导数常见组合函数及常见不等式图像验证

合集下载

219391666_巧用导数证明不等式

219391666_巧用导数证明不等式

%
) l</-*l$
%
*
K$ )
l,;<**)K$
lK$ &
*
% !
&
!
?) ** L)*M$ K) K*8-)% ?@) ** L))*M$ K$*
8-)&
*m% %?@) ** m%% ?) ** *L%
%
进一步变形得所要证明的不等式&
在区间 上严格递增故当 时 ?)**
'%%M*
&
*m% %?) ** m?)%*
显然%?)0*在'%%*(上满足拉格朗日中值定理的条件%
要证明的不等式& 下面给出两个例子加以说明这个过程& 例$4证明!对任意实数*$ %*) %都有
</-*$ K</-*) *$ K*)
因此存在 使得 )%%**%
?) ** K?)%* *K%
L8-)$M** K8-$ *
L$$M&
注意到 故 进一步化简就得 $$M*l$$Ml$% $$M*l8-)$*M** l$&
运用柯西中值定理证明不等式的关键是%寻找恰当的
用%而导数的一个重要应用就是判断函数的单调性%并得 到了下面重要的结论!
函数?%F 及区间'$%9(& 进一步说明其满足定理的条件% 定理3'3( 设 ! ?)**在区间H上可导%则?)**在H上递增
再根据等式))*得到所要证明的结论&
减的充要条件是 进一步若 ) *
%% )
%
*
%% )
%F) ** lF)%* L
*) ,;<l$ &
)3

高三总复习数学精品课件 利用导数证明不等式

高三总复习数学精品课件 利用导数证明不等式

19
已知函数 f(x)=ln x+x2+x.若正实数 x1,x2 满足 f(x1)+f(x2)
+x1x2=0.求证:x1+x2≥
5-1 2.
证明:f(x)=ln x+x2+x(x>0).
由 f(x1)+f(x2)+x1x2=0, 得 ln x1+x21+x1+ln x2+x22+x2+x1x2=0. 从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
33
(2)证明:由(1)知 a=1,所以 f(x)=x+xln x. 令 g(x)=f(x)-3(x-1), 即 g(x)=xln x-2x+3(x>0). g′(x)=ln x-1,由 g′(x)=0,得 x=e. 由 g′(x)>0,得 x>e;由 g′(x)<0,得 0<x<e. 所以 g(x)在(0,e)上单调递减,在(e,+∞)上单调递增, 所以 g(x)在(1,+∞)上的最小值为 g(e)=3-e>0. 于是在(1,+∞)上,都有 g(x)≥g(e)>0, 所以 f(x)>3(x-1).
4
已知 f(x)=1-lnxx-eex+1x+x.证明:当 x≥1 时,f(x)≥2x. 证明:由 f(x)≥2x得 1-lnxx-eex-1x+x≥0. 令 h(x)=1-lnxx-eex-1x+x(x≥1), 则 h(1)=0,h′(x)=-1-xl2n x+eex+x12+1=lnx2x+eex+1.
因此原不等式 x1x2>e2 得证.
18
换元法构造函数证明不等式的基本思路是直接消掉参数 a,再结合所证问题,
巧妙引入变量 c=xx12,从而构造相应的函数.其解题要点为: 联立消参 利用方程 f(x1)=f(x2)消掉解析式中的参数 a

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!导数中的不等式证明导数中的不等式证明是高考中的一个经典考点。

由于不等式证明的灵活性和多样性,该考点备受命题者的青睐。

本文将从五个方面系统地介绍一些常规的不等式证明手段。

命题角度1:构造函数典例1】(赣州市2018届高三摸底考试)已知函数$f(x)=1-\ln x+\frac{e}{x}$,$g(x)=x-\frac{e}{x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。

求$a,b$的值,并证明当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。

解析】(1)$a=b=-1$;2)$g(x)=-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$f(x)+g(x)\geq\frac{2}{x}$ $\Leftrightarrow 1-\frac{1}{x}+\frac{e}{x}-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}\geq\frac{2}{x}$ $\Leftrightarrow\frac{1}{x}+\frac{ e}{2\ln x}-\frac{x}{2}+\frac{e}{2x}\leq1$。

令$h(x)=f(x)+g(x)-\frac{2}{x}$,则$h(x)=1-\frac{1}{x}+\frac{e}{x}-\ln x-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$h'(x)=-\frac{1}{x^2}+\frac{e}{x^2}-\frac{1}{x}-\frac{e}{2x^2}+\frac{1}{2}-\frac{e}{2x^2}$,$h''(x)=\frac{2}{x^3}-\frac{3e}{x^3}+\frac{2e}{x^3}$。

第5讲 第2课时 利用导数证明不等式

第5讲 第2课时 利用导数证明不等式
证明:法一:由题意知,即证 exln x-ex2-ex+2ex≤0, 从而等价于 ln x-x+2≤eexx. 设函数 g(x)=ln x-x+2,x>0, 则 g′(x)=1x-1.
17
突破核心命题 10拓展提能 限时规范训练
∴当x∈(0,1)时,g′(x)>0, 当x∈(1,+∞)时,g′(x)<0, 故 g(x) 在 (0 , 1) 上 单 调 递 增 , 在 (1 , + ∞) 上 单 调 递 减 , 从 而 g(x) 在 (0,+∞)上的最大值为g(1)=1.
15
突破核心命题 10拓展提能 限时规范训练
反思感悟
如果要证明的不等式由指数函数、对数函数、多项式函数组合而 成,往往进行指对分离,转化为证明g(x)≥h(x),分别求g(x)min,h(x)max进 行证明.
16
突破核心命题 10拓展提能 限时规范训练
训练2 (2024·衡水模拟改编)已知函数f(x)=eln x-ex,证明:xf(x)- ex+2ex≤0.
5
突破核心命题 10拓展提能 限时规范训练
可得x=-ln a,当x变化时,f(x)与f′(x)变化如下表:
x
(-∞,-ln a)
-ln a
(-ln a,+∞)
f′(x)

0

f(x)
单调递减
极小值
单调递增
当 x∈-∞,-ln a时,f′(x)<0,f(x)单调递减, 当 x∈(-ln a,+∞)时,f′(x)>0,f(x)单调递增. 综上,当 a≤0 时,fx在 R 上单调递减; 当 a>0 时,fx在-∞,-ln a上单调递减,在-ln a,+∞上单调递 增.
23
ห้องสมุดไป่ตู้

导数中有关x与ex,lnx的组合函数问题

导数中有关x与ex,lnx的组合函数问题

导数中有关x与e x,ln x的组合函数问题在函数的综合问题中,常以x与e x,ln x组合的函数为基础来命题,将基本初等函数的概念、图象与性质糅合在一起,发挥导数的工具作用,应用导数研究函数性质、证明相关不等式(或比较大小)、求参数的取值范围(或最值).着眼于知识点的巧妙组合,注重对函数与方程、转化与化归、分类讨论和数形结合等思想的灵活运用,突出对数学思维能力和数学核心素养的考查.六大经典超越函数的图象函数f(x)=x e x f(x)=e xxf(x)=xe x图象函数f(x)=x ln x f(x)=ln xxf(x)=xln x图象考点一x与ln x的组合函数问题(1)熟悉函数f(x)=h(x)ln x(h(x)=ax2+bx+c(a,b不能同时为0))的图象特征,做到对图(1)(2)中两个特殊函数的图象“有形可寻”.(2)熟悉函数f (x )=ln xh (x )(h (x )=ax 2+bx +c (a ,b 不能同时为0),h (x )≠0)的图象特征,做到对图(3)(4)中两个特殊函数的图象“有形可寻”.【例题选讲】[例1]设函数f (x )=x ln x -ax 22+a -x (a ∈R ).(1)若函数f (x )有两个不同的极值点,求实数a 的取值范围;(2)若a =2,k ∈N ,g (x )=2-2x -x 2,且当x >2时不等式k (x -2)+g (x )<f (x )恒成立,试求k 的最大值.分析(1)将原问题转化为两个函数图象的交点问题,利用数形结合思想进行求解;(2)将不等式恒成立问题转化为函数的最值问题进行求解.解析(1)由题意知,函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1-ax -1=ln x -ax ,令f ′(x )=0,可得a =ln xx ,令h (x )=ln xx(x >0),则由题可知直线y =a 与函数h (x )的图象有两个不同的交点,h ′(x )=1-ln xx 2,令h ′(x )=0,得x =e ,可知h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,h (x )max =h (e)=1e ,当x →0时,h (x )→-∞,当x →+∞时,h (x )→0,故实数a (2)当a =2时,f (x )=x ln x -x 2+2-x ,k (x -2)+g (x )<f (x ),即k (x -2)+2-2x -x 2<x ln x -x 2+2-x ,整理得k (x -2)<x ln x +x ,因为x >2,所以k <x ln x +x x -2.设F (x )=x ln x +x x -2(x >2),则F ′(x )=x -4-2ln x(x -2)2.令m (x )=x -4-2ln x (x >2),则m ′(x )=1-2x >0,所以m (x )在(2,+∞)上单调递增,m (8)=4-2ln 8<4-2ln e 2=4-4=0,m (10)=6-2ln10>6-2ln e 3=6-6=0,所以函数m (x )在(8,10)上有唯一的零点x 0,即x 0-4-2ln x 0=0,故当2<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,F ′(x )>0,所以F (x )min =F (x 0)=x 0ln x 0+x 0x 0-2=0=x 02,所以k <x02,因为x 0∈(8,10),所以x 02∈(4,5),故k 的最大值为4.点评1.极值点问题通常可转化为零点问题,且需要检验零点两侧导函数值的符号是否相反,若已知极值点求参数的取值范围,一定要对结果进行验证.解答任意性(恒成立)、存在性(有解)问题时通常有分离参变量、分拆函数等求解方法,可根据式子的结构特征,进行选择和调整,一般可转化为最值问题进行求解.2.对于有关x 与ln x 的组合函数为背景的试题,要求理解导数公式和导数的运算法则等基础知识,能够灵活利用导数研究函数的单调性,能够恰当地构造函数,并根据区间的不同进行分析、讨论,寻求合理的证明和解不等式的策略.【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c1.答案C解析设f (x )=ln xx ,则f ′(x )=1-ln x x 2,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,即有f (6)<f (4)<f (3),所以ln 66<ln 44=ln 22<ln 33,故c <a <b .2.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是()A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)2.答案C解析由a b =b a 两边取对数得b ln a =a ln b ⇒ln a a =ln b b .对于y =ln xx,由图象易知当b <e<a 时,才可能满足题意.故(1)正确,(2)错误;另外,由a b =b a ,令a =4,b =2,则a >e ,b <e ,ab =8>e 2,故(4)正确,(3)错误.因此,选C .3.设x ,y ,z 为正数,且2x =3y =5z ,则()A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z3.答案D解析令2x =3y =5z =t (t >1),两边取对数得x =log 2t =ln t ln 2,y =log 3t =ln t ln 3,z =log 5t =ln tln 5,从而2x =2ln 2ln t ,3y =3ln 3ln t ,5z =5ln 5ln t .由t >1知,要比较三者大小,只需比较2ln 2,3ln 3,5ln 5的大小.又2ln 2=4ln 4,e<3<4<5,由y =ln x x 在(e ,+∞)上单调递减可知,ln 33>ln 44>ln 55,从而3ln 3<4ln 4<5ln 5,3y <2x <5z ,故选D .4.下列四个命题:①ln 5<5ln 2;②ln π>πe;③;④3eln 2>42.其中真命题的个数是()A .1B .2C .3D .44.答案B解析构造函数f (x )=ln xx ,则f ′(x )=1-ln x x 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.①ln 5<5ln 2⇒2ln 5<5ln 2⇒ln 55<ln 22,又2<5<e ,故错误.②ln π>πe ⇒2ln π>πe ⇒ln ππ>12e=ln e e ,又e>π>e ,故正确.③⇒11ln 2<ln 11=2ln 11⇒ln 22=ln 44<ln 1111,又4>11>e ,故正确.④3eln 2>42⇒322eln 2>2×322⇒3232ln 22>ln e e ,显然错误.因此选B .5.已知函数f (x )=kx 2-ln x ,若f (x )>0在函数定义域内恒成立,则k 的取值范围是()ABC∞D5.答案D解析由题意得f (x )>0在函数定义域内恒成立,即kx 2-ln x >0在函数定义域内恒成立,即k >ln x x 2在函数定义域内恒成立,设g (x )=ln xx 2,则g ′(x )=x -2x ln x x 4=x (1-2ln x )x 4,当x ∈(0,e)时,g ′(x )>0,函数g (x )单调递增;当x ∈(e ,+∞)时,g ′(x )<0,函数g (x )单调递减,所以当x =e 时,函数g (x )取得最大值,此时最大值为g (e)=12e ,所以实数kD .6.已知0<x 1<x 2<1,则()A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 26.答案D解析设f (x )=x ln x ,则f ′(x )=ln x +1,由f ′(x )>0,得x >1e,所以函数f (x )调递增;由f ′(x )<0,得0<x <1e f (x )f (x )在(0,1)上不单调,所以f (x 1)与f (x 2)的大小无法确定,从而排除A ,B ;设g (x )=ln xx ,则g ′(x )=1-ln x x 2,由g ′(x )>0,得0<x <e,即函数g (x )在(0,e)上单调递增,故函数g (x )在(0,1)上单调递增,所以g (x 1)<g (x 2),即ln x 1x 1<ln x 2x 2,所以x 2ln x 1<x 1ln x 2.故选D .7.已知函数f (x )=ax -ln xx,a ∈R .(1)若f (x )≥0,求a 的取值范围;(2)若y =f (x )的图象与直线y =a 相切,求a 的值.7.解析(1)由题易知,函数f (x )的定义域为(0,+∞).由f (x )≥0,得ax -ln x x ≥0,所以ax ≥ln x x ,又x >0,所以a ≥ln xx2.令g (x )=ln xx 2,则g ′(x )=1-2ln x x 3.令g ′(x )>0,得0<x <e ,令g ′(x )<0,得x >e .所以当0<x <e 时,g (x )单调递增,当x >e 时,g (x )单调递减.所以当x =e 时,g (x )取得最大值g (e)=12e ,所以a ≥12e,即a 的取值范围是12e ,+(2)设y =f (x )的图象与直线y =a 相切于点(t ,a )t )=a ,t )=0.因为f ′(x )=a -1-ln xx 2,所以-ln tt=a ,-1-ln t t2=0,消去a 可得t -1-(2t -1)ln t =0.(*)令h (t )=t -1-(2t -1)ln t ,则h ′(t )=1t -2ln t -1,易知h ′(t )在(0,+∞)上单调递减,且h ′(1)=0,所以当0<t <1时,h ′(t )>0,h (t )单调递增,当t >1时,h ′(t )<0,h (t )单调递减.所以当且仅当t =1时,h (t )=0,即(*)式成立,所以a =1-ln 112=1.点评1.求解有关x 与e x ,x 与ln x 的组合函数问题,要把相关问题转化为熟悉易解的函数模型来处理;若函数最值不易求解时,可重新分拆、组合、构建新函数,然后借助导数研究函数的性质来求解.2.本例中(1)先将不等式f (x )≥0转化为a ≥ln x x 2,再构造函数g (x )=ln xx 2,求其最大值即可求得a 的取值范围;(2)先由y =f (x )的图象与直线y =a 相切,得到方程组,再构造新函数,通过研究新函数的单调性,求出a 的值.8.已知函数f (x )=x 3-a ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数y =f (x )在区间(1,e]上存在两个不同零点,求实数a 的取值范围.8.解析(1)∵f ′(x )=3x 2-a x=3x3-ax(x >0).①当a ≤0时,f ′(x )>0,此时函数在(0,+∞)上单调递增;②当a >0时,令f ′(x )=3x 3-ax =0,得x =3a 3,当xf ′(x )<0,此时函数f (x )当xf ′(x )>0,此时函数f (x )(2)由题意知:a =x 3ln x在区间(1,e]上有两个不同实数解,即直线y =a 与函数g (x )=x 3ln x 的图象在区间(1,e]上有两个不同的交点,因为g ′(x )=x 2(3ln x -1)(ln x )2,令g ′(x )=0,得x =3e ,所以当x ∈(1,3e)时,g ′(x )<0,函数在(1,3e)上单调递减;当x ∈(3e ,e]时,g ′(x )>0,函数在(3e ,e]上单调递增;则g (x )min =g (3e)=3e ,而g (e 127)=e 19ln e 127=27e 19>27,且g (e)=e 3<27.所以要使直线y =a 与函数g (x )=x 3ln x 的图象在区间(1,e]上有两个不同的交点,则3e<a ≤e 3,所以a 的取值范围为(3e ,e 3].考点二x 与e x 的组合函数问题(1)熟悉函数f (x )=h (x )e g (x )(g (x )为一次函数,h (x )=ax 2+bx +c (a ,b 不能同时为0))的图象特征,做到对图(1)(2)中两个特殊函数的图象“有形可寻”.(2)熟悉函数f (x )=e xh (x )(h (x )=ax 2+bx +c (a ,b 不能同时为0),h (x )≠0)的图象特征,做到对图(3)(4)中两个特殊函数的图象“有形可寻”.【例题选讲】[例1]已知函数f (x )=a (x -1),g (x )=(ax -1)·e x ,a ∈R .(1)求证:存在唯一实数a ,使得直线y =f (x )和曲线y =g (x )相切;(2)若不等式f (x )>g (x )有且只有两个整数解,求a 的取值范围.分析(1)设切点的坐标为(x 0,y 0),然后由切点既在直线上又在曲线上得到关于x 0的方程,再构造函数,从而通过求导研究新函数的单调性使问题得证;(2)首先将问题转化为<1,然后令m (x )=x -x -1e x ,再通过求导研究函数m (x )的单调性,求得最小值,从而分a ≤0,0<a <1,a ≥1三种情况来讨论,进而求得a 的取值范围.解析(1)f ′(x )=a ,g ′(x )=(ax +a -1)e x .设直线y =f (x )和曲线y =g (x )的切点的坐标为(x 0,y 0),则y 0=a (x 0-1)=(ax 0-1)e x 0,得a (x 0e x 0-x 0+1)=e x 0,①又因为直线y =f (x )和曲线y =g (x )相切,所以a =g ′(x 0)=(ax 0+a -1)e x 0,整理得a (x 0e x 0+e x 0-1)=e x 0,②结合①②得x 0e x 0-x 0+1=x 0e x 0+e x 0-1,即e x 0+x 0-2=0,令h (x )=e x +x -2,则h ′(x )=e x +1>0,所以h (x )在R 上单调递增.又因为h (0)=-1<0,h (1)=e -1>0,所以存在唯一实数x 0,使得e x 0+x 0-2=0,且x 0∈(0,1),所以存在唯一实数a ,使①②两式成立,故存在唯一实数a ,使得直线y =f (x )与曲线y =g (x )相切.(2)令f (x )>g (x ),即a (x -1)>(ax -1)e x ,所以ax e x -ax+a <e x ,所以1,令m (x )=x -x -1e x ,则m ′(x )=e x +x -2ex ,由(1)可得m (x )在(-∞,x 0)上单调递减,在(x 0,+∞)上单调递增,且x 0∈(0,1),故当x ≤0时,m (x )≥m (0)=1,当x ≥1时,m (x )≥m (1)=1,所以当x ∈Z 时,m (x )≥1恒成立.①当a ≤0时,am (x )<1恒成立,此时有无数个整数解,舍去;②当0<a <1时,m (x )<1a ,因为1a>1,m (0)=m (1)=1,所以两个整数解分别为0,1(2)≥1a,(-1)≥1a,解得a ≥e 22e 2-1,即a ∈e22e 2-1,+③当a ≥1时,m (x )<1a ,因为1a ≤1,m (x )在x ∈Z 时大于或等于1,所以m (x )<1a 无整数解,舍去.综上所述,a 的取值范围为e 22e 2-1,+点评1.涉及函数的零点的个数问题、方程解的个数问题、函数图象的交点个数问题时,一般先通过导数研究函数的单调性、最大值、最小值等,再借助函数的大致图象判断零点、方程的根、函数图象的交点的情况,归根到底还是研究函数的性质,如单调性、极值等.2.在求解有关x 与e x 的组合函数综合题时要把握三点:(1)灵活运用复合函数的求导法则,由外向内,层层求导;(2)把相关问题转化为熟悉易解的函数模型来处理;(3)函数最值不易求解时,可重新组合、分拆,构建新函数,通过分类讨论新函数的单调性求最值.3.以形助数、数形沟通,实现数形结合,形象直观地得出结论,体现了直观想象等数学核心素养.考点三x 与e x ,ln x 的组合函数问题(1)熟悉函数f (x )=h (x )ln x ±e x (h (x )=ax 2+bx +c (a ,b 不能同时为0))的图形特征,做到对图(1)(2)(3)(4)所示的特殊函数的图象“有形可寻”.(2)熟悉函数f (x )=e x h (x )±ln x (其中h (x )=ax 2+bx +c (a ,b 不同时为0))的图形特征,做到对图(5)(6)所示的两个特殊函数的图象“有形可寻”.命题点1分离参数,设而不求【例题选讲】[例1]已知函数f (x )=ln x +m x ,g (x )=e xx(e =2.71828……为自然对数的底数),是否存在整数m ,使得对任意的x 都有y =f (x )的图象在y =g (x )的图象下方?若存在,请求出整数m 的最大值;若不存在,请说明理由.解析假设存在整数m 满足题意,则不等式ln x +m x <e xx,对任意的x即m <e x -x ln x 对任意的x v (x )=e x -x ln x ,则v ′(x )=e x -ln x -1,令φ(x )=e x -lnx -1,则φ′(x )=e x -1x,易知φ′(x )因为φe 12-2<0,φ′(1)=e -1>0且φ′(x )所以存在唯一的x 0φ′(x 0)=0,即e x 0-1x 0=0,则x 0=-ln x 0.当x x φ(x )单调递减;当x ∈(x 0,+∞)时,φ(x )单调递增.则φ(x )在x =x 0处取得最小值,且最小值为φ(x 0)=e x0-ln x 0-1=1x 0+x 0-1>2x 0·1x 0-1=1>0,所以v ′(x )>0,即v (x )m ≤e 12-12ln 12=e 12+12ln 2≈1.99529,故存在整数m 满足题意,且m 的最大值为1.点评1.对于恒成立或有解问题分离参数后,导函数的零点不可求,且不能借助图象或观察得到,常采用设而不求,整体代入的方法.2.本例通过虚设零点x 0得到x 0=-ln x 0,将e x 0-ln x 0-1转化为普通代数式1x 0+x 0-1,然后使用基本不等式求出最值,同时消掉x 0,即借助φ′(x 0)=0作整体代换,采取设而不求,达到化简求解的目的.命题点2分离ln x 与e x[例2]已知函数f (x )=ax 2-x ln x .(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围;(2)若a =e ,证明:当x >0时,f (x )<x e x +1e .解析(1)由题意知,f ′(x )=2ax -ln x -1.因为函数f (x )在(0,+∞)上单调递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x在x >0时恒成立.令g (x )=ln x +1x(x >0),则g ′(x )=-ln xx 2,易知g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,则g (x )max =g (1)=1,所以2a ≥1,即a ≥12.故实数a 的取值范围是12,+(2)证明若a =e ,要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x.令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )h (x )min =0,所以ln x +1e x ≥0.再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.点评1.若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.2.本题第(2)小题中变形后再隔离分析构造函数,原不等式化为ln x +1e x >e x -e x (x >0)(分离ln x 与e x ),便于探求构造的函数h (x )=ln x +1e x 和φ(x )=e x -e x 的单调性,分别求出h (x )的最小值与φ(x )的最大值,借助“中间媒介”证明不等式.【对点训练】1.已知函数f (x )=ln x +ax(a >0).(1)若函数f (x )有零点,求实数a 的取值范围;(2)证明:当a ≥2e 时,ln x +ax -e -x >0.1.解析(1)由题意可知,函数f (x )的定义域为(0,+∞).由f (x )=ln x +ax=0有解,得a =-x ln x 有解,令g (x )=-x ln x ,则g ′(x )=-(ln x +1).∵当x g ′(x )>0,当x g ′(x )<0,∴函数g (x )g (x )max ==-1e ln 1e =1e.11∵a =-x ln x 有解,且x >0,a >0,∴0<a ≤1e,∴实数a,1e .(2)要证当a ≥2e 时,ln x +a x -e -x >0,即证ln x +a x>e -x ,∵x >0,∴即证x ln x +a >x e -x ,即证(x ln x +a )min >(x e -x )max .令h (x )=x ln x +a ,则h ′(x )=ln x +1.当0<x <1e 时,f ′(x )<0;当x >1e时,f ′(x )>0.∴函数h (x )∴h (x )min ==-1e+a ,故当a ≥2e 时,h (x )≥-1e +a ≥1e.①令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ).当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.∴函数φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴φ(x )max =φ(1)=1e .故当x >0时,φ(x )≤1e.②显然,不等式①②中的等号不能同时成立,故当a ≥2e 时,ln x +a x-e -x >0.。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

导数基本不等式

导数基本不等式

对于e x和ln x与其他代数式相结合的问题,常把e x 和ln x放缩,然后可以化简或判断导数的正负.两个常见放缩公式:
①e x≥1+x,(x∈R),当且仅当x=0时取等号;
②ln x≤x-1,(x>0),当且仅当x=1时取等号角度1构造函数
证明:e x≥1+x,(x∈R),当且仅当x=0时取等号
证明:ln x≤x-1,(x>0),当且仅当x=1时取等号
1.曲线x e y =在点(0,1)处的切线方程 .
结论:
2.曲线x e y =过点(0,0)处的切线方程 .
结论:
3.曲线lnx y =在点(1,0)处的切线方程 .
结论:
4.曲线lnx y =过点(0,0)处的切线方程 .
结论:
换成中的把x x e x 1+≥1-x 得 .
换成中的把x x e x 1+≥x ln 得 .
换成中的把x x e x 1+≥x -得 .
得换成中的把n
x x ex e x ≥ .
换成
中的把x x x 1ln -≤x
1 .
得换成中的把11ln +-≤x x x x .
换成
中的把x x x 1ln -≤e
x 得 .
画出下列函数的草图。

注意单调性及函数值的正负。

x xe x f =)(
x e
x x f =
)(
x x x f ln )(=
x x x f ln )(=。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

导数与不等式证明

导数与不等式证明

导数与不等式证明导数是微积分中的重要概念,它描述了函数在某一点的变化率。

而不等式是数学中常用的一种关系,用于比较两个数或表达变量之间的大小关系。

本文将探讨导数与不等式之间的关系,并通过具体的例子来证明与应用。

一、导数的定义与性质首先,我们回顾导数的定义:对于函数f(x),在点x处的导数可以表示为lim(h->0)(f(x+h)-f(x))/h。

简单来说,导数就是函数在某一点的斜率。

导数具有以下性质:1. 导数存在性:如果函数在某一点可导,则该点的导数存在。

2. 导数与函数图像:导数可以帮助我们理解函数图像的特性,如切线与曲线的关系、函数的增减性等。

3. 导数的计算:可以通过求导法则,例如常数法则、幂函数法则、链式法则等,来计算导数。

二、不等式的基本性质接下来,我们简要介绍不等式的基本性质。

不等式常见的有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等。

对于不等式的证明,通常有以下方法:1. 同向性:如果a>b,那么对于任意正数c,ac>bc。

这个性质可以用于不等式的乘法性质证明。

2. 等价性:如果两个不等式的左边和右边分别相等,则两个不等式等价。

这个性质可以用于不等式的代换和变形。

三、导数与不等式之间的关系导数在不等式的证明中具有重要作用。

通过对比函数在不同区间的导数值以及函数图像的特征,可以得出不等式的结论。

下面通过两个具体的例子来说明导数与不等式之间的关系。

例1:证明函数f(x)=x²在区间(0,∞)上是递增的。

解:首先计算f(x)=x²的导数:f'(x)=2x。

由于导数描述了函数的变化率,当导数大于0时,函数是递增的。

因此,我们需要证明2x>0在区间(0,∞)上成立。

由于x大于0,所以2x大于0,即导数大于0,因此函数f(x)=x²在区间(0,∞)上是递增的。

例2:证明函数f(x)=eˣ在任意区间上是递增的。

高考数学一轮总复习第三章一元函数的导数及其应用专题突破7导数的综合应用课件

高考数学一轮总复习第三章一元函数的导数及其应用专题突破7导数的综合应用课件
2
2
0恒成立.
考点二 利用导数研究恒(能)成立问题
例2 已知函数 = ln , = − 2 − − 4 ∈ .
(1)求函数 的极值;
1
3
(2)若对任意 ∈ 0, +∞ ,不等式 > 恒成立,求的取值范围.
解:(1) 的定义域为 0, +∞ ,′ = ln + 1.
(2)证明:由(1)得,
要证 > 2ln
即证2
= −ln = (e−ln + ) + ln = 1 + 2 + ln .
3
+ ,
2
即证1 + + ln > 2ln
2
min
3
+ ,
2
1
2
− − ln > 0恒成立.
1
设 = − − ln > 0 ,
第二问
在综合性和应用性的层次上考查了逻辑推
理、数学抽象及数学运算等学科素养,转化
与化归、函数与方程、数形结合等数学思想
方法,运算求解、推理论证等关键能力,以
及导数在研究函数性质中的应用及等差数列
等必备知识.
解:(1) 的定义域为,′ = e − .
若 ≤ 0,则′ > 0,此时 无最小值,故 > 0.
当 < −ln 时,′ < 0,则 在 −∞, −ln 上单调递减;当 > −ln 时,
′ > 0,则 在 −ln , +∞ 上单调递增.
综上,当 ≤ 0时, 在上单调递减;当 > 0时, 在 −∞, −ln 上单调递减,在

高考数学导数与不等式 导数方法证明不等式

高考数学导数与不等式 导数方法证明不等式
(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数,若直接构造函数求导,难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.提示:在构造函数证明不等式时,常会用到一些放缩技巧:(1)舍去一些正项(或负项);(2)在和或积中换大(或换小)某些项;(3)扩大(或缩小)分式的分子(或分母);(4)构造基本不等式(通常结合代换法,注意对指数的变换).
探究点二 双变量不等式的证明
[思路点拨]首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性;解: f'(x)=1-ln x-1=-ln x,x∈(0,+∞).当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
[总结反思]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,即若证明f(x)>g(x)在区间D上恒成立,则构造函数h(x)=f(x)-g(x),再根据函数h(x)的单调性,证明h(x)>0在区间D上恒成立.
课堂考点探究
课堂考点探究
变式题 [2021·云南师大附中模拟] 已知函数f(x)=aex+b,若f(x)的图像在点(0,f(0))处的切线方程为y=x+1.(1)求a,b的值;
课堂考点探究
例2 [2021·辽宁丹东二模] 已知函数f(x)=ln(ax)-x+a.(2)当0<a≤1时,证明:f(x)≤(x-1)ex-a-x+a.

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题

利用导数证明或解决不等式问题不等式问题是数学中常见的问题类型之一,对于不等式问题的解答,有时我们可以利用导数的概念进行证明或解决。

导数是微积分中的重要概念,它可以帮助我们分析函数的增减性和凹凸性,从而帮助我们解决不等式问题。

在本文中,我们将探讨利用导数证明或解决不等式问题的方法和思路。

我们将简要介绍导数的概念,然后结合具体的不等式问题,探讨利用导数证明或解决不等式问题的方法和例子。

导数的概念在微积分中,函数的导数是描述函数变化率的重要概念。

一个函数在某一点的导数可以用来表示这个函数在该点的变化速率,也可以用来表示函数图像在该点的切线斜率。

函数在某一点的导数可以通过下面的极限来定义:\[f'(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\]\(f'(x)\) 表示函数 \(f(x)\) 在点 \(x\) 处的导数。

导数的定义可以直观地理解为函数图像在某一点的切线斜率,也可以理解为函数在该点的变化速率。

导数有许多重要的性质,例如导数可以用来判断函数的增减性、凹凸性以及极值点等。

利用导数证明不等式在数学中,我们常常遇到需要证明不等式是否成立的问题。

利用导数可以帮助我们证明一些不等式。

对于一个实数函数 \(f(x)\) ,如果我们要证明在某个区间上 \(f(x)\)大于等于某个常数,我们可以利用导数的定义来进行证明。

假设函数 \(f(x)\) 在区间 \([a,b]\) 内可导,且在该区间上 \([a,b]\) 上函数的导数 \(f'(x)\) 大于等于零(\(f'(x) \geq 0\)),则可以得出在该区间上函数 \(f(x)\) 单调递增。

那么对于任意 \(x \in [a,b]\),都有 \(f(x) \geq f(a)\) 成立。

我们可以利用导数的性质,证明函数在某个区间上大于等于某个常数。

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

利用导数证明不等式 高考数学大一轮复习(新高考地区)(解析版)

3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。

2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。

高中数学 导数在不等式中的应用(解析版)

高中数学 导数在不等式中的应用(解析版)

第15讲-导数在不等式中的应用一、经典例题考点一 构造函数证明不等式 【例1】 已知函数f (x )=1-x -1ex,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e2.证明 (1)由题意得g ′(x )=x -1x(x >0),当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0, 即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1ex ,得f ′(x )=x -2ex, 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数, 所以f (x )≥f (2)=1-1e2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e2.规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ). 2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式 【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值; (2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e2x成立.(1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞). 当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2. 由f ′(x )=0,得x =1e2.当x ∈⎝⎛⎭⎪⎫0,1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1e2上单调递减,在⎝ ⎛⎭⎪⎫1e2,+∞上单调递增.因此f (x )在x =1e2处取得最小值,即f (x )min =f ⎝ ⎛⎭⎪⎫1e2=-1e2,但f (x )在(0,+∞)上无最大值.(2)证明 当x >0时,ln x +1>1ex +1-2e2x 等价于x (ln x +1)>x ex +1-2e2.由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e2,当且仅当x =1e2时取等号.设G (x )=x ex +1-2e2,x ∈(0,+∞),则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e2x.规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题 角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin xx(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎪⎫0,π2上的单调性;(2)若f (x )<a 在区间⎝ ⎛⎭⎪⎫0,π2上恒成立,求实数a 的最小值.解 (1)f ′(x )=xcos x -sin xx2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=-x sin x ,显然,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减,且g (0)=0.从而g (x )在区间⎝ ⎛⎭⎪⎫0,π2上恒小于零,所以f ′(x )在区间⎝⎛⎭⎪⎫0,π2上恒小于零,所以函数f (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减.(2)不等式f (x )<a ,x ∈⎝⎛⎭⎪⎫0,π2恒成立,即sin x -ax <0恒成立.令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎪⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎪⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎪⎫0,π2上存在唯一解x 0,当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝ ⎛⎭⎪⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾. 故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ). (1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围. 解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞). (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x2-2xx -ln x在区间[1,e]上有解. 令h (x )=x2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2.因为x ∈[1,e],所以x +2>2≥2ln x , 所以h ′(x )≥0,h (x )在[1,e]上单调递增, 所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e(e -2)e -1.规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ; a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min . [方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则 (1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0; ∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0; ∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、 课时作业1.函数f (x )的定义域为,,对任意,,则的解集为( )A.B.C.D.【答案】C【解析】设,则,所以为减函数,又,所以根据单调性可知,即的解集是.2.下列三个数:,大小顺序正确的是()A.B.C.D.【答案】A【解析】构造函数,因为对一切恒成立,所以函数在上是减函数,从而有,即,故选A.3.设函数在R上存在导数,对任意的有,且在上. 若,则实数的范围是()A.B.C.D.【答案】A【解析】令,则,故为偶函数,在,上,,且,故在,上单调递增,根据偶函数的对称性可知,在上单调递减,由,可得,即,则,可转化为,解可得,,4.若关于x的不等式恒成立,则实数a的取值范围为()A.B.C.D.【答案】D【解析】因为关于x的不等式恒成立,所以恒成立,令,,当时,,当时,,所以当时,取得最大值2.又因为,所以故实数a的取值范围为.5.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.【答案】D【解析】令,则,定义域为的函数满足,,函数在上单调递增,当时,由,知,当时,显然不等式成立.当时,则,所以,整理得,即,所以,,得,则;当时,则,所以,整理得,即,所以,,得,则.综上所述,原不等式的解集为.6.定义在上的函数,则满足的取值范围是()A.B.C.D.【答案】D【解析】因为为偶函数,且在上恒成立,所以在上单调递增,在上单调递减,且图象关轴对称,则由)得,解得;故选D.7.已知函数,若存在,使得,则实数的取值范围是()A.B.C.(﹣∞,3)D.【答案】B【解析】∵,,∴,∴,∵存在,使得,即∴,设,∴∴,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以∴,8.已知是可导的函数,且对于恒成立,则()A.,B.,C.,D.,【答案】D【解析】构造函数,则,所以,函数为上的减函数.对于A选项,,,则,,所以,,,A选项错误;对于B选项,,则,所以,,B选项错误;对于C选项,,则,所以,,C选项错误;对于D选项,,则,所以,,D选项正确.9.已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.【答案】C【解析】令,,当,时,,,即函数单调递增.又,时,,是定义在,上的奇函数,是定义在,上的偶函数.不等式,即,即,,①,又,故②,由①②得不等式的解集是.10.关于函数,有下述四个结论:①是周期函数.②在上单调递增.③的值域为.④若函数有且仅有两个不同的零点,则.其中所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】C【解析】当时,,所以,令得:或,所以当时,,递增,当时,,递减,且,则的图象如图所示:由图可知:不是周期函数,故①错误;在上单调递增,故②正确;的值域为,故③错误;若函数有且仅有两个不同的零点,即函数与函数有两个交点,所以由图可知:,故④正确.综上,②④正确.11.已知函数,且,则实数的取值范围是()A.B.C.D.【答案】C【解析】构造函数,则函数的定义域为.当时,,,函数在区间上单调递增,则,所以,函数在区间上单调递减;当时,,则,所以,函数在区间上单调递减.,所以,函数在定义域上单调递减.由,得,即,所以,,解得.因此,实数的取值范围是.12.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】当时,不等式成立.当时,不等式在上恒成立等价于恒成立.令则.又,令,解得所以在上单调递增,在上单调递减, 单调递增.又因为.所以.所以.13.函数,若存在唯一整数使得,则的取值范围是().A.B.C.D.【答案】B【解析】,令,则,当;当,在单调递增,在单调递减,且,如图所示:恒过定点,且,,,,存在唯一整数使得,当时,存在唯一的整数使得命题成立,14.若对于任意的,都有,则的最大值为()A.B.C.1 D.【答案】C【解析】由已知有,两边同时除以,化简有,而,构造函数,令令,所以函数在上为增函数,在上为减函数,由对于恒成立,即在为增函数,则,故的最大值为1,选C. 15.已知为常数,函数有两个极值点,(),则()A.,B.,C.,D.,【答案】C【解析】因为,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,①当时,单调递增,因此至多有一个零点,不符合题意;②当时,令,解得,因为,,函数单调递增;,,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C.16.对于任意正实数,都有,则实数的取值范围为()A.B.C.D.【答案】A【解析】,则,设,,,则,,恒成立,导函数单调递减,故时,,函数单调递增;当时,,函数单调递减.故,故,故.17.(多选题)已知是可导的函数,且,对于恒成立,则下列不等关系正确的是()A.,B.,C.,D.,【答案】AC【解析】设,所以,因为,所以,所以在R上是减函数,所以,,,即,,,18.(多选题)若满足,对任意正实数,下面不等式恒成立的是()A.B.C.D.【答案】BD【解析】设,,因为,所以,在R上是增函数,因为是正实数,所以,所以,因为,大小不确定,故A错误,因为,所以,即,故B正确.因为,所以,因为,大小不确定.故C错误.,因为,所以,故D正确.19.(多选题)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是()A.B.C.D.【答案】BCD【解析】令函数,因为,,为奇函数,当时,,在上单调递减,在上单调递减.存在,得,,即,;,为函数的一个零点;当时,,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为,20.定义在上的函数满足,,则不等式的解集为______.【答案】【解析】由,设,则.故函数在上单调递增,又,故的解集为,即的解集为.21.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)+xf'(x)>0,且f(3)=0,则不等式xf(x)>0的解集是_____.【答案】(﹣∞,﹣3)∪(3,+∞)【解析】令,当x>0时,∴x∈(0,+∞)上,函数单调递增.,∴.∵函数是定义在R上的奇函数,∴函数是定义在R上的偶函数.由,即,∴|x|>3,解得x>3,或x<﹣3.∴不等式的解集是.故答案为:.22.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,,则f(x)>2x+4的解集为____.【答案】(-1,+∞)【解析】构造函数F(x)=f(x)-2x,,所以即求F(x)>4=F(-1)的解集,而F(x)在R上是单调递增函数,所以x>-1,填.23.设函数,.(1)当时,判断函数的单调性;(2)当时,恒成立,求实数的取值范围.【解析】(1)当时,所以.令,,由,可得.当时,,单调递减,当时,,单调递增,当时,,即,,则在是增函数;(2)解:设,所以.令,则.①当时,,在上单调递增,.,在上单调递增,则,结论成立;②当时,由,可得,当时,,单调递减,又,时,恒成立,即.时,单调递减,此时,结论不成立.综上,即为所求.24.已知函数.(1)若函数在上恰有两个零点,求实数的取值范围.(2)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.【解析】(1)因为,∴函数,令,则,令得,,列表得:12单调递减极小值单调递增∴当时,的极小值为,又,.∵函数在上恰有两个零点,∴即,解得.(2),∴,令得,∵,是的极值点,∴,,∴,∵,∴解得:,.∴,.令,则,∴在上单调递减;∴当时,,根据恒成立,可得,∴的最大值为.25.已知函数,,曲线在点处的切线与轴垂直;(1)求的值;(2)求证:【解析】(1)曲线在点处的切线与轴垂直,该切线的斜率(2)由(1)可得只需证设令,得当时,,当时,即函数在上单调递减,在上单调递增。

2024高考数学常考题型 第7讲 导数中的5种同构函数问题 (解析版)

2024高考数学常考题型 第7讲  导数中的5种同构函数问题 (解析版)

第7讲导数中的5种同构函数问题【考点分析】考点一:常见的同构函数图像八大同构函数分别是:xy xe =,x x y e =,x e y x =,ln y x x =,ln x y x =,ln xy x=,1--=x e y x ,1ln --=x x y 我们通过基本的求导来看看这六大同构函数的图像,再分析单调区间及极值,以及它们之间的本质联系.图1图2图3图4图5图6图7图8考点二:常见同构方法(1)()ln e e;ln ln exx xxx x x x +=+=(2)ln :ln lnx x x xe e e x x x x-=-=(3)()22ln 2e e ;2ln ln ex x xxx x x x +=+=(4)2ln 2ln 22,x xx x x x e e e e x x--==【题型目录】题型一:利用同构解决不等式问题题型二:利用同构求函数最值题型三:利用同构解决函数的零点问题题型四:利用同构解决不等式恒成立问题题型五:利用同构证明不等式【典例例题】题型一:利用同构解决不等式问题【例1】(2022·河南·模拟预测(理))不等式2ln ln 2x x >的解集是()A .()1,2B .()2,4C .()2,+∞D .()4,+∞【答案】B 【解析】【分析】结合不等式特点,构造函数,研究其单调性,从而求出解集.【详解】设()()ln 0x f x x x =>,则()21ln xf x x-'=,当0e x <<时,()0f x '>;当e x >时,()0f x '<,所以()f x 在()0,e 上是增函数,在()e,+∞上是减函数.原不等式可化为ln ln 22x x >,即()()2f x f >,结合()()24f f =,可得24x <<,所以原不等式的解集为{}24x x <<.故选:B【例2】(2022·陕西宝鸡·一模(理))已知1a >,1b >,则下列关系式不可能成立的是()A .e ln ≤b a abB .e ln ≥b a abC .e ln ≥b a b aD .e ln ≤b a b a【答案】D 【解析】【分析】构造函数()()ln 0=->f x x x x ,利用导数判断其单调性可判断AB ;构造函数()e =xg x x,()ln x h x x =,利用导数判断单调性可判断CD.【详解】对于e ln ≤b a ab ,两边取对数得()()ln e ln ln ≤ba ab ,即()ln ln ln ln -≤-b b a a ,构造函数()()ln 0=->f x x x x ,()111x f x x x-'=-=,当1x >时,()0f x ¢>,()f x 是单调递增函数,当01x <<时,()0f x ¢<,()f x 是单调递减函数,若1ln <≤b a ,则()ln ln ln ln -≤-b b a a ,即e ln ≤b a ab ,故A 正确;若1ln <≤a b ,则()ln ln ln ln -≥-b b a a ,e ln ≥b a ab ,故B 正确;构造函数()e =xg x x,()ln x h x x =,()()2e 1e -'==xx x g x x x,当1x >时,()0g x ¢>,()g x 单调递增,所以()()1e >=g x g ,()21ln xh x x -'=,当e x >时,()0h x '>,()h x 单调递减,当0e x <<时,()0h x '<,()h x 单调递增,()()1e eh x h ≤=,所以1x >时()>g x ()h x ,即e ln >b ab a,所以e ln ≥b a b a 成立,e ln ≤b a b a 不可能成立,故C 正确D 错误.故选:D.【点睛】思路点睛:双变量的不等式的大小比较,应该根据不等式的特征合理构建函数,并利用导数判断函数的单调性,从而判断不等式成立与否.【例3】(2022·陕西·长安一中高二期末(理))已知0x y π<<<,且e sin e sin y x x y =,其中e 为自然对数的底数,则下列选项中一定成立的是()A .4y π<B .2x y π+<C .cos cos 0x y +>D .sin sin x y>【答案】C 【解析】【分析】通过构造函数,利用函数的单调性以及式子的结构特征进行分析.【详解】因为e sin e sin y x x y =,所以sin sin e ex y x y=,令sin ()e t t g t =,所以()()g x g y =,对函数sin ()(0,)e ttg t t π=∈,求导:2e cos e sin cos sin ())(e e t t t tt t t t g t --'==,由()0g t '>有:(0,)4t π∈,由()0g t '<有:(,)4t ππ∈,所以sin ()e t t g t =在(0,)4π单调递增,在(,)4ππ单调递减,因为0x y π<<<,由()()g x g y =有:04x y ππ<<<<,故A 错误;因为0x y π<<<,所以e e y x >,由sin sin e ex y x y=有:sin sin y x >,故D 错误;因为04x y ππ<<<<,所以cos 0x =>,|cos |y =因为sin sin y x >,所以cos |cos |x y >,所以cos cos 0x y +>,故C 正确;令()()()2h t g t g t π=--有:()()()2h t g t g t π'''=--=cos sin e t t t -+2sin cos e tt tπ-=22(sin cos )(e -e)et tt t ππ--,当0t π<<,()0h t '>恒成立.所以()()()2h t g t g t π=--在(0,)π单调递增,当04x π<<时,()()()02h x g x g x π=--<,即()()2g x g x π<-,又()()g x g y =,所以()()()2g x g y g x π=<-,因为04x y ππ<<<<,所以(,242x πππ-∈,因为sin ()e t t g t =在(,)4ππ内单调递减,所以2y x π>-,即2y x π+>,故B 错误.故选:C.【例4】(2022·江苏苏州·模拟预测)若x ,(0,)∈+∞y ,ln e sin y x x y +=+,则()A .ln()0x y -<B .ln()0y x ->C .e yx <D .ln y x<【答案】C 【解析】【分析】利用sin y y >可得ln e y x x y +<+,再利用同构可判断,e y x 的大小关系,从而可得正确的选项.【详解】设()sin ,0f x x x x =->,则()1cos 0f x x '=-≥(不恒为零),故()f x 在(0,)+∞上为增函数,故()()00f x f >=,所以sin x x >,故sin y y >在(0,)+∞上恒成立,所以ln e e ln e y y y x x y +<+=+,但()ln g x x x =+为(0,)+∞上为增函数,故e y x <即ln x y <,所以C 成立,D 错误.取e x =,考虑1e e sin y y +=+的解,若e 1y ≥+,则e 1e e 5e 21e sin y y +≥>>+≥+-,矛盾,故e 1y <+即1y x -<,此时ln()0y x -<,故B 错误.取1y =,考虑ln e sin1x x +=+,若2x ≤,则1ln 2ln 23e e sin12x x +≤+<<+<+,矛盾,故2x >,此时1->x y ,此时ln()0x y ->,故A 错误,故选:C.【点睛】思路点睛:多元方程隐含的不等式关系,往往需要把方程放缩为不等式,再根据函数的单调性来判断,注意利用同构来构建新函数.【例5】(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))已知a 、R b ∈,2e ln 0a a a +=,1ln ln 1b b b b ⎛⎫+-= ⎪⎝⎭,则()A .e a ab b <<B .e a ab b<=C .e a b ab<<D .e a b ab=<【答案】B 【解析】【分析】由2e ln 0a a a +=可得出11e ln aa a a=,构造函数()e x f x x =可得出ln 0a a +=,可得出e 1a a =,由1ln ln 1b b b b ⎛⎫+-= ⎪⎝⎭可得出11ln e bb b b +=+,构造函数()e x g x x =+可得出11ln 0b b +=,然后构造函数()ln h x x x =+可得出1a b=,再对所得等式进行变形后可得出合适的选项.【详解】由2e ln 0a a a +=可得111e ln aa a a a a=-=,由题意可知0a >,构造函数()e x f x x =,其中0x >,则()()1e 0xf x x '=+>,所以,函数()f x 在()0,∞+上单调递增,由1ln 111e ln e ln aa a a a a==可得()1ln f a f a ⎛⎫= ⎪⎝⎭,所以,ln a a =-,由0a >可得ln 0a <,则01a <<,且ln 0a a +=,①由1ln ln 1b b b b ⎛⎫+-= ⎪⎝⎭可得11ln e b b b b +-=,则11ln e bb b b +=+,由题意可知0b >,构造函数()e x g x x =+,其中0x >,则()1e 0xg x '=+>,所以,函数()g x 在()0,∞+上单调递增,由11ln e b b b b +=+,即1ln 1ln e e bb b b+=+,可得()1ln g b g b ⎛⎫= ⎪⎝⎭,所以,1ln b b =,由1ln 0b b =>可得1b >,且11ln b b =-,则11ln 0b b+=,②令()ln h x x x =+,其中0x >,则()110h x x'=+>,所以,函数()h x 在()0,∞+上为增函数,由①②可得()10h a h b ⎛⎫== ⎪⎝⎭,所以,1a b =,可得1ab =,由()ln ln ln e 0a a a a lne a a +=+==可得e 1a a =,则1e ab a==,因为01a <<,则1e a ab b =<=,故选:B.【点睛】关键点点睛:本题考查指对同构问题,需要对等式进行变形,根据等式的结构构造合适的函数,并利用函数的单调性得出相应的等式,进而求解.【题型专练】1.(2022·陕西·泾阳县教育局教学研究室高二期中(理))已知0a b >>,且满足ln ln a b b a =,e 为自然对数的底数,则()A .e e e a b b <<B .e e e b a b <<C .e e e b a b <<D .e e e a bb <<【答案】B 【解析】【分析】构造函数()()ln ,0xf x x x=>,利用导函数研究函数的单调性判断即可.【详解】解:因为e x y =在R 上单调增,0a b >>,所以e e a b >,故A 、D 错误;构造函数()()ln ,0x f x x x =>,则()21ln 0xf x x '-==,e x =,当()0,e x ∈时,()0f x '>,()f x 单调增,当()e,x ∈+∞时,()0f x '<,()f x 单调减,因为ln ln a b b a =,ln ln a ba b=,即()()f a f b =,又0a b >>,所以0e b <<,e a >,ln 0a >,ln ln 0a b b a =>,所以1e b a <<<,所以ln ln eeb b <,eln ln e b b <,e ln ln e b b <,即e e b b <,所以e e e a b b <<,故B 正确.故选:B.2.(2022·全国·高三专题练习(理))设20222020a =,20212021b =,20202022c =,则()A .a b c >>B .b a c>>C .c a b>>D .c b a>>【答案】A 【解析】【分析】由于ln2020ln 2021ln2021ln 2022a b =,所以构造函数()()2ln 1xf x x e x =≥+,利用导数判断其为减函数,从而可比较出()()202020210f f >>,进而可比较出,a b 的大小,同理可比较出,b c 的大小,即可得答案【详解】∵ln2020ln 2022ln20202021ln2021ln 2021ln20212022a b ==,构造函数()()2ln 1xf x x e x =≥+,()()21ln 1x x x f x x x +-'=+,令()1ln g x x x x =+-,则()ln 0g x x '=-<,∴()g x 在)2,e ⎡+∞⎣上单减,∴()()2210g x g e e ≤=-<,故()0f x '<,∴()f x 在)2,e ⎡+∞⎣上单减,∴()()202020210f f >>,∴()()2020ln 1ln 2021f a b f =>∴ln ln a b >.∴a b >,同理可得ln ln b c >,b c >,故a b c >>,故选:A3.(2022·广东·中山市迪茵公学高二阶段练习)已知0a b >>,下列不等式,成立的一个是()A .33a b a b ->-B .ln ln a b a b->-C .sin sin a b a b ->-D .e e a b a b->-【答案】D 【解析】【分析】在0x >时,构造函数3(),()ln ,()sin ,()e x f x x x g x x x h x x x x x ϕ=-=-=-=-,探讨它们的单调性即可分别判断选项A ,B ,C ,D 作答.【详解】因3333a b a b a a b b ->-⇔->-,则令3()f x x x =-,0x >,2()31x f x '=-,显然函数()f x 在上递减,在()3+∞上递增,即函数()f x 在(0,)+∞上不单调,而0a b >>,则不能比较()f a 与()f b 的大小,A 不是;因ln ln ln ln a b a b a a b b ->-⇔->-,则令()ln g x x x =-,0x >,1()1g x x'=-,显然函数()g x 在(0,1)上递增,在(1,)+∞上递减,在(0,)+∞上不单调,而0a b >>,则不能比较()g a 与()g b 的大小,B 不是;因sin sin sin sin a b a b a a b b ->-⇔->-,则令()sin h x x x =-,0x >,()cos 10h x x '=-≤,函数()h x 在(0,)+∞上单调递减,由0a b >>,得()()h a h b <,即sin sin a a b b -<-,C 不是;因e e e e a b a b a b a b ->-⇔->-,则令()e x x x ϕ=-,0x >,()e 10x x ϕ'=->,函数()ϕx 在(0,)+∞上单调递增,由0a b >>,得()()a b ϕϕ>,即e e a b a b ->-,D 是.故选:D 【点睛】思路点睛:某些涉及数或式大小关系问题,细心探求变量关系,构造函数,利用函数的单调性求解.4.(2022·全国·高三专题)已知,x y 满足222e x x -=,4e ln 2y y=+(其中e 是自然对数的底数),则2x y =()A .4eB .3eC .2eD .e【答案】A 【解析】【分析】对222e xx -=两边取对数,得22ln 2x x =-,再与4e ln 2y y =+相加整理得4422e e ln ln x x y y+=+,构造函数()ln g t t t =+,根据单调性,即可求解.【详解】解:222ex x -=,两边取对数得:22ln 2x x =-,又4e ln 2y y=+,两式相加得:422e ln ln 4x y x y+=-+,即444224e e e ln ln e ln ln x x y y y y +=-+=+,令()ln g t t t =+,故上式变为42e ()()g x g y=,易知()ln g t t t =+在()0,∞+上单调递增,故42e x y=,故24e x y =,故选:A5.(2022·四川·广安二中模拟预测(理))已知0πx y <<<,且e sin e sin y x x y =,其中e 为自然对数的底数,则下列选项中一定成立的是()A .co co s 0s x y +<B .cos cos 0x y +>C .cos sin x y >D .sin sin x y>【答案】B 【解析】【分析】构造()sin ex xf x =,0πx <<,求导研究其单调性,判断出D 选项,利用同角三角函数关系得到AB 选项,构造差函数,得到π2x y >-,从而判断出C 选项.【详解】构造()sin e xx f x =,0πx <<,则()sin 0e x xf x =>恒成立,则()cos sin e xx xf x -'=,当π04x <<时,cos sin x x >,()cos sin 0e xx x f x -'=>,当ππ4x <<时,cos sin x x <,()cos sin 0e x x xf x -'=<所以()sin e x x f x =在π0,4⎛⎫ ⎪⎝⎭单调递增,在π,π4⎛⎫⎪⎝⎭单调递减,因为0πx y <<<,所以π0π4x y <<<<,0e e x y <<,又sin sin 0e ex y x y=>,所以0sin sin x y <<,D 错误,因为π0π4x y <<<<,所以cos 0x =>,cos y 所以cos cos x y >,所以cos cos 0x y +>,A 错误,B 正确.令()()π2g x f x f x ⎛⎫=-- ⎪⎝⎭,则π04g ⎛⎫= ⎪⎝⎭,()()()π2ππ22sin cos e e πcos sin sin cos 2e e e x xx x x x x x x x g x f x f x --⎛⎫-- ⎪--⎛⎫⎝⎭=+-=+= ⎪⎝'⎭''当0πx <<时,()0g x '>恒成立,所以()()π2g x f x f x ⎛⎫=-- ⎪⎝⎭在()0,π上单调递增,当π0,4x ⎛⎫∈ ⎪⎝⎭时,()()π02g x f x f x ⎛⎫=--< ⎪⎝⎭,即()π2f x f x ⎛⎫<- ⎪⎝⎭,因为()()f x f y =,所以()π2f y f x ⎛⎫<- ⎪⎝⎭因为π0π4x y <<<<,所以ππ24x ->,因为()f x 在在π,π4⎛⎫⎪⎝⎭单调递减,所以π2y x >-,即π2x y >-因为()cos x x ϕ=在()0,π上单调递减,所以πcos cos sin 2x y y ⎛⎫<-= ⎪⎝⎭,C 错误故选:B 【点睛】结合题目特征,构造函数,利用函数单调性比较函数值的大小,是比较大小很重要的方法,本题中构造()sin e xxf x =进行求解.6.(2022·福建·三明一中模拟预测)己知e 为自然对数的底数,a ,b 均为大于1的实数,若1e ln a a b b b ++<,则()A .1e a b +<B .1e a b +>C .eab <D .eab >【答案】B 【解析】【分析】由题意化简得到e ln e ln e e a ab b<,设()ln f x x x =,得到(e )()ea b f f <,结合题意和函数()f x 的单调性,即可求解.【详解】由1e ln a a b b b ++<,可得1eln (ln 1)lnea b a b b b b b b +<-=-=,即e ln e ln e e a ab b <,设()ln f x x x =,可得(e )()eab f f <,因为0a >,可得e 1a >,又因为(ln 1)0,0b b b ->>,所以ln 1b >,即e b >,所以1eb>,当1x >时,()ln 10f x x '=+>,可得函数()f x 在(1,)+∞为单调递增函数,所以e eab<,即1e a b +>.故选:B.题型二:利用同构求函数最值【例1】(2022·四川省通江中学高二期中(文))已知函数()()e ,ln xf x xg x x x ==,若()()(0)f m g n t t ==>,则ln mn t ⋅的取值范围为()A .1,e ⎛⎫-∞ ⎪⎝⎭B .21,e ⎛⎫+∞ ⎪⎝⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .1,e ⎡-+∞⎫⎪⎢⎣⎭【答案】D 【解析】【分析】先求得,m n 的取值范围,然后化简ln mn t ⋅,结合导数求得ln mn t ⋅的取值范围.【详解】由于()()(0)f m g n t t ==>,即e ln 0m m n n t ==>,所以0,1m n >>,当0x >时,()()()'1e 0,xf x x f x =+⋅>递增,所以()f m t =有唯一解.当1x >时,()()'1ln 0,g x x g x =+>递增,所以()g n t =有唯一解.由e ln m m n n =得ln e e ln ln m n m n m n ⋅=⋅⇒=,所以()()ln ln ln ln mn t n n t t t ⋅=⋅=.令()()'ln ,1ln h t t t h t t ==+,所以()h t 在区间()()'10,,0,e h t h t ⎛⎫< ⎪⎝⎭递减;在区间()()'1,,0,e h t h t ⎛⎫+∞> ⎪⎝⎭递增.所以()11e e h t h ⎛⎫≥=- ⎪⎝⎭,所以ln mn t ⋅的取值范围为1,e ⎡-+∞⎫⎪⎢⎣⎭.故选:D 【点睛】本题要求ln mn t ⋅的取值范围,主要的解题思路是转化为只含有一个变量t 的表达式,然后利用导数来求得取值范围.在转化的过程中,主要利用了对数、指数的运算.【例2】(2022·江西·临川一中模拟预测(文))已知函数()()ln 1f x x x =+-,()ln g x x x =,若()112ln f x t =+,()22g x t =ln t 的最小值为()A .21e B .1e-C .12e-D .2e【答案】B 【解析】【分析】通过()f x 、()g x 解析式,()()12f x g x 、的值求得122x x x -关于t 的表达式,结合导数求得所求的最小值.【详解】()f x 的定义域为()1,+∞,所以11x >,11e 1x ->.()112ln 0f x t t =+⇒>.()112ln f x t =+,()2111ln 1ln x x t -+-=,则()()1111ln 1121e 1e x x x x t -+--=-=,又因为()22g x t =,所以()111111221ln 1e e ln e x x x x x x ---=-=,令()ln h x x x =,则()()112e x h x h -=,()'ln 1h x x =+,当1x >时,()'0h x >,()h x 递增,所以112e x x -=ln ln ln ln t t t t t ===,()ln h x x x =,()'ln 1h x x =+,所以()h x 在区间()()'10,,0,e h x h x ⎛⎫< ⎪⎝⎭递减;在区间()()'1,,0,e h x h x ⎛⎫+∞> ⎪⎝⎭递增,所以()h x 的最小值为11e e h ⎛⎫=- ⎪⎝⎭,即B 选项正确.故选:B 【点睛】含参数的多变量的题目,结合方法是建立变量、参数之间的关系式,主要方法是观察法,根据已知条件的结构来进行求解.【例3】(2022·全国·高三专题练习(理))设大于1的两个实数a ,b 满足22ln a nb b e a ⎛⎫< ⎪⎝⎭,则正整数n 的最大值为().A .7B .9C .11D .12【答案】B 【解析】【分析】将已知条件变形为22ln an n b e b a<,构造两个函数,对函数求导,根据函数的单调性求出n 的最大值即可.【详解】解:易知22ln n a n b b e a <等价于22ln an n b e b a<.令()()2ln 1n xf x x x =>,则()()()121ln 2ln ln 2ln n n n x x n x x n x f x x x -+⋅--'==.令()0f x '=得2n x e =.当()0f x '>时()21,n x e ∈;当()0f x '<时()2,n x e ∈+∞.所以()f x 在()21,n e 上单调递增,在()2,n e +∞上单调递减,则()f x 有最大值()2222nn f e e⎛⎫ ⎪⎝⎭=.令()()21xn e g x x x =>,则()()212x n e x n g x x+-'=.当12n ≤时不符合,舍去,所以12n>.则()0g x '=,2nx =.当()0g x '>时2n x >;当()0g x '<时12n x <<.所以()g x 在1,2n ⎛⎫ ⎪⎝⎭上单调递减,在,2n ⎛⎫+∞ ⎪⎝⎭上单调递增,则()g x 有最小值22nn n e g n ⎛⎫=⎪⎝⎭⎛⎫ ⎪⎝⎭.若22ln an n b e b a<成立,只需()22n n f e g ⎛⎫≤ ⎪⎝⎭,即2222nn e n e n ⎛⎫⎪⎝⎭≤⎛⎫ ⎪⎝⎭,即222n n n e -+⎛⎫≥ ⎪⎝⎭.两边取自然对数可得()22ln 2n n n +≥-.当2n =时等式成立;当3n ≥时有2ln 22n nn +≥-.令()2ln 22x xx x ϕ+=--,本题即求()0x ϕ>的最大的正整数.()()24102x xx ϕ-'=-<-恒成立,则()x ϕ在[)3,+∞上单调递减.因为()58ln 403ϕ=->,()1199ln 1.5714 1.51072ϕ=-≈->,()310ln 502ϕ=-<,所以()0x ϕ>的最大正整数为9.故选:B .【题型专练】1.(2022·四川绵阳·高二期末(理))已知函数()e x f x x =+,()e x g x x =,若1()ln f x k =,2()g x k =,则12ln e x x k +的最小值是()A .1e --B .1e -C .2e -D .2e --【答案】A 【解析】【分析】先通过中间量k 找到12,x x 的关系,然后反带回去,将代求表达式表示成关于k 的函数来求解.【详解】依题意得,20,0k x >>,112211122222()ln e ln e ln ln e ln ()e x x x x f x k x k x k x x x g x k x k ⎧=+=⎧⎪⇒⇒+===+⎨⎨==⎪⎩⎩,于是12ln 1222e ln e ln x x x x x x +=+=+,设()e x h x x =+,显然()h x 在R 上单调,于是12()(ln )h x h x =,根据()h x 单调性可知12ln x x =,故12e x x =,于是212122e e e e x x x x xx k +===,故12ln e ln x x k k k +=,在令()ln p k k k =,()1ln p k k '=+,于是10e ,()0,()k p k p k -'<<<递减,1e ,()0,()k p k p k -'>>递增,故1e k -=,()p k 取得最小值1e --.故选:A2.(2022·全国·高二期末)已知函数()ln(1),()ln f x x x g x x x =+-=,若()()21212ln ,f x t g x t =+=,则()2122ln -x x x t 的最小值为()A .1e-B .12e-C .21e D .2e【答案】A 【解析】【分析】由已知条件可推得121ln 212(1)e e ln x x t x x -=-=⋅,即有21ln 1x x =-,结合目标式化简可得()22122ln ln x x x t t t -=⋅,令()ln h u u u =⋅,利用导函数研究其单调性并确定区间最小值,即为()2122ln -x x x t 的最小值.【详解】()()111ln 112ln f x x x t =+-=+,所以()2111ln 1ln x x t -+-=,则()1121ln 1e ln x x t --=.于是()()112212221e ln ,x x t g x x x t --===.所以()121ln 12221e ln e ln x x x x x x --==.构造函数e x y x =,易知当0x >时,e x y x =单调递增.所以,121ln x x -=.于是()()222221222122ln 1ln ln ln ln -=-==x x x t x x t x x t t t ,令20=>u t ,则1()ln ,()ln e 1,0h u u u h u u h ''⎛⎫==+= ⎪⎝⎭.()h u 在10,e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增.所以min e 1()e 1h u h ⎛⎫==- ⎪⎝⎭,即()2122min1l e n x x x t ⎡⎤-=-⎣⎦.故选:A题型三:利用同构解决函数的零点问题【例1】(2022·海南华侨中学模拟预测)已知函数()log xa f x a x =-(0a >且1a ≠)有两个不同的零点,则实数a 的取值范围是().A .()1e1,e B .()1e e ,eC.(D.(1e e 【答案】A 【解析】【分析】解法一:令()0f x =,得log xa a x =,进而得到y x a y a x +=+.令()x g x a x =+,由其单调性得到x y =,即x a x =,进而转化为ln ln x a x=,利用导数法判断;解法二:令()0f x =,得log xa a x =,进而得到y x a y a x +=+.令()xg x a x =+,由其单调性得到x y =,即x a x =,然后利用导数的几何意义求解判断.【详解】解法一:通过选项判断可知1a >,令()0f x =,得log xa a x =,由log x a y a y x ⎧=⎨=⎩,得x yy a a x ⎧=⎨=⎩,所以y x a y a x +=+.令()xg x a x =+,则()()g x g y =,且()g x 在()0,∞+上单调递增,所以x y =,即x a x =,所以ln ln x a x =,即ln ln xa x=,令()ln xg x x=,()21ln x g x x -'=,∴()g x 在()0,e 上单调递增,在()e,+∞上单调递减,则()()max 1e g x g e==,又1x >时,()ln 0xg x x=>,且()10g =,画出()g x大致图像,可知10ln ea <<,则1e 1e a <<.故选:A .解法二:通过选项判断可知1a >,令()0f x =,得log xa a x =,由log x a y a y x⎧=⎨=⎩,得x y y a a x ⎧=⎨=⎩,所以y x a y a x +=+.令()xg x a x =+,则()()g x g y =,且()g x 在()0,∞+上单调递增,所以x y =,即x a x =,当直线y x =与x y a =图像相切时,设切点为()00,x y ,由ln xy a a '=,则有0001x x a lna a x ⎧=⎪⎨=⎪⎩,故0ln 1x a =,则01log e ln a x a ==.又00x a x =,即log elog e a a a =,则log e e a =,∴1e e a =.要使得直线y x =与x y a =图像有两个交点,则1e 1e a <<,故选:A .【例2】(2022·全国·高三专题)已知函数()()x x a xe x f x +-=ln 2有两个零点,则a 的最小整数值为()A .0B .1C .2D .3【答案】C【分析】先将函数化为ln ()e 2(ln )x x f x a x x +=-+,令ln t x x =+,进而只需说明()e 2tg t at =-在R 上有两个零点,然后对函数求导,讨论出函数的单调区间和最值,最后通过放缩法解决问题.【详解】ln ()e 2(ln )e 2(ln )x x x f x x a x x a x x +=-+=-+,设ln (0)t x x x =+>,110t x=+>',即函数在()0,∞+上单调递增,易得R t ∈,于是问题等价于函数()e 2t g t at =-在R 上有两个零点,()e 2t g t a ='-,若0a ≤,则()0g t '>,函数()g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若0a >,则(),ln 2x a ∈-∞时,()0g t '<,()g t 单调递减,()ln 2,x a ∈+∞时,()0g t '>,()g t 单调递增.因为函数()g t 在R 上有两个零点,所以()()()min e ln 221ln 202g a a a g a t ==-<⇒>,而()010g =>,限定1t >,记()e t t t ϕ=-,()e 10tt ϕ='->,即()t ϕ在()1,+∞上单调递增,于是()()e 1e 10e ttt t t ϕϕ=->=->⇒>,则2t >时,22e e 24t tt t >⇒>,此时()()22844t t g t at t a >-=-,因为2ea >,所以84e 1a >>,于是8t a >时,()0g t >.综上:当2ea >时,有两个交点,a 的最小整数值为2.故选:C.【题型专练】1.(2021·全国·模拟预测)在数学中,我们把仅有变量不同,而结构、形式相同的两个式子称为同构式,相应的方程称为同构方程,相应的不等式称为同构不等式.若关于a 的方程6e ae a =和关于b 的方程()132ln -=-λe b b (R b a ∈λ,,)可化为同构方程,则λ=________,()ln ab =________.【答案】38【解析】【分析】两个方程分别取自然对数,转化后由同构的定义求得λ,然后利用新函数的单调性得,a b 关系,从而求得ab【详解】对6e e a a =两边取自然对数得ln 6a a +=①.对()31ln 2e b b λ--=两边取自然对数得ln b +()ln ln 231b λ-=-,即()ln 2ln ln 233b b λ-+-=-②.因为方程①,②为两个同构方程,所以336λ-=,解得3λ=.设()ln f x x x =+(0x >),则()110f x x'=+>,所以函数()f x 在()0,∞+上单调递增,所以方程()6f x =的解只有一个,所以ln 2a b =-,所以()()331ln 2ln 2e ab b b b b ⨯-==-=-8e =,故()8ln n 8l e ab ==.故答案为:3;8.2.(2022·辽宁·大连市普兰店区高级中学模拟预测)已知函数()()ln 11f x x x =+-+.(1)求函数()f x 的单调区间;(2)设函数()e ln xg x a x a =-+,若函数()()()F x f x g x =-有两个零点,求实数a 的取值范围.【答案】(1)单调递增区间为()–1,0;单减区间为()0,∞+(2)()0,1【解析】【分析】(1)求定义域,求导,由导函数的正负求出函数()f x 的单调区间;(2)同构处理,为设函数()e xh x x =+,则()()()ln ln 1h x a h x +=+,结合()e xh x x =+的单调性得到()ln ln 1a x x =+-有两个根,结合第一问中的结论,列出不等关系,求出a 的取值范围.(1)函数的定义域为{}–1x x >,()()()11,010,;0,011x f x f x x f x x x x -'=-='>-<<'<>++.函数()f x 的单调递增区间为()–1,0;单减区间为()0,∞+.(2)要使函数()()()F x f x g x =-有两个零点,即()()f x g x =有两个实根,即ln(1)1e ln x x x a x a +-+=-+有两个实根.即ln ln e ln(1)1x a x a x x +++=+++.整理为ln ln(1)ln ln(1e e )x a x x a x ++++=++,设函数()e xh x x =+,则上式为()()()ln ln 1h x a h x +=+,因为()e 10x h x =+>'恒成立,所以()xh x e x =+单调递增,所以()ln ln 1x a x +=+.所以只需使()ln ln 1a x x =+-有两个根,设()()ln 1M x x x =+-.由(1)可知,函数()M x )的单调递增区间为()–1,0;单减区间为()0,∞+,故函数()M x 在0x =处取得极大值,()()max 00M x M ==.当1x →-时,()M x →-∞;当x →+∞时,()–M x →∞,要想()ln ln 1a x x =+-有两个根,只需ln 0a <,解得:01a <<.所以a 的取值范围是()0,1.题型四:利用同构解决不等式恒成立问题【例1】(2022·广东广州·三模)对于任意0x >都有ln 0x x ax x -≥,则a 的取值范围为()A .[]0,e B .11e e ,e -⎡⎤-⎢⎥⎣⎦C .[)11,e e,e -⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(],e -∞【答案】B 【解析】【分析】()ln t f x x x ==,由导数的单调性求出()1e tf x =≥-,所以ln ln 0e ln 0x x x x ax x ax x -≥⇒-≥转化为:e 0t at -≥任意1et ≥-恒成立,令()e tg t at =-,分类讨论a 值,求出()min g t ,即可求出答案.【详解】ln ln 0e ln 0x x x x ax x ax x -≥⇒-≥,令()ln t f x x x ==,则()ln 1f x x '=+,所以()f x 在10,e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()1111ln e e ee f x f ⎛⎫≥==- ⎪⎝⎭,所以()1e t f x =≥-,所以ln 0x x ax x -≥转化为:e 0t at -≥,令()e t g t at =-,()e tg t a '=-,①当0a ≤时,()0g t '≥,所以()g t 在1,e ⎡-+∞⎫⎪⎢⎣⎭上单调递增,所以()111e e min11e 0e e e g t g a a --⎛⎫⎛⎫=-=--≥⇒≥- ⎪ ⎪⎝⎭⎝⎭,所以11e e 0a --≤≤.②当0a >时,您()0g t '=,所以ln t a =,(i )当1ln ea <-即1e e a -<时,()0g t '>,所以()g t 在1,e ⎡-+∞⎫⎪⎢⎣⎭上单调递增,()111e e min 11e 0e e e g t g a a --⎛⎫⎛⎫=-=--≥⇒≥- ⎪ ⎪⎝⎭⎝⎭,所以1e 0e a -<<.(ii)当1ln ea ≥-即1e e a -≥时,()g t 在1,ln e a ⎡⎫-⎪⎢⎣⎭上单调递减,在[)ln ,a +∞上单调递增,()()()ln min ln e ln 0ln 01ln 0a g t g a a a a a a a ==-≥⇒-≥⇒-≥,所以e a ≤,所以1e e e a -≤≤.综上,a 的取值范围为:11e e ,e -⎡⎤-⎢⎥⎣⎦.故选:B.【例2】(2022·全国·高三专题练习(文))已知e 是自然对数的底数.若[1,)x ∃∈+∞,使5e 6ln 0≤mx m x x -,则实数m 的取值范围为()A .1,6∞⎛⎤- ⎥⎝⎦B .6,e ⎛⎤-∞ ⎥⎝⎦C .e ,6⎛⎤-∞ ⎥⎝⎦D .(,6]-∞【答案】B 【解析】【分析】先讨论0m ≤时,不等式成立;0m >时,不等式变形为66ln e ln e mx x mx x ≤,构造函数()()e 0xf x x x =≥,由单调性得到6ln mx x ≤,参变分离后构造函数6ln ()xg x x=,求出()g x 最大值即可求解.【详解】当0m ≤时,5e 6ln 00,mx m x x ≤≥,显然5e 6ln 0mx m x x -≤成立,符合题意;当0m >时,由1≥x ,5e 6ln 0mx m x x -≤,可得6e 6ln 0mx mx x x -≤,即66e ln mx mx x x ≤,66ln e ln e mx x mx x ≤,令()()e 0x f x x x =≥,()()1e 0xf x x '=+>,()f x 在[)0,∞+上单增,又60,ln 0mx x >≥,故66ln e ln e mx x mx x ≤,即6()(ln )f mx f x ≤,即6ln mx x ≤,6ln x m x ≤,即[)1,x ∃∈+∞使6ln x m x ≤成立,令6ln ()xg x x=,则266ln ()xg x x -'=,当[)1,e x ∈时,()0,()'>g x g x 单增,当()e,x ∈+∞时,()0,()g x g x '<单减,故max 6()(e)e g x g ==,故60em <≤;综上:6em ≤.故选:B 【点睛】本题关键点在于当0m >时,将不等式变形为66ln e ln e mx x mx x ≤,构造函数()()e 0xf x x x =≥,借助其单调性得到6ln mx x ≤,再参变分离构造函数6ln ()xg x x=,求出其最大值,即可求解.【例3】(2022·宁夏中卫·三模(理))不等式e ln ax a x >在(0,)+∞上恒成立,则实数a 的取值范围是()A .1,2e ∞⎛⎫+ ⎪⎝⎭B .1(,)e+∞C .1,)∞+(D .(e,)+∞【答案】B 【解析】【分析】将e ln ax a x >变为e ln ax ax x x >即ln e ln e ax x ax x >⋅,构造新函数()e ,(0)x g x x x =>,利用其单调性得到ln ln ,xax x a x>>,继而求得答案.【详解】当0a ≤时,不等式e ln ax a x >在(0,)+∞上恒成立不会成立,故0a >,当(0,1]x ∈时,ln 0x ≤,此时不等式e ln ax a x >恒成立;不等式e ln ax a x >在(1,)+∞上恒成立,即e ln ax ax x x >在(1,)+∞上恒成立,而e ln ax ax x x >即ln e ln e ax x ax x >⋅,设()e ,()(1)e x x g x x g x x '==+,当1x >-时,()(1)e 0x g x x '=+>,故()e ,(1)x g x x x =>-是增函数,则ln e ln e ax x ax x >⋅即()(ln )g ax g x >,故ln ln ,xax x a x>>,设2ln 1ln (),(1),()x xh x x h x x x -'=>=,当1e x <<时,21ln ()0xh x x -'=>,()h x 递增,当e x >时,21ln ()0xh x x -'=<,()h x 递减,故1()(e)e h x h ≤=,则1e>a ,综合以上,实数a 的取值范围是1e>a ,故选:B 【点睛】本题考查了不等式的恒成立问题,解答时要注意导数的应用,利用导数判断函数的单调性以及求最值等,解答的关键是对原不等式进行变形,并构造新函数,这一点解题的突破点.【例4】(2022·陕西渭南·二模(文))设实数0λ>,对任意的1x >,不等式n e l x x λλ≥恒成立,则λ的最小值为()A .eB .12eC .1eD .2e【答案】C 【解析】【分析】由题设有ln e e ln x x x x λλ⋅⋅≥,构造()e t f t t =⋅并利用导数研究单调性即可得(1,)x ∈+∞上ln xxλ≥恒成立,再构造ln ()xg x x=,(1,)x ∈+∞并应用导数求最值,即可得λ的最小值.【详解】由题设,ln ln e ln e x x x x x x λλ≥=⋅⋅,令()e t f t t =⋅,则在()(1)e 0t f t t '=+⋅>,所以()f t 单调递增,又()(ln )f x f x λ>,即(1,)x ∈+∞上ln x x λ≥,即ln xxλ≥恒成立,令ln ()x g x x=,(1,)x ∈+∞,则21ln ()xg x x -'=,所以,(1,e)上()0g x '>,则()g x 递增;(e,)+∞上()0g x '<,则()g x 递减;则1()(e)e g x g ≤=,故1eλ≥.【点睛】关键点点睛:根据同构形式结合导数研究()e t f t t =⋅的单调性,进而将问题转化为(1,)x ∈+∞上ln xxλ≥恒成立,再次构造函数求最值,确定参数范围.【例5】(2022·辽宁·高二期中)已知0a >,若在(1,)+∞上存在x 使得不等式e ln x a x x a x -≤-成立,则a 的最小值为()A .1eB .1C .2D .e【答案】D 【解析】【分析】先利用ln =e a a x x 将不等式转化为ln e e ln x a x x a x -≤-,借助单调性得到ln ≤x a x ,参变分离后构造函数()(1)ln xf x x x=>,结合单调性求出最小值即可.【详解】∵ln ln e e aa x a x x ==,∴不等式即为:ln e e ln x a x x a x-≤-由0a >且1x >,∴ln 0a x >,设e x y x =-,则e 10x y '=->,故e x y x =-在(0,)+∞上是增函数,∴ln ≤x a x ,即ln x a x≥,即存在(1,)x ∈+∞,使ln x a x ≥,∴minln ⎛⎫≥ ⎪⎝⎭x a x ,设()(1)ln x f x x x =>,则2ln 1(),(1,e),()0ln x f x x f x x ''-=∈<;(e,),()0x f x ∞'∈+>;∴()f x 在(1,e)上递减,在(e,)+∞上递增,∴min ()(e)e f x f ==,∴e a ≥.故选:D.【例6】(2022·四川省泸县第二中学模拟预测(理))已知0a >,不等式22e ln 0aax x x x -≥对任意的实数1x >恒成立,则实数a 的最大值为()A .12eB .2eC .1eD .e【答案】B 【解析】【分析】构造函数()e x f x x =,利用函数单调性可得2ln x a x≥,再构造函数ln (),(1)xg x x x =>,利用导数求出函数的【详解】不等式22ln 0aax xe x x -≥对任意的实数1x >恒成立22e ln a a xx x x∴≥令()e xf x x =()(1)e 0x f x x '∴=+>对任意的实数1x >恒成立2()(ln )af x f x ∴≥,ln 2a x x ∴≥,2ln x a x∴≥令ln (),(1)xg x x x=>21ln ()x g x x -'=令()0g x '=,解得ex =当1e x <<时,()0g x '>,函数单调递增当e x >时,()0g x '<,函数单调递减max 1()(e)eg x g ∴==21ea ∴≥,2e a ∴≤,所以实数a 的最大值为2e 故选:B 【题型专练】1.(2022·辽宁葫芦岛·高二期末)已知0a <,不等式1e ln 0a x x a x ++≥对任意的实数2x >恒成立,则实数a 的最小值为()A .2e -B .e-C .1e-D .12e-【答案】B 【解析】【分析】首先不等式同构变形为e ln e ln x x a a x x --≥,引入函数()ln f x x x =,由导数确定单调性得e x a x -≥,分离参数变形为ln x a x-≤,再引入函数()ln x g x x =,由导数求得其最小值,从而得a 的范围,得最小值.【详解】不等式1e ln 0a x x a x ++≥可化为e ln x a a x x x --≥,即e ln e ln x x a a x x --≥,0a <,2x >,则1a x ->,e 1x >,设()ln f x x x =,则()ln 1f x x '=+,1x >时,()0f x '>,()f x 是增函数,所以由e ln e ln x x a a x x --≥得e x a x -≥,ln x a x ≥-,ln x a x-≤,所以2x >时,ln xa x-≤恒成立.设()ln x g x x =,则2ln 1()ln x g x x'-=,2e x <<时,()0g x '<,()g x 递减,e x >时,()0g x '>,()g x 递增,所以min ()(e)e g x g ==,所以e a -≤,e a -≥.所以a 的最小值是e -.故选:B .【点睛】难点点睛:本题考查用导数研究不等式恒成立问题,难点在于不等式的同构变形,然后引入新函数,由新函数的单调性化简不等式,从而再由变量分离法转化为求函数的最值.2.(2022·黑龙江·哈尔滨三中高二期末)已知函数()e ln()(0)x f x a ax a a a =-+->,,若关于x 的不等式()0f x >恒成立,则实数a 的取值范围是()A .(0,1)B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .()0,e 【答案】A 【解析】【分析】首先将不等式进行恒等变形,然后构造新函数,结合函数的性质即可求得实数a 的取值范围.【详解】由题意可得:e ln(1)ln 1xx a a >+++,ln e ln ln(1)1x a x a x x -∴+->+++,ln ln(1)e ln e ln(1)x a x x a x -+∴+->++,令()e x g x x =+,易得()g x 在(1,)+∞上单调递增,ln ln(+1)x a x ∴->,记()ln ln(+1)h x x a x =--,则()1111x x h x x =-=++',故当()1,0x ∈-时,()0h x '<,此时()h x 单调递减,当()1,x ∈+∞时,()0h x '>,此时()h x 单调递增,故()()min 0ln h x h a ==-,故只需-ln 001a a >⇒<<故实数a 的取值范围为()01,.故选:A3.(2022·黑龙江·哈尔滨市第六中学校高二期末)若对任意()1,x ∈-+∞,不等式()e ln 1ln 1xa x a -++≥恒成立,则实数a 的最小值是()A .1B .2C .eD .3【答案】A 【解析】【分析】由()e ln 1ln 1-++≥x a x a 得()()ln 1ln e ln e ln 1+++≥+++x x ax x a ,令()e =+x F x x ,利用()F x 的单调性可得()ln ln 1+≥+a x x ,转化为对任意()1,x ∈-+∞时()ln ln 1≥+-a x x 恒成立,令()()()=ln 11+->-h x x x x ,利用导数求出()h x 的最值可得答案.【详解】由()e ln 1ln 1-++≥x a x a 得()()ln 1ln e ln e ln 1+++≥+++x x ax x a ,令()e =+xF x x ,因为e ,==x y y x 都是单调递增函数,所以()e =+xF x x 为单调递增函数,所以()ln ln 1+≥+a x x ,即对任意()1,x ∈-+∞时()ln ln 1≥+-a x x 恒成立,令()()()=ln 11+->-h x x x x ,()=1-'+xh x x ,当10x -<<时,()0h x '>,()h x 单调递增,当0x >时,()0h x '>,()h x 单调递减,所以()()0ln10≥==h x h ,所以ln 0≥a ,即1a ≥.故选:A.。

高考数学复习:利用导数证明不等式

高考数学复习:利用导数证明不等式

3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)

=
3(-1)(2 ++1)
.

令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。

这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。

可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。

常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。

恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。

常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。

高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。

在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。

对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。

在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。

放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。

数列不等式也可考虑利用数学归纳法进行证明。

经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。

1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档