分式教案1 (1)
分式的概念及其基本性质优秀教案
9.1分式(1)教学设计一、教材分析1.内容:分式的概念,分式有意义的条件。
2.内容解析:分式是描述实际问题中两个量之比的一类代数式。
从运算角度看,分式表示两个整式相除的商,这与分数表示两个整数相除的商类似。
正因为都是表示两个量相除的商,因此,分式与分数具有相似的基本性质和运算法则、相似的研究思路和方法。
分式是分数的分子分母分别进行符号抽象的结果,分式是分数的一般化,分数是分式中字母取一些特殊值时具体的结果。
本课是分式一章的起始课,核心是分式的概念。
作为起始课教学,需要引导学生类比分数的学习构建分式研究的整体思路和方法,在这一过程中能发展学生系统结构抽象的素养;类比分数表示整数运算结果的方法,研究整式的运算,产生分式,抽象分式概念,类比有理数的概念抽象有理式的概念,发展学生数学概念抽象的素养。
因此,本课的重点是:类比分数抽象分式的概念,整体构建分式的研究思路和方法。
二、目标与目标解析1.目标(1)了解分式的概念和分式有意义的条件。
(2)能根据实际情境列出分式。
(3)能类比分数抽象分式的概念,提出分式研究的整体思路和方法。
2.目标解析(1)目标(1)要求学生能判断一个代数式是否是分式,知道分式与分数、分式与整式的关系,能确定分式有意义的字母取值范围;(2)目标(2)要求学生能根据实际问题中的数量关系列出分式;(3)目标(3)要求类比分数得到分式的概念,提出分式研究的整体思路“定义——性质—运算”。
三、教学问题诊断分析学生已经学习过整式及其运算,分数及其运算,这为分式的学习奠定了知识基础,提供了学习经验。
学生从字面上理解分式的概念并不困难,难的是理解分式所反映的数量关系的本质,理解分数与分式、整式与分式之间的联系与区别。
因此,设计合理的活动,让学生类比分数,经历分式概念的形成过程是帮助学生突破难点的关键,也是发展学生数学抽象素养的抓手。
四、教学整体思路从整数四则运算的封闭性出发,引导学生回顾引入分数表示整数的商的做法;在此基础上,引导学生类比这一思路,考察整式四则运算的封闭性,用类似分数的方法表示两个整式相除的商,发现一类新的代数式,在这个过程中,插入字母表示数的抽象活动;接着类比分数提出研究这类新代数式的整体思路:用定义明确研究对象——探索性质——研究运算;然后,让学生列出实际问题中的分式,类比分数概括分式的本质属性——两个整式的商,分母含有字母;再给出分式的定义,用数系扩充的思想指导学生类比从整数到有理数的扩充过程得到有理式的概念;最后引导学生辨别分式与整式、分式与分数的联系与区别,确定分式有意义的条件。
分式的概念教案-(教案)
分式的概念课题:17.1.1 分式的概念共 1 课时第 1 课时教材分析:(1)①.地位、作用和前后联系。
本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。
②.学情分析初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.(2)重点:1.分式的概念 2.分式有意义的条件3.分式值为零的条件(3)难点:分式的概念,分式的值为零教学目标:知识技能目标:①理解分式的概念;②能求出分式有意义的条件过程性目标:①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题;②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.情感与态度目标:①通过联系实际探究分式的概念,能够体会到数学的应用价值;②在合作学习过程中增强与他人的合作意识.教学方法:1.师生互动探究式教学以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.教学过程:(1)创意情境 引入新课(预计5分钟)传说,一次鲁班手被小草割破后,他通过仔细观察发现小草叶子边沿布满了刺,结果发明了锯。
分式的教案(优秀5篇)
分式的教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!分式的教案(优秀5篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
初中数学《分式》优秀教案(通用12篇)
初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。
但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。
下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。
一定要让学生充分活动起来。
在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。
可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。
今后要防止类似事情的发生。
2、问题(1) 分式的运算错的较多。
分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。
(2)分式方程也是错误重灾区。
一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。
分式复习教案(经典)
分式(一):【知识梳理】 1.分式有关概念(1)分式:分母中含有字母的式子叫做分式。
对于一个分式来说:①当____________时分式有意义。
②当____________时分式没有意义。
③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。
将一个分式约分的主要步骤是:把分式的分子与分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。
通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质: (1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 .即:(0)A A M A M M BB MB M⨯÷==≠⨯÷其中(2)符号法则:____ 、____ 与__________的符号, 改变其中任何两个,分式的值不变。
即:a a a ab bbb--==-=---3.分式的运算:注意:为运算简便,运用分式的基本性质及分式的符号法则:()nn a b a b c ca c ad bc d bd a c ac d bd a c a d ad dbc bc a a n b⎧±⎧±=⎪⎪⎪⎪⎨±⎪⎪±=⎪⎪⎩⎪⎧⎪⋅=⎪⎪⎪⎨⎨⎪⎪÷=⋅=⎪⎪⎩⎪⎪=⎪⎪⎪⎩n 同分母c 加减异分母b 乘b 分式运算乘除除b 乘方()为整数b①若分式的分子与分母的各项系数是分数或小数时,一般要化为整数。
【公开课】分式教案
【公开课】分式教案一、教学目标1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)学会分式的化简、运算和应用;(3)培养学生的逻辑思维能力和解决问题的能力。
2. 过程与方法:(1)通过实例引入分式,让学生感受分式的实际应用;(2)采用小组合作、讨论的方式,引导学生探究分式的性质和运算规律;(3)运用数形结合的思想,帮助学生直观地理解分式。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养积极的数学学习情感;(2)培养学生勇于探索、合作交流的良好学习习惯;(3)让学生体会数学与生活的紧密联系,提高学生运用数学知识解决问题的能力。
二、教学重点与难点1. 教学重点:(1)分式的概念及其基本性质;(2)分式的化简与运算方法;(3)分式在实际问题中的应用。
2. 教学难点:(1)分式的化简与运算规律;(2)灵活运用分式解决实际问题。
三、教学过程1. 导入新课:(1)利用实例引入分式,如计算“苹果分配问题”;(2)引导学生观察、讨论分式的特点,引出分式的概念。
2. 自主探究:(1)让学生自主探究分式的基本性质,如分式的分子、分母都乘(或除以)同一个不为0的整式,分式的值不变;(2)组织小组讨论,分享探究成果。
3. 教师讲解:(1)讲解分式的化简与运算方法,如分式的乘法、除法、加法和减法;(2)通过例题演示分式的化简与运算过程,引导学生理解和掌握。
4. 巩固练习:(1)设计一些练习题,让学生独立完成,巩固所学知识;(2)选取部分学生的作业进行讲解和分析,纠正错误,解答疑问。
5. 课堂小结:(1)让学生总结本节课所学的内容,巩固知识点;(2)强调分式在实际问题中的应用,激发学生学习兴趣。
四、课后作业1. 请学生完成课后练习题,巩固分式的化简与运算方法;2. 设计一个实际问题,让学生运用分式解决,如“土地面积计算问题”;3. 鼓励学生进行小组讨论,分享解题心得和经验。
五、教学反思1. 反思教学目标是否达成,学生对分式的概念、性质和运算方法是否掌握;2. 反思教学过程中是否存在不足,如讲解是否清晰、学生是否积极参与等;3. 针对存在的问题,提出改进措施,为下一节课的教学做好准备。
分式的基本性质第1课时教案
分式的基本性质第1课时教案一、教学内容本节课我们将探讨《数学》八年级上册第三章“分式”中的第一部分“分式的基本性质”。
具体内容包括:分式的定义、分式的分子分母的概念、分式的相等条件、分式的约分和通分等。
二、教学目标1. 理解并掌握分式的定义,能够准确地识别分子和分母。
2. 学会运用分式的基本性质进行分式的约分和通分。
3. 能够运用分式的相等条件解决实际问题。
三、教学难点与重点教学难点:分式的约分和通分的运用。
教学重点:分式的定义、分子和分母的识别、分式的基本性质。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入:以实际生活中的分配问题为例,引导学生理解分式的概念。
2. 知识讲解:(1)分式的定义:介绍分式的组成,讲解分子和分母的概念。
(2)分式的基本性质:讲解分式的相等条件、约分和通分的原理。
3. 例题讲解:(1)识别分子和分母。
(2)运用分式的基本性质进行约分和通分。
(3)应用分式的相等条件解决实际问题。
4. 随堂练习:(3)应用分式的相等条件解决实际问题。
六、板书设计1. 分式的定义:分子、分母。
2. 分式的基本性质:相等条件、约分、通分。
3. 例题及解答过程。
七、作业设计1. 作业题目:(3)应用分式的相等条件解决实际问题。
2. 答案:在课后作业中提供详细解答。
八、课后反思及拓展延伸1. 反思:对课堂教学效果进行自我评价,分析学生的掌握情况,为下一节课做好准备。
2. 拓展延伸:引导学生了解分式在其他数学领域中的应用,如代数方程、不等式等,提高学生的数学素养。
重点和难点解析1. 分式的定义及分子分母的识别。
2. 分式的基本性质,尤其是约分和通分的原理及应用。
3. 教学过程中的例题讲解和随堂练习设计。
4. 作业设计及其答案的详细解释。
5. 课后反思与拓展延伸的深度和广度。
详细补充和说明:一、分式的定义及分子分母的识别分式是数学表达式中的一种形式,由分子和分母组成,分子与分母之间用横线(分数线)隔开。
初中数学分式 教案
初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。
2. 培养学生运用分式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。
(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。
4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。
2. 难点:分式的运算法则的应用,分式在实际问题中的解决。
四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。
2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。
(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。
(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。
3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。
4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。
2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。
3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。
六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。
同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。
分式方程教案(5篇)
分式方程教案(5篇)分式方程教案(5篇)分式方程教案范文第1篇一、预习导学,呈现问题导入新课思索:你能正确识别分式方程吗?下列关于x的方程,其中是分式方程的有______.(填序号)问题1 什么是分式方程?问题2 为什么方程(4)不是分式方程?它是什么方程?如何看待其分母中的字母?引导同学思索并归纳总结,分式方程的特点是:①含分母;②分母中含有未知数,分母中是否含有未知数是区分分式方程与整式方程的标志.本例中的(4)是关于x的方程,其他字母皆为字母系数,通过本例辨析分式方程与含有字母已知数方程的区分.设计意图在设疑解惑中引导同学关注分式方程形式上的定义,不是简洁让同学重复概念,而是展现一组方程让同学识别,在答疑辨析中调动同学对分式方程概念的理解,加深理解分式方程概念的关键点——分母中含有未知数,设计的方程(3)(4)(6)用意深刻,是对同学思索提出的进展性目标.二、合作探究,问在学问发生处,点拨释疑·你会解分式方程吗?老师出示问题,同学动手解题,探究体验:比较方程(1)(2)的结果有差异吗?为什么?·为什么x=2不是原方程(2)的根?·产生x=2不是原方程(2)的根的缘由是什么?你能用数学语言说明吗? 解(2):方程两边同乘以3(x-2),得3(5x-4)=4x+10-3(x-2),x=2.检验:把x=2代入最简公分母3(x-2)中,3(x-2)=0,x=2称为原方程的增根.·引导同学进一步思索:(1)解分式方程的一般步骤?要求同学自己归纳总结,然后争论沟通.①去分母,方程两边同乘以最简公分母,把分式方程转化为整式方程;②解这个整式方程;③验根.使得最简公分母为0的根为原方程的增根,必需舍去.同学提出问题,小组合作探究争论:验根有几种方法?如何检验?适当的练习加强同学对解分式方程的理解,关心同学深刻理解化分式方程为整式方程的数学思想.(2)呈现错例,分析错误缘由.(组织同学开展纠错争论)①确定最简公分母失误;②去分母时漏乘整式项;③去分母时忽视符号的变化;④遗忘验根.设计意图分解因式是要求同学把握的基本技能,引导同学独立思索,总结归纳解题步骤,对错例进行剖析,加深对学问的理解.纠错是数学解题教学的一种重要学习形式.(3)增根从哪里来?为什么要舍去?(4)下面分式方程的解法是否正确?谈谈你的想法?引导同学议一议,深化思索:你对上述解法有什么看法?还有其他解法吗?通过解题表象再深化思索解分式方程的本质.分式方程的增根是它变形后整式方程的根,但不是原方程的根,产生增根的缘由是在分式方程的左右两边乘以为0的最简公分母造成的,所以使最简公分母为0的未知数的值均有可能为增根.着名教学者李镇西说过:“能让同学自己完成的,老师绝不帮忙.”老师引路设问,创设质疑争论的空间,深化对解分式方程本质的理解,拓宽同学的视野.三、敏捷应用,拓展思维思索“无解”与该分式方程有“增根”的意义一样吗?分析方程两边乘以(x+2)(x-2),可得2(x+2)+ax=3(x-2),(a-1)x=-10.明显a=1时原方程无解.当(x+2)(x-2)=0,即x=2或x=-2时,原方程亦无解,当x=2时,a=-4>:请记住我站域名/设计意图分式方程的增根问题是同学理解的难点,部分同学解题过程中存有怀疑,还会与无解相混淆.本课例设计直击难点,关心同学梳理如何争论增根问题,并能利用其解决方程无解的相关问题.老师运用问题串形式组织同学解分式方程不是表面上培育细心,明确算理,而是像几何推理那样步步有据,启发同学经过自己的独立思索去寻求解决问题方案.本课设计尝试从数学的角度提出问题,理解问题.引导同学理解解分式方程的途径是通过转化为整式方程来求解.在解分式方程的过程中体验增根的由来.总结出解分式方程的一般步骤和验根的方法,通过敏捷应用实例分析把方程的相关学问融会贯穿,在富有挑战性问题的引导下,同学在探究、答疑、辨别中体会到,提出一个有价值的问题有时比解决一个问题更重要,本课例的设计让同学学会质疑,学会思索,真正在思维的层面上学会数学解题.分式方程教案范文第2篇关键词:案例―任务驱动;计算机程序语言;教学模式在高校计算机教育中,老师讲授程序语言类课程时,一般是在课堂上进行学问点的介绍、举例、讲解、分析、总结等,同学被动地听讲并记忆,在上机实践环节中,同学提前不做什么预备,上机就是在集成环境中输入并运行笔记或教材上的例题,或是自己参按例题完成课后练习,有错误也不求甚解。
八年级数学上册《分式》教案、教学设计
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。
《分式方程(1)》教案
第十五章分式15.3分式方程第1课时一、教学目标(一)学习目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.(二)学习重点解分式方程的基本思路和解法.(三)学习难点解分式方程过程中产生增根的原因及如何验根.二、教学设计(一)课前设计1.预习任务(1)分母中含__未知数____的方程叫做分式方程.(2)解分式方程的基本思路:利用“__去分母_”法将分式方程化为整式方程.2.预习自测(1)在下列方程中,关于x的分式方程有()①215x=3+216x,②xp=xp,③2(1)1xx--=1,④xm-nm=xn(m,n为非零常数),⑤7x++19x,⑥xm+yn=1(m,n为非零常数).A.1个B.2个C.3个D.4个【知识点】分式方程的定义【解题过程】解:①④⑥分母中没有未知数,不是分式方程;⑤不是等式,所以不是分式方程;②③是方式方程.故选B.【思路点拨】分母中含未知数的方程叫做分式方程【答案】B.(2)若x=3是分式方程2ax--12x-=0的根,则a的值是()A.5 B.-5 C.3 D.-3【知识点】分式方程的有关概念【解题过程】解:把x=3代入分式方程求得a=5.故选A.【思路点拨】利用分式方程的解求a.【答案】A.(3)把分式方程2x+4=1x转化为一元一次方程时,方程两边需同乘()A.x B.2x C.x+4 D.x(x+4)【知识点】分式方程的解法.【数学思想】化归思想【解题过程】解:方程两边同乘以x(x+4),可以转化为一元一次方程.故选D.【思路点拨】方程两边同乘以最简公分母.【答案】D.(4)方程211xx-+=0的解是()A.x=1或-1 B.x=-1 C.x=0 D.x=1【知识点】分式方程的解法.【解题过程】解:左边约分可得x-1=0,则x=1,经检验x=1是原分式方程的解.【思路点拨】先去分母,化为整式求解.【答案】D.(二)课堂设计1.知识回顾(1)一元一次方程:只含有一个未知数,并且未知数的最高次数为1的整式方程叫做一元一次方程.(2)解一元一次方程的步骤:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.如何解一元一次方程:211 3332x xx-++=-.解:去分母,得18x+2(2x-1)=18-3(x+1).去括号,得18x+4x-2=18-3x-3移项,得18x+4x+3x=18-3+2.合并同类项,得25x=17.系数化为1,得x =1725.2.问题探究探究一 分式方程的概念.●活动① 整合旧知,探究分式方程的概念.问题1:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设水流的速度为v 千米/时.(1)轮船顺流航行速度为________千米/时,逆流航行速度为________千米/时;(2)顺流航行100千米的时间为________小时;逆流航行60千米的时间为________小时;(3)根据题意可列方程为______________________________.师生活动: (1) 20+v 20-v ;(2) v +20100 v -2060;(3)v +20100=v -2060 追问1:所列方程与方程2157146x x ---=相比有什么不同? 归纳:像这样分母中含未知数的方程叫做分式方程.追问2:分式方程与整式方程的区别在哪里?通过观察发现这两种方程的区别在于未知数是否在分母上.未知数在_____的方程是分式方程.未知数不在分母的方程是____方程.师生活动:分母、整式.追问3:你能再写出几个分式方程吗?【设计意图】让学生在观察和思考的过程中,发现并概括出分式方程的本质特征,了解分式方程的概念,认识其本质属性——分母中含有未知数.探究二 探索分式方程的解法●活动① 大胆操作,探究新知识问题2:你能尝试解分式方程:100602020v v =+- 吗?师生活动:学生独立思考,并尝试解这个方程,全班交流分式方程的解法.【设计意图】让学生在已有的知识经验基础上,尝试解分式方程.●活动② 集思广益,得出分式方程的解法问题3:这些解法有什么共同特点?师生活动:学生讨论之后,教师总结,上述解法依据虽不同,但解分式方程的基本思想是一致的,即将分式方程转化为整式方程.教师再次提问:思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?学生思考后总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了;(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母.【设计意图】通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,并知道解决问题的关键是去分母.●活动③追问 你得到的解v =5 是分式方程的100602020v v=+-解吗? 【设计意图】让学生知道检验分式方程的解的方法-----将未知数的值代入原分式方程的两边,看左右两边的值是否相等.探究三 分析增根产生的原因 ●活动① 增根产生的原因例1 解分式方程:2110525x x =-- 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x +5)(x -5),转化为整式方程.【解题过程】解:两边都乘以最简公分母(x +5)(x -5)得x +5 =10解得x =5,问题:x =5是原分式方程2110525x x =--的解吗?该如何验证呢? 小结:x =5 是原分式方程变形后的整式方程的解,但不是原分式方程的解,是增根.产生的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.检验:当x =5时,(x -5)(x +5)=0,因此x =5不是原分式方程的解,原分式方程无解. 师生总结:基本思路:将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验. 练习:解分式方程:233x x=-. 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母x (x -3)转化为整式方程,解整式方程得解,再检验.【解题过程】解:两边都乘x (x -3),得2x =3x -9解得x =9检验:当x =9时,x (x -3)≠0.所以,原分式方程的解为x =9【答案】x =9【设计意图】让学生了解分式方程增根的原因,明白解分式方程必须检验.●活动2例2 解分式方程:()()31112x x x x -=--+ 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以最简公分母(x -1)(x +2)转化为整式方程,解整式方程得解,再检验.【解题过程】解:方程两边乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3. 解得x =1, 检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.【答案】无解练习:解方程:-2++2x x 24=14x - 【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,结果要检验.【解题过程】解: 方程的两边同乘x 2-4,得(x -2)2+4=x 2-4,解得x =3.检验:当x =3时,x 2-4≠0,所以x =3是原方程的解.【答案】x =3.【设计意图】让学生按照规范的步骤和格式解分式方程,在积累解题经验的同时,体会化归思想和程序化思想.●活动3例3 当m 为何值时,关于x 的方程223+242mx x x x =--+的解小于零. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解小于零 ,所以转化为不等式,解不等式得结果.【解题过程】解:方程两边都乘以(x +2)(x -2),得2(x +2)+mx =3(x -2),整理,得(1-m )x =10,解得x =101-m. ∵方程的解小于零,∴101-m <0且101-m ≠-2. 解得m >1且m ≠6.【答案】m >1且m ≠6.练习: 已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是___________. 【知识点】 分式方程的解法,不等式的解法【数学思想】化归思想【思路点拨】去分母,把分式方程化为整式方程,再解这个整式方程,又因为方程的解为负数 ,所以转化为不等式,解不等式得结果.【解题过程】解:去分母,得(x-1)(x+k)-k(x+1)=x2-1.整理,得x=1-2k.依题意,得12121kk<0ì-ïí-贡ïî, 解得k>12且k≠1.【答案】k>12且k≠1.【设计意图】解题时让学生注意原方程分母不为零的这一隐含条件.3. 课堂总结知识梳理(1)分母中含未知数的方程叫做分式方程.(2)解分式方程的基本思想:把分式方程“转化”为整式方程,再利用整式方程的解法求解. (3)解分式方程的方法及一般步骤:①去分母,方程的两边都乘最简公分母,约去分母,化成整式方程;——化整②解这个整式方程;——解整③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.——验根重难点归纳(1)解分式方程的基本思想;(2)解分式方程的方法及一般步骤;(3)解分式方程过程中产生增根的原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.(三)课后作业基础型自主突破1.下列方程是分式方程的是()A. x-15+34=1 B.3p+2x=3 C.1x-1=2 D.x+2x-x+33【知识点】分式方程的定义【思路点拨】分母中含未知数的方程叫做分式方程.【解题过程】解:A、B分母中没含有未知数,不是分式方程;D不是等式,所以不是分式方程;C是分式方程.故选C.【答案】C.2.解分式方程1101x+=-,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【知识点】分式方程的解法【数学思想】化归思想【思路点拨】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:1+x﹣1=0,解得:x=0,经检验x=0是分式方程的解,故选A【答案】A.3.将分式方程231-11xx x=--去分母,得到正确的整式方程是()A.1-2x=3 B.x-1-2x=3 C.1+2x=3 D.x-1+2x=3 【知识点】分式方程的解法【数学思想】化归思想【思路点拨】两边都乘以(x-1).【解题过程】解:去分母得:x-1-2x=3,故选B【答案】B.4.当a=________时,关于x的方程12325x ax a+-=-+的解为x=0.【知识点】分式方程的解【思路点拨】把x=0代入分式方程可求解.【解题过程】解:把x=0代入分式方程得0123025aa+-=-+,则a+5= -2(2a-3), 得a=15【答案】1 5 .5.若式子12x-和32+1x的值相等,则x=________.【知识点】分式方程的解法【数学思想】化归思想【思路点拨】列分式方程,去分母,解整式方程可得.【解题过程】解:12x-=32+1x,去分母得:2x+1=3(x-2),解得x=7,经检验x=7是原方程的解.【答案】76.解分式方程413x x-= -【知识点】分式方程的解法【数学思想】化归思想【思路点拨】把分式方程转化成整式方程,求出整式方程的解,再代入x(x﹣3)进行检验即可.【解题过程】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解故答案为:x=﹣1.【答案】x=﹣1.能力型师生共研7.若关于x的方程3333x m mx x++=--的解为正数,则m的取值范围是()A.m<92B.m<92且m ≠32C.m>﹣94D.m>﹣94且m≠﹣34【知识点】分式方程的解、分式方程解法.【数学思想】化归思想.【思路点拨】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解题过程】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,∵关于x的方程3333x m mx x++=--的解为正数,∴﹣2m+9>0,解得:m<92,当x=3时,x=292m-+=3,解得:m=32,故m的取值范围是:m<92且m≠32.故选B.【答案】B.8.若关于x的方程2222x mx x++=--无解,则m的值是______.【知识点】分式方程的解、分式方程解法【数学思想】化归思想【思路点拨】去分母把分式方程转化成整式方程,再利用分式方程无解,把增根代入整式方程,进而得出答案.【解题过程】解:去分母,得2-x-m=2x-4,即3x=6-m.∵方程无解,∴x=2.把x=2代入3x=6-m,得m=0.【答案】0.探究型多维突破9.小明解方程121xx x--=的过程如下:解:方程两边同乘x得1-(x-2)=1,①去括号得1-x-2=1,②合并同类项得-x-1=1,③移项得-x=2,④解得x=-2,⑤∴原方程的解为x=-2.⑥请指出他解答过程中的错误,并写出正确的解答过程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】按照解分式方程的步骤检查得出答案.【解题过程】解:小明的解法有三处错误:步骤①去分母有误;步骤②去括号有误;步骤⑥前少“检验”步骤.正确解法是:方程两边同乘x,得1-(x-2)=x,去括号,得1-x+2=x,移项,得-x-x=-2-1,合并同类项,得-2x=-3,两边同除以-2,得x=3 2.经检验,x=32是原方程的解.所以原方程的解是x=3 2.10.请你仔细观察下述材料:方程1111123x x x x-=-+--的解为x=1;方程1111134x x x x-=----的解为x=2;方程11111245x x x x-=-----的解为x=3;….(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并写出这个方程的解;(2)根据(1)中所得的结论,写出一个解为x=-5的分式方程.【知识点】分式方程解法【数学思想】化归思想【思路点拨】观察总结规律,要从整体和部分两个方面入手,防止片面地总结,得出错误结论.【解题过程】解:(1) 方法一:分式方程中的四个分母都可看作是未知数与一个整数的差,这四个整数左边两个连续,右边两个连续,左右两边不连续,但只间隔一个整数,每个分式的分子都是1,方程的解正好是中间被省略的那个整数,即1111(2)(1)(1)(2)x n x n x n x n-=------+-+,方程的解是x=n(n为整数).方法二:第(1)问的规律方程也可以写成:1111(1)(3)(4)x n x n x n x n-=---+-+-+,此时,方程的解应为x=n+2(n为整数).(2)将x=-5代入上式,可得所求分式方程为11117+6+4+3 x x x x-=-+.自助餐1.下列关于x 的方程中,是分式方程的是( ) A. 23356x x ++-= B. 137x x a -=-+ C. x a b x a b a b-=- D. 2(1)11x x -=- 【知识点】 分式方程的定义【思路点拨】根据分式方程的定义:分母里含有未知数的方程叫做分式方程判断.【解题过程】解:A.方程分母中不含未知数,故不是分式方程;B.方程分母含字母a ,但它不是表示未知数,也不是分式方程;C.方程的分母中不含表示未知数的字母,不是分式方程;D.方程分母中含未知数x ,是分式方程.故选D.【答案】D .2.分式方程21221-93+3x x x -=-的解为( ) A .3 B .-3 C .无解 D .3或-3【知识点】 分式方程的解法【数学思想】化归思想【思路点拨】依据解分式方程的步骤可得.【解题过程】去分母得12-2(x +3)=x -3,解得x =3.经检验,当x =3时,x 2-9=0,即x =3不是原分式方程的解,故原方程无解.故选C .【答案】C .3.当a =________时,关于x 的方程2111ax a x -=--的解与方程43x x-=的解相同. 【知识点】方程的解、分式方程解法.【数学思想】化归思想 【思路点拨】先解分式方程43x x -=,再把它的解代入另一个分式方程可得结果. 【解题过程】解:由方程43x x -=得x -4=3x ,解得x =-2.当x =-2时,x ≠0,所以x =-2是方程43x x -=的解.又因为方程2111ax a x -=--的解与方程43x x-=的解相同,因此x =-2也是方程2111ax a x -=--的解.这时221121a a --=---,解得a =17. 当a =17时,a -1≠0,故a =17满足条件. 【答案】17. 4.若关于x 的分式方程2233x m x x -=--无解,则m 的值为_______. 【知识点】方程的解、分式方程解法【数学思想】化归思想【思路点拨】先去分母得整式方程,再把增根代入整式方程可得结果.【解题过程】解:方程两边都乘x -3,得x -2(x -3)=m 2.∵原方程无解,∴x =3.把x =3代入x -2(x -3)=m 2,得m =±3.【答案】±3.5. 解分式方程:21344-12142x x x x +=-+- 【知识点】分式方程解法【数学思想】化归思想【思路点拨】方程两边同时乘以(2x +1)(2x -1),即可化成整式方程,解方程求得x 的值,然后进行检验,确定方程的解. 【解题过程】解:原方程即132(21)(21)2121x x x x x +=-+-+-, 两边同时乘以(2x +1)(2x −1)得:x +1=3(2x −1)−2(2x +1),x+1=6x −3−4x −2,解得:x =6.经检验:x =6是原分式方程的解。
分式方程教案 分式方程数学教案(精选6篇)
分式方程教案分式方程数学教案(精选6篇)解分式方程练习题篇一分式方程的教学设计分式方程的教学设计教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。
教学重点和难点重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1.解(1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。
解这个整式方程,得x=12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
二、新课例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍。
若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系。
答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0。
5小时。
请同学依据上述等量关系列出方程。
分式的教案(精选4篇)
分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。
示范教案一3.4.1 分式方程(一)
第六课时●课 题§3.4.1 分式方程(一) ●教学目标(一)教学知识点1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义.2.通过观察,归纳分式方程的概念. (二)能力训练要求1.体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义.(三)情感与价值观要求在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.●教学重点能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. ●教学难点能根据实际问题中的等量关系列出分式方程. ●教学方法尝试——归纳相结合教科书中提供了多个实际问题,教师鼓励学生尝试,利用具体情境中的数量关系列出分式方程,归纳分式方程的定义.●教具准备 投影片三张第一张:小麦试验田问题,(记作 §3.4.1 A ) 第二张:电脑网络培训问题,(记作§3.4.1 B ) 第三张:几何问题,(记作§3.4.1 C ) ●教学过程Ⅰ.创设情境,引入新课[师]在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.打开课本.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1)我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型.接下来,我们再来看几个这样的例子. Ⅱ.讲授新课列出刻画现实世界的数学模型——方程. [师](出示投影片§3.4.1 A )[生]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积.[师]你能找出这一问题的所有等量关系吗?[生]第一块试验田的面积=第二块试验田的面积. (a )[生]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量 (b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少 kg 呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000) kg.[生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流.我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000(3)[生]由题意,可知:实际参加活动的人数=原定人数×2倍. (c )[生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元. (d )[师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢? [生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]你很棒!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢?讨论后,各小组可选代表回答上面的问题.y 300人;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y 人,根据题意,利用等量关系(c ),得方程:2×y 300=4480-y .(5)[师]上面两个组的回答都很精彩,祝贺他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好.下面我们再来用方程来解决一个几何问题,刻画一个几何模型.(出示投影片§3.4.1 C )ED =SR =正方形SPQR 的边长,△ASR 的高AE 可表示为AD 与正方形边长的差.由SR ∥BC ,可得△ASR ∽△ABC ,于是有:BC SR =ADAE (相似三角形对应高的比等于相似比).所以可设正方形的边长为x ,由BC SR = AD AE 得:a x 2=hx h -.(其中a 、h 为常数)(6)[师]你还能找出图中的相似三角形吗?你还能用它的性质列出方程吗?同学们可以在小组内讨论、交流.[生]从上图中可知SPQ R 是正方形,所以R Q ⊥BC ,又因为AD ⊥BC ,所以AD ∥R Q ,△ADC ∽△R QC.可得RQ AD =CQCD.即RQ AD =RQ CD BC2121-.所以,设内接正方形的边长为2x ,根据题意,得x h 2=xa a -.(a 、h 为常数).(7) [师]你们表现得真棒! 观察方程:x 2400-302400+x =4(1) x 9000=300015000+x(2) x 9000+3000=x15000(3) x 300-4=x2480(4) 2×y 300=4480-y(5)x h 2=xa a -(其中a 、h 是常数)(7)上面所得到的方程有什么共同特点?[生]不难发现方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.方程(6)是什么方程?[生]方程(6)中,分母不含未知数,它是一元一次方程. Ⅲ.随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x+102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元.解:x 满足的方程是:101×x+102000=200.2.补充练习某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,则x x +-8040=41.Ⅳ.课时小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程.Ⅴ.课后作业 1.习题3.62.预习下一部分——分式方程的解法. Ⅵ.活动与探究如右图,△ABC 是一块锐角三角形余料,边BC =120 mm,高AD =80 mm ,要把它加工成矩形零件PQMN ,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,并求PN =2PQ 时,PN 的长是多少?[过程]由于PQMN 是矩形,所以AE ⊥PN ,这样△APN 的高可写成AD —ED =AD -PQ ,又PN ∥BC ,因此△APN ∽△ABC ,于是可找到PN 与已知条件的关系. 图3-3[结果]设PQ =x mm ,则PN =2x mm.PN ∥BC →△APN ∽△ABC →BC PN =ADAE, 即1202x =8080x - 160x =9600-120x , x =7240=3472所以PN =2x =6874(mm )。
分式教案第一课时
分式教案第一课时分式教案第一课时是初中数学教学中的重要内容,主要涉及分式的概念、性质和简化方法等方面。
本文将从课时安排、教学目标、教学内容和教学方法等方面进行介绍和分析,帮助教师更好地开展教学工作。
一、课时安排分式教案第一课时通常安排在初中数学的第二学期,适合初二或初三年级的学生。
课时时长一般为40分钟,可以根据实际情况适当延长或缩短。
课程设置如下:1. 课程名称:分式教案第一课时2. 课程目标:学习分式的概念和性质,掌握分式简化的方法和技巧,能够灵活运用分式解决实际问题。
3. 教学内容:分式的概念、分式的基本性质、分式的简化方法。
4. 教学方法:讲授、演示、实验、探究、练习。
二、教学目标1. 知识与技能:掌握分式的概念和定义,了解分式的基本性质,掌握分式的简化方法,能够正确地进行加、减、乘、除、约减等基本运算,能够在实际问题中应用分式进行计算和解决问题。
2. 过程与方法:善于观察、思考和发现问题,具有良好的分析和解决问题的能力,能够通过实验和探究发现规律,能够独立思考和合作探讨。
3. 情感态度:积极参与课堂讨论和互动,能够理解和尊重他人观点,具有良好的敬业精神和团队合作精神,能够积极应对挑战和压力。
三、教学内容1. 分式的概念分式是数的有理表示,由分子和分母组成。
分子和分母都是整式或单项式,分母不为零。
分式可以表示实数中除法的算式,它包含了除数、被除数和商三个元素。
例如a/b表示a÷b 的运算,a称为分子,b称为分母。
2. 分式的基本性质(1)两个分式的和(差)是分子和分母的和(差)再写成一个分式;(2)两个分式的积是它们各自的分子的积与各自的分母的积写成一个分式;(3)两个分式的商是第一个分式的分子乘第二个分式的分母,第一个分式的分母乘第二个分式的分子再写成一个分式;(4)两分式相等的充要条件是它们的分子分母分别相等;(5)分式的除法可以转化为乘法,即把除法改为乘以被除数的倒数。
3. 分式的简化方法分式的简化是化简分式为分子与分母都不含括号、未知数非负的最简形式,主要有以下三种方法:(1)约分:分子分母同时除以它们的公因式,消去公因式,得到最简形式。
教案--分式的基本性质(1)-
16·1·2分式的基本性质(1)一、教学目标1、使学生理解分式的基本性质。
2、使学生运用分式的基本性质对分式进行恒等变形。
3、通过对分式的基本性质的学习培养学生抽象概括的能力。
二、教学重点、难点重点:理解分式的基本性质。
难点:分式基本性质的运用。
三、教学方法:启发式教学四、教学过程复习提问:1、什么叫分式?2、小学学习的分数的基本性质是什么?举例说明。
引言:我们小学学习了分数的基本性质,今天我们为学习分式的基本性质。
新课:根据分数的基本性质,分式可仿照分数的性质=; = (C≠0)。
请同学们根据上面的式子和以前学过的分数的基本性质,总结出分式的基本性质是什么?学生回答出来,教师及学生补充完整。
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
=; = (C≠0)注意:分式的基本性质的条件是乘(除以)一个不等于0的整式。
指出分式的性质与分数的性质的不同,乘以(除以)一个不等于0的整式。
分数是乘以(除以)一个不等于0的数。
例1 填空:(1) = ; = 。
(2) = ; =。
分析:引导学生根据分式的基本性质,来对分式进行化简。
(1)是乘以一个整式ab,注意是分子和分母都乘以这个整式。
(2)是分子和分母都乘以b,分式的值不变。
(3)是分子x 2+xy=x(x+y),对照分子,可以看出分子和分母都除以x,分式的值不变,所以X。
(4)把分母分解因式x 2-2x=x(x-2),对照分母,可以看出分子、分母都除以x,分式的值不变,所以填1。
五、课堂练习:教师巡视,与学生一起来完成练习。
及时纠正练习中的错误。
六、小结:分式的基本性质成立的条件是都乘以或除以一个不等于0的整式。
七、作业:八、教学反思:这一课学生能用类比的方法很快从分数的基本性质得到分式的基本性质。
但在实际运用中还有些同学对用字母表示的式子不习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生活动或师生互动 (学程设计)
课 堂 教 学 设 计
分析: (1)题中分子、分母都是单项式,可直接运用法则 计算; (2)应先分解因式,然后约分,但需注意符号的变 化。
(4)
x 2 xy xy ( x y) 2 2 x xy y xy
模块四 小结评价 一、本课知识点: 1、 分式的乘除法法则 (与分数的乘除法法则类似) : 两个分式相乘, 把分子相乘的积作为积的 , 把分母相乘的积作为积的 ;两分式相除, 把除式的分子和分母颠倒位置后再与被除 式 。
一、学习准备 1、 分式的概念: 整式 A 除以整式 B, 可以表示成 的形式,如果 称
学生活动或师生互动 (学程设计)
A B
中含有字母,那么我们
A 为__________ B
课 堂 教 学 设 计
2、分式与整式的区别:分式一定含有分母,且分 母中一定含母中一定不含有字母。 3、分式有意义、无意义或等于零的条件: (1)分式
A 有意义的条件:分式的 B ... A 无意义的条件:分式的 B ... A 的值为零的条件:分式的 B
的值
不等于零; (2)分式 等于零; (3)分式 的 的值
值等于零,且分式的 的值不等于零; 4、阅读教材:第一节《认识分式》
例1 在下列式子中,哪些是整式?哪些是分式? x x y 3 1 3 x y 3x, , , x 2 y,-7 xy,- x, , y 3 2 8 5 x 2
x 2 xy x y x2
2、不改变分式的值,使下列分式的分子和分母都 不含“-”号.
x3 y (1) 3ab 2
a3 (2) 17 b 2
( 3)
5a 13 x 2
( a b) 2 (4) m
解: 3、判断下列约分是否正确: (1)
ac a = ( bc b
3a 6a b = 3 8b
( 3)
3
2
3
b 1 ac
=
an cn
(4)
x y
2
x2 y2
=
x y
3a 2 b 5、约分: ( 1) 6ab 2 c
4 x 2 yz 3 (3) 16 xyz 5
8m 2 n (2) 2mn 2
2( x y ) 3 (4) yx
x 2 2 xy y 2 x y 2 xy x
2、计算:
(1) 8 x y
2 4
3x x2 y ( ) 6z 4y6
(2)
a 2 6a 9 3 a a 2 2 b 3a 9 4 b2
(3)
y2 4y 4 1 12 6 y 2y 6 y 3 9 y2
分析:区分整式与分式的唯一标准就是看分母,分母中不 含字母的是整式,分母中含有字母的是分式。 提示: 是一个常数,而不是字母。
课 堂
解:
注意: 理解分式的概念, 应把握以下三点: ( 1) 分式
教 学 设 计
A 中, B
A、B 是两个整式,它是两个整式相除的商,分数线由括号 和 除 号 两 个 作 用 , 如
) (3)
)
(2)
x y 1 = 2 2 x y x y
)
(
mn =0( mn
4、 把分式
2ab 中的 a , b 都扩大为原来的 3 倍,则 ab
倍。 ⑵已知
分式的值变为原来的 5、⑴化简分式
m 2 3m 9 m2
x y x y z ,求 的值。 x 2 y 3z 3 4 5
重点:分式的通分; 难点:如何确定最简公分母。
教具 多媒体 学具 资料 准备 教师活动(老师导航)
模块一 预习反馈 一、学习准备 1、同分母分式相加减: (1)法则:同分母的分式相加减, 把 相加减。 (2)注意:①字母表示为:
学生活动或师生互动 (学程设计)
不变,
a c ac 。 b b b
1 例1 利用分式的基本性质填空:
2 ; a b 2 x 2 xy x y ab a 2b x
注意: (1)要深刻理解“都”与“同”的含义, “都”的
意思是分子与分母必须同时乘 (或除以) 同一个整式, “同” 说明分子与分母都乘(或除以)的整式必须是同一个整式。
x2 1 无意义? 3x 2
x2 的值为正? 3x 2
3、 当 x 为何值时, 分式
4、若分式
x2 4 的值为零,则 x 的值是 x2 x 2
____________。 模块四 小结评价
作业 布置 板 书 设 计
教 学 反 思
单元 五
教学内容
第一节
分式(二)
课时
1
教 学 目 标
单元 五
教学内容
5.1 认识分式
课时
1
教 学 目 标
1、了解分式的概念,明确分式和整式的区别; 2、能用分式表示简单问题数量之间的关系; 3、会判断一个分式何时有意义; 4、会根据已知条件求分式的值。
教学 重点 难点
重点:掌握分式的概念; 难点:正确区分整式与分式。
教具 多媒体 学具 资料 准备 教师活动(老师导航)
课 堂 教 学 设 计
②“分子相加减”是各个分式的“分 子整体”相加减,即各个分子都应有 括号。当分子为单项式时,括号可以 省略;当分子为多项式时,括号不能 省略。 ③分式加减运算的结果,必须化为最 简分式或整式。 2、分式的通分: (1)概念:根据分式的基本性质,把异分母分式 化成同分母分式的过程,叫分式的________。 (2)通分的方法:先求各分式的_____________-, 然后用每一个分式的分母去除这个最简公分母, 用 所得的商去乘相应分式的分子、分母; (3)通分的依据:________________________。 二、教材精读 3、进一步理解同分母的分式相加减的法则:
x2 y 1 x3 y
(2)
5b 2 10bc 3ac 21a
a 2 4b 2 ab 3ab 2 a 2b
( 3 )
3( x y ) 2 9 ( x y) 4 (4) 3 yx ( y x)
(5)
( xy x 2 )
分析:根据分式有意义的条件进行计算,此题即为求分母 不等于零时 x 的取值范围。
模块二
合作探究
7、 下列代数式: 3m
1 1 x 1 x , , , , , 2 3 x x 1
3x y 2 x ( x 1)
, 其 中 是 分 式 的 有 :
_________________________. 8、当 x 取何值时,下列分式有意义?
学生活动或师生互动 (学程设计)
A AM (M 是整式,且 M≠0) 。 B BM
A A M , B BM
课 堂 教 学 设 计
2.约分: (1)概念:把一个分式的分子和分母的公因式约 去,这种变形称为__________ (2)约分的关键 :找出分子分母的公因式; .. 约分的依据 :分式的基本性质; .. 约分的方法 :先把分子、分母分解因式(分 .. 子、分母为多项式时) ,然后约去它们的公因 式, 约分的最后结果是将一个分式变为最简分 式或整式。 3.最简分式:分子与分母没有____________的分 式叫做最简分式。 二、教材精读
6 、代数式①
a 2 4b 2 ab 2 ,② ,③ ( a 2b ) 2 b3
x2 y 2 x y ,④ 中,是最简分式的 2x 2 y x2 y2
是___________________ .(填序号) 模块三 形成提升 1、填空: ( (2) 1 )
ab 2 ab ab
y2 6 y 9 (3 y ) (6) y2
5、计算:
(1) x2 1 1 a 2 2ab a2 2ab ( x 1) ( 2) ( ) ( x 1) 2 x 1 ab b 2 a b 2b a
模块三
形成提升
1、计算: (1)
A A A A ; B B B B
若只改变其中一个的符号或三个符号,则分式的值变成原 分式的值的相反数,如
A A A A A . B B B B B
模块二 合作探究 4 、 填 空 : (1) (2)
2x 2 = x 2 3x
x3
模块四 小结评价
作业 布置 板 书 设 计
教 学 反 思
单元 五
教学内容
5.2 分式的乘除法
课时
1
教 学 目 标
1、经历探索分式的乘除法法则的过程,并结合具体情境说明其合理性; 2、会进行简单分式的乘除法计算,具有一定的化归能力; 3、在学知识的同时学到类比转化的思想方法,受到思维训练,能解决与分式有关的简单 实际问题;
作业 布置 板 书 设 计
教 学 反 思
单元 五
教学内容
5.3 分式加减法(一)
课时
1
教 学 目 标
1、会进行简单分式的加减运算,具有一定的代数化归能力; 2、能解决一些简单的实际问题,进一步体会分式的模型作用; 3、结合已有数学经验,解决新问题,获得成就感以及克服困难的方法和勇气;
教学 重点 难点
模块二 合作探究 4、计算: (1)
c 2 a 2b 2 ab c
(2)
n 2 4m 2 2m 5n3
(3)
a2 4 a2 1 a 2 2a 1 a 2 4a 4