,形成以楼为顶点的矩形开发区域.规划要求楼,分别位于楼和楼间,如图所示记,当等于多少时,矩形开发区域面积最大?22.已知函数.(1)解不等式:;(2)求函数的奇偶性,并求函数在上的单调性;(3)若对任意,不等式恒成立,求实数的取值范围.。

江苏省苏州市2018-2019学年高一下学期期末调研测试数学试卷有答案

江苏省苏州市2018-2019学年高一下学期期末调研测试数学试卷有答案

2018-2019学年第二学期期末调研测试高一数学注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第 1题-第14题)、解答题(第15题-第20题).本卷满分160分,考 试时间为120分钟.考试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用 0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3•请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效•作答必须用 0.5毫米黑色墨水的签字笔•请注意字体工整,笔迹清楚.4.如需作图,须用2 B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5•请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.1 n _-1 n参考公式:样本数据 为必丄,x n 的方差S 2(X i -X )2,其中X in i 二n y、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1. 函数y=ln (x — 2)的定义域为▲.2. 利用计算机产生0~2之间的均匀随机数3.根据下列算法语句,当输入 :输入工:If Then:厂0・5 *工:Else;y=25 + o. 6 * (x-oO)i iEnd If i[输世¥4. 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为 400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间 [25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为 ▲. 5. 已知 a| = 2,a|_b= 1, a,b 的夹角。

为 60’,贝y b .6. 从长度为2,3,4,5的四条线段中随机地选取三条线段,则所选取的三条线段恰能 构成三角形的概率是 ▲.x -2y 2 > 0,7. 已知实数x 、y 满足 x y -2 > 0,则z = 2x - y 的最大值为 ▲.l x < 3,a ,则事件“ 3a — 2<0”发生的概率为 ▲.▲. x 为60时,输出y 的值为▲.8.函数f (x) =2sinC'X」:)(门>0,且| | )的部分图象2如图所示,则f (二)的值为▲.2 —9. 已知等差数列{a.}的公差为d,若印,a? a4赴的方差为&则d的值为▲.10. 在厶ABC中,已知/ BAC = 90° AB = 6,若D点在斜边BC上,CD = 2DB,则只B •忌的值为▲•1 s/311. 计算的值为▲ •sin 10 cos10 —y 112. 已知正实数x, y满足x 2^1,则的最小值为▲.2x y13. 已知定义在R上的奇函数f(x),当x>0时,f(x)=x2- 3x.则关于x的方程f(x)=x+ 3的解集为▲.114. 已知数列 g 的前n项和为S n.耳=,且对于任意正整数m, n都有a n=a^a m若S n :::a对任意n € N*5恒成立,则实数a的最小值是▲.二、解答题:本大题共6小题,共计90分•请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知集合A={ x|y= .3 _2x-X2}, B={x|x2- 2x+ 1 —m2< 0}.(1)若m -3,求A「B ;⑵若m 0, A M B,求m的取值范围.16. (本小题满分14分)△ ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC + ■. 3 csinB.(1)求B;⑵若b=2, a = 3c,求△ ABC的面积.17. (本小题满分14分)已知{ a n}是等差数列,满足a1= 3,a4= 12,数列{b n}满足b1 = 4,b4= 20,且{b n —a n}为等比数列. (1)求数列{a n}和{b n}的通项公式;⑵求数列{ b n}的前n项和.18. (本小题满分16分)如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园,种植桃树,已知角A为120° .现在边界AP, AQ处建围墙,PQ处围栅栏.(1)若.APQ =15 , AP与AQ两处围墙长度和为100(、..3 - 1)米,求栅栏PQ的长;(2)已知AB, AC的长度均大于200米,若水果园APQ面积为2500 3平方米,问AP , AQ长各为多少时,可使三角形APQ周长最小?19. (本小题满分16分)已知函数f(x)=x|x—a|, a € R , g(x)=x2— 1.(1)当a=1时,解不等式f(x)> g(x);⑵记函数f(x)在区间[0 , 2]上的最大值为F(a),求F(a)的表达式.20. (本小题满分16分)已知数列{a n}, {b n}, S为数列{a n}的前n项和,向量X= (1,b n),尸⑻一1,S n) , x// y. (1)若b n=2,求数列{a n}通项公式;卄n⑵右b n, a2=0.①证明:数列{a n}为等差数列;a② 设数列{C n }满足c n 口,问是否存在正整数I , m(l<m ,且l 丰2, m z 2),使得c i 、C 2、C m 成等比数列,若存在,求出I 、m 的值;若不存在,请说明理由2018-2019学年第二学期期末调研测试高一数学参考答案及评分标准一、填空题:131. (2,+ R );2.丄;3. 31;4. 100;5.1 ;6. - ;7.7;34 8. 3 ; 9. -2; 10. 24;11.4;12. 22 ; 13. {2+7 , -1 , -3};14. 1 .4二、 解答题:本大题共6小题,共计90分•请在答题卡指定区域内 作答,解答时应写出必要的文字说明、证明过程或演算步骤.15. 解(1)令 3-2x — x 2> 0,解得 A=[ — 3, 1], ............................. 3 分 m =3 时,x 2— 2x -9 =0 解得 B=[ — 2, 4]; ................. 6 分 AC1B2,11...................................... 7 分 (2) A B ,即[—3, 1] -[1 — m , 1 + m],所以 1 — m W — 3 且 1 + m > 1, ............................... 11 分 解得 m 》4,所以 m 》4................................ 14分16. 解(1)由 a=bcosC + 3 csinB 及正弦定理,sinA=sinBcosC + 3 sinCsinB,① 又 sinA=sin( n —B — C)=sin(B + C)=sinBcosC + cosBsinC ②,an 2由①②得73sinCsinB=cosBsinC,又三角形中,sinC^Q ............................................ 3分所以 3 sinB=cosB, ............................. 5 分sin15' 二 sin(45 -30 ) =sin45 cos30 -cos 45‘ sin30‘AP AQ PQ 100(31)PQ = 100 6 sin45 sin15‘ sin 120 、:6 、24(2)设 AP =x 米,AQ =y 米.2二 xy =10000 -------------------------------------------------------------------------- 9分x y _ 2、xy = 200 ---------------------------------------------------------------------- 11分 设 ABC 的周长为 L ,则 L = x y . x 2 y 2 xy = x y i (x y)2 -10000 ---12 分令x ^t , L =t ,t 2 -10000在定义域上单调增,所以L min =200 100. 3,当又 B € (0, n ,所以 B=二 ............6 1 1⑵△ ABC 的面积为 S= —acsinB = —ac.2 4由余弦定理,b ?= a ?+ c ?— 2accosB 得 4=a ? + c ? — ..f3ac a = . 3c ,得 c — c = 2 , a = 3c = 2 £3 , 所以△ ABC 的面积为 3. ...........................................................................17.解(1)设等差数列{a n }的公差为d ,由题意得 a 4 —a 1 12 — 3 d = 3 = 3 = 3. ...............................................所以 a n = a 1+ (n — 1)d = 3n(n = 1, 2,-…). ...... 设等比数列{b n — a n }的公比为q ,由题意得3 b 4—a 420 — 12 q = = = 8,解得 q = 2. Mb 1 — a 1 4— 3所以 b n — a n = (b 1 — a”q n-1 = 2n-1. 从而 b n = 3n + 2n-1(n = 1,2,…).n 1⑵由(1)知 b n = 3n + 2 -(n = 1, 2,数列{3 n }的前n 项和为》n(n + 1),1 — 2n数列{2 n-1}的前n 项和为1 x ------- = 2n — 1, .............1 —23 所以,数列{ b }的前n 项和为qn(n + 1) + 2n — 1.18.解 (1)依题意,AP AQ sin 45 sin15"PQ sin; 12分…)•10分12分14分得AP AQ” sin45 sin15PQsin120则 S =^xysin120; =2500 .3x=y=100取等号; --------答:(i )PQ =IOO .6米;(2)当AP =AQ =100米时,三角形地块 APQ 的周长最小----------------------------------------------------------------------- 16 分 19.解f(x)>g(x), a=1 时,即解不等式 x|x — 1|>x 2— 1, ......................................... 1 分 当x > 1时,不等式为x 2 — x > x 2— 1,解得x < 1,所以x = 1; ............... 3分 当x<1时,不等式为x — x 2> x 2— 1,解得< x < 1 ,2所以—1 < x ::1 ; .................................. 5 分21综上,x €,1]. ............................. 6 分2⑵因为x € [0 , 2],当a w 0时,f(x)=x 2 — ax ,则f(x)在区间[0 , 2]上是增函数,所以 F(a)=f(2)=4 — 2a ; ................. 7 分 当0<a<2时,f (x)=尹 ax,0 W x a,则f(x)在区间[0,a ]上是增函数,在区间[£,a ]上是减函数,在x-ax,a w xc22 2区间[a , 2]上是增函数,所以 F(a)=max{ f (空),f(2)} , ............... 9分2a a令 f( ) > f (2)即 > 4-2a ,解得 a w -4-4.2 或 a > -4 4 2 ,2 42 所以当 4 2-4::: a w 2 时,F(a)=a; 12 分4当 a > 2 时,f(x)= — x 2 + ax ,当1 w a c2即2 w a<4时,f(x)在间[0^上是增函数, 2 22F(a )= f 2( =! ; ..................... 13 分当a > 2,即a > 4时,f(x)在间[0, 2]上是增函数,则 F(a) =f(2) =2a -4 ; .......... 14分24 -2a,a w “-42所以,F(a) = a ,4 2-4 ::a ::4 , ................................... 16 分42a —4,a > 420.解(1) x 〃y , 得 S n =(a n — 1)5,当 b “=2,则 S n =2a n — 2 ①, 当 n=1 时,0=2n — 2, 即卩 a 1=2, .............................. 1 分 又 S n + 1=2a n +1 — 2 ②,②—①得 Si +1 — Sn=2a n +1 — 2a n , 即 a n +1= 2a n ,又 a 1=2 ,152 2而 f (|)=令,f(2)=4 — 2a ,令 f (号厂::f(2)即冷::4—2a ,解得-4-4.2 :::-4 4 2,所以当 0 ::a :::4 2 -4时,F(a)= 4 — 2a ; .............. 11 分2在[-,2上是减函数,2由l<m ,所以存在l=1,m=8符合条件.所以{a n }是首项为2,公比为2的等比数列, ................... 3分所以a n =2n ................................ 4分⑵① b n =—,则 2S n = na n - n ③,当 n =〔时,2S i =a i — 1,即 a i = — 1, 2 又 2Si +1=( n + 1)a n +i — (n + 1)④, ④一③得 2S n +1 — 2§n =(n + 1)a n +1 — na *— 1, ................................. 6 分 即(n — 1)a n +1 — na n —1=0 ⑤, 又 na n +2— (n + 1)a n +1 — 1=0⑥ ⑥一⑤得, na n + 2— 2na n + 1 + na n =0, 即a n + 2+ a n =2a n +1,所以数列{a n }是等差数列. ..................... 8分 ②又 a 1 = — 1, a 2=0, 所以数列{a n }是首项为—1,公差为1的等差数列 —1a n = — 1 + (n — 1) >1=n — 2,所以 Cn= ---- — 假设存在l<m(l 丰2, m ^ 2),使得q 、c 2、, .....................................10 分 C m 成等比数列,即C ^-C ^C ., 可得9 mJ 4 l m 12分 4m +4 整理得5lm — 4l=4m + 4即I ,由 5m —4 4m 4 > 1,得 1< m w 8,5m -414分代入检验 駕1或 m =2 I =2| m 二 3 J 或 16或 l .11m =4 ,5或 l4 m =5 ,8或 匕m =6 14或 ‘13m 二 7 32或 l31m =8 I =116分。

2018-2019学年江苏省苏州市高一上学期期末考试化学试题(答案+解析)

2018-2019学年江苏省苏州市高一上学期期末考试化学试题(答案+解析)

江苏省苏州市2018-2019学年高一上学期期末考试数学试题一、填空题(本大题共14小题,共70.0分)1.已知集合,,则______.【答案】【解析】集合A、B的公共元素是2,则A B={2}.2.函数的定义域为_________.【答案】【解析】由题意,,解得,故函数的定义域为.3.若角的终边经过点,则的值为____【答案】-2【解析】由三角函数的定义可得,应填答案.4.已知向量=(3,5),=(4,1),则向量的坐标为_________.【答案】【解析】由题意,.5.已知=,且是第四象限角,则的值是_________.【答案】【解析】因为是第四象限角,所以,则,则.6.下列函数中,定义域是R且在定义域上为减函数的是_________.①;②;③;④.【答案】①【解析】①,故的定义域是R且在定义域上为减函数;②,为定义域上的增函数,不满足题意;③,定义域为,不满足题意;④,在定义域上不是单调函数,不满足题意.故答案为①.7.设,若,则.【答案】【解析】当,解得(舍去),当,解得或(舍去),当,解得(舍去),综上故填.8.已知函数的零点(n,n+1),,则n的值是_________.【答案】1【解析】因为函数和都是上的增函数,所以函数是上的增函数,由于,,故函数的零点(1,2),即n=1.9.计算:=_________.【答案】7【解析】,,故=3+4=7.10.把函数的图象向右平移个单位长度,再将所得图象上的所有点的横坐标变为原来的倍(纵坐标不变),则得到的图象的函数解析式为_________.【答案】【解析】将函数的图象向右平移个单位长度得到,再将所得图象上的所有点的横坐标变为原来的倍(纵坐标不变)得到.11.某次帆船比赛LOGO(如图1)的设计方案如下:在Rt△ABO中挖去以点O为圆心,OB 为半径的扇形BOC(如图2),使得扇形BOC的面积是Rt△ABO面积的一半.设∠AOB=(rad),则的值为_________.【答案】【解析】设,,则三角形的面积为,扇形的面积为,则,故,因为,所以.12.如图,在长方形ABCD中,M,N分别为线段BC,CD的中点,若,,,则的值为______.【答案】【解析】设,,以为坐标原点,所在直线为轴,所在直线为轴,建立如图所示坐标系,则,,,,,,则,,,即,则即,解得,,则.13.如图,在矩形纸片ABCD中,AB=6cm,AD=10cm,沿着过C点的直线将矩形右下角折起,使得右下角顶点B落在矩形的左边AD上.设折痕所在的直线与AB交于M点,记翻折角∠BCM为,则tan的值是_________.【答案】【解析】设顶点B对折后交AD于N,设,则,,则,故,即,解得,则.14.已知函数,设函数,若函数在R上恰有两个不同的零点,则k的值为_________.【答案】【解析】由题意知在R上恰有两个不同的解,即函数与的图象有两个不同交点,当时,,,则,当时,取得最小值为;当时,,,则,当时,取得最大值为.可画出函数的图象,可知当时,函数与的图象有两个不同交点.二、解答题(本大题共6小题,共90.0分)15.设全集U=R,已知集合A={1,2},B=,集合C为不等式组的解集.(1)写出集合A的所有子集;(2)求和.解:(1)因为集合,所以它的子集,, ,;(2)因为}, 所;由,解得,所以,所以.16.设向量=(cos x,1),=(,4sin x).(1)若⊥,求tan x的值;(2)若(+)∥,且[],求向量的模.解:(1)因为,所以因为,所以,即.(2)因为,即,所以,即,所以,因为,所以,所以,即,此时,所以.17.已知函数是定义在R上的偶函数,当x≤0时,.(1)当x>0时,求函数的表达式;(2)记集合M=,求集合M.解:(1)因为当时,,所以,又因为函数为偶函数,所以,所以时,函数的表达式为.(2)当时,,若,则,显然不成立;当时,若,则,即,平方后有,解得,适合题意.综上可知,.18.某校高一数学研究小组测量学校的一座教学楼AB的高度已知测角仪器距离地面的高度为h米,现有两种测量方法:方法如图用测角仪器,对准教学楼的顶部A,计算并记录仰角;后退a米,重复中的操作,计算并记录仰角.方法如图用测角仪器,对准教学楼的顶部A底部B,测出教学楼的视角,测试点与教学楼的水平距离b米.请你回答下列问题:用数据,,a,h表示出教学楼AB的高度;按照方法II,用数据,b,h表示出教学楼AB的高度.解:(1)由题意得:,,所以,,因为,所以,所以教学楼AB的高度为.(2)如下图,过作,垂足为,则,所以,因为,所以.所以,所以教学楼的高度为,故教学楼的高度为.19.在平面直角坐标系xOy中,已知点,.求的值;若的平分线交线段AB于点D,求点D的坐标;在单位圆上是否存在点C,使得?若存在,请求出点C的坐标;若不存在,请说明理由.解:(1)因为,所以;(2)设点,则,因为点在线段上,所以,即有,化简得,①再设,因为,同理,可知,化简得,②由①②解得,,即点的坐标为.(3)假设单位圆上存在点满足条件,则;当时,,即,又因为,所以,可知或.所以,当为第二象限角时,;当为第四象限角时,.综上所述,单位圆上存在点或,满足题意。

2018-2019学年高一上学期期末考试数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知tan60°=m,则cos120゜的值是()A.B.C.D.﹣2.(5分)用二分法研究函数f(x)=x3﹣2x﹣1的理念时,若零点所在的初始区间为(1,2),则下一个有解区间为()A.(1,2)B.(1.75,2)C.(1.5,2)D.(1,1.5)3.(5分)已知x0是函数f(x)=ln x﹣6+2x的零点,则下列四个数中最小的是()A.ln x 0B.C.ln(ln x0)D.4.(5分)函数的零点为1,则实数a的值为()A.﹣2 B.C.D.25.(5分)集合{α|kπ+≤α≤kπ+,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.6.(5分)函数,若f[f(﹣1)]=1,则a的值是()A.2 B.﹣2 C.D.7.(5分)若sinα>0且tanα<0,则的终边在()A.第一象限B.第二象限C.第一象限或第三象限D.第三象限或第四象限8.(5分)若函数y=a x﹣x﹣a有两个零点,则a的取值范围是()A.(1,+∞)B.(0,1)C.(0,+∞)D.∅9.(5分)若,化简=()A.sinθ﹣cosθB.sinθ+cosθC.cosθ+sinθD.cosθ﹣sinθ10.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()A. B.C.D.11.(5分)已知奇函数f(x)在[﹣1,0]上为单调减函数,又α,β为锐角三角形内角,则()A.f(cosα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(sinα)>f(cosβ)12.(5分)已知函数f(x)=,若存在实数b,使函数g(x)=f(x)﹣b 有两个零点,则实数a的取值范围是()A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)二、填空题13.(5分)工艺扇面是中国书画一种常见的表现形式.高一某班级想用布料制作一面如图所示的扇面参加元旦晚会.已知此扇面的中心角为60°,外圆半径为60cm,内圆半径为30cm.则制作这样一面扇面需要的布料为cm2.14.(5分)已知函数f(x)与g(x)的图象在R上连续不断,由下表知方程f(x)=g(x)有实数解的区间是.15.(5分)=.16.(5分)f(x)=有零点,则实数m的取值范围是.三、解答题17.(10分)计算:sin+tan().18.(12分)已知α为第三象限角,且f(α)=.(1)化简f(α);(2)若f(α)=,求tan(3π﹣α)的值.19.(12分)计算:已知角α终边上的一点P(7m,﹣3m)(m≠0).(Ⅰ)求的值;(Ⅱ)求2+sinαcosα﹣cos2α的值.20.(12分)共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.(1)试将自行车厂的利润y元表示为月产量x的函数;(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?21.(12分)已知函数f(x)=ax2+2x﹣2﹣a(a≤0).(1)若a=﹣1,求函数的零点;(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.22.(12分)已知函数为奇函数.(1)求常数k的值;(2)设,证明函数y=h(x)在(2,+∞)上是减函数;(3)若函数g(x)=f(x)+2x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.【参考答案】一、选择题1.B【解析】∵tan60°=m,则cos120゜====,故选:B.2.C【解析】设函数f(x)=x3﹣2x﹣1,∵f(1)=﹣2<0,f(2)=3>0,f(1.5)=﹣<0,∴下一个有根区间是(1.5,2),故选:C.3.C【解析】f(x)的定义域为(0,+∞),∵f′(x)=>0,∴f(x)在(0,+∞)上是增函数,∴x0是f(x)的唯一零点,∵f(2)=ln2﹣2<0,f(e)=﹣5+2e>0,∴2<x0<e.∴ln x 0>ln>ln=ln2>0,∵ln x0<lne=1,∴ln(ln x0)<0,又(ln x0)2>0,∴ln(ln x0)最小.故选:C.4.B【解析】∵函数的零点为1,即解得a=﹣,故选B.5.C【解析】当k取偶数时,比如k=0时,+≤α≤+,故角的终边在第一象限.当k取奇数时,比如k=1时,+≤α≤+,故角的终边在第三象限.综上,角的终边在第一、或第三象限,故选C.6.B【解析】∵函数,∴f(﹣1)=2,∴f[f(﹣1)]===1,解得:a=﹣2,故选:B.7.C【解答】解;∵sinα>0且tanα<0,∴α位于第二象限.∴+2kπ<α<2kπ+π,k∈Z,则+kπ<<kπ+k∈Z,当k为奇数时它是第三象限,当k为偶数时它是第一象限的角∴角的终边在第一象限或第三象限,故选:C.8.A【解析】①当0<a<1时,易知函数y=a x﹣x﹣a是减函数,故最多有一个零点,故不成立;②当a>1时,y′=ln a•a x﹣1,故当a x<时,y′<0;当a x>时,y′>0;故y=a x﹣x﹣a在R上先减后增,且当x→﹣∞时,y→+∞,当x→+∞时,y→+∞,且当x=0时,y=1﹣0﹣a<0;故函数y=a x﹣x﹣a有两个零点;故成立;故选A.9.D【解析】∵,∴sinθ<cosθ.∴== =cosθ﹣sinθ.故选:D.10.D【解析】f(x)=x2•sin(x﹣π)=﹣x2•sin x,∴f(﹣x)=﹣(﹣x)2•sin(﹣x)=x2•sin x=﹣f(x),∴f(x)奇函数,∵当x=时,f()=﹣<0,故选:D.11.C【解析】∵奇函数y=f(x)在[﹣1,0]上为单调递减函数,∴f(x)在[0,1]上为单调递减函数,∴f(x)在[﹣1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴α+β>,∴α>﹣β,∴sinα>sin(﹣β)=cosβ>0,∴f(sinα)<f(cosβ).故选C.12.C【解析】∵g(x)=f(x)﹣b有两个零点∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由于y=x2在[0,a)递增,y=2x在[a,+∞)递增,要使函数f(x)在[0,+∞)不单调,即有a2>2a,由g(a)=a2﹣2a,g(2)=g(4)=0,可得2<a<4.故选C.二、填空题13.450π【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料为××60×60﹣××30×30=450π.故答案为:450π.14.(0,1)【解析】设h(x)=f(x)﹣g(x),则∵h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.532>0,∴h(x)的零点在区间(0,1),故答案为:(0,1).15.﹣1【解析】===﹣1,故答案为:﹣1.16.(﹣1,1)【解析】函数f(x)=有零点,可得函数y==的图象和直线y=m有交点,如图所示:数形结合可得﹣1<m<1,∴实数m的取值范围是(﹣1,1),故答案为:(﹣1,1).三、解答题17.解:sin+tan()==.18.解:(1)f(α)==;(2)由,得,又α为第三象限角,∴,∴.19.解:依题意有;(1)原式==;(2)原式=2+=2+=2﹣=. 20.解:(1)依题设,总成本为20000+100x,则;(2)当0≤x≤400时,,则当x=300时,y max=25000;当x>400时,y=60000﹣100x是减函数,则y<60000﹣100×400=20000,∴当月产量x=300件时,自行车厂的利润最大,最大利润为25000元.21.解:(1)若a=﹣1,则f(x)=﹣x2+2x﹣1,由f(x)=﹣x2+2x﹣1=0,得x2﹣2x+1=0,解得x=1,∴当a=﹣1时,函数f(x)的零点是1.(2)已知函数f(x)=ax2+2x﹣2﹣a,且a≤0,①当a=0时,f(x)=2x﹣2,由2x﹣2=0,得x=1,且1∈(0,1],∴当a=0时,函数f(x)在区间(0,1]上恰有一个零点.②当a≠0时,由f(x)=ax2+2x﹣2﹣a=0易得f(1)=0,∴f(x)=0必有一个零点1∈(0,1],设另一个零点为x0,则,即,∵函数f(x)在区间(0,1]上恰有一个零点.从而x0≤0,或x0≥1,,解得a≤﹣2或﹣1≤a<0,综合①②得,a的取值范围是(﹣∞,﹣2]∪[﹣1,0].22.解:(1)∵f(x)为奇函数∴f(﹣x)=﹣f(x),即=﹣,∴4﹣k2x2=4﹣x2,整理得k2=1.∴k=﹣1(k=1使f(x)无意义而舍去).(2)由(1)k=﹣1,故h(x)=,设a>b>2,∴h(a)﹣h(b)=﹣=∵a>b>2时,b﹣a<0,a﹣2>0,b﹣2>0,∴h(a)﹣h(b)<0,∴h(x)在(2,+∞)递减,(3)由(2)知,f(x)在(2,+∞)递增,∴g(x)=f(x)+2x+m在[3,4]递增.∵g(x)在区间[3,4]上没有零点,∴g(3)>0或g(4)<0,∴m>log35+8或m<﹣15.。

2018-2019学年高一上期末数学试卷(答案+解析)2

2018-2019学年高一上期末数学试卷(答案+解析)2

2018-2019学年高一上学期期末考试数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)满足条件{0,1}∪A={0,1}的所有集合A的个数是()A.1个B.2个C.3个D.4个2.(5分)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|3.(5分)下列函数中,与函数y=有相同定义域的是()A.f(x)=ln x B.C.f(x)=|x| D.f(x)=e x4.(5分)若tanα=3,则的值等于()A.2 B.3 C.4 D.65.(5分)将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=ae nt,假设过5分钟后甲桶和乙桶的水量相等,若再过m分钟甲桶中的水只有升,则m的值为()A.7 B.8 C.9 D.106.(5分)函数y=cos2x+8cos x﹣1的最小值是()A.0 B.﹣1 C.﹣8 D.﹣107.(5分)函数y=f(x)与y=g(x)的图象如图,则函数y=f(x)•g(x)的图象为()A.B.C.D.8.(5分)将函数y=sin x的图象向左平移φ(0≤φ<2π)个单位后,得到函数y=sin(x﹣)的图象,则φ等于()A.B. C. D.9.(5分)定义在R上的函数f(x)满足f(x)=,则f(2009)的值为()A.﹣1 B.0 C.1 D.210.(5分)已知cos(α﹣)+sinα=,则sin(α+)的值是()A.B.C.D.11.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B. C.4 D.1212.(5分)设a,b,c均为正数,且2a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c二、填空题(共4小题,每小题5分,满分20分)13.(5分)求值sin60°•cos160°(tan340°+)=.14.(5分)若函数y=x2﹣8x在区间(a,10)上为单调函数,则a的取值范围为.15.(5分)已知点A(0,0),B(6,﹣4),N是线段AB上的一点,且3AN=2AB,则N点的坐标是.16.(5分)函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题:①函数f(x)=x2(x∈R)是单函数;②函数f(x)=2x(x∈R)是单函数,③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④在定义域上具有单调性的函数一定是单函数其中的真命题是(写出所有真命题的编号)三、解答题(共6小题,满分70分)17.(12分)如图,=(6,1),=(x,y),=(﹣2,3),(1)若∥,试求x与y之间的表达式;(2)若⊥,且,求x,y的值.18.(12分)函数f1(x)=lg(﹣x﹣1)的定义域与函数f2(x)=lg(x﹣3)的定义域的并集为集合A,函数g(x)=2x﹣a(x≤2,a∈R)的值域为集合B.(1)求集合A,B(2)若集合A,B满足A∩B=B,求实数a的取值范围.19.(12分)已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,).(1)求sin2α﹣tanα的值;(2)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数y=f(﹣2x)﹣2f2(x)在区间[0,]上的取值范围.20.(12分)设f(x)=mx2+3(m﹣4)x﹣9(m∈R),(1)试判断函数f(x)零点的个数;(2)若满足f(1﹣x)=f(1+x),求m的值;(3)若m=1时,存在x∈[0,2]使得f(x)﹣a>0(a∈R)成立,求a的取值范围.21.(12分)已知O为坐标原点,=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m(m∈R),(1)若f(x)的定义域为[﹣,π],求y=f(x)的单调递增区间;(2)若f(x)的定义域为[,π],值域为[2,5],求m的值.22.(10分)(1)计算:log2.56.25+lg+ln+2(2)已知x+x﹣1=3,求x2﹣x﹣2.【参考答案】一、选择题(共12小题,每小题5分,满分60分)1.D【解析】由{0,1}∪A={0,1}易知:集合A⊆{0,1}而集合{0,1}的子集个数为22=4故选D.2.B【解析】逐一考查所给的选项:A.y=x3是奇函数,在区间(0,+∞)上单调递增,不合题意;B.y=|x|+1是偶函数,在区间(0,+∞)上单调递增;C.y=﹣x2+1是偶函数,在区间(0,+∞)上单调递减,不合题意;D.y=2﹣|x|是偶函数,在区间(0,+∞)上单调递减,不合题意.故选B.3.A【解析】函数的定义域是{x|x>0},对于A:定义域是{x|x>0},对于B:定义域是{x|x≠0},对于C:定义域是R,对于A:定义域是R,故选A.4.D【解析】==2tanα=6,故选D.5.D【解析】令a=a e nt,即=e nt,∵=e5n,∴=e15n,比较知t=15,m=15﹣5=10.故选D.6.C【解析】函数y=cos2x+8cos x﹣1=2cos2x+8cos x﹣2=2(cos x+2)2﹣10,因为cos x∈[﹣1,1],所以cos x=﹣1时,函数取得最小值:﹣8.故选C.7.A【解析】由图象可知,y=f(x)为偶函数,其定义域为R,y=g(x)为奇函数,其定义域为{x|x≠0}∴f(﹣x)•g(x)=﹣f(x)•g(x),∴y=f(x)•g(x)为奇函数,且定义域为{x|x≠0}∴f(x)•g(x)的图象关于原点对称,故选A.8.D【解析】将函数y=sin x向左平移φ(0≤φ<2π)个单位得到函数y=sin(x+φ).根据诱导公式知当φ=π时有:y=sin(x+π)=sin(x﹣).故选D.9.C【解析】∵当x>3时满足f(x)=﹣f(x﹣3)=f(x﹣6),周期为6,∴f(2009)=f(334×6+5)=f(5)=f(﹣1)当x≤0时f(x)=1﹣x)∴f(﹣1)=1∴f(2009)=f(﹣1)=log22=1故选C.10.C【解析】∵,∴,∴.故选C.11.B【解析】由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选B.12.A【解析】分别作出四个函数y=,y=2x,y=log2x的图象,观察它们的交点情况.由图象知:∴a<b<c.故选A.二、填空题(共4小题,每小题5分,满分20分)13.1【解析】原式=sin320°(tan340°+)=﹣sin40°(﹣tan20°﹣)=sin40°(tan20°+)=•=1.故答案为1.14.[4,10)【解析】函数y=x2﹣8x的对称轴为:x=4,由函数y=x2﹣8x在区间(a,10)上为单调函数,可得:4≤a,即a∈[4,10).故答案为[4,10).15.(4,﹣)【解析】设N的坐标为:(x、y),∵点A(0,0),B(6,﹣4),∴=(x,y),=(6,﹣4),∵3AN=2AB,∴3(x,y)=2(6,﹣4),∴,解得x=4,y=﹣,故答案为(4,﹣)16.②③④【解析】∵若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,∴①函数f(x)=x2不是单函数,∵f(﹣1)=f(1),显然﹣1≠1,∴函数f(x)=x2(x∈R)不是单函数;②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,且x1≠x2,若f(x1)=f(x2),则x1=x2,与x1≠x2矛盾∴③正确;④同②;故答案为②③④.三、解答题(共6小题,满分70分)17.解:(1)∵=(6,1),=(x,y),=(﹣2,3)∴=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),∵∥,∴,解得x=y.(2)∵=(6,1),=(x,y),=(﹣2,3),∴=(6+x,1+y),=(x﹣2,y+3),=﹣()=﹣(4+x,4+y)=(﹣4﹣x,﹣4﹣y),⊥,且,∴,解得x=y=.18.解:(1)由题意可得M={x|﹣x﹣1>0}={x|x<﹣1},N={x|x﹣3>0}={x|x>3},∴A=N∪M={x|x<﹣1,或x>3}.由于x≤2,可得2x∈(0,4],故函数g(x)=2x﹣a(x≤2)的值域为B=(﹣a,4﹣a].(2)若函数A∩B=B,则B⊆A,∴B=∅,或B≠∅.当B=∅时,﹣a≥4﹣a,a无解.当B≠∅,则有4﹣a<﹣1,或﹣a≥3,求得a>5,或a≤﹣3,综合可得,a>5或a≤﹣3.19.解:(1)∵角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(﹣3,),∴x=﹣3,y=,r=|OP|==2,∴sinα==,cosα==﹣,tanα==﹣,∴sin2α﹣tanα=2sinαcosα﹣tanα=﹣+=﹣.(2)函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα=cos[(x﹣α)+α]=cos x,∴函数y=f(﹣2x)﹣2f2(x)=cos(﹣2x)﹣2cos2x=sin2x﹣cos2x﹣1=2(sin2x﹣cos2x)﹣1=2sin(2x﹣)﹣1,在区间[0,]上,2x﹣∈[﹣,],故当2x﹣=﹣或时,函数y取得最小值为﹣2;当2x﹣=时,函数y取得最大值为1,故函数y在区间[0,]上的取值范围为[﹣2,1].20.解:(1)①当m=0时,f(x)=﹣12x﹣9为一次函数,有唯一零点;②当m≠0时,由△=9(m﹣4)2+36m=9(m﹣2)2+108>0故f(x)必有两个零点;(2)由条件可得f(x)的图象关于直线x=1对称,∴﹣=1,且m≠0,解得:m=;(3)依题原命题等价于f(x)﹣a>0有解,即f(x)>a有解,∴a<f(x)max,∵f(x)在[0,2]上递减,∴f(x)max=f(0)=﹣9,故a的取值范围为a<﹣9.21.解:(1)=(2sin2x,1),=(1,﹣2sin x cos x+1),f(x)=•+m=2sin2x﹣2sin x cos x+1+m=2+m﹣cos2x﹣sin2x=2+m﹣2sin(2x+),由+2kπ≤2x+≤2kπ+(k∈Z),即为+kπ≤x≤kπ+,k∈Z,得y=f(x)在R上的单调递增区间为[+kπ,kπ+],k∈Z,又f(x)的定义域为[﹣,π],∴y=f(x)的增区间为:[﹣,﹣],[,].(2)当≤x≤π时,≤,∴﹣1≤sin(2x+)≤,即有1+m≤2+m﹣2sin(2x+)≤4+m,∴1+m≤f(x)≤4+m,由题意可得,解得m=1.22.解:(1)log2.56.25+lg+ln+2=2+0﹣2++6=.(2)x+x﹣1=3,可得:x2+x﹣2+2=9,x2+x﹣2﹣2=5,x﹣x﹣1=,x2﹣x﹣2=(x+x﹣1)(x﹣x﹣1)=.。

江苏省苏州市2018-2019学年高一数学上学期期末调研试卷

江苏省苏州市2018-2019学年高一数学上学期期末调研试卷

题,通过函数的图像的极值情况,分离参数法求解参数的取值范围,转换为两个图像的交点问题来解
决,这种思想尤为重要。
解:
②当 故方程 x
时,
有根

……………………6 分

0

0


极大值

极小值

由表可见,当
时,
有极小值 0,故
符合题意 ……8分
由上表可知:
的减函数区间为
的增函数区间为

………………9 分
乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个
人说的是真话,则该事故中需要负主要责任的人是
_____ .
16.按文献记载,《百家姓》成文于北宋初年,表
1 记录了《百家姓》开头的 24 大姓氏:
表 1:
























表 2 记录了 2018 年中国人口最多的前 10 大姓氏: 表 2:
C. [ - 2,+∞)
D. ( -∞,- 2]
2x 1,x 1
10.已知函数 f (x)
,则方程 f ( f (x)) 1的根的个数为(

| ln( x 1) , x 1
A.7
B.5
C.3
D.2
11.已知 f ( x) x2 3xf '(1) ,则 f '(2) ( )
A.4
B.2
C.1
D.8

2018-2019学年江苏省苏州市高一上学期期末考试数学试题(答案+解析)

2018-2019学年江苏省苏州市高一上学期期末考试数学试题(答案+解析)

江苏省苏州市2018-2019学年高一上学期期末考试数学试题一、填空题(本大题共14小题,共70.0分)1.已知集合,,则______.[答案][解析]集合A、B的公共元素是2,则A B={2}.2.函数的定义域为_________.[答案][解析]由题意,,解得,故函数的定义域为. 3.若角的终边经过点,则的值为____[答案]-2[解析]由三角函数的定义可得,应填答案.4.已知向量=(3,5),=(4,1),则向量的坐标为_________.[答案][解析]由题意,.5.已知=,且是第四象限角,则的值是_________.[答案][解析]因为是第四象限角,所以,则,则.6.下列函数中,定义域是R且在定义域上为减函数的是_________.①;②;③;④.[答案]①[解析]①,故的定义域是R且在定义域上为减函数;②,为定义域上的增函数,不满足题意;③,定义域为,不满足题意;④,在定义域上不是单调函数,不满足题意.故答案为①.7.设,若,则.[答案][解析]当,解得(舍去),当,解得或(舍去),当,解得(舍去),综上故填.8.已知函数的零点(n,n+1),,则n的值是_________.[答案]1[解析]因为函数和都是上的增函数,所以函数是上的增函数,由于,,故函数的零点(1,2),即n=1.9.计算:=_________.[答案]7[解析],,故=3+4=7.10.把函数的图象向右平移个单位长度,再将所得图象上的所有点的横坐标变为原来的倍(纵坐标不变),则得到的图象的函数解析式为_________.[答案][解析]将函数的图象向右平移个单位长度得到,再将所得图象上的所有点的横坐标变为原来的倍(纵坐标不变)得到.11.某次帆船比赛LOGO(如图1)的设计方案如下:在Rt△ABO中挖去以点O为圆心,OB 为半径的扇形BOC(如图2),使得扇形BOC的面积是Rt△ABO面积的一半.设∠AOB=(rad),则的值为_________.[答案][解析]设,,则三角形的面积为,扇形的面积为,则,故,因为,所以.12.如图,在长方形ABCD中,M,N分别为线段BC,CD的中点,若,,,则的值为______.[答案][解析]设,,以为坐标原点,所在直线为轴,所在直线为轴,建立如图所示坐标系,则,,,,,,则,,,即,则即,解得,,则.13.如图,在矩形纸片ABCD中,AB=6cm,AD=10cm,沿着过C点的直线将矩形右下角折起,使得右下角顶点B落在矩形的左边AD上.设折痕所在的直线与AB交于M点,记翻折角∠BCM为,则tan的值是_________.[答案][解析]设顶点B对折后交AD于N,设,则,,则,故,即,解得,则.14.已知函数,设函数,若函数在R上恰有两个不同的零点,则k的值为_________.[答案][解析]由题意知在R上恰有两个不同的解,即函数与的图象有两个不同交点,当时,,,则,当时,取得最小值为;当时,,,则,当时,取得最大值为.可画出函数的图象,可知当时,函数与的图象有两个不同交点.二、解答题(本大题共6小题,共90.0分)15.设全集U=R,已知集合A={1,2},B=,集合C为不等式组的解集.(1)写出集合A的所有子集;(2)求和.解:(1)因为集合,所以它的子集,, ,;(2)因为}, 所;由,解得,所以,所以.16.设向量=(cos x,1),=(,4sin x).(1)若⊥,求tan x的值;(2)若(+)∥,且[],求向量的模.解:(1)因为,所以因为,所以,即.(2)因为,即,所以,即,所以,因为,所以,所以,即,此时,所以.17.已知函数是定义在R上的偶函数,当x≤0时,.(1)当x>0时,求函数的表达式;(2)记集合M=,求集合M.解:(1)因为当时,,所以,又因为函数为偶函数,所以,所以时,函数的表达式为.(2)当时,,若,则,显然不成立;当时,若,则,即,平方后有,解得,适合题意.综上可知,.18.某校高一数学研究小组测量学校的一座教学楼AB的高度已知测角仪器距离地面的高度为h米,现有两种测量方法:方法如图用测角仪器,对准教学楼的顶部A,计算并记录仰角;后退a米,重复中的操作,计算并记录仰角.方法如图用测角仪器,对准教学楼的顶部A底部B,测出教学楼的视角,测试点与教学楼的水平距离b米.请你回答下列问题:用数据,,a,h表示出教学楼AB的高度;按照方法II,用数据,b,h表示出教学楼AB的高度.解:(1)由题意得:,,所以,,因为,所以,所以教学楼AB的高度为.(2)如下图,过作,垂足为,则,所以,因为,所以.所以,所以教学楼的高度为,故教学楼的高度为.19.在平面直角坐标系xOy中,已知点,.求的值;若的平分线交线段AB于点D,求点D的坐标;在单位圆上是否存在点C,使得?若存在,请求出点C的坐标;若不存在,请说明理由.解:(1)因为,所以;(2)设点,则,因为点在线段上,所以,即有,化简得,①再设,因为,同理,可知,化简得,②由①②解得,,即点的坐标为.(3)假设单位圆上存在点满足条件,则;当时,,即,又因为,所以,可知或.所以,当为第二象限角时,;当为第四象限角时,.综上所述,单位圆上存在点或,满足题意。

高中数学-高一上学期期末调研测试数学试题 Word版含解析72

高中数学-高一上学期期末调研测试数学试题 Word版含解析72

2018-2019学年高一上学期期末调研测试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,集合,则()A. B.C. D.【答案】B【解析】【分析】由题意,求得集合,集合,根据集合的交集的运算,即可求解,得到答案.【详解】由题意,集合,集合,根据集合的交集的运算,可得,故选B.【点睛】本题主要考查了集合的交集的运算问题,其中解答中首先求解集合,再利用集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.有一个容量为66的样本,数据的分组及各组的频数如下:,,,,根据样本的频数分布估计,大于或等于的数据约占A. B. C. D.【答案】C【解析】【分析】找到大于或等于的频数,除以总数即可.【详解】由题意知,大于或等于的数据共有:则约占:本题正确选项:【点睛】考查统计中频数与总数的关系,属于基础题.3.秦九韶算法是中国古代求多项式的值的优秀算法,若,当时,用秦九韶算法求A. 1B. 3C. 4D. 5【答案】C【解析】【分析】通过将多项式化成秦九韶算法的形式,代入可得.【详解】由题意得:则:本题正确选项:【点睛】本题考查秦九韶算法的基本形式,属于基础题.4.下列四组函数中,不表示同一函数的是A. 与B. 与C. 与D. 与【答案】D【解析】【分析】根据相同函数对定义域和解析式的要求,依次判断各个选项.【详解】相同函数要求:函数定义域相同,解析式相同三个选项均满足要求,因此是同一函数选项:定义域为;定义域为,因此不是同一函数本题正确选项:【点睛】本题考查相同函数的概念,关键在于明确相同函数要求定义域和解析式相同,从而可以判断结果.5.执行如图所示程序框图,当输入的x为2019时,输出的A. 28B. 10C. 4D. 2【答案】C【解析】【分析】的变化遵循以为公差递减的等差数列的变化规律,到时结束,得到,然后代入解析式,输出结果.【详解】时,每次赋值均为可看作是以为首项,为公差的等差数列当时输出,所以,即即:,本题正确选项:【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.6.函数的单调递增区间为A. B. C. D.【答案】C【解析】【分析】结合对数真数大于零,求出定义域;再求出在定义域内的单调递减区间,得到最终结果.【详解】或在定义域内单调递减根据复合函数单调性可知,只需单调递减即可结合定义域可得单调递增区间为:本题正确选项:【点睛】本题考查求解复合函数的单调区间,复合函数单调性遵循“同增异减”原则,易错点在于忽略了函数自身的定义域要求.7.在一不透明袋子中装着标号为1,2,3,4,5,6的六个质地、大小、颜色无差别小球,现从袋子中有放回地随机摸出两个小球,并记录标号,则两标号之和为9的概率是A. B. C. D.【答案】A【解析】【分析】确定所有可能的基本事件总数,再列出标号和为的所有基本事件,根据古典概型可求得概率. 【详解】有放回的摸出两个小球共有:种情况用表示两次取出的数字编号标号之和为有:,,,四种情况所以,概率本题正确选项:【点睛】本题考查古典概型的相关知识,对于基本事件个数较少的情况,往往采用列举法来求解,属于基础题.8.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是A. 336B. 510C. 1326D. 3603 【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.9.设,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】将化成对数的形式,然后根据真数相同,底数不同的对数的大小关系,得到结果.【详解】由题意得:又本题正确选项:【点睛】本题考查对数大小比较问题,关键在于将对数化为同底或者同真数的对数,然后利用对数函数图像来比较.10.设函数和分别是上的偶函数和奇函数,则下列结论恒成立的是()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】试题分析:根据题意,A.错误,令定义域为,由:,所以是非奇非偶函数;B错误,令定义域为,由:即:,所以是偶函数;C.错误.令定义域为,由:,所以为非奇非偶函数;D.正确.令定义域为,由,即,所以为偶函数,正确.综上,答案为D.考点:1.函数的奇偶性;2.奇偶函数的定义域.11.已知函数是定义在R上的偶函数,且在上是增函数,若对任意,都有恒成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】【分析】根据偶函数的性质,可知函数在上是减函数,根据不等式在上恒成立,可得:在上恒成立,可得的范围.【详解】为偶函数且在上是增函数在上是减函数对任意都有恒成立等价于当时,取得两个最值本题正确选项:【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.12.设,表示不超过实数的最大整数,则函数的值域是A. B. C. D.【答案】B【解析】【分析】根据不同的范围,求解出的值域,从而得到的值域,同理可得的值域,再根据取整运算得到可能的取值.【详解】由题意得:,①当时,则,此时,,,则②当时,,,,.③当时,则,此时,,,则综上所述:的值域为本题正确选项:【点睛】本题考查新定义运算的问题,解题关键在于能够明确新定义运算的本质,易错点在于忽略与的彼此取值影响,单纯的考虑与整体的值域,造成求解错误.二、填空题(本大题共4小题,共20.0分)13.函数的定义域是_______________【答案】【解析】由题要使函数有意义须满足14.小明通过做游戏的方式来确定接下来两小时的活动,他随机地往边长为1的正方形内扔一颗豆子,若豆子到各边的距离都大于,则去看电影;若豆子到正方形中心的距离大于,则去打篮球;否则,就在家写作业则小明接下来两小时不在家写作业的概率为______豆子大小可忽略不计【答案】【解析】【分析】根据题意画出图形,求出写作业所对应的区域面积,利用得到结果.【详解】由题意可知,当豆子落在下图中的空白部分时,小明在家写作业大正方形面积;阴影正方形面积空白区域面积:根据几何概型可知,小明不在家写作业的概率为:本题正确结果:【点睛】本题考查几何概型中的面积型,属于基础题.15.若函数为偶函数,则______.【答案】1【解析】【分析】为定义域上的偶函数,所以利用特殊值求出的值.【详解】是定义在上的偶函数即解得:本题正确结果:【点睛】本题考查利用函数奇偶性求解参数值,对于定义域明确的函数,常常采用赋值法来进行求解,相较于定义法,计算量要更小.16.已知函数,若存在实数a,b,c,满足,其中,则abc的取值范围是______.【答案】【解析】【分析】根据解析式,画出的图像,可知函数与每段的交点位置,由此可得,再求出的范围后,可确定整体的取值范围.【详解】由解析式可知图像如下图所示:由图像可知:又且时,可知即又本题正确结果:【点睛】本题考查函数图像及方程根的问题,关键在于能够通过函数图像得到的关系.三、解答题(本大题共6小题,共70.0分)17.设集合,不等式的解集为B.当时,求集合A,B;当时,求实数a的取值范围.【答案】(1)A={x|-1<x<0},B={Xx|-2<x<4};(2)a≤2.【解析】【分析】(1)直接代入集合即可得,解不等式得;(2)分别讨论和两种情况,得到关于的不等式组,求得取值范围.【详解】(1)当时,(2)若,则有:①当,即,即时,符合题意,②当,即,即时,有解得:综合①②得:【点睛】本题考查了解二次不等式、集合间的包含关系及空集的定义,属基础题.易错点在于忽略了的情况.18.在平面直角坐标系中,记满足,的点形成区域A,若点的横、纵坐标均在集合2,3,4,中随机选择,求点落在区域A内的概率;若点在区域A中均匀出现,求方程有两个不同实数根的概率;【答案】(1);(2).【解析】【分析】(1)利用列举法确定基本事件,即可求点落在区域内的概率;(2)以面积为测度,求方程有两个实数根的概率.【详解】根据题意,点的横、纵坐标在集合中随机选择,共有个基本事件,并且是等可能的其中落在,的区域内有,,,,,,,,共个基本事件所以点落在区域内的概率为(2),表示如图的正方形区域,易得面积为若方程有两个不同实数根,即,解得为如图所示直线下方的阴影部分,其面积为则方程有两个不同实数根的概率【点睛】本题考查概率的计算,要明确基本事件可数时为古典概型,基本事件个数不可数时为几何概型,属于中档题.19.计算:;若a,b分别是方程的两个实根,求的值.【答案】(1);(2)12.【解析】【分析】(1)利用指数与对数运算性质即可得出;(2)根据题意,是方程的两个实根,由韦达定理得,,利用对数换底公式及其运算性质即可得出.【详解】(1)原式(2)根据题意,是方程的两个实根由韦达定理得,原式【点睛】本题考查了指数与对数运算性质、对数换底公式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.20.下面给出了2010年亚洲某些国家的国民平均寿命单位:岁.国家平均寿命国家平均寿命国家平均寿命阿曼阿富汗59 巴基斯坦巴林阿联酋马来西亚朝鲜东帝汶孟加拉国韩国柬埔寨塞浦路斯老挝卡塔尔沙特阿拉伯蒙古科威特哈萨克斯坦缅甸菲律宾印度尼西亚日本黎巴嫩土库曼斯坦65吉尔吉斯斯泰国尼泊尔68坦乌兹别克斯约旦土耳其坦越南75 伊拉克也门中国以色列文莱伊朗74 新加坡叙利亚印度根据这40个国家的样本数据,得到如图所示的频率分布直方图,其中样本数据的分组区间为:,,,,,请根据上述所提供的数据,求出频率分布直方图中的a,b;请根据统计思想,利用中的频率分布直方图估计亚洲人民的平均寿命及国民寿命的中位数保留一位小数.【答案】(1),;(2)平均寿命71.8,中位数71.4.【解析】【分析】(1)根据表中数据,亚洲这个国家中,国民平均寿命在的频数是,频率是,由此能求出,同理可求;(2)由频率分布直方图能估计亚洲人民的平均寿命及国民寿命的中位数.【详解】(1)根据表中数据,亚洲这个国家中国民平均寿命在的频数是,频率是国民平均寿命在的频数是,频率是,计算得,由频率分布直方图可知,各个小矩形的面积各个区间内的频率转换为分数分别是:,,,,,以上所有样本国家的国民平均寿命约为:前三组频率和为中位数为根据统计思想,估计亚洲人民的平均寿命大约为岁,寿命的中位数约为岁【点睛】本题考查实数值、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.21.某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:年份年 1 2 3 4 5维护费万元Ⅰ求y关于t的线性回归方程;Ⅱ若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.参考公式:,【答案】(Ⅰ);(2)甲更有道理.【解析】【分析】(Ⅰ)分别求出相关系数,求出回归方程即可;(Ⅱ)代入的值,比较函数值的大小,判断即可.【详解】(Ⅰ),,,,,所以回归方程为(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:(万元)若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为:(万元)所以甲更有道理【点睛】本题考查了求回归方程问题,考查函数求值,是一道常规题.22.已知,.求在上的最小值;若关于x的方程有正实数根,求实数a的取值范围.【答案】(1);(2).【解析】【分析】(1)通过讨论的范围,结合二次函数的性质求出函数的单调区间,求出函数的最小值即可;(2)得到,令,问题转化为在有实根,求出的范围即可.【详解】(1)当时,在上单调递减故最小值当时,是关于的二次函数,对称轴为当时,,此时在上单调递减故最小值当时,对称轴当,即时,在单调递减,在单调递增故最小值当时,即时,在上单调递减故最小值综上所述:(2)由题意化简得令,则方程变形为,根据题意,原方程有正实数根即关于的一元二次方程有大于的实数根而方程在有实根令,在上的值域为故【点睛】本题考查了二次函数的性质,考查函数的单调性,最值问题,考查分类讨论思想,转化思想.关键是通过换元的方式将问题转化为二次函数在区间内有实根的问题,可以用二次函数成像处理,也可以利用分离变量的方式得到结果.。

苏教版2018-2019学年高一第一学期期末数学试题(精品Word版,含答案解析)

苏教版2018-2019学年高一第一学期期末数学试题(精品Word版,含答案解析)

2018-2019学年第一学期高一年级期末质量抽测数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合,,那么等于A. B. C. D.【答案】A【解析】【分析】根据并集的定义写出A∪B即可.【详解】集合A={﹣1,0,2},B={0,2,3},则A∪B={﹣1,0,2,3}.故选:A.【点睛】本题考查了并集的定义与应用问题,是基础题.2.已知角α的终边经过点,那么的值为A. B. C. D.【答案】B【解析】【分析】由三角函数的定义直接可求得sin a.【详解】∵知角a的终边经过点P,∴sin a,故选:B.【点睛】本题考查任意角的三角函数的定义,属于基础题.3.()A. B. C. D.【答案】D【解析】试题分析:考点:诱导公式4.已知向量, 且,那么实数的值为A. B. 1 C. 2 D. 4【答案】C【解析】【分析】根据即可得出,进行数量积的坐标运算即可求出m的值.【详解】∵,∴;∴m=2.故选:C.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算.5.下列函数中,既是偶函数,又在区间上为减函数的为A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】根据题意,依次分析选项:对于A,y为反比例函数,为奇函数,不符合题意;对于B,y=cos x为余弦函数,在(﹣∞,0)上不是单调函数,不符合题意;对于C,y=2﹣x,不是偶函数,不符合题意;对于D,y=|x|+1,既是偶函数,又在区间(﹣∞,0)上为减函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的单调性,属于基础题.6.已知那么a,b,c的大小关系为A. B. C. D.【答案】A【解析】【分析】容易看出40.5>1,log0.54<0,0<0.54<1,从而可得出a,b,c的大小关系.【详解】∵40.5>40=1,log0.54<log0.51=0,0<0.54<0.50=1;∴b<c<a.故选:A.【点睛】本题考查指数函数、对数函数的单调性,以及指对函数的值域问题,属于基础题.7.如果二次函数有两个不同的零点,那么的取值范围为A. B. C. D.【答案】C【解析】【分析】由条件利用二次函数的性质可得△=4﹣4()>0,由此求得m的范围.【详解】∵二次函数y=x2+2x+(m﹣2)有两个不同的零点,∴△=4﹣4()>0,求得m<-1或m>2,故选:C.【点睛】本题主要考查函数零点与方程根的关系,考查了二次函数的性质,属于基础题.8.为了得到函数的图象,只需将函数的图象A. 向左平行移动个单位B. 向左平行移动个单位C. 向右平行移动个单位D. 向右平行移动个单位【答案】B【解析】【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位.故选:B.【点睛】本题主要考查了函数y=A sin(ωx+φ)的图象变换规律的简单应用,属于基础题.9.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100,水温与时间近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度与时间近似满足函数的关系式为(为常数), 通常这种热饮在40时,口感最佳,某天室温为时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为A. 35B. 30C. 25D. 20【答案】C【解析】【分析】由函数图象可知这是一个分段函数,第一段是正比例函数的一段,第二段是指数型函数的一段,即满足,且过点(5,100)和点(15,60),代入解析式即可得到函数的解析式.令y=40,求出x,即为在口感最佳时饮用需要的最少时间.【详解】由题意,当0≤t≤5时,函数图象是一个线段,当t≥5时,函数的解析式为,点(5,100)和点(15,60),代入解析式,有,解得a=5,b=20,故函数的解析式为,t≥5.令y=40,解得t=25,∴最少需要的时间为25min.故选C.【点睛】本题考查了求解析式的问题,将函数图象上的点的坐标代入即可得到函数的解析式,考查了指数的运算,属于中档题.二、填空题:本大题共5小题,每小题6分,共30分.10.已知集合,, 则__________.【答案】【解析】【分析】直接由交集的定义求得结果.【详解】,,∴A∩B=.故答案为.【点睛】考查描述法表示集合的概念,以及交集的运算,属于基础题.11.__________.(用数字作答)【答案】5【解析】【分析】根据对数与指数的运算性质直接得到结果.【详解】.故答案为5.【点睛】本题考查了指数运算法则及对数的运算性质,属于基础题,12.已知向量,向量与的夹角为, 那么__________.【答案】【解析】【详解】∵||=1,||=1,向量与的夹角为,∴,∴,故答案为.【点睛】本题考查了向量数量积的运算,属于基础题.13.已知函数的图象如图所示,那么函数__________,__________.【答案】(1). 2(2).【解析】【分析】根据周期求出ω,根据五点法作图求出φ,从而求得函数的解析式.【详解】由题意可得T•,解得ω=2.再由五点法作图可得2=,解得,故答案为(1). 2(2). .【点睛】本题主要考查利用y=A sin(ωx+φ)的图象特征,由函数y=A sin(ωx+φ)的部分图象求解析式,属于中档题.14.已知函数在上存在零点,且满足,则函数的一个解析式为 __________.(只需写出一个即可)【答案】(不是唯一解)【解析】【分析】根据f(﹣2)•f(2)>0便可想到f(x)可能为偶函数,从而想到f(x)=x2,x=0是该函数的零点,在(﹣2,2)内,从而可写出f(x)的一个解析式为:f(x)=x2.【详解】根据f(﹣2)•f(2)>0可考虑f(x)是偶函数;∴想到f(x)=x2,并且该函数在(﹣2,2)上存在零点;∴写出f(x)的一个解析式为:f(x)=x2.故答案为:f(x)=x2.【点睛】考查函数零点的定义及求法,属于基础题.15.已知函数是定义在上的奇函数,当时,,其中.(1)当时,__________;(2)若的值域是,则的取值范围为__________.【答案】(1). (2). (﹣∞,-2]∪[2,+∞).【解析】【分析】①运用奇函数的定义,计算即可得到所求值;②由f(x)的图象关于原点对称,以及二次函数的值域,结合判别式与对称轴满足的条件列出不等式,解不等式即可得到所求范围.【详解】①当时,,函数f(x)是定义在R上的奇函数,f(﹣1)=﹣f(1)=﹣(1﹣2+3)=﹣2;②由f(x)的图象关于原点对称,可得f(0)=0,又当x>0时,f(x)的对称轴为x=a,所以若f(x)的值域是R,则当x>0时,f(x)=必须满足:,或,解得a≥2或a≤-2,即a的取值范围是(﹣∞,-2]∪[2,+∞).故答案为:【答题空1】;【答题空2】(﹣∞,-2]∪[2,+∞).【点睛】本题考查了函数奇偶性的性质与判断,属于难题.三、解答题(共5个小题,共70分)16.已知是第二象限角,且.(1)求的值;(2)求的值.【答案】(1);(2)【解析】【分析】(1)直接由.(2)由可得,再由二倍角公式计算即可.【详解】(1)由,解得.(2)由(1)可得,所以.【点睛】本题考查了同角三角函数间的基本关系、两角和的正切公式及二倍角公式,熟练掌握基本关系是解决本题的关键,属于基础题.17.已知函数(1)求函数的最小正周期;(2)求函数的单调递减区间;(3)求函数在区间上的最小值.【答案】(1);(2);(3)【解析】【分析】(1)化简,由周期公式计算周期即可.(2)由题意知解得x的范围即得单调递减区间.(3)由(2)知f(x)在区间上单调递增,在上单调递减,即可求f(x)在区间[0,]上的最小值.【详解】(1)所以函数的最小正周期是.(2)由题意知故所以函数单调递减区间为.(3)由(2)知f(x)在区间上单调递增,在上单调递减,故f(x)在时取得最小值为.【点睛】本题考查三角函数的化简,考查三角函数的图象与性质,属于中档题.18.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并用定义证明你的结论;(3)若函数,求实数的取值范围.【答案】(1);(2)见解析;(3)【解析】【分析】(1)由,求得x的范围,可得函数的定义域;(2)根据函数的定义域关于原点对称,且f(﹣x)=﹣f(x),可得f(x)为奇函数;(3)由f(x)0,利用函数的定义域和单调性求出不等式的解集.【详解】(1)由解得所以, 故函数的定义域是.(2)函数是奇函数.由(1)知定义域关于原点对称.因为,所以函数是奇函数.(3) 由可得 .得解得.【点睛】本题考查了函数的定义域、奇偶性问题,考查了对数函数单调性的应用,考查转化思想,是一道中档题.19.为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:小明阅读“经典名著”的阅读量(单位:字)与时间t(单位:分钟)满足二次函数关系,部分数据如下表所示;阅读“古诗词”的阅读量(单位:字)与时间t(单位:分钟)满足如图1所示的关系.(1)请分别写出函数和的解析式;(2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?【答案】(1)见解析;(2)见解析【解析】【分析】(1)设f(t)=代入(10,2700)与(30,7500),解得a与b. 令=kt,,代入(40,8000),解得k,再令=mt+b,,代入(40,8000),(60,11000),解得m,b的值.即可得到和的解析式;(2)由题意知每天的阅读量为=,分和两种情况,分别求得最大值,比较可得结论.【详解】(1)因为f(0)=0,所以可设f(t)=代入(10,2700)与(30,7500),解得a=-1,b=280.所以,又令=kt,,代入(40,8000),解得k=200,令=mt+b,,代入(40,8000),(60,11000),解得m=150,b=2000,所以.(2)设小明对“经典名著”的阅读时间为,则对“古诗词”的阅读时间为,① 当,即时,==,所以当时,有最大值13600.当,即时,h=,因为的对称轴方程为,所以当时,是增函数,所以当时,有最大值为13200.因为 13600>13200,所以阅读总字数的最大值为13600,此时对“经典名著”的阅读时间为40分钟,对“古诗词”的阅读时间为20分钟.【点睛】本题考查了分段函数解析式的求法及应用,二次函数的图象和性质,难度中档.20.已知函数的定义域为,对于给定的,若存在,使得函数满足:① 函数在上是单调函数;② 函数在上的值域是,则称是函数的级“理想区间”.(1)判断函数,是否存在1级“理想区间”. 若存在,请写出它的“理想区间”;(只需直接写出结果)(2) 证明:函数存在3级“理想区间”;()(3)设函数,,若函数存在级“理想区间”,求的值.【答案】(1)见解析;(2)见解析;(3)或【解析】【分析】(1)直接由“理想区间”的定义判断即可.(2)由题意结合函数的单调性得,即方程有两个不等实根.设,由零点存在定理知有零点,,所以方程组有解,即函数存在3级“理想区间”(3)根据函数在上为单调递增得到,转化为方程在上有两个不等实根进而转化为在至少有一个实根.分、三种情况,分别求得满足条件的k即可. 【详解】(1) 函数存在1级“理想区间”,“理想区间”是[0,1];不存在1级“理想区间”.(2)设函数存在3级“理想区间”,则存在区间,使的值域是.1因为函数在R上单调递增,所以,即方程有两个不等实根.设,可知,,,,由零点存在定理知,存在,,使,.设,,所以方程组有解,即函数存在3级“理想区间”. (3)若函数存在级“理想区间”,则存在区间,函数的值域是.因为,任取,且,有,因为,所以,所以,即,所以函数在上为单调递增函数.所以,于是方程在上有两个不等实根.即在上有两个不等实根.显然是方程的一个解,所以在至少有一个实根.(1)当时,,不合题意,舍;(2)当时,方程无实根,舍;(3)时,,所以,解出.所以,又因为,所以或.【点睛】本题考查了新定义下的函数的性质与应用问题,解题时应理解新定义中的题意与要求,转化为解题的条件与结论,属于难题.1。

苏教版2018-2019学年高一上学期期末数学试题(精品Word版,含答案解析)

苏教版2018-2019学年高一上学期期末数学试题(精品Word版,含答案解析)

2018-2019学年高一上学期期末联考数学试题一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={|=},则M∩N=()A. {-1,0,1}B. {0,1}C. {1}D. {0}【答案】B【解析】,M={-1,0,1}M∩N={0,1}【点评】本题考查了集合的基本运算,较简单,易得分.先求出,再利用交集定义得出M∩N2.函数f(x)=+lg(1+x)的定义域是()A. (-∞,-1)B. (1,+∞)C. (-1,1)∪(1,+∞)D. (-∞,+∞)【答案】C【解析】试题分析:由分母不为0,对数的真数大于0,可得(-1,1)∪(1,+),故选C.考点:函数的定义域.3.方程的实数根的所在区间为()A. (3,4)B. (2,3)C. (1,2)D. (0,1)【答案】C【解析】【分析】构造函数,利用求得实数根所在的区间.【详解】构造函数,,,故零点在区间.【点睛】本小题主要考查函数与方程的思想,考查零点的存在性定理的理解和运用,属于基础题.4.A. B.C. D.【答案】D【解析】试题分析:由指数函数与对数函数的图形与性质可知,所以,故选D.考点:指数函数与对数函数的性质.5.若奇函数在内是减函数,且,则不等式的解集为( )A. B.C. D.【答案】D【解析】,选D.点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内6.下列结论正确的是()A. 向量与向量是共线向量,则ABCD四点在同一条直线上B. 若,则或C. 单位向量都相等D. 零向量不可作为基底中的向量【答案】D【解析】【分析】根据向量共线、垂直、单位向量、基底等知识,对四个选项逐一分析,从而得出正确选项.【详解】对于A选项,两个共线向量,对应点可以是平行的,不一定在同一条直线上,故A选项错误.对于B 选项,两个向量数量积为零,可能这两个向量垂直,故B选项错误.对于C选项,单位向量是模为的向量,并没有确定的方向,故C选项错误.两个不共线的非零向量可以作为基底,零向量不能作为基底,故D选项正确.故选D.查基底的知识,属于基础题.7.已知角的终边过点且,则的值为()A. -B.C. -D.【答案】C【解析】因为角的终边过点,所以,,解得,故选A.8.若平面向量与的夹角是180°,且,则等于( )A. B. C. D.【答案】A【解析】设,则(1)又(2),由(1)(2)可解得x=-3,y=6故选A;9.在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.10.要得到函数的图像,只需要将函数的图像()A. 向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位【答案】B【解析】【分析】根据化简,再利用图像变换的知识得出正确选项.【详解】由于,故,故只需将向左平移个单位,即可得到的图像.故选B.【点睛】本小题主要考查三角函数诱导公式,考查三角函数图像变换的知识,考查化归与转化的数学思想方法,属于中档题.由于题目所给的两个函数的系数一正一负,故首先要利用诱导公式将系数为负的变为正数再来进行图像变换.图像变换过程中要注意的系数的影响.11.已知函数,若在区间上的最大值为,则的最小值是A. B. C. D.【分析】先求出,再根据的最大值为1得到m的取值范围即得解.【详解】由题得,因为函数f(x)的最大值为,所以的最大值为1,所以.所以m的最小值为.故答案为:B【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.12.方程在区间上的解的个数是()A. B. C. D.【答案】C【解析】【分析】先利用特殊角的三角函数值求得的值,进而求得的值,对进行赋值求得在内解的个数.【详解】依题意可知,故,当时,,故解的个数是个,故选C.【点睛】本小题主要考查特殊角的三角函数值,考查正切函数有关概念及运算,属于基础题.二、本大题共4小题,每小题5分,共20分,请将答案填在答题卷的指定位置.13.著名的函数,则=__________.【答案】0【解析】【分析】由于为无理数,根据分段函数的解析式,可求得对应的函数值.【详解】为无理数,故.【点睛】本小题主要考查新定义函数的理解,考查分段函数求函数值的方法,属于基础题.14.设扇形的半径为,周长为,则扇形的面积为__________【答案】3根据半径和周长求得弧长,再根据扇形面积公式求得扇形面积.【详解】由于扇形的半径为,周长为,故弧长为,所以扇形的面积为.【点睛】本小题主要考查扇形的周长公式,考查扇形的面积公式,属于基础题.15.设向量a=(2,4)与向量b=(x,6)共线,则实数x=________.【答案】3【解析】分析:由向量a=(2,4)与向量b=(x,6)共线,可得,解方程可得。

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.满足2,的集合A的个数是A. 2B. 3C. 4D. 8【答案】C【解析】由题意,可得满足2,的集合A为:,,,2,,共4个.故选:C.2.已知幂函数的图像过点,若,则实数的值为()A. B. C. D.【答案】D【解析】依题意有2=4a,得a=,所以,当时,m=9.3.的值是A. B. C. D.【答案】A【解析】.4.已知直线:,:,:,若且,则的值为A. B. 10 C. D. 2【答案】C【解析】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选:C.5.已知2a=5b=,则+=()A. B. 1 C. D. 2【答案】D【解析】∵2a=5b=,∴a=log2,b=log5,利用换底公式可得:+=2+5=10=2.6.如图,已知正方体中,异面直线与所成的角的大小是A. B. C. D.【答案】C【解析】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是.故选:C.7.已知,则()A. B. C. D.【答案】D【解析】=,故选D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,,则【答案】D【解析】,,故选D.9.已知函数,则()A. 1B.C. 2D. 0【答案】C【解析】由题意,函数,.故选:C.10.若存在正数x使成立,则a的取值范围是A. B.C. D.【答案】D【解析】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选:D.11.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A. B. C. D.【答案】A【解析】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为.故选:A.12.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B. C. D.【答案】A【解析】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选:A.二、填空题(本大题共4小题,共20.0分)13.函数的定义域为___________。

苏教版2018-2019学年高一第一学期期末考试试题数学(理科)试题(答案解析)

苏教版2018-2019学年高一第一学期期末考试试题数学(理科)试题(答案解析)

2018-2019学年度红旗中学第一学期期末考试试题高一数学(理)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集,集合,,则=()A. B. C. D.【答案】B【解析】因为设全集,集合,,则=选B2.下列函数中,既是偶函数又在区间上单调递减的是A. B. C. D.【答案】C【解析】A中为奇函数,B中y=e-x为非奇非偶函数,函数y=-x2+1是偶函数,且在(0,+∞)上递减.3.如图,是水平放置的的直观图,则的周长为 ( )A. B. C. D.【答案】A【解析】是水平放置的的直观图,如图所示:所以周长为:,故选A.4.若用m,n表示两条不同的直线,用表示一个平面,则下列命题正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】【分析】根据直线与平面的位置关系,直线与直线的位置关系可判断。

【详解】对于A,m有可能在平面α内,所以A错误对于B,m与n有可能异面,所以B错误对于C,m与n有可能异面,所以C错误对于D,根据直线与平面垂直的性质可知D是正确的所以选D【点睛】本题考查了直线与平面的位置关系判断,属于基础题。

5.函数的零点所在的区间是A. B. C. D.【答案】C【解析】【分析】由函数可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数f(x)=2x+x﹣7的零点所在的区间.【详解】∵函数f(x)=2x+x﹣7,∴f(2)=﹣1<0,f(3)=4>0,f(2)•f(3)<0,根据函数的零点的判定定理可得,函数f(x)=2x+x﹣7的零点所在的区间是(2,3),故选:C.【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题.6.三个数之间的大小关系是()A. B. C. D.【答案】B【解析】,,故选B.7.下列四个命题中,正确的是()①两个平面同时垂直第三个平面,则这两个平面可能互相垂直②方程表示经过第一、二、三象限的直线③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行④方程可以表示经过两点的任意直线A. ②③B. ①④C. ①②④D. ①②③④【答案】C【解析】对于①,如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直,比如正方体的两个相邻侧面与底面,故正确;对于②,当时,直线,即,故直线的斜率,且直线在轴上的截距-故直线经过第一、二、三象限,故正确;对于③,在正方体中,这四个点不共线,且它们到平面的距离都相等,但平面与平面并不平行,故错误对于④为两点式的变形,包括点,故正确故①②④正确,选C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:)是A. B. C. D.【答案】A【解析】由三视图可知几何体为半个圆锥和一个三棱锥的组合体,∴=,故选A.9.在正方体中,下列几种说法不正确的是A. B. B1C与BD所成的角为60°C. 二面角的平面角为D. 与平面ABCD所成的角为【答案】D【解析】【分析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误.故选:D.【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力.10.已知直线与直线平行,则的值为()A. 0或3或B. 0或3C. 3或D. 0或【答案】D【解析】∵直线与直线平行∴,即∴,,或经验证当时,两直线重合.故选D11.直线与、为端点的线段有公共点,则k的取值范围是A. B. C. D.【答案】B【解析】【分析】求出直线y=k(x﹣1)过定点C(1,0),再求它与两点A(3,2),B(0,1)的斜率,即可取得k 的取值范围.【详解】解:y=k(x﹣1)过C(1,0),而k AC1,k BC1,故k的范围是(﹣∞,﹣1]∪[1,+∞),故选:B.【点睛】本题考查倾斜角与斜率的关系,正确分析图象是解题的关键.12.在等腰直角三角形ABC中,,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点如图,若光线QR经过的重心,则AP等于A. 2B. 1C.D. 【答案】D 【解析】 【分析】建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点P 1的坐标,和P 关于y 轴的对称点P 2的坐标,由P 1,Q ,R ,P 2四点共线可得直线的方程,由于过△ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值. 【详解】解:建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为(,),设P (a ,0),其中0<a <4,则点P 关于直线BC 的对称点P 1(x ,y ),满足,解得,即P 1(4,4﹣a ),易得P 关于y 轴的对称点P 2(﹣a ,0),由光的反射原理可知P 1,Q ,R ,P 2四点共线, 直线QR 的斜率为k,故直线QR 的方程为y(x +a ),由于直线QR 过△ABC 的重心(,),代入化简可得3a 2﹣4a =0,解得a ,或a =0(舍去),故P (,0),故AP故选:D .【点睛】本题考查直线中的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.二、填空题(本大题共4小题,每小题5分,满分20分)13.=______.【答案】【解析】试题分析:.考点:对数的运算.14.已知,,以为直径的圆的标准方程为__________.【答案】14.【解析】从题设可得圆心为,则所求圆的标准方程为,应填答案。

江苏省苏州市2018-2019学年高一上学期期中考试数学试卷(解析版)

江苏省苏州市2018-2019学年高一上学期期中考试数学试卷(解析版)

2018-2019学年江苏省苏州市高一上学期期中考试数学试卷一、选择题。

1.【答案】C【解析】【分析】空集是任何集合的子集.根据元素与集合的关系、集合与集合的关系对选项逐一进行判断,由此得出正确选项.【详解】对于A选项,集合中含有一个元素空集,故空集是这个集合的元素,故A选项正确. 空集是任何集合的子集,故B,D两个选项正确.对于C选项,空集不是正整数集合的元素,C选项错误.故选C.【点睛】本小题主要考查元素与集合的关系,考查集合与集合的关系,考查空集的概念.属于基础题.2.不【答案】B【解析】【分析】将化为以为底的对数形式,然后利用对数函数的定义域和单调性求得不等式的解集.【详解】依题意,由于是定义域上的递增函数,故.所以选B.【点睛】本小题主要考查对数函数的定义域,考查对数不等式的解法,属于基础题.3.【答案】C【解析】【分析】令,解这个不等式求得函数的定义域.【详解】由于函数的定义域为,故,解得或,故选C.【点睛】本小题主要考查抽象函数的定义域的求法,考查定义域的概念及应用,属于基础题.4.【答案】D【解析】试题分析:由题意得,当时,即,则,解得(舍去);当时,即,则,解得,故选D.考点:分段函数的应用.5.【答案】D【解析】试题分析:因为,所以函数是偶函数,又+=在上是减函数,故选D.考点:1、函数的奇偶性;2、函数的单调性.6.【答案】A【解析】若选项A错误时,选项B、C、D正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A错误,选项B、C、D正确,故选A.【考点定位】1、函数的零点;2、利用导数研究函数的极值.二、填空题。

请把答案填写在答题纸相应位置上。

7.【答案】【解析】【分析】根据补集的概念,求得集合的补集.【详解】由于,全集中除了以外的元素是,所以.【点睛】本小题主要考查全集的概念,考查补集的概念以及补集的求法,属于基础题.8.【答案】-【解析】【分析】先将被开方数化为指数的形式,再用根式的运算化简式子,从而得到最终的结果.【详解】依题意.【点睛】本小题主要考查根式的运算,属于基础题,在根式运算中,要注意如果为偶数,则,如果为奇数,则.9.【答案】【解析】【分析】首先判断出的范围,然后将其代入对应的分段函数解析式中,所求值变为,然后判断的范围,代入对应的分段函数解析式中.以此类推,直到可以代入第一段解析式为止,由此求得最终的函数值. 【详解】由于,所以,由于,所以,由于,所以.【点睛】本小题主要考查分段函数的性质,考查对数的运算公式,考查运算求解能力.在分段函数求值的过程中,首先要明确自变量所在的区间,这样才能够知道代入函数解析式的哪一段.对数运算公式,,要熟练记忆和运用这些公式.属于基础题.10.【答案】b<a<c【解析】【分析】先根据函数为偶函数化简使它们的自变量都落在这个区间内,再根据函数的单调性比较大小.【详解】由于函数为偶函数,故,由于,且函数在上递减,故.【点睛】本小题主要考查函数奇偶性的应用,考查函数单调性的应用,考查抽象函数比较大小,考查化归与转化的数学思想方法,属于基础题.函数是偶函数,故满足,这样可以将不是题目给定范围内的数,转化到这个区间里面来,再按照单调性来比较大小.11.【答案】[,3)【解析】【分析】先求得函数的定义域,然后利用复合函数单调性的判断方法“同增异减”来求得单调递减区间.【详解】令,解得.由于(),开口向下,且对称轴为,左增右减.而函数在定义域上为递增函数,故函数的递减区间为.【点睛】本小题主要考查复合函数的单调性的求解,考查一元二次不等式的解法,属于基础题.由于题目涉及对数函数,故首先要满足对数的真数要大于零这个前提,也即是求函数的单调区间,首先要求函数的定义域.复合函数的单调性,主要判断依据是根据“同增异减”这一特点来进行.12.【答案】{a|a>0或a=﹣4}【解析】【分析】对分为三类,根据去绝对值的情况,讨论函数在上的单调性,由此确定的取值范围. 【详解】当时,为常数函数,不符合题意.当时,由于,故函数,函数开口向上,对称轴为,故函数在上递增,符合题意.当时,令,解得.此时,故函数在上递减,在上递增,所以是的子集,故,解得,故的取值范围是或.【点睛】本小题主要考查含有参数、绝对值的函数的单调性的问题,考查二次函数的单调性的判断,考查分段函数的单调性,还考查了分类讨论的数学思想,综合性较强,属于中档题.它的关键点有两个,一个是的范围,这个决定了二次函数的开口方向还有对称轴.二个是如何去绝对值符号,变为分段函数的形式. 13.【答案】10【解析】【分析】首先利用换元法,结合函数的单调性求得函数的解析式,再来求的值.【详解】令,则,且,令代入上式,得,所以,解得,由于函数是上的递增函数,故上述解只有一个,故,即,所以.【点睛】本小题主要考查复合函数求解析式,考查换元法的思想,考查分析和解决问题的能力,属于基础题.14.【答案】﹣≤a≤2【解析】【分析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.15.【答案】(I)(II)1【解析】【分析】(I)利用配方法,求得的值,将两边平方化简后,求得,利用立方和公式以及平方差公式化简所求的式子,由此计算得结果.(2)利用对数的运算公式,将化为并代回原式,合并同类项后化简,可求得最终结果.【详解】(I),====(II)===1【点睛】本小题主要考查指数的运算,考查对数的运算,考查化归与转化的数学思想方法和运算求解能力,属于中档题.16.【答案】(1)M∪N=[1,+∞)(2)m【解析】【分析】(1)先通过求函数的定义域,求得集合,当时,利用配方法求得二次函数的值域,也即求得集合,然后求两个集合的并集.(2)由(1)得到集合的范围,以及集合的范围,集合的范围含有参数.根据,得到是的子集,由此求得的取值范围.【详解】(1)M=[1,3]当m=3时,N={y|y=x2﹣2x+3}={y|y=(x-1)2+2}=[2,+∞),所以,M∪N=[1,+∞)(2)可得由(1)可知M=[1,3],N=[m-1,+∞)则m【点睛】本小题主要考查函数的定义域,考查二次函数值域的求法,考查集合的并集和交集,考查子集的概念以及运用.属于基础题.函数的定义域主要由以下方面考虑来求解:一个是分数的分母不能为零,二个是偶次方根的被开方数为非负数,第三是对数的真数要大于零,第四个是零次方的底数不能为零.17.【答案】(1) y=-; (2) 200元;(3) 每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元【解析】【分析】(1)先计算降价后每台冰箱的利润,然后计算每天销售额,两者相乘得到利润的表达式.(2)令利润的表达式等于,解出降价的钱,从中选一个百姓能得到更大优惠的.(3)利用二次函数的对称轴,求得函数的最大值以及相应的自变量的值.【详解】(1)根据题意,得y=(2400-2000-x)(8+4×),即y=-;(2)由题意,得-整理,得x2-300x+20000=0,解这个方程,得x1=100,x2=200,要使百姓得到实惠,取x=200,所以,每台冰箱应降价200元;(3)对于y=-当x=-时,y最大值=(2400-2000-150)(8+4×)=250×20=5000,所以,每台冰箱的售价降价150元时,商场的利润最高,最高利润是5000元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【解析】
【分析】
对四个函数逐个分析,①满足题意;②是单调递增函数;③定义域不是
R; ④不是递减函数。
【详解】①
,故
的定义域是 R 且在定义域上为减函数 ; ② ,为定义域上的增函数,
不满足题意; ③
,定义域为
,不满足题意; ④
,在定义域上不是单调函数,
不满足题意。 故答案为①. 【点睛】本题考查了函数的定义域,考查了函数单调性的判断,涉及指数函数、对数函数、一次函数与分 段函数,属于基础题。
【详解】将函数
的图象向右平移 个单位长度得到
,再将所得图象上的所有点的横坐标变
为原来的 倍(纵坐标不变)得到
.
【点睛】由函数 y= sin x 的图象通过变换得到 y= Asin(ωx+ φ)的图象,有两种主要途径: “先平移后伸缩 ”与 “先伸缩后平移 ”。 11.某次帆船比赛 LOGO (如图 1)的设计方案如下:在 Rt△ABO 中挖去以点 O 为圆心, OB 为半径的扇形
2.函数 【答案】
的定义域为 _________.
【解析】
【分析】
由对数的真数大于 0,列出不等式求解即可。
【详解】由题意,
,解得
,故函数 的定义域为
.
【点睛】本题考查了函数定义域的求法,考查了对数的性质,属于基础题。
3.若角 的终边经过点
, 则 的值为 ____
【答案】 -2
【解析】
由三角函数的定义可得
,应填答案 。
4.已知向量 = (3 ,5) , = (4 , 1) ,则向量 的坐标为 _________.
【答案】
【解析】
【分析】

即可得到答案。
【详解】由题意,
.
【点睛】本题考查了平面向量的坐标表示及运算,考查了学生对平面向量知识的掌握,属于基础题。
5.已知 = ,且 是第四象限角,则
的值是 _________.
14. 已知函数 则 k 的值为 _________.
,设函数
,若函数 在 R 上恰有两个不同的零点,
【答案】
【解析】
【分析】
由题意知
在 R 上恰有两个不同的解, 即函数

结合函数 的表达式画出
的图象,即可得到答案。
【详解】由题意知
在 R 上恰有两个不同的解,即函数
不同交点,
的图象有两个不同交点,

江苏省苏州市 2018-2019 学年上学期高一期末数学试卷
一、填空题(本大题共 14 小题,共 70.0 分)
1.已知集合 【答案】

,则
______.
【解析】
【分析】
集合 A、B 的公共元素是 2,进而可得到集合 A、B 的交集。
【详解】集合 A、B 的公共元素是 2,则 A B= {2}.
【点睛】本题考查了集合的交集,考查了学生对基础知识的掌握,属于基础题。
的图象有两个
当 时,

,则
,当 时,取得最小
值为 ;
当 时,

,则
,当
时,取得
最大值为 .
可画出函数
的图象, 可知当
时,函数 与
的图象有两个不同交点 。
【点睛】已知函数有零点(方程有根)求参数值常用的
方法和思路 ( 1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; ( 2)分离参数法:先将参数分离,转化成求函数值域问题加以解决; ( 3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解。
【点睛】本题考查了指数与对数式子的运算性质,考查了学生的计算能力,属于基础题。
10. 把函数
的图象向右平移 个单位长度,再将所得图象上的所有点的横坐标变为原来的
不变),则得到的图象的函数解析式为 _________.
倍(纵坐标
【答案】 【解析】 【分析】 利用三角函数图象的伸缩、平移变换规律,即可得到答案。
.
【点睛】本题考查了三角形的面积公式,考查了扇形的面积公式,考查了学生分析问题、解决问题能力, 属于中档题。
12.如图,在长方形 ABCD中, M, N 分别为线段 BC, CD的中点,若 值为 ______.
,,
,则

【答案】
【解析】
【分析】


坐标表示
,以 为坐标原点, 所在直线为 轴, 所在直线为 轴,建立坐标系,用

都是 上的增函数,所以函数
是 上的增函数,
由于

,故函数
的零点 (1 , 2) ,即 n= 1.
【点睛】本题考查了函数零点存在性定理的应用,考查了函数的单调性,属于基础题。
9.计算:
= _________.
【答案】 7 【解析】 【分析】 由指数与对数的运算性质,化简即可得到答案。
【详解】

,故
= 3+4=7.
【答案】 【解析】 【分析】 设顶点 B 对折后交 AD 于 N,设
,由题中关系可得
,即可求出 ,进而由
可得到答案。
【详解】设顶点 B 对折后交 AD 于 N,设
,则

,则


,即
,解得三角形在解决几何问题中的应用,考
查了学生的运算求解能力,属于中档题。
,即可求出
的值,进而得到答案。
【详解】设

图所示坐标系,则



,以 为坐标原点,



所在直线为 轴, 所在直线为 轴,建立如

,则





,解得

,则
.
【点睛】 本题考查了向量的线性运算, 考查了向量在平面几何的应
用,考查了学生的推理能力与计算能力,属于中档题。 13.如图, 在矩形纸片 ABCD 中, AB= 6cm, AD = 10cm,沿着过 C 点的直线将矩形右下角折起, 使得右下角 顶点 B 落在矩形的左边 AD 上.设折痕所在的直线与 AB 交于 M 点,记翻折角 ∠ BCM 为 ,则 tan 的值是 _________.
BOC(如图 2),使得扇形 BOC 的面积是 Rt△ ABO 面积的一半. 设 ∠ AOB= (rad), 则 的值为 _________.
【答案】
【解析】 【分析】


,进而表示出三角形
的面积和扇形
的面积,然后建立关系式可得到
的值。
【详解】设

,则三角形
的面积为 ,扇形
的面积为


,故

因为
,所以
【答案】 【解析】 【分析】 由 是第四象限角,可得
,进而可以求出
,结合
,可得到答案。
【详解】因为 是第四象限角,所以
,则


.
【点睛】本题考查了三角函数求值,考查了三角函数诱导公式,属于基础题。
6.下列函数中,定义域是 R 且在定义域上为减函数的是 _________.

;② ;③
;④

【答案】①
7.设
,若
,则
【答案】 【解析】

,解得
故填 .
(舍去),当
,解得
.

(舍去),当
,解得
(舍去),综上
8.已知函数
的零点
(n, n+ 1),
,则 n 的值是 _________ .
【答案】 1
【解析】
【分析】
分析可得函数 是 上的增函数,

,可知零点在 (1, 2)上,进而可得到答案。
【详解】因为函数
相关文档
最新文档