八年级数学图形的旋转测试题
北师大版八年级下册数学3.2图形旋转(有关旋转图形的旋转方向、旋转中心、旋转角)(含解析)
找出旋转图形的旋转方向、旋转中心、旋转角一、选择题1、如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°2、如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)3、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△,则其旋转中心可能是( )A .点AB .点BC .点CD .点D4、如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4)5、在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D6、如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°7、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°二、填空题9、如图,在▱ABCD中,∠A=70°,将▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1= __________ .10、分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是__________度.11、如图所示,两个全等的正方形ABCD与CDEF,旋转正方形ABCD能和正方形CDEF重合,则可以作为旋转中心的点有__________个.三、解答题12、在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.13、如图,在△BDE中,∠BDE=90°,BD=4,点D的坐标是(5,0),∠BDO=15°,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 __________ .14、如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.(1)AE= __________ ,正方形ABCD的边长= __________ ;(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上.①写出∠B′AD′与α的数量关系并给出证明;②若α=30°,求菱形AB′C′D′的边长.15、如图,已知:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是 __________ .16、如图是两个等边三角形拼成的四边形.(1)这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心.(2)若△ACD旋转后能与△ABC重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.17、如图1,△ABC为边长为6的等边三角形,点D为AB边上的点,且AD=2BD;过D作DE∥BC交AC边于E;AH⊥BC于H,AH交于DE于点O.(1)求梯形BDEC的面积;(2)将图1中的△ADE以每秒1个单位长度的速度沿直线AH从上往下平移,直到点A与点H重合为止,设运动时间为t秒,△ADE与四边形BDEC重叠部分的面积为S,请求出S与t的函数关系,并写出相应的t的取值范围;(3)将图1中的△ADE沿直线DE向下翻折得△A′DE,连接CO:将△A′DE绕点O旋转,设直线A′O与直线BC相交于点P.问:是否存在这样的时刻,使得△CPO为等腰三角形?若存在,直接写出△A′DE绕点O旋转的方向(顺时针或逆时针)以及对应的旋转角度α的大小(0°<α<180°);若不存在,请说明理由.找出旋转图形的旋转方向、旋转中心、旋转角的答案和解析一、选择题1、答案:A试题分析:利用旋转的性质计算.解:∵∠ABC=60°,∴旋转角∠CB=180°-60°=120°.∴这个旋转角度等于120°.故选:A.2、答案:B试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1).故选B.3、答案:B试题分析:连接、、,分别作、、的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.解:∵△MNP绕某点旋转一定的角度,得到△,∴连接、、,作的垂直平分线过B、D、C,作的垂直平分线过B、A,作的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.4、答案:B试题分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心。
八年级上数学第四章+图形的平移与旋转(题+答案)
第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。
八年级数学上旋转练习题及答案
《旋转》训练题1、经过旋转,图形上的每一点都绕沿相同方向转动了,任意一对对应点与的连线所成的角都是旋转角,对应点到的距离相等.2、下列说法不正确的是()A、图形旋转后对应线段,对应角相等;B、旋转不改变图形的形状和大小;C、旋转后对应点的连线的垂直平分线经过旋转中心;D、旋转形成的图形是由旋转中心和旋转方向决定的.3、要使正十二边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转()A、30°B、45°C、60°D、75°4、如图1所示的五角星旋转多少度能与自身重合?5、如图2所示,若正方形ABCD可由正方形CDEF旋转后得到,则图形所在平面上可以作为旋转中心的共有几个?6、(2010年天津市)如图3,已知正方形ABCD的边长为3,E为CD边上一点,1DE=.以点A 为中心,把△ADE顺时针旋转90︒,得△ABE',连接EE',则EE'的长等于.7、图4中的两个正方形的边长相等,请你指出图中可以通过绕点O旋转而相互得到的图形并说明旋转的角度.8、如图5,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是以点为旋转中心,旋转度之后能与另三角形重合,点F的对应点是.9、如图6,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.则(1)三角尺旋转了度;(2)连接CD,可判断△CDB的形状是三角形;(3)∠BDC的度数是度.10、如图7,四边形A/B/C/D/是四边形ABCD绕点O顺时针旋转90°后得到的,请你作出旋转前的图形ABCD.11、如图8所示,四边形ABCD绕某点旋转后成四边形A/B/C/D/,请你帮助找出它们的旋转中心.12、如图9,∠AOB=90°,∠B=25°,△A/OB/可以看做是由△AOB绕点O顺时针旋转α角度得到的,若点A/在AB上,则旋转角α的大小可以是()A、25°B、30°C、45°D、50°13、如图10,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB/C/的位置,使得CC/∥AB,则∠BAB/=( )A、30°B、35°C、40°D、50°14、两块完全一样的含30°角的三角板重叠在一起,若绕长直角边的中点M转动,使上面一块的斜边刚好过下面一块的直角顶点,如图11,∠A=30°,AC=10,则此时两直角顶点C、C/间的距离是.15、如图12,在等边三角形ABC内有一点P,PA=10,PB=8,PC=6.求∠BPC的度数.16、如图13所示,观察图(1)和图(2),请回答下列问题:(1)请简述由图(1)变换成图(2)的形成过程?(2)若AD=3,BD=4,△ADE与△BDF的面积和是多少?17、(2008湖北咸宁)如图,在Rt△ABC中,,D、E是斜边BC 上两点,且∠DAE=45°,将△绕点顺时针旋转90后,得到△,连接,下列结论:①△≌△;②△≌△;③;④其中正确的是() A.②④;B.①④;C.②③;D.①③.18、(2008年浙江省嘉兴市)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长.19、如图15,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以点D为顶点作一个60°的角,角的两边分别交AB、AC边于M、N两点,连接MN.请探究:线段BM,MN,NC之间的关系,并说明理由.20、如图16,△ABC中,∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置.若AB=3,AC=2,求∠BAD的度数和AD的长.答案:2、D ;3、A;4、五角星顺时针旋转72、144、216、288都能与自身重合。
初二数学图形的对称平移与旋转试题答案及解析
初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。
(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。
(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。
猜想:S1与S2有怎样的数量关系?并证明你的猜想。
【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。
八年级数学旋转经典练习题
1、如图△ABD和△BCD均为等边三角形,E为AD上的一个动点,F是CD上的一个动点,且∠EBF=60°。
(1)判断△EBF的形状并说明理由。
(2)若AB=4,求△EBF面积的最小值。
2、如图,在等腰直角三角形MNC中.CN=MN= ,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.(1)求证:△CAM为等边三角形;(2)连接AN,求线段AN的长.3、如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.4、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;5、如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?6、已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.7、如图,已知△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,它的两边分别交AB于M,交AC于N,连接MN,求证:MN=BM+CN.8、如图,已知D是等边△ABC内一点,P是△ABC外一点,DB=DA,BP=AB,∠DBP=∠DBC.求∠BPD的度数.9、如图①已知△ACB和△DCB为等腰直角三角形,按如图的位置摆放,直角顶点C重合.(1)求证:AD=BE;(2)将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD=√2,BE=3,求AB的长;(3)将△DCE绕点C顺时针旋转得到图③,若∠CBD=45°,AC=6,BD=3,求BE的长.10、(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.1、如图,∠AOB=90°,∠B=30°,△COD可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点C在AB上,则α的大小为______.2、如图,P是正等边△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,求点P与P′之间的距离的PP与∠APB的度数3、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.(1)求证:△BCE是等边三角形;(2)求证DC2+BC2=AC2,即四边形ABCD是勾股4、两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C逆时针旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F,已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,求CF的长5、如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.6、如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度.7、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G ,求的值。
2020-2021学年北师大版八年级下册数学 3.2图形的旋转 同步测试
3.2图形的旋转同步测试一.选择题1.下列说法中,正确的是()A.旋转改变图形的形状B.旋转不改变图形的大小C.图形可以向某方向旋转一定距离D.由旋转得到的图形也一定可由平移得到2.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或150°或210°或310°D.130°3.如图,将五角星绕中心O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.2164.如图,∠ACB=90°,∠A=30°,△A′CB′可以看作是由△ACB绕点C顺时针旋转α角度得到的,点D为AB边中点,若点D在A′C上,则旋转角α的大小可以是()A.15°B.30°C.45°D.60°5.如图,在△ABC中,∠CAB=70°,∠B=30°,在同一平面内,将△ABC绕点A逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A.10°B.15°C.20°D.30°6.如图,在等边△ABC中,AC=10,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A.5B.6C.7D.97.如图,在Rt△ABC中,∠ACB=90°,∠ABC=31°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A'B'C,使得点A'恰好落在AB边上,则α等于()A.149°B.69°C.62°D.31°8.如图,在△ABC中AB=BC,将△ABC绕点B顺时针旋转α°,得到△A′BC′,使得A′C′∥AB.设A′B交AC于点E,A′C′分别交AC,BC于点D,F,则在下列结论中正确的有()①∠A=α°;②DF=FC;③AE=C′F;④A′D=CDA.①②B.③④C.①②④D.①②③④9.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A按逆时针方向旋转15°后得到△AB1C1,B1C1交AC于点D,如果AD=2,则△ABC的周长等于()A.6+2B.4+2C.12+D.6+10.如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,将位置②的三角形绕点P2顺时针旋转到位置③,可得到P3…;按此规律继续旋转,直到点P2017为止,则AP2017等于()A.2016+672B.2017+672C.2018+672D.2019+672二.填空题11.如图,将△ABC绕着点C顺时针旋转一定角度后得到△A′B′C,若∠A=45°.∠B′=110°,则∠ACB的度数是.12.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A =25°,∠BCA′=45°,则∠A′BA=度.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,N是A'B'的中点,连接MN,若BC=2,∠ABC=60°,则线段MN的最大值为.14.△ABC是边长为2的等边三角形,点P为直线BC上的动点,把线段AP绕A点逆时针旋转60°至AE,O为AB边上一动点,则OE的最小值为.15.如图,等边三角形ABC内有一点D,连接BD、CD,将△BDC绕点B旋转至△BEA位置,若∠AEC=50°,则∠DCE=°.三.解答题16.如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)△ABC绕着点B逆时针旋转90°,得到△A1BC1.请画出△A1BC1.(2)求线段BC旋转过程中所扫过的面积.17.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°得到线段AE连接CD、BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=115°,求∠BED的度数.18.如图,在Rt△ABC中,∠C=90°,∠CAB=35°,BC=7.线段AD由线段AC绕点A按逆时针方向旋转125°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠DAE的大小;(2)求DE的长.参考答案一.选择题1.解:A、旋转不改变图形的形状,故本选项错误;B、旋转不改变图形的大小,故本选项正确;C、图形不可以向某方向旋转一定距离,故本选项错误;D、由旋转得到的图形不能可由平移得到,故本选项错误.故选:B.2.解:∵∠BAC′=130°,∠BAC=80°,∴如图1,∠CAC′=∠BAC′﹣∠BAC=50°,如图2,∠CAC′=∠BAC′+∠BAC=210°.∴旋转角等于50°或210°.同法也可以逆时针旋转310°或150°得到,故选:C.3.解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.4.解:∵∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DCA=∠A=30°,∴旋转角30°,故选:B.5.解:∵在△ABC中,∠CAB=70°,∠B=30°,∴∠ACB=180°﹣70°﹣30°=80°,∵△ABC绕点A逆时针旋转40°得到△AB′C′,∴∠CAC′=40°,∠AC′B′=∠ACB=80°,AC=AC′,∴∠AC′C=(180°﹣40°)=70°,∴∠CC′B′=∠AC′B′﹣∠AC′C=10°,故选:A.6.解:如图,∵AC=10,AO=3,∴OC=7,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中∵,∴△AOP≌△CDO,∴AP=CO=7.故选:C.7.解:∵∠ACB=90°,∴∠A=90°﹣∠B=59°,∵CA=CA′,∴∠A=∠CA′A=59°,∴α=∠ACA′=180°﹣2×59°=62°,故选:C.8.解:∵A1C1∥AB,∴∠A1=∠ABA1=α,∵∠A=∠A1,∴∠A=α,故①正确,∵A1C1∥AB,∴∠CDF=∠A,∵AB=BC,∴∠A=∠C,∴∠FDC=∠C,∴FD=FC,故②正确,∵∠A=∠EBA=∠C′=∠C′BF,AB=C′B,∴△ABE≌△C′BF(ASA),∴AE=C′F,故③正确,∵∠A′BF=∠CBE,∠A′=∠C,BA′=BC,∴△A′BF≌△CBE(ASA),∴A′F=CE,BF=BE,∴A′E=CF,∵∠A′=∠C,∠A′DE=∠CDF,∴△A′DE≌△CDF(AAS),∴A′D=CD,故④正确,故选:D.9.解:∵∠ABC=90°,∠C=30°,∴∠BAC=60°,∵∠BAB1=15°,∴∠B1AD=45°,∴△AB1D是等腰直角三角形,∵AD=2,∴AB1=DB1=2,∴AB=AB1=2,∴AC=2AB=4,BC=AB=2,∴△ABC的周长=2+4+2=6+2,故选:A.10.解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2++1=3+;又∵2017÷3=672…1,∴AP2017=672(3+)+2=2018+672.故选:C.二.填空题11.解:∵△ABC绕着点C顺时针旋转一定角度后得到△A′B′C′,∴∠B=∠B′=110°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,故答案为:25°.12.解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故答案为:40.13.解:连接CN.在Rt△ABC中,∵∠ACB=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵NB′=NA′,∴CN=A′B′=2,∵CM=BM=1,∴MN≤CN+CM=3,∴MN的最大值为3,故答案为3.14.解:如图,连接EC,作CH⊥AB于H.∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,AB=AC,∵∠P AE=∠BAC=60°,∴∠P AB=∠EAC,∵P A=EQ,BA=CA,∴△P AB≌△EAC(SAS),∴∠ABP=∠ACE,∵∠ABP=180°﹣60°=120°,∴∠ACE=120°,∴∠BCE=120°﹣60°=60°,∴∠ABC=∠BCE,∴CE∥AB,∴点E的运动轨迹是直线CE(CE∥AB),∵CB=CA=AB=2,CH⊥AB,∴BH=AH=1,∴CH===,根据垂线段最短,可知OE的最小值=CH=,故答案为.15.解:∵将△BDC绕点B旋转至△BEA位置,∴∠EAB=∠BCD,∵△ABC是等边三角形,∴∠ACB=∠BAC=60°,∴∠ACD=60°﹣∠BCD,在△AEC中,∠ACE=180°﹣∠AEC﹣∠EAC=180°﹣50°﹣60°﹣∠BAE=70°﹣∠BCD,∴∠DCE=∠ACE﹣∠ACD=10°,故答案为:10.三.解答题16.解:(1)如图,△A1BC1为所作;(2)BC==4,线段BC旋转过程中所扫过的面积==8π.17.解:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS),∴∠AEB=∠ADC;(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=115°.∴∠BED=55°.18.解:(1)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,∴∠EAC+∠C=180°,又:∠C=90°,∴∠EAC=90°,又线段AD是由线段AC绕点A按逆时针方向旋转125°得到,即∠DAC=125°,∴∠DAE=35°;(2)∵△EFG是由△ABC沿CB方向平移得到,∴AE∥CF,EF∥AB,∴∠AED=∠F=∠ABC,又∵∠DAE=∠BAC=35°,AD=AC,∴△ADE≌△ACB(AAS),∴DE=BC=7.。
北师大版八年级数学下册3.2《图形的旋转(1)》习题含答案
3.2《图形的旋转(1)》习题含答案一、选择题(共8小题)1.下列运动属于旋转的是( )A .足球在草地上滚动B .火箭升空的运动C .汽车在急刹车时向前滑行D .钟表上钟摆的摆动过程2.平面图形的旋转一般情况下改变图形的( ).A .位置B .大小C .形状D .性质3.如图,把△ABC 绕点A 顺时针旋转得到△AB 'C ',且∠C 'AC =60°,则∠BAB '=( )A .15°B .30°C .45°D .60°4.如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .25.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB =15°,则∠AOD 的度数是( )A .45°B .60°C .70°D .65°6.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是( )A .45°B .90°C .135°D .180°7.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB 'C ',若AC =2,则图中阴影部分的面积为( ) A .332 B .63C .3D .33第3题图第4题图 第5题图第6题图 第7题图8.如图,在Rt△ABC中,∠ACB=90°,BC=2,将△BC绕顶点C逆时针旋转得到△A'B'C,使点B'落在AC边上,设M是A'B'的中点,连接BM,CM,则△BCM的面积为()A.1 B.2 C.3 D.4 二.填空题(共5小题)9.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(-1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是.10.如图,在Rt△ABC中,∠ACB=90°,∠A=25°,将△ABC绕C点旋转到△A'B'C的位置,其中A',B'分别是A,B的对应点,且点B在斜边A'B'上,直角边CA'交AB于D,则旋转角等于度.11.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC'.若∠CC'B'=32°,则∠B= .12.如图所示,将一块含30°角的直角三角板ABC绕点A旋转到三角形AED的位置,使得C,A,E三点在同一直线上,则旋转角是度.13.如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为.三.解答题(共6小题)14.如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.第8题图第10题图第9题图第13题图第12题图第11题图第14题图15.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B 逆时针旋转,得到△CQB.求:(1)点P与点Q之间的距离;(2)求∠BPC的度数.第15题图参考答案一、选择:1.D2.A3.D4.B5.B6.B7.A8.A二、填空:9.(2,1) 10.50 11.77° 12.150 13.334-三、解答题:14.解:∵BB 1∥AC ,∴∠ABB 1=∠BAC =50°∵由旋转的性质可知:∠B 1AC 1=∠BAC =50°,AB =AB 1, ∴∠ABB 1=∠AB 1B =50°,∴∠BAB 1=80°,∴∠BAC 1=∠BAB 1-∠C 1AB 1=30°.15.解:(1)连结PQ ,如图,∵△ABC 是等边三角形,∴∠ABC =60°,BA =BC ,∵△QCB 是△P AB 绕点B 逆时针旋转得到的,∴BP =BQ ,∠PBQ =∠ABC =60°,CQ =AP =5,∵BP =BQ =4,∠PBQ =60°,∴△PBQ 是等边三角形,∴PQ =PB =4;(2)∵QC =5,PC =3,PQ =4,而222543=+,∴222CQ PQ PC =+,∴△PCQ 是直角三角形,且∠QPC =90°,∵△PBQ 是等边三角形,∴∠BPQ =60°,∴∠BPC =∠BPQ +∠QPC =60°+90°=150°. 第14题图。
八年级数学下册《第三章图形的平移与旋转》单元测试题含答案
第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。
图形的旋转(8类热点题型讲练)(原卷版) 八年级数学下册
第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
初二数学图形的平移和旋转练习题
初二数学图形的平移和旋转练习题题目一:平移图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移4个单位,向上平移3个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形再向左平移2个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
题目二:旋转图形
给定一个图形,如下所示:
(在这里插入图形示例)
1. 将该图形以原点为中心,逆时针旋转90度。
请计算旋转后的新坐标,并画出旋转后的图形。
2. 将旋转后的图形再顺时针旋转180度。
请计算最终旋转后的新坐标,并画出图形。
题目三:综合练习
给定一个复杂图形,如下所示:
(在这里插入图形示例)
1. 将该图形向右平移5个单位,向上平移2个单位。
请计算平移后的新坐标,并画出平移后的图形。
2. 将平移后的图形以中心为轴顺时针旋转120度。
请计算旋转后的新坐标,并画出旋转后的图形。
3. 将旋转后的图形再向左平移3个单位,向下平移1个单位。
请计算最终平移后的新坐标,并画出图形。
通过以上练习题的实践操作,初二的学生们可以更好地理解和掌握数学图形的平移和旋转。
这些技能在解题过程中能够提高他们的几何思维和空间想象力,同时也为日常生活中的空间定位和方向感提供了基础。
希望同学们能够认真完成这些练习,不断巩固和提升自己的数学能力。
(文章正文结束)。
八年级下册数学图形的平移与旋转
第三章《图形的平移与旋转》期末复习一.选择题(共16小题)1.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()X & ®。
A. 1个B. 2个C. 3个D. 4个2.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A’,则点A’的坐标是()A. (-1, 1)B. (-1,-2)C. (- 1, 2)D.(1, 2)3.如图,将^ABC沿射线BC方向移动,使点B移动到点C,得到^DCE,连接AE,若^ABC的面积为2,则4ACE的面积为()4.如下图所示,将4ABC沿着X玲Y方向平移一定距离后得到^MNL,则下列结论:①AM〃BN;②AM=BN;③BC=NL;④N ACB=N NML.其中正确的有()与AB的大小关系是()D. 4个5.如右上图,线段AB=CD, AB与CD相交于O, 且N AOC=60°, CE是由AB平移所得,则AC+BDA. AC+BD>ABB. AC+BD=ABC. AC+BD^ABD.无法确定6.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分仁中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合7.若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合. 正确的是()A.①②③B.①③④C.①②④D.①②③④8.已知正方形ABCD的边长为6, E在BC边上运动,G是DE的中点,EG绕E顺时针旋转90°得EF,当点A, C, F在一条直线上时,CE的长为()A. 3B. 2.4C. 2D. 2.39.下列几何图形中,①一条线段:②平面上的两条直线;③等边三角形;④平行四边形;⑤ 等腰三角形,其中一定是中心对称图形的有()A. 2个B. 3个C. 4个D. 5个10.已知点A关于x轴的对称点坐标为(-1, 2),则点A关于原点的对称点的坐标为()A.(1, 2)B. (-1,-2)C. (2,-1)D.(1,-2)11.如图,在^ABC中,N CAB=65°,将^ABC在平面内绕点A旋转到△AB'C’的位置,使CC 〃AB,则旋转角的度数为()A.35°B.40°C.50°D.65°12.如图,O是正4ABC内一点,OA=3, OB=4, OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO’,下列结论:①^BO/A可以由4BOC绕点B逆时针旋转60°得到;②点第2页(共10页)®S 四边形AOBO ,=6+3;& ⑤S △AOC +S △AOB =6q 其中正确的BC=5,点A 、B 的坐标分别为(1, 0)、(4, 0).将A ABC沿x 轴向右平移,当点C 落在直线y=2x -6上时,线段BC 扫过的面积为()A . 4B . 8C . 16D . 8/214.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1c l D 1,边B 1c l 与 CD 交于点。
北师大版数学八年级下册:3.2 图形的旋转 同步练习(附答案)
2图形的旋转第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点;(2)点B,D的对应点分别是点;(3)线段AB,BD,DA的对应线段分别是;(4)∠B的对应角是;(5)旋转的角度为.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD==cm,DE==cm,∠EAC=∠=,∠DAC=.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为()A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=()A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是()A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.14.(2019·河南)如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)错误!第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.5.(教材P78做一做变式)如图,△ABC 绕点O 旋转后,顶点A 的对应点为A′,试确定旋转后的三角形.易错点 旋转方向不确定导致漏解6.在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 旋转90°到OA′,则点A′的坐标是 .7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG 可以看成是将平行四边形ABCD 以A 为中心( )A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到8.如图,已知Rt △ABC 和三角形外一点P ,按要求完成图形. (1)将△ABC 绕顶点C 顺时针方向旋转90°,得△A ′B ′C ′; (2ABC 绕点P 逆时针方向旋转60°,得△A ″B ″C ″.ABC·P9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.参考答案:第1课时旋转的认识知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.第2题图第3题图3.如图,△ABC是等边三角形,点D是BC边上的中点,△ABD经过旋转后到达△ACE 的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转的角度为60°.知识点2旋转的性质4.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC =130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.5.如图,△ABC以点C为旋转中心,旋转后得到△EDC.已知AB=1.5,BC=4,AC =5,则DE的长为(A)A.1.5 B.3 C.4 D.5第5题图第6题图6.(2019·湘潭)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置.若∠AOB =40°,则∠AOD=(D)A.45°B.40°C.35°D.30°7.(2020·天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是(D)A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF知识点3确定旋转中心8.如图,在平面直角坐标系中,△ABC的顶点都在正方形网格线的格点上,将△ABC 绕点P按逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为(C)A.(0,0)B.(0,1)C.(-1,1)D.(1,1)9.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦10.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图1所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图2所示,则旋转角∠BAD的度数为(B)A.15°B.30°C.45°D.60°11.(2019·内江)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为(A)A.1.6 B.1.8 C.2 D.2.6第11题图变式图【变式】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C.连接AA′,若∠1=27°,则∠B的度数是(B)A.84°B.72°C.63°D.54°12.(2020·聊城)如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于(D)A.2(33+1)B.33+1C.3-1D.3+113.(2019·苏州)如图,在△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC =65°,∠ACB =28°,求∠FGC 的度数.解:(1)证明:∵∠CAF =∠BAE , ∴∠BAC =∠EAF.∵线段AC 绕A 点旋转到AF 的位置,∴AC =AF.在△ABC 和△AEF 中,⎩⎨⎧AB =AE ,∠BAC =∠EAF ,AC =AF ,∴△ABC ≌△AEF (SAS ). ∴EF =BC.(2)∵AB =AE ,∠ABC =65°, ∴∠BAE =180°-65°×2=50°. ∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°. ∴∠FGC =∠FAG +∠F =50°+28°=78°.14.(2019·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为(D )A .(10,3)B .(-3,10)C .(10,-3)D .(3,-10)错误!模型展示条件:OA绕原点O逆时针旋转90°至OA′.结论:△AOB≌△A′OB′.条件:AB绕点A顺时针旋转90°至AB′.结论:△ABD≌△B′AC.第2课时旋转作图知识点旋转作图1.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定角度得到△M1N1P1,则其旋转中心是点B.第2题图第3题图3.如图,它可以看作“◇”通过连续平移3次得到,也可以看作“◇”绕中心旋转3次,每次旋转90度得到.4.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图所示.5.(教材P78做一做变式)如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.易错点旋转方向不确定导致漏解6.在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O旋转90°到OA′,则点A′的坐标是(-4,3)或(4,-3).02中档题7.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是将平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到8.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示.(2)△A″B″C″如图所示.9.(2020·江西改编)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.解:(1)如图,△A′B′C′即为所求.(2)如图,△AB′C′即为所求.。
初二数学图形的对称平移与旋转试题答案及解析
初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。
2021-2022学年北师大版八年级数学下册《3-2图形的旋转》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《3-2图形的旋转》同步练习题(附答案)一.选择题1.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形B.平行四边形C.正八边形D.圆及其一条弦2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°4.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF5.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.6.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC二.填空题7.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.8.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,将△ABC绕顶点C逆时针旋转得到△A'B'C,AC与A'B'相交于点P.则CP的最小值为.9.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.10.如图,O为菱形ABCD的对称中心,AB=4,∠BAD=120°.若点E、F分别在AB、BC边上,连接OE、OF,则OE+OF的最小值为.11.平面直角坐标系中,将点A(3,4)绕点B(1,0)旋转90°,得到点A的对应点A'的坐标为.12.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)13.如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE 取最小值时,AG的长为.14.如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.三.解答题15.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.16.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.17.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.18.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.19.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.20.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.参考答案一.选择题1.解:A、最小旋转角度==120°;B、最小旋转角度==180°;C、最小旋转角度==45°;D、不是旋转对称图形;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C.故选:C.2.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.3.解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=×(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.4.解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.5.解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.6.解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故应补充“AB=CD”,故选:B.二.填空题7.解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).8.解:当CP与A'B'垂直时,CP有最小值,如图,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∴A'B'=AB=10,由旋转的性质知B'C=BC=6,A'C=AC=8,∵S△A'B'C=×B'C×A'C=×A'B'×CP,∴CP==4.8.故答案为:4.8.9.解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM 于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,P A=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.解法二:连接AC,利用勾股定理求出AC即可.故答案为14+4.10.解:连接AC.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,AD∥BC,∴∠DAB+∠B=180°,∵∠DAB=120°,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∵OA=OC=2,根据垂线段最短可知,当OE⊥AB,OF⊥BC时,OE+OF的值最小,此时OE=,OF=,∴OE+OF的最小值为2.故答案为2.11.解:如图,点A(3,4)绕点B(1,0)顺时针或逆时针旋转90°,得到点A的对应点A'的坐标为(5,﹣2),A″(﹣3,2).故答案为:(﹣3,2)或(5,﹣2).12.解:∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.13.解:过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.14.解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=∠BAD=30°,OA=OC,AC⊥BD,∴OB=AB=1,∴OA=OB=,∴AC=2,由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC﹣AE=2﹣2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=CE=﹣1,PC=PE=3﹣,∴DP=CD﹣PC=2﹣(3﹣)=﹣1;故答案为:﹣1.三.解答题15.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,16.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).17.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.18.证明:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴HG∥CE,GF∥BD,且GH=CE,GF=BD,∴GH=GF;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GF∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.19.(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,∵BB'=B'F,∴∠FBB′=∠B'FB=15°;(3)连接AF,过A作AM⊥BF,由(2)可得△AB′F是等腰直角三角形,△AB′B为等边三角形,∴∠AFB′=45°,∴∠AFM=30°,∠ABF=45°,在Rt△ABM中,AM=BM=,在Rt△AMF中,MF==,则BF=+.20.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠F AE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,由旋转的性质,得∠ABQ=∠ADF,∠ADF+∠ABD=90°,则∠QBE=∠ABQ+∠ABD=90°,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2.。
初二数学图形的旋转练习题
初二数学图形的旋转练习题旋转是数学中常见的图形变换方式之一,通过对图形进行旋转可以帮助我们理解几何形状的性质和关系。
在初二数学学习中,图形的旋转也是一个重要的练习题型。
本文将通过几个练习题来帮助同学们巩固和提高对初二数学图形旋转的理解。
1. 点的旋转练习题:题目1:已知点A(2,3),将该点绕原点逆时针旋转90度,求旋转后的坐标。
解析:将点A绕原点逆时针旋转90度相当于将A的x坐标和y坐标互换,并且将新的x坐标取负数。
根据这个规律,点A(2,3)绕原点逆时针旋转90度后的新坐标为(-3,2)。
题目2:已知点B(-4,5),将该点绕原点顺时针旋转180度,求旋转后的坐标。
解析:将点B绕原点顺时针旋转180度相当于将B的x坐标和y坐标都取负数。
根据这个规律,点B(-4,5)绕原点顺时针旋转180度后的新坐标为(4,-5)。
2. 图形的旋转练习题:题目3:已知矩形ABCD,其中A(2,2),B(6,2),C(6,4),D(2,4),将该矩形绕原点逆时针旋转90度,求旋转后各顶点的坐标。
解析:首先,按照旋转规则,点A(2,2)绕原点逆时针旋转90度后的新坐标为(-2,2)。
同样,点B(6,2)绕原点逆时针旋转90度后的新坐标为(-2,6),点C(6,4)旋转后的新坐标为(-4,6),点D(2,4)旋转后的新坐标为(-4,2)。
这样,旋转后矩形的各顶点坐标为A'(-2,2),B'(-2,6),C'(-4,6),D'(-4,2)。
3. 图形变换的综合练习题:题目4:已知图形ABCD是一个正方形,其中A(0,0),B(2,0),C(2,2),D(0,2),将该正方形绕原点逆时针旋转45度,然后平移x轴正方向2个单位,求旋转和平移后各顶点的坐标。
解析:首先,按照旋转规则,将正方形的各顶点旋转45度后的新坐标为A'、B'、C'和D'。
根据题目要求平移x轴正方向2个单位,新的坐标为A''、B''、C''和D''。
八年级下册 数学 图形的平移与旋转练习题
《第3章图形的平移与旋转》一、单选题1.下列图形是中心对称图形的是()A.B.C.D.2.将点A(﹣2,﹣3)向左平移3个单位,再向上平移4个单位得到点B,则点B的坐标是()A.(﹣5,﹣7)B.(﹣5,1)C.(1,1)D.(1,﹣7)3.在平面直角坐标系中,把点P(2,3)绕原点旋转90°得到点P1,则点P1的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2,3)或(2,﹣3)D.(﹣3,2)或(3,﹣2)4.如图,在△ABC中,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB'=CB′,∠C=24°,则∠BAC的度数为()A.72°B.108°C.144°D.156°5.如图,△ABC绕点A逆时针旋转50°后能与△AB′C′重合,若∠BCC′=95°,则∠B′C′A的度数为()A.45°B.40°C.35°D.30°6.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)7.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格8.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'刚好落在BC边上,且AB'=CB',则∠C的度数为()A.16°B.15°C.14°D.13°9.在平面直角坐标系中,A(0,3),B(4,0),把△AOB绕点O旋转,使点A,B分别落在点A′,B′处,若A′B′∥x轴,点B′在第一象限,则点A的对应点A′的坐标为()A.()B.()C.()D.()10.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)二、填空题11.在平面直角坐标系中,点A(1,﹣2)关于原点对称的点为B(a,b),则a=.12.如图,将△ABC绕着点C顺时针旋转一定角度后得到△A′B′C,若∠A=45°.∠B′=110°,则∠ACB的度数是.13.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.14.把直线y=﹣3x向上平移后得到的直线AB,直线AB经过点(a,b),且3a+b=8,则直线AB的解析式是.15.如图,P是等边△ABC内一点,P A=4,PB=2,PC=2,则△ABC的边长为.16.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,1),(1,0),(﹣1,0),一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P1与点P2关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称,第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称…照此规律重复下去,则点P2021的坐标为.17.如图,将△ABC绕点A逆时针旋转45°得到△AB'C',连接BB′,AB=2,则图中阴影部分的面积为.18.如图,点A的坐标为(0,3),B点坐标为(1,2),将△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′恰好落在直线y=x上,则点B′的坐标是.19.如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为.20.如图,在平面直角坐标系中,将△ABC绕点A顺时针旋转到△AB1C1的位置,点B,O(分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,再将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去,…,若点A(3,0),B(0,4),AB=5,则点B2021的坐标为.三、解答题21.如图所示,△ABC三个顶点的坐标分别为A(﹣4,4),B(﹣2,0),C(﹣1,2).(1)如果△A1B1C1与△ABC关于原点中心对称,画出△A1B1C1并写出A1,B1,C1三点的坐标;(2)画出将△ABC绕原点O按逆时针方向旋转90°所得的△A2B2C2.22.如图,△ABC中,∠C=90°.(1)将△ABC绕点B逆时针旋转90°,画出旋转后的三角形;(2)若BC=3,AC=4.点A旋转后的对应点为A′,求A′A的长.23.在平面直角坐标系中,O为原点,点A(2,0),点B(0,2),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′.记旋转角为α.(1)如图①,当点O′落在边AB上时,求点O′的坐标;(2)如图②,当α=60°时,求AA′的长及点A′的坐标.24.如图,P是等边△ABC内的一点,且P A=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.(1)求点P与点Q之间的距离;(2)求∠BPC的度数;(3)求△ABC的面积S△ABC.。
初中数学:《图形的旋转》测试题及答案
初中数学:《图形的旋转》测试题及答案一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是______.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是______,它们之间的关系是______,其中BD=______.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是______cm.9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是______.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是______.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为______.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是______,∠AOB1的度数是______;(3)连接AA1,求证:四边形OAA1B1是平行四边形.《图形的旋转》参考答案与试题解析一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等【解答】解:A、在图形旋转中,根据旋转的性质,图形上对应点到旋转中心的距离相等,故本选项错误;B、图形上的每一点转动的角度都等于旋转角,正确;C、以图形上一点为旋转中心,则这个点不动,正确;D、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.故选A.2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.【解答】解:A、只包含图形的旋转,不符合题意;B、只是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既包含图形的旋转,又包含图形的轴对称,符合题意.故选:D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°【解答】解:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°【解答】解:由平移和旋转可得,D选项中左下角的梅花需先沿对角线平移后,再逆时针旋转90°,所以D选项错误.故选:B.5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°【解答】解:∵∠BAC′=130°,∠BAC=80°,∴如图1,∠CAC′=∠BAC′﹣∠BAC=50°,如图2,∠CAC′=∠BAC′+∠BAC=210°.∴旋转角等于50°或210°.故选C.二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.【解答】解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是△ACE ,它们之间的关系是全等,其中BD= CE .【解答】解:△ABD绕点A逆时针旋转42°得到△ACE,它们之间的关系是全等,其中BD=CE.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是 3 cm.【解答】解:根据旋转的性质,得:A′B′=AB=4cm.∴A′B=A′B′﹣BB′=4﹣1=3(cm).9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(4,﹣1).【解答】解:由图知A点的坐标为(1,4),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(4,﹣1).故答案为:(4,﹣1).10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是BE+DF=EF .【解答】解:如图,延长CD到M,使DM=BE,连接AM、EF;∵四边形ABCD为正方形,∴∠B=∠ADC=90°,AB=AD;在△ABE与△ADM中,,∴△ABE≌△ADM(SAS),∴∠BAE=∠DAM,AE=AM;∴∠BAE+DAF=∠DAM+∠DAF=∠MAF;∵∠EAF=45°,∴∠BAE+DAF=90°﹣45°=45°,∴∠EAF=∠MAF=45°;在△EAF与△MAF中,,∴△EAF≌△MAF(SAS),∴MF=EF,而MF=MD+DF=BE+DF,∴BE+DF=EF,故答案为BE+DF=EF.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为(36,0).【解答】解:由原图到图③,相当于向右平移了12个单位长度,象这样平移三次直角顶点是(36,0),再旋转一次到三角形⑩,直角顶点仍然是(36,0),则三角形⑩的直角顶点的坐标为(36,0).故答案为:(36,0).三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?【解答】解:图形(1)是通过一条线段绕点O旋转360°而得到的;图形(2)可以看作是“一个Rt△ABC”绕线段AC旋转360°而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的.13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.【解答】解:(1)∵△AOB与△COD是能够重合的图形,∴旋转中心是点O;(2)根据题意得:旋转角是∠AOD或∠BOC,∴旋转角度数是60°,(3)经过旋转后能重合的三角形有△AOB与△DOC,△AOE与△DOF,△BOE与△COF 共三对,若A、O、C三点不共线,△AOE与△DOF,△BOE与△COF不一定重合,结论不一定成立,∵若A、O、C三点不共线,∠DOB≠60°,∴∠AOD=∠BOC=60°≠∠DOB,∴△BOE与△COF不一定重合,结论不一定成立;(4)∵△BOC为等腰直角三角形,∴∠BOC=∠AOD=90°,∴旋转角度为:90°,(5)∵180°﹣∠BOC=180°﹣60°=120°,∴旋转角度为120°.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.【解答】解:(1)如图甲,点P′为所求;(2)如图乙,线段A′B′为所求;(3)如图丙,△A′B′C′为所求;(4)如图丁,△A′BC′为所求.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.【解答】解:BK与DM的关系是互相垂直且相等.∵四边形ABCD和四边形AKLM都是正方形,∴AB=AD,AK=AM,∠BAK=90°﹣∠DAK,∠DAM=90°﹣∠DAK,∴∠BAK=∠DAM,∴△ABK≌△ADM(SAS).把△ABK绕A逆时针旋转90°后与△ADM重合,∴BK=DM且BK⊥DM.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.【解答】解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(4分)(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是 6 ,∠AOB1的度数是135°;(3)连接AA1,求证:四边形OAA1B1是平行四边形.【解答】(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6, ∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.故答案是:6,135°;(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2.1图形的旋转
◆随堂检测
1、如右图,甲图案可以看作是乙图案通过怎样变换而得到?()
A.先按逆时针旋转90°再平移;
B.先按逆时针旋转90°再作轴对称图
C.先平移再作轴对称;
D.先平移再作逆时针旋转90°
2.将字母“T”按顺时针方向旋转90°后的图形是()
3、现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;
⑤钟摆的运动;⑥荡秋千运动.
A.2
B.3
C.4
D.5
4、如图,线段MO绕点O旋转900得到线段NO,在这个旋转过程中,旋转中心是,旋转角是,它等于度.
(第4题)(第5题)
5、如图,长方形ABCD 是长方形EFGD 绕旋转中心________•沿_______•旋转______度得到的,对角线AC 与EG 的关系是________,理由是_________. ◆典例分析
如图,将△ABC 绕点A 旋转得到△AEF ,指出图中的旋转中心、旋转角度及对应线段、对应角。
分析:旋转角是连结对应点与旋转中心所形成的角,而
对应线段是对应点所在的线段,对应角则由对应点所形成的角,因此关键是要分清楚是谁的对应点。
解 旋转中心是点A ;旋转角是∠BAE 或∠CAF ; 对应线段是:AB 与AE 、BC 与EF 、AC 与AF ; 对应角是:∠BAC 与∠EAF 、∠B 与∠E 、∠C 与∠F 。
◆课下作业 ●拓展提高
1、如图1,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB , 连接PQ ,则⊿PBQ 的形状是( )
(A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形
D
M
(第1题) (第2题) (第3题)
2.如图,把菱形ABOC 绕点O 顺时针旋转得到菱形DFOE ,则下列角中不是旋转角的为( )
A .∠BOF
B .∠AOD
C .∠COE
D .∠ AOF
3、如图,ABO ∆绕点O 旋转450
后得到DCO ∆,
则点B 的对应点是_____;线段OB 的对应线段是____;线段AB 的对应线段是____;∠A 的对应角是_____;∠B 的对应角是_____;旋转中心是_____;旋转的角度是______.△AOB 的边OB 的中点M 的对应点在 .
4、图中的两个等腰三角形是全等的,且∠AOD=45°,OB=4㎝,OA= 1㎝.怎样将右边的三角形变为左边的三角形?
5、如图,△ABC 是等边三角形,D 是BC 上一点,△ABD 经过旋转后到达△ACE 的位置。
第4题
(1)旋转中心是哪一点? (2)旋转了多少度?
(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了什么位置?
6、如图,四边形CDEF 旋转后能与正方形ABCD 重合,那么图形所在
1、(2009年,陕西)如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( )
A 、30°
B 、45°
C 、60°
D 、90°
E
A
B
C
D
E
(第1题)(第2题)
2、如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′
交AC于点D,如果∠A′DC=90°,那么∠A的度数是多少?
参考答案:
◆随堂检测
1、B.
2、B.
3、C 旋转是指物体绕着某点的旋转运动,由旋转中心、旋转角、旋转方向三要素所决定。
经过判断①地下水位逐年下降;②传送带的移动是平移运动,③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动都是旋转运动.
4、︒
O旋转中心是旋转过程中保持不动的点为点O,转动,MON
∠90
,
的角为旋转角所以旋转角为︒
,转动的角度为
MON。
∠90
5、D,顺时针方向,︒
90,相等,对应线段相等旋转由旋转中心、旋转角、旋转方向三要素所决定,旋转的特征对应线段相等。
◆课下作业
●拓展提高
1、D 对应点与旋转中心的连线所组成的角为旋转角,所以
∠90
=
,
90PBQ
,旋转中对应
︒
ABC
PBQ
ABC∠
∴
∠,都为旋转角,又︒
=
∠
线段相等,所以BP=BQ,所以△PBQ为等腰直角三角形 .
2、D 对应点与旋转中心的连线所组成的角为旋转角,而点A、点F不是对应点,则它们与旋转中心连线所构成的角就不是旋转角。
3、OC
,
,
,
,︒
∠的中点。
∠
,
45
,
O
D
C
C,
OC
DC
4、方案(1):先旋转再平移.即先把左边的三角形绕点O逆时针针旋转45°,再将得到的三角形沿OB的方向平移5㎝;方案(2):先平移再旋转.把左边的三角形沿OB的方向平移5㎝,再将得到的三角形绕点O逆时针旋转45°.
5、(1)A点;
(2)逆时针旋转了600;
(3)点M转到了AC的中点位置上。
解析:找好旋转前后的对应边就能解决此题,AB对应AC,所以看出旋转了600,点M会落在AC中点上。
6、解:三个,旋转过程中保持不动的点是旋转中心,它可以在图形内,也可以在图形外,所以旋转中心有点C,点D和线段CD的中点。
●体验中考
1、1、C. ∵∠AOB=90°,∠B=30°,∴∠A=60°,又∵OA=OA’,∴△AOA’是等边三角形.∴∠AOA’=60°,即旋转角α为60°.故选
C.
2、答案:∠A=∠A′=55°。