反应器-3气液相反应器的选择
3气液固三相流化床反应器
三相流化床简介、结构及工作原理 三相流化床流体力学的研究 三相流化床传质的研究 三相流化床传热的研究 三相流化床新领域的开发应用
三相流化床简介
气-液-固三相反应工程是化学反应工程领域中 最令人感兴趣的领域之一。与传统的气-固相催化 反应器相比,在气-液-固三相反应器中,由于有 液相作为热载体和对固体催化剂的悬浮作用,使 反应和传递性能有很大的改进。三相流化床具有 高效传质的特点,适用于化学吸收、除尘等多种 场合。在流化床反应器中,液体自下而上运动, 会同气体的悬浮作用,使固体颗粒在反应器内呈 均匀流动状态。
三相流化床的结构及工作原理
流化床气液固三相反 应典型流程
2.恒温糟 3.供气系 统 4.碳酸钙粉末 添加装置 5.多孔 挡板 6. 补料槽 7. 蠕动泵 8.出气并 出料口
图1 三相流化床生物反应器
三相流化床的结构及工作原理
操作条件对压降的影响
2.uL对压降的影响
图3显示了在几种气速下不同 的uL对的影响。从图中可以看出, 在其它条件不变的情况下,△p随 着uL的增加而略有下降。由于液体 与气体并流,所以液体对固体颗粒 的流化起到了促进作用,uL值越大, 促进作用越强,相对来说气体对流 化作用就有所减弱,而床层流化程 度的上升必定造成△p的下降。同 时流化程度的增加,使得气泡聚并 的机会减少,则气含率就会有所增 加,引起床层混合平均密度下降, 也造成床层压降的降低。
实验流程
反应装置如右图1所示。反应 器为一直径0.07m,高1.0m的透明 有机玻璃塔,在0.49m处设有45o锥 角,高度0.05m的锥体;0.54m以 上为直径0.14m的扩大段。冷态实 验中气相为空气,液相为水,因相 为100~180目的砂子。实验时按事 先所确定的因含率加入适量的砂子。 气体则由一台小型风机经缓冲计量 后由反应器底部侧面进入,并通过 气体分布板进入反应器,在反应器 上端扩大段(使气液两相易于分离) 气液分离后放空。液体经流量计计 量后,由反应器底部经分布器进入 反应器并与气体并流,在反应器上 端扩大段,经溢流口过滤后排出。
气液固三相浆态床反应器
添加标题
添加标题
添加标题
添加标题
特点:反应速度快,传热效率高, 反应器体积小,操作简便。
应用领域:广泛应用于化工、石 油、冶金、环保等领域。
反应器结构
气液固三相浆态床反应器 由反应器本体、搅拌器、 加热器、冷却器等组成。
反应器本体分为上、下两 部分,上部为气相空间, 下部为液相空间。
搅拌器位于反应器本体中 部,用于搅拌气液固三相 浆态床,使反应更加充分。
优势
高效传热:气液固三相浆态床反应器可以实现高效传热,提高反应效率。
反应速率快:气液固三相浆态床反应器可以加速反应速率,提高生产效率。 适应性强:气液固三相浆态床反应器可以适应多种反应类型,应用范围广 泛。 易于控制:气液固三相浆态床反应器可以实现精确控制,提高产品质量。
挑战与解决方案
挑战:反 应器内温 度和压力 的波动可 能导致反 应不稳定
解决方案: 采用先进 的控制技 术和设备, 实现对温 度和压力 的精确控 制
挑战:反 应器内固 体颗粒的 磨损可能 导致设备 寿命缩短
解决方案: 采用耐磨 材料和先 进的设计, 提高设备 的耐磨性 和使用寿 命
挑战:反 应器内气 体和液体 的流动可 能导致反 应不均匀
解决方案: 采用先进 的流体力 学模型和 设计,优 化反应器 的结构和 布局,提 高反应的 均匀性
加热器位于反应器本体上 部,用于加热气相,提高 反应温度。
Hale Waihona Puke 冷却器位于反应器本体下 部,用于冷却液相,降低 反应温度。
工作原理
气液固三相浆态床 反应器是一种化学 反应器,用于进行 气液固三相化学反 应。
反应器内部分为气 相、液相和固相三 个区域,每个区域 都有各自的温度、 压力和流量控制。
气液固三相反应器
鼓泡淤浆床三相反应器
鼓泡淤浆床反应器(Bubble Column Slurry Reactor, 简 称 BCSR )的基础是气 - 液鼓 泡反应器,即在其中加入固 体,往往文献中将鼓泡淤浆 床反应器与气 - 液鼓泡反应 器同时进行综述。
鼓泡淤浆床三相反应器
某些极限情况下: 不存在气膜传质阻力,kAG→∞时
Se 1 1 1 1 K GL kT a k AL k AS k w sw
不存在气-液界面处液膜传质阻力,kAL→∞时
1 1 Se 1 1 K GL k kT a k AG k w sw AS
cAig KGLcAiL
令
rA
dN A d VR
kT S e c Ag
则
1 S K 1 Se 1 1 e GL K GL kT a k AG a k AL k k w sw As
上述颗粒宏观反应动力学模型是以气-固相宏 观反应动力学为基础,再计入双膜论的气-液 传质过程组合而成的。
式中:
C *
A
L
为气相平衡的液体中组分A的浓度kmol/m3
数学模型 对A物料衡算(忽略气膜阻力)
u0,G
dcAG dz
cAG kL aL ( cAL ) HA
(1)
由于液相中为全混流,液相中组分A的浓度应不变,对(1)式积分:
cAG (cAG )0 e
, LR
(1 e
(5)
(6)
由公式(1)~(6)为机械搅拌釜淤浆反应器的设计方程,将这些方 程联立求解,可求出反应器的有效容积
反应器型式和操作方式的选择
03
各类反应器适用场景及特点
釜式反应器
适用场景
适用于液-液、液-固相反应及反应过 程中有固体生成的场合,如酯化、硝 化、磺化等反应。
特点
结构简单,操作方便,传热面积大, 传热效果好,适用于间歇操作。
反应器分类
根据反应的特点和需求,反应器可分为釜式反应器、管式反应器 、塔式反应器、固定床反应器和流化床反应器等。
Байду номын сангаас
常见反应器型式介绍
釜式反应器
管式反应器
塔式反应器
固定床反应器
流化床反应器
适用于液相或气液相反应 ,具有结构简单、操作方 便、传热效果好等优点。
适用于气固相或气液相连 续反应,具有结构紧凑、 传热效率高、反应时间短 等特点。
适用于气固相或气液相逆 流接触反应,具有处理能 力大、传质效率高、操作 弹性大等优势。
适用于气固相或液固相反 应,具有催化剂不易磨损 、反应温度均匀、易于控 制等优点。
适用于气固相或液固相反 应,具有传热传质效果好 、催化剂活性高、操作灵 活等特点。
选型原则及影响因素
选型原则
在选择反应器型式时,应遵循满足工艺要求、保证产品质量、提高经济效益等 原则。
影响因素
反应器选型受到反应物性质、反应条件、催化剂性质、传热传质要求等多种因 素的影响。因此,在选型时需综合考虑这些因素,选择最适合的反应器型式。
02
操作方式选择依据
连续操作与间歇操作比较
连续操作
物料连续进入和离开反应器,反 应过程中各参数保持恒定,生产 效率高,产品质量稳定。
间歇操作
气液相反应器的选型
板式塔
3. 2..操作方式 工作原理 1 结构
塔体 液体在重力作用下, 自上而下依次流过各 连续操作 塔板 层塔板,至塔底排出 气体、液体连续进料 降液管 。每块塔板上保持一 溢流堰 定高度的液层,气体 以气泡形式分散于液 层中。
板式塔
4.主要优点
1)单位体积气液相界面积、气液传质系数和 持液量均较填料塔大; 2)液相反混程度很小; 3)便于除热和供热; 4)调节液层高度,满足不同液体流率和停留 时间的要求。
气液相反应器的分类与选型
张 宇 152081702011
气液反应器的基本类型
按气液相接触方式可分为:
气泡型 (鼓泡塔、板式塔、通气搅拌釜) 液滴型 (喷洒塔、喷射反应器、文丘里反应器) 液膜型 (填料塔塔、湿壁塔)
填料塔
1 .工作原理 结构 2. 3. 塔体 操作方式
液体自塔顶加入,通 连续操作 过液体分布器均匀喷 填料 气体、液体连续进料 洒于整个塔截面上, 填料压板 与从塔底部加入的气 并流操作 支承板 体,在填料表面上, 逆流操作 液体分布器 气液两相密切接触进 行传质。
鼓泡塔
4.主要优点
1)结构简单,无运动部件,对加压反应和腐 蚀性物系均可使用; 2)单位体积持液量大; 3)可以设置换热面移去或提供热量。
鼓泡塔
5.主要缺点
1)单位液相体积相界面积小; 2)液相反混大; 3)存在一定程度的气相反混。
鼓泡塔
6.改进形式
通气搅拌釜
1.结构 2.工作原理 3.操作方式
板式塔
5.主要缺点
1)结构较复杂; 2)塔板材料的经济问题; 3)板式塔气体流动阻力较填料塔大。
鼓泡塔
3. 2..操作方式 工作原理 1 结构
气液固三相浆态床反应器
对于细颗粒催化剂,处于Rep<2的斯托克斯区
u tgP 2d (SL)/18 L
气—液界面的液相容积
传质系数
K L
在常温、常压下进行,液体介质为水,静止床层高度H0为1.2m, 用溶氧仪测试
K 值L 随气速增加而增大,随固含率增加而降低,可整理成下列
催化剂不会像固定床中那样产生烧结
浆态反应器的缺点
液相是热载体时,要求所使用的液体为惰性,不与其中 某一反应物发生任何化学反应。要求蒸气压低、热稳定 性好,不易分解,并且其中对催化剂有毒的物质含量合 乎要求;如进行氧化反应时,耐氧化的惰性液相热载体 的筛选是一个难点。
催化剂颗粒较易磨损,但磨损程度低于气—固相流化床。
S L L [ 1 . 2 ' S 5 1 . 0 ( 0 ' S 5 ) 2 2 . 7 1 3 3 e 0 1 x . 6 ' S 6 ) p ]
上式适用于0.099 ≤m dp≤435 ,m ≤ 0s' .60的情况
K L
气—液界面的液相容积传质系数 Koide等在直径DR为lO~20cm的淤浆床鼓泡反应器中,研 究湍流鼓泡区气含率,也研K究L 了 ,实验在常温及常压下进 行,气体介质为空气,用溶氧法测定。溶氧在液体介质中的 扩散系数DL×l09为0.14~2.4m2/s。研究所得湍流鼓泡K 区L 的kL L关D aA Lg 联L式1 如1.4下 7:140C S S20.6 1 1 1 L 2D L D u LtR g0.5 00 .4g 8L 6 D L 4L 3R 2gL 0.L 150 G 9 1..41787 DRuG LL0.345
气—液界面的气相容积传
化学反应工程填空题、简答题目汇总
1.三传一反:质量传递、热量传递、动量传递,反应动力学2.化学反应工程是一门专门研究化学反应的工程问题的学科,既以化学反应作为研究对象,又以工程问题为其对象3.反应器的形式,不外乎管式、釜式、塔式、固定床、流化床,操作方式不外乎分批式、连续式、半连续式4.在化学反应工程中,数学模型主要包括:动力学模型、物料衡算式、热量衡算式、动量恒算式、参数计算式。
5.在建立数学模型时,根据基础资料建立物料、热量和动量恒算式的一般式为:积累量=输入量-输出量6.均相反应是指:在均一的液相或气相中进行的反应7.均相反应的速率取决于物料的浓度和温度8.多相反应过程是指同时存在两个或更多相态的反应系统所进行的反应过程9.非理想流动:凡是流动状况偏离平推流和全混流这两种理想情况的流动,统称为非理想流动10.理想混合反应器是指:理想混合反应器、平推流反应器11.视催化剂的运动情况可分为固定床、流化床等装置12.催化剂的中毒:均匀中毒、壳层中毒13.催化剂的制备方法:混合法、浸渍法、共凝胶法、喷涂法、溶蚀法、热熔法14.气固相催化反应,要测定真实的反应速率,首先要排除内扩散和外扩散的影响15.化学反应速率是指单位反应体系内反应速率和时间的变化率16.如果反应物分子在碰撞中一步直接转化为生成物分子,则该反应为基元反应17.几个基元反应才能转化为生成物分子的反应,则称为非基元反应18.反应级数在一定温度范围内保持不变,它的绝对值不会超过3,可以是分数、负数、019.反应级数(n)的大小反映了该物料浓度对反应速率影响的程度,n越高,该物料浓度对反应速率的影响越显著,n=0,在动力学方程中该物料的浓度项就不出现,说明该物料浓度的变化对反应速率没有影响,如果n为负值,说明该物料浓度的增加的反而抑制了反应,使反应速率下降。
20.非均相催化反应过程的三个控制步骤分别是外扩散过程、内扩散过程、化学动力学过程21.催化剂失活的类型和原因大致可分为物理中毒、化学中毒、结构变化22.孔径较大时,分子的扩散阻力是由于分子间的碰撞所致,这种扩散就是分子扩散或容积扩散,当微孔的孔径小于分子的自由程(约0.1ηm)时,分子与孔壁的碰撞机会超过了分子间的相互碰撞,从而前者成了扩散阻力的主要因素,这种扩散成为克努森扩散,当分子扩散和克努森扩散同时存在时,为综合扩散23.停留时间不同的流体颗粒之间的混合,通常称为返混24.平推流(PFR):反应物料以一致的方向向前移动,在整个截面上各处的流速完全相等特点:所有物料颗粒在反应器中的停留时间是相同的,不存在返混25.全混流(CSTR):刚进入反应器的新鲜物料与已存留在反应器中的物料能达到瞬间的完全混合,以致在整个反应器内各处物料的浓度和温度完全相同,且等于反应器出口处物料的浓度和温度。
气液固三相反应器课件
实验研究与模拟的局限性及未来发展
局限性分析
分析实验研究和模拟技术的局限性,如实验 条件的不一致性、模型简化和误差传递等, 以及如何减小这些局限性的影响。
未来发展趋势
探讨三相反应器实验研究和模拟技术的未来 发展趋势,如新技术应用、模型优化和多尺 度模拟等,以及这些趋势对工业应用和科学 研究的影响。
05
优化产品生产
三相反应器可用于优化产品生产过 程,提高产品质量和产量,降低生 产成本。
三相反应器的历史与发展
历史
三相反应器的概念最早由科学家们提出,经过近百年的发展,现已广泛应用于各个领域。
发展
随着科技的不断进步,三相反应器在材料、结构、能效等方面不断优化,未来还将应用于更多领域。
02
CATALOGUE
应用先进的智能化控制技术,实现对三相反应器的精准控制,提高 生产效率和产品质量。
三相反应器面临的挑战与解决方案
01
反应器稳定性问题
三相反应器的操作条件较为复杂,容易出现稳定性问题。为解决这一问
题,需深入研究反应机理,优化反应条件,提高设备的稳定性。
02 03
能耗与环保问题
三相反应器运行过程中需要消耗大量的能源,且可能产生环境污染。针 对这一问题,应研发低能耗、环保型的三相反应器,如采用高效分离技 术、循环利用技术等。
特点
三相反应器具有高效率、高选择 性、高稳定性等优点,可用于处 理复杂的多相化学反应过程。
三相反应器的重要性
实现多相化学反应
三相反应器能够模拟和实现多相 化学反应过程,为科学研究、工 业生产和环保等领域提供有效的
手段。
提高能源利用率
三相反应器的特殊结构有助于提高 能源的利用率,降低能源消耗,对 于节能减排具有重要意义。
化学反应过程与设备
化学反应过 程与设备
一、气液相反应器种类和工业应用
(一)气液相反应的特点与应用
气液相反应工业应用: 气液相反应广泛地应用于加氢、磺化、卤化、氧化等化学加工 过程。
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应的基本类型与特点
气液相反应器的特点: 鼓泡塔反应器: 广泛应用于液体相也参与反应的中速、慢速反应和放热量 大的反应。 优点: 缺点:
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应 的基本类型与特点
化学反应过 程与设备
一、气液相反应器种类和工业应用
(二)气液相反应的基本类型与特点
气液相反应器的特点: 填料塔反应器: 广泛应用于气体吸收的设备,也可用作气液相反应器。 反应方式: 适用于: 优点: 缺点:
二、鼓泡塔反应器结构
(二)鼓泡塔反应器的结构
组成: (1)塔底部的气体分布器分布 作用: (2)塔筒体部分 作用: (3)塔顶部的气液分离器 作用:
化学反应过 程与设备
三、填料塔反ቤተ መጻሕፍቲ ባይዱ器结构
(一)填料塔反应器的结构
定义:填料塔是以塔内装有大量的 填料为相间接触构件的气液传质设备。 结构:填料塔的塔身是一直立式圆筒, 底部装有填料支承板,填料以乱堆或 整砌的方式放置在支承板上。
化学反应过 程与设备
三、填料塔反应器结构
(一)填料塔反应器的结构 5、塔内件 (5)液体分布装置
化学反应过 程与设备
三、填料塔反应器结构
(一)填料塔反应器的结构 5、塔内件 (6)液体收集及再分布装置
化学反应过 程与设备
气液固三相反应-文档资料
固体固定型三相反应器
固体悬浮型反应器
2.1 滴流床反应器
通常采用气液并流向下的操作方式
– 液体润湿固体催化剂表面形成液膜,气相反应物溶解于液相 后再向催化剂外表面和内部扩散,在催化剂的活性中心上进 行反应
– 广泛应用于石油、化工和环境保护过程
石油馏分的加氢精制和加氢裂化,有机化合物的加氢、氧化以 及废水处理
四个步骤的串联过程 在定态条件下,各步骤的速率相等
催化剂表面的反应按照一级反应处理时,
三相反应中气相反应物浓度分布
1)组分A从气相主体 传递到气液界面 2)组分A从气液界面 传递到液相主体 3)组分A从液相传递 到催化剂外表面 4)组分A向催化剂内 部传递并在内表面上 进行反应
滴流床反应器 淤浆床反应器
– 如果过程的控制步骤为催化剂颗粒内的传质,应选用细颗粒催化 剂的反应器,淤浆床反应器
– 过程控制步骤的判断
如果知道速率方程中的各项传递参数,通过计算可以获得速率 控制步骤
固定床反应器的通病
解决的方法
采用多床层,在层间加入冷氢进行急冷,控制每段床 层的温升
采用液相循环操作,在反应器外对液相进行冷却
气液逆流操作滴流床反应器
– 气相反应物浓度过低时,可以采用气液逆流操作的滴流床反应器, 有利于增大过程的推动力
– 当气液两相流速较大时,可能出现液泛
气液并流向上操作滴流床反应器---填料鼓泡塔
– 结构类似于气固相反应的固定床反应器
与固定床反应器的区别?
优点
气液流型接近于平推流,返混小 持液量小 催化剂表面液膜很薄 采用并流向下进行反应时,不会有液泛的发生,气相
的流动阻力小
缺点
传热能力差 液流流速低时,可能由于液流分布不均匀,导致部分催化剂不能
化学工程中的反应器选择原则
化学工程中的反应器选择原则在化学工程中,反应器的选择是非常重要的,它直接影响到反应的效率、产品的质量以及生产成本。
合理选择反应器有助于提高生产效率、降低能耗和减少环境污染。
本文将介绍化学工程中的反应器选择原则。
1. 反应物种类及反应条件反应物的种类和反应条件是选择反应器的基本依据。
不同的反应物需要不同的反应器来提供适当的反应环境。
例如,液相反应常用的反应器有批式反应器、连续流动反应器和搅拌槽式反应器,而气相反应常用的反应器有固定床反应器、流化床反应器和往复式压缩机反应器。
2. 反应速率反应速率的快慢也是选择反应器的重要因素之一。
对于快速反应,通常选择能提供大的接触面积和较快传质速率的反应器,如搅拌槽式反应器。
而对于慢速反应,则需要选择具有较大的体积和低的传质速率的反应器,如固定床反应器。
3. 反应热效应某些反应会伴随着放热或吸热效应。
选择合适的反应器可以更好地控制反应温度,避免温度过高或过低对反应产生负面影响。
例如,选择具有良好换热能力的反应器,如管壳式反应器或卧式反应器,可以更好地控制反应温度。
4. 反应器的可操作性反应器的可操作性也是选择的重要考虑因素之一。
反应器的操作应方便、易于控制,并能够满足工艺上的要求。
例如,在高温高压反应中,选择能够承受高温高压的反应器,如高压搅拌槽式反应器或自动控制压力的容器等。
5. 产品纯度要求根据对产品纯度的要求,选择适当的反应器也非常重要。
某些反应会伴随着副反应或副产物的生成,这些副产物可能会降低产品的纯度或者对设备造成腐蚀。
因此,在选择反应器时需要考虑对副产物或副反应的控制,避免对产品质量造成负面影响。
6. 经济因素在选择反应器时,经济因素也是必须考虑的因素。
反应器的选择不仅要满足技术上的要求,还要考虑到生产成本、设备投资以及维护费用等经济因素。
在满足技术要求的前提下,选择经济性较好的反应器,可以降低生产成本,提高工艺经济效益。
综上所述,化学工程中的反应器选择应综合考虑反应物种类及反应条件、反应速率、反应热效应、反应器的可操作性、产品纯度要求和经济因素等多个因素。
反应器-3气液相反应器的选择
金属丝网波纹填料
精选可编辑ppt
金属孔板波纹填料
48
❖ 波纹填料因波纹薄片的材料与形状不同分成板波纹 填料和网波纹填料。
❖ 板波纹填料可由陶瓷、塑料、金属、玻璃钢等材料 制成。填料的空隙率大,阻力小,流体通量大、效 率高,而且制造方便、价格低,正向通用化、大型 化方向发展。
精选可编辑ppt
49
填料塔的内件
现象。 ❖ 液体再分布器:避免壁流现象发生。 ❖ 支撑板:支撑填料层,使气体均匀分布。
❖ 除沫器:防止塔顶气体出口处夹带液体。
精选可编辑ppt
28
❖ 壁流:
❖ 当液体沿填料层向下流动时,有逐渐向塔壁集中 的趋势,使得塔壁附近的液流量逐渐增大,这种 现象称为壁流。
❖ 壁流效应的后果:
❖ 造成气液两相在填料层中分布不均,从而使传质 效率下降。
精选可编辑ppt
20
鼓泡塔反应器的基本结构
简单鼓泡塔 1-塔体;2-夹套;3-气体分布器;4-塔体;精5选-挡可编板辑;pp6t-塔外换热器;7-液体捕集器;8-扩21大段
❖ 1、塔体:
❖ 2、气体分布器:使气体分布均匀,强化传热、传 质。是气液相鼓泡塔的关键设备之一。
❖
型式:多孔板
❖
喷嘴
❖
多孔管等
精选可编辑ppt
34
❖ 按材质分:
▪ 金属填料 ▪ 塑料填料 ▪ 陶瓷填料 ▪ 石墨填料
精选可编填料
❖①拉西环(Rasching ring) :拉 西环是工业上最早使用的一种 填料,为外径与高度相等的圆 环,通常由陶瓷或金属材料制 成。
拉西环
精选可编辑ppt
环
36
❖ 解决办法:
❖ 当填料层较高时,需要进行分段,中间设置再分 布装置。
高等化学反应工程_福建农林大学中国大学mooc课后章节答案期末考试题库2023年
高等化学反应工程_福建农林大学中国大学mooc课后章节答案期末考试题库2023年1.效率因子法将反应特性和( )特性对表观反应速率的影响做了区分。
参考答案:传递2.传热准数的物理意义是反应器的传热能力和反应物料( )之比。
参考答案:比热容3.化学反应吸收的总传质系数不仅与气膜传质分系数和液膜传质分系数有关,还和化学反应( )因子有关。
(增强/衰弱)参考答案:增强4.某反应器的停留时间分布的无量纲方差约为0.01,则可判断此反应器中流体流动状况接近于( )理想流动模型。
(全混流/平推流)参考答案:平推流5.活化能E反映了反应速率对( )的敏感程度。
(温度/浓度)参考答案:温度6.利用实验反应器测得的动力学数据建立反应动力学模型一般要经过模型筛选、实验数据处理和( )三个步骤。
参考答案:模型的显著性检验7.催化剂颗粒内的孔区分为和粗孔。
参考答案:微孔8.当催化剂的配方确定后,影响Thiele模数数值和内部传递作用大小的主要因素是催化剂的粒度和由催化剂内部孔道结构和大小决定的。
参考答案:有效扩散系数9.通常气固相催化反应的主要温差出现在催化剂外部,而浓度差常出现在催化剂。
(内部/外部)参考答案:内部10.当催化剂的配方确定后,影响内部传递作用大小的主要因素是催化剂粒度以及由催化剂内部孔道结构和大小决定的。
参考答案:有效扩散系数11.均相反应器的特征是在反应器内存在()种相态参考答案:一12.右图所示的是那种反应器()【图片】参考答案:釜式反应器13.对于气固系统,热阻和温度梯度主要在催化剂外部。
参考答案:正确14.催化剂内部的传质过程、传热过程和化学反应过程之间,既不是串联过程,也不是平行过程,而是传递和反应同时发生并交互影响的过程。
参考答案:正确15.对于平行孔模型来说,颗粒有效扩散系数与颗粒孔隙率的平方成反比。
参考答案:错误16.对于换热列管式固定床反应器,采用较小的管径主要是为了( )。
参考答案:消除径向温度梯度17.在间歇反应器中进行等温二级反应A→B,当时,求反应至所需时间为( )秒。
气液相反应器
③Ha<0.02在液相整体中进行的极慢反应,为图
中h 。
项目五 气液相反应器
(4) 五种反应类型分析
① 极快反应 此时化学反应能力远远大于扩散能力,化学反 应瞬间完成,液相中A、B不能同时存在,化学 反应仅在液膜内某个反应面上发生,与界面大 小有关,和液体体积无关,此时,宏观速度取 决于扩散速度,称扩散控制过程。 令
7-冷却水箱
项目五 气液相反应器
(3)鼓泡塔反应器优点: ①气体以小的气泡形式均匀分布,连续不断地通过气液 反应层,保证了充足的气液接触面,使气液充分混合反应良 好。 ②结构简单,容易清理,操作稳定,投资和维修费用低。 ③鼓泡塔反应器具有极高的储液量和相际接触面积,传 质和传热效率高,适用于缓慢化学反应和高度放热的情况。 ④在塔的内、外都可以安装换热装置。 ⑤与填料塔比较,鼓泡塔能处理悬浮液体。 缺点: ①为了保证气体沿截面的均匀分布,鼓泡塔的直径不宜 过大,一般在2-3m以内。 ②鼓泡反应器液相轴向返混很严重,在不太大的高径比 情况下可认为液相处于理想混合状态,因此较难在单一连续 反应器中达到较高的液相转化率。 ③鼓泡反应器在鼓泡时所耗压降较大。
项目五 气液相反应器
(1)鼓泡塔的各种类型
(a) 并流式鼓泡塔
(b) 升液式鼓泡塔
(c) 安置水平多孔隔板的鼓泡塔 (d)填料鼓泡塔 1-筛板;2-填料
项目五 气液相反应器
(2)鼓泡塔的各种热交换形式
(a) 夹套换热器
(b) 塔外换热器
(c) 蛇管换热器
1,4-挡板;2-夹套;3-气体分布器;5-塔体;6-塔外换热器;
项目五 气液相反应器
任务二
气液相反应器的生产原理
项目五 气液相反应器
一、双膜理论
第六章 气液固三相反应器和反应器分析
(5)均相副反应量越大。
2.气-液-固悬浮三相反应器 固体在气液混合物中呈悬浮状态,这样操作状态的反应器为气-液-固 悬浮反应器。气-液-固悬浮反应器可以按有无机械搅拌、流体流向、颗粒
运动状态等进行分类。大体可以分为:
(1)机械搅拌的气-液-固悬浮反应器; (2)不带机械搅拌的鼓泡三相淤浆反应器; (3)不带机械搅拌的两流体并流向上的流化床反应器;
效率因子低下; (4)当催化剂由于积炭,中毒而失活时,更换催化剂不方便。
图7.1(b)适应于当气相反应物浓度较低,而又要求气相组分达到
较高转化率时的情况,逆流操作有利于增大过程的推动力。但同时
会增加气相流动阻力,当气液两相的流速较大时,还可能出现液泛。
图7.1(c)为气液并流向上的填料鼓泡塔反应器,持液量大,液相 和气相在反应器中混合好,液固间的传热性能好,适用于反应热效
7.2 气-液-固反应的宏观动力学
7.2.1 过程分析 气液固催化反应过程是传质与反应诸过程共同作用,互相影响的三 相反应过程,由多个步骤组成的过程。对于组分通过气液相的传递过程, 本节采用双膜模型,设气相反应组分A与液相反应组分B,在固体催化剂 作用下,反应如下:
A( g ) bB 产物
7.1.3 气-液-固反应过程研究所涉及的模型和参数
气液固反应过程,同样涉及到化学动力学,各相的流动
与混合状况,相间的质量、热量、动量传递等。由于相的增
加,物料流动与混合、质量、热量、力量传递过程要比两相 复杂,它涉及更多的参数。
1.流动模型及相关参数 (1)反应器的流动模型决定了三相间的传递特性,决定
1
(7.10)
1 1 RQ (cQs cQLi ) k a k a Qs p QL K LSQ (cQs cQLi ) qk p (1 f ) cAs
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应和放热量大的反应。
整理ppt
整理ppt
整理ppt
填料塔反应器
❖ 特点: ❖ a.液体沿填料表面下流,在填料表面形成液膜而
与气相接触进行反应,故液相主体量较少。 ❖ b.填料塔反应器气体压降很小,液体返混极小,
是一种比较好的气液相反应器。 ❖ 应用: ❖ 适用于瞬间、界面和快速反应。
整理ppt
整理ppt
板式塔反应器
❖ 特点: ❖ a.板式塔反应器中的液体是连续相而气体是分散相,借助
于气相通过塔板分散成小气泡而与板上液体相接触进行化 学反应; ❖ b.能在单塔中直接获得极高的液相转化率; ❖ c.板式塔反应器的气液传质系数较大,可以在板上安置冷 却或加热元件,以适应维持所需温度的要求; ❖ d.但是板式塔反应器具有气相流动压降较大和传质表面较 小等缺点。 ❖ 应用: ❖ 板式塔反应器适用于快速及中速反应。
反应器) ❖ 液体以膜状运动与气相进行接触(填料塔反应器
和降膜反应器)
整理ppt
整理ppt
鼓泡塔反应器
❖ 特点: ❖ a.气相既与液相接触进行反应同时搅动液体以增加
传质速率; ❖ b.鼓泡塔反应器结构简单、造价低、易控制、易维
修、防腐问题易解决,用于高压时也无困难。 ❖ c.鼓泡塔内液体返混严重,气泡易产生聚并,故效
的趋势,使得塔壁附近的液流量逐渐增大,这种 现象称为壁流。 ❖ 壁流效应的后果: ❖ 造成气液两相在填料层中分布不均,从而使传质 效率下降。 ❖ 解决办法: ❖ 当填料层较高时,需要进行分段,中间设置再分 布装置。
整理ppt
整理ppt
填料塔结构图
整理ppt
❖ 气体从塔底送入,经气体分布装置(小直径塔一 般不设气体分布装置)分布后,与液体呈逆流连 续通过填料层的空隙,在填料表面上,气液两相 密切接触进行传质。填料塔属于连续接触式气液 传质设备,两相组成沿塔高连续变化,在正常操 作状态下,气相为连续相,液相为分散相。
整理ppt
气体升液式鼓泡塔 1-筒体;2-气升管;3-气体分布器
整理ppt
❖ 塔内装有气升管,引起液体形成有规则的循环流 动,可以强化反应器传质效果,并有利于固体催 化剂的悬浮。
❖ 特点:在这种鼓泡塔中气流的搅动比简单鼓 泡塔激烈得多。
整理ppt
整理ppt
填料塔
❖ 填料塔的结构与特点 ❖ 填料的类型 ❖ 填料塔的内件
鼓泡塔反应器的基本结构
简单鼓泡塔 1-塔体;2-夹套;3-气体分布器;4-塔体;5-整挡理板pp;t 6-塔外换热器;7-液体捕集器;8-扩大段
❖ 1、塔体:
❖ 2、气体分布器:使气体分布均匀,强化传热、传 质。是气液相鼓泡塔的关键设备之一。
❖
型式:多孔板
❖
喷嘴
❖
多孔管等
整理ppt
❖ 3、换热装置: ❖ 夹套式:热效应不大时。 ❖ 蛇管式:热效应较大时。 ❖ 外循环换热式:热效应较大时。 ❖ 4、水平多孔隔板: ❖ 提高气体分散度,减少液体纵向循环。
整理ppt
❖ 用于化学吸收时可选用填料塔和喷雾塔,这种场 合气体浓度比较低,对处理后尾气要求不严格;
❖ 当用于生产化学品时,反应若极快(瞬时反应), 由传质控制,可选用填料塔和喷雾塔,它们的相 界面积大、持液量低;
❖对快反应和中速反应可选用板式塔和鼓泡塔,这 两种反应器的持液量都比较大;
整理ppt
整理ppt
ቤተ መጻሕፍቲ ባይዱ
填料塔的结构与特点
❖ 1. 填料塔的结构 ❖ 填料层:提供气液接触的场所。 ❖ 液体分布器:均匀分布液体,以避免发生沟流
现象。 ❖ 液体再分布器:避免壁流现象发生。 ❖ 支撑板:支撑填料层,使气体均匀分布。
❖ 除沫器:防止塔顶气体出口处夹带液体。
整理ppt
❖ 壁流: ❖ 当液体沿填料层向下流动时,有逐渐向塔壁集中
LOGO
气液相反应器的选择
整理ppt
概述
气液相反应的基本类型 在反应过程中至少有一种反应物在气相,另一
些物质在液相,气相中的反应物必须传递到液相 中,然后在液相中发生化学反应,这种类型的反 应称气液相反应。
❖ 应用: ❖ 气体的净化和分离 ❖ 生产化工产品
整理ppt
气液相反应的特殊性
❖ 在气液相反应体系中,气相往往是反应物,而液 相则可能有几种情况:
整理ppt
气液相反应器的选型
❖ 若是传质控制应选择气液接触面积大、持液量较 小的反应器;
❖ 若是化学反应控制则应选择持液量大的反应器;
❖ 反应极快热效应又很大,对传热的要求高时刻选 择膜式塔;
❖ 当液体的处理量大、反应较慢、换热要求较高时 刻选用鼓泡塔 ;
❖ 当有悬浮固体催化剂颗粒时可选用搅拌釜式反应 器,此时为气液固三相,称做於浆反应器
❖ 应用:降膜反应器可用于瞬间、界面和快速反应,它 特别适用于较大热效应的气液反应过程;不适用于慢反应; 也不适用于处理含固体物质或能析出固体物质及粘性很大 的液体。
整理ppt
整理ppt
喷雾塔反应器
❖ 特点: ❖ a.液体以细小液滴的方式分散于气体中,气体为
连续相,液体为分散相, ❖ b.具有相接触面积大和气相压降小等优点。 ❖ c.具有持液量小和液侧传质系数过小,气相和液
❖ 1、液相也是反应物 ❖ 2、液相是催化剂 ❖ 3、液相中既有反应物又有催化剂
整理ppt
气液相反应的工业应用
整理ppt
气液相反应器的基本类型
气液相反应器按气液相接触形态可分为: ❖ 气体以气泡形态分散在液相中(鼓泡塔反应器、
搅拌鼓泡釜式反应器和板式反应器) ❖ 液体以液滴状分散在气相中(喷雾、喷射和文氏
整理ppt
膜式反应器
整理ppt
❖ 膜反应器
❖ 特点:
❖ a.通常借助管内的流动液膜进行气液反应,管外使用载热 流体导入或导出反应热。
❖ b.降膜反应器还具有压降小和无轴向返混的优点。 ❖ c.由于降膜反应器中液体停留时间很短, ❖ d.降膜管的安装垂直度要求较高,液体成膜和均匀分布是
降膜反应器的关键,工程使用时必须注意。
相返混较为严重的缺点。 ❖ 应用: ❖ 适用于瞬间、界面和快速反应,也适用于生成固
体的反应。
整理ppt
搅拌釜式反应器
整理ppt
搅拌鼓泡釜式反应器
❖ 特点: ❖ a.反应器内气体能较好地分散成细小的气泡,增
大气液接触面积。 ❖ b.反应器内液体流动接近全混流,同时能耗较高。 ❖ 应用: ❖ 搅拌釜式反应器适用于慢反应。