简论结构抗震的鲁棒性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简论结构抗震的鲁棒性
叶列平1,2,程光煜1,2,陆新征1,2,冯鹏1,2
(1.清华大学土木工程系,北京,100084;2.结构工程与振动教育部重点实验室,北京,100084)建筑结构/Building Structures, 2008, 38(6): 11-15.
摘要:本文首先介绍了结构鲁棒性的概念,及其提高结构鲁棒性对避免结构在罕遇地震下垮塌的重要意义。然后,分别从抗震结构体系、结构承载力与延性、结构破坏模式,以及赘余构件等几方面讨论了提高结构抗震鲁棒性的措施。
关键词:结构抗震,鲁棒性,结构体系,整体性,破坏模式,结构承载力,结构延性,赘余构件Download PDF version
Introduction of Robustness for Seismic Structures
Ye Lieping, Cheng Guangyu, Lu Xinzheng, Feng Peng
Abstract:The concept of robustness of structures is firstly introduced in this paper. And importance with enough robustness for seismic structures in preventing collapse of the structures under strong intensity earthquake attack is discussed. Then the approaches to increase the robustness of seismic structures, including structural systems, strength and ductility of structure, failure modes and redundancy, are suggested.
Keywords: seismic structure; robustness; structural systems; integrity; failure mode; strength; ductility; redundancy elements.
1. 结构鲁棒性的概念和意义
工程结构设计通常需要满足安全性、适用性和耐久性的要求,这些都是在正常使用荷载和作用情况下结构所应具备的功能。而结构的鲁棒性(Robustness)是针对在意外荷载和作用情况下所应具备的一种功能,也即在意外荷载和作用情况下,结构不应产生与其原因不相称的垮塌,造成不可接受的重大人员伤亡和财产损失。
鲁棒性与安全性既有联系,又有区别。首先,两者关心的都是工程结构安全问题,但结构的鲁棒性是以避免结构垮塌为目标的,可以认为是结构安全性的上限。而目前通常所说的安全性是以结构的不超过最大承载力为目标的,即按所谓?quot;承载力极限状态"来考虑的安全性。事实上,结构达到最大承载力(极限状态)并不意味着结构的垮塌。另一方面,安全性是针对正常使用荷载和作用来考虑的,而鲁棒性是针对意外荷载和作用来考虑的,两者所考虑的荷载和作用的特征不同。正常荷载与作用在设计阶段能够给予
充分考虑和估计,并通过合理的结构设计,可以保证结构在正常荷载和作用情况下具有足够的安全度。而意外荷载和作用,无论是其量值、作用形式、作用位置和方向,在设计阶段都难以估计,往往具有极大的随机性。对于意外荷载与作用,结构可能难以避免会产生一定程度的破坏,但如果结构具有足够的鲁棒性,则可以避免产生严重破坏和倒塌。
由于意外荷载和作用难以估计,同时人们也不能无限制对结构的鲁棒性提出过高要求,因此鲁棒性的研究是指在结构满足正常安全度的前提下和经济许可范围内,根据可能遭遇的意外荷载和作用的类型、特征和等级,达到合理的鲁棒性目标。当意外荷载和作用超过所预期的类型和等级时,如果结构产生垮塌,则称为与其原因相称的破坏,属于"天灾"范畴。比如,在一个6度抗震设防区的建筑,如果采取合理措施(结构造价比6度设防抗震设计并没有显著增加),则可以在8度或9度地震下不产生垮塌(如唐山地震中一些采用构造柱和圈梁的砌体结构没有垮塌就是典型的例子),但若遭遇11度或以上的强烈地震导致结构垮塌,就无能为力了。
当然,鲁棒性好的结构,其正常使用性能也会更好一些。如当采用赘余构件来增加结构的鲁棒性时,在正常使用情况下的结构刚度会更大一些,但这不能成为可以削弱主体结构构件,来取得某种经济上的收益,这种做法是违背鲁棒性原则的。
鲁棒性的研究是针对整体结构的。理论上,结构的安全性也是针对整体结构的。但目前各种结构设计规范对于结构安全性的具体计算,最终都是着落于具体的结构构件,这显然没有能够使得结构工程师更多的考虑整体结构的安全性,这是导致某些工程结构鲁棒性不够的重要原因,也是目前我国工程教育中所存在的一个重要缺失。因此,研究结构的鲁棒性,首先要从整体结构的安全性着手,使得结构工程师在满足每个具体构件的安全性要求的前提下,更多的关注整体结构的安全性。
对于抗震结构来说,目前我国《建筑抗震设计规范GB50011-2001》规定了"小震不坏、中震可修、大震不倒"抗震设防目标。虽然"大震不倒"的设防目标属于鲁棒性范畴,但是由于设防烈度的明确规定,所谓"大震"最多只能属于罕遇地震的下限,而并非"实际大震"。由于地震具有极大的随机性,因此当遭遇比设防烈度大震更大的地震时,结构能否经受得住而不产生垮塌,就需要结构具有较高的鲁棒性。这样的事例已在多次大地震中得到验证,如1976年中国的唐山大地震、1994年日本的阪神大地震、1999年中国台湾的大地震,以及最近巴基斯坦发生的大地震。在这些大地震中,一些建筑完全垮塌,而一些建筑尽管产生一定程度的破坏,但没有倒塌。这些建筑中有些是依据同一抗震标准进行设计的,但由于鲁棒性的差别,在地震中表现出截然不同的结果。因此,只有在设计中充分考虑结构的鲁棒性,才能做到真正意义上的"大震不倒"。否则,即使按照《规范》进行抗震设计,并按《规范》考虑了"大震",也难以避免在遭遇大震时产生垮塌。
本文讨论抗震结构的鲁棒性所说的意外荷载,就是指可能超过设防烈度所规定的"大震"的强烈地震,