三极管开关电路设计

合集下载

三极管工作在开关状态_电路设计

三极管工作在开关状态_电路设计

三极管开关电路设计
徐小龙2010.7.26
三极管的工作状态分为:截止区、放大区。

饱和区。

三极管工作在开关状态是在饱和区和截止区之间切换。

图1 测试原理图
图2 三极管共发射极输入特性曲线
图3 三极管共发射极输出特性曲线
由输出特性曲线可以看出,在截止区,三极管的电阻特别大;在饱和区,三极管的导通电阻非常小,一般有U CE<U BE。

管子不同,U CE不同,一般U CE=0.3V。

图4 开关原理图
要使三极管工作在开关状态,必须使发射结和集电结正篇。

工作临界条件是三级管临界于饱和状态。

在上述电路中,假设三极管工作在饱和状态,U CE 几乎为0。

I C = V CC / R C
I B = I C / ß
为临界条件。

一般I B在0.1~1mA之间。

为了让三极管可靠的截止,一般U BE < 0.5V,或者加负电压。

经过变换,可以把负载转移到R C,从而省略了R C。

用负载替换R C。

开关电源工作原理详解析及三极管开关电路图原理及设计详解

开关电源工作原理详解析及三极管开关电路图原理及设计详解

PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。

本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。

●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。

线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。

对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。

由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。

此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。

由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数1.NPN和PNP开关管的设计技巧:a.驱动电流:在选择NPN和PNP开关管时,需要根据电路的负载要求选择适当的驱动电流。

驱动电流过小可能无法使开关管完全导通,驱动电流过大则可能损坏开关管。

b.饱和电流:饱和电流是指开关管完全导通时的电流值。

在设计开关电路时,应选择具有足够大的饱和电流的NPN和PNP开关管,以确保能够满足负载的需求。

c.饱和电压:饱和电压是指开关管完全导通时的电压值。

在选择NPN 和PNP开关管时,应选择具有较低的饱和电压的器件,以降低功耗和热损耗。

d.上升和下降时间:上升时间是指开关管从关断到导通的时间,下降时间是指开关管从导通到关断的时间。

在设计开关电路时,应选择具有短上升和下降时间的NPN和PNP开关管,以提高开关速度。

e.功耗:功耗是开关管在导通状态下消耗的功率。

在选择NPN和PNP 开关管时,应选择具有较低功耗的器件,以降低能量损耗和热损耗。

f.热稳定性:在高温环境下,开关管可能会出现温升现象,导致性能下降或损坏。

因此,在选择NPN和PNP开关管时,应选择具有良好热稳定性的器件。

2.全系列三极管参数:a.最大电流:最大电流是指三极管在导通状态下可以承受的最大电流。

选择三极管时,应根据负载要求选择具有足够大最大电流的器件。

b.最大电压:最大电压是指三极管可以承受的最大电压。

选择三极管时,应根据电路的工作电压范围选择具有较大最大电压的器件。

c.最大功率:最大功率是指三极管可以承受的最大功率。

选择三极管时,应根据负载的功率需求选择具有足够大最大功率的器件。

d.饱和电流和饱和电压:饱和电流是指三极管在完全导通时的电流值,饱和电压是指三极管在完全导通时的电压值。

这两个参数可以影响开关管的导通特性和能耗。

e.上升和下降时间:上升时间是指三极管从关断到导通的时间,下降时间是指三极管从导通到关断的时间。

这两个参数可以影响开关速度和性能。

npn_pnp三极管开关电路

npn_pnp三极管开关电路

图1 NPN PNP三极管反相器电路vin无输入电位Q1截止。

Vin高电平时Q1导通,Q2基极得高电位,Q2截止。

图3 PNP三极管开关电路当输入端悬空时Q1截止。

VIN输入端接入低电平时,Q1导通,继电器吸合。

图5 三极管上拉电阻:当有高电位输入时Q导通,因E-C导通,又因有负载电阻,所以输出看作是低电平。

图7 光藕控制NPN三极管:图9 光藕控制PNP三极管:图2 两只NPN三极管反相器电路vin无输入电位Q1截止,Q2导通。

Vin接入高电平Q1导通,促使Q2基极电位下级,Q2截止。

图4 PNP三极管开关电路当vin无输入电位时Q1截止。

Vin接入高电平Q1导通,继电器吸合图6 三极管上拉电阻:当有高电位输入时Q导通,因E-C导通,又因有负载电阻,所以输出看作是高电平。

图8 光藕控制NPN三极管:图10 光藕控制PNP三极管:文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。

文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。

基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。

在中国古代,文案亦作" 文按"。

公文案卷。

《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。

"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。

" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。

三极管开关电路 设计

三极管开关电路 设计

三极管开关电路设计三极管开关电路设计引言:三极管是一种重要的电子元件,广泛应用于各种电路中。

其中,三极管开关电路具有重要的应用价值。

本文将介绍三极管开关电路的设计原理、特点以及应用领域。

一、设计原理三极管开关电路是利用三极管的放大特性和开关特性来实现电路的开关控制。

其基本原理是通过控制输入信号的大小,来控制三极管的工作状态,从而实现电路的开关功能。

设计步骤:1. 确定输入信号的大小和形式:根据所需的控制功能,确定输入信号的大小和形式,可以是直流电压或者脉冲信号。

2. 选择三极管型号:根据输入信号的大小和工作频率,选择合适的三极管型号,确保其具有足够的放大能力和开关速度。

3. 确定电路拓扑结构:根据具体需求,选择合适的电路拓扑结构,常见的有共射、共基和共集等。

4. 确定电路参数:根据三极管的数据手册和电路设计要求,确定电路的各种参数,如电阻、电容等。

5. 进行电路仿真:利用电路仿真软件进行电路仿真,验证电路设计的正确性和稳定性。

6. 进行实际电路搭建:根据仿真结果,进行实际电路的搭建,确保电路能够正常工作。

7. 进行测试和调试:对实际搭建的电路进行测试和调试,确保电路的性能符合设计要求。

二、特点三极管开关电路具有以下特点:1. 响应速度快:三极管具有较高的开关速度,可以实现快速的开关控制。

2. 控制灵活:通过改变输入信号的大小和形式,可以实现对电路的灵活控制。

3. 放大能力强:三极管具有较高的放大能力,可以放大输入信号的幅度。

4. 体积小:由于三极管本身体积小,因此三极管开关电路可以实现紧凑的设计。

三、应用领域三极管开关电路广泛应用于各个领域,以下是几个常见的应用领域:1. 电源开关:三极管开关电路可以用于电源开关控制,实现对电源的高效开关和调节。

2. LED驱动:三极管开关电路可以用于LED灯的驱动控制,实现对LED灯的亮度调节和开关控制。

3. 电机控制:三极管开关电路可以用于电机的控制,实现对电机的启停和速度调节。

npn三极管驱动电路

npn三极管驱动电路

npn三极管驱动电路摘要:一、npn 三极管简介1.npn 三极管的定义2.npn 三极管的分类3.npn 三极管的特性二、npn 三极管驱动电路的基本原理1.npn 三极管的工作原理2.npn 三极管的驱动条件3.npn 三极管的导通与截止三、npn 三极管驱动电路的设计与应用1.npn 三极管驱动电路的设计步骤2.npn 三极管驱动电路的元件选择3.npn 三极管驱动电路的应用领域四、npn 三极管驱动电路的优化与改进1.提高npn 三极管驱动电路的效率2.减小npn 三极管驱动电路的体积3.增强npn 三极管驱动电路的稳定性正文:pn 三极管是一种半导体器件,具有放大和开关等功能,广泛应用于电子设备中。

在了解npn 三极管驱动电路前,我们先来了解一下npn 三极管的基本知识。

pn 三极管,由n 型半导体、p 型半导体和n 型半导体组成,其发射极、基极和集电极分别由n 型半导体、p 型半导体和n 型半导体构成。

npn 三极管具有电流放大作用,当基极电流变化时,发射极和集电极之间的电流也会随之变化。

pn 三极管驱动电路,是指通过一定的电路连接方式,使npn 三极管工作在放大或开关状态的电路。

npn 三极管驱动电路的基本原理是利用基极电流控制发射极和集电极之间的电流,从而实现信号放大或开关控制。

在设计npn 三极管驱动电路时,需要考虑电路的工作电压、电流和速度等因素,选择合适的元件。

在应用npn 三极管驱动电路时,需要根据实际需求进行电路优化和改进,提高电路的性能。

总之,npn 三极管驱动电路是一种重要的电子电路,对电子设备的工作起着关键作用。

NPN型三极管的工作原理及电路设计

NPN型三极管的工作原理及电路设计

NPN型三极管的工作原理及电路设计NPN型三极管,由三块(半导体)构成,其中两块N型和一块P型半导体组成,P型半导体在中间,两块N型半导体在两侧,三极管是(电子)电路中最重要的器件,他主要的功能是(电流)放大和开关的作用。

实际上,只要你了解了三极管的特性,对你使用(单片机)就顺手很多了。

大家其实也都知道三极管具有放大作用,但如何去真正理解它,却是你以后会不会使用大部分电子电路和IC的关键。

我们一般所说的普通三极管是具有电流放大作用的器件。

其它的三极管也都是在这个原理基础上功能延伸。

三极管的符号如下图左边,我们就以NPN型三极管为例来说说它的(工作原理)。

它就是一个以b(基极)电流Ib来驱动流过CE的电流Ic的器件,它的工作原理很像一个可控制的阀门。

左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。

当蓝色水流越大,也就使大管中红色的水流更大。

如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。

三极管的原理也跟这个一样,放大倍数为100时,当Ib(基极电流)为1mA时,就允许100mA的电流通过Ice。

这个原理大家可能也都知道,但是把它用在电路里的状况能理解,那单片机的运用就少了一大障碍了。

最常用的连接如下图:我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。

基极电流就是10V÷10K=1mA,集电极电流就应该是100mA。

根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。

那么剩下的5V就吃在了三极管的C、E极上了。

好!现在我们假如让Rb为1K,那么基极电流就是10V÷1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA也就是1A了呢?假如真的为1安,那么Rc上的电压为1A×50Ω=50V。

啊?50V!都超过(电源)电压了,三极管都成发电机了吗?其实不是这样的。

三极管开关电路设计详细过程

三极管开关电路设计详细过程

三极管开关电路设计详细过程1.确定电路需求和规格:首先需要确定电路的需求和规格。

例如,需要确定输人电压、输出电压、最大电流等参数。

这些参数将决定所选用的三极管和其他元件的性能和规格。

2.选择三极管:根据电路需求和规格,选择适合的三极管。

常用的三极管有NPN型和PNP型。

需要考虑的因素包括最大耐压、最大电流、放大系数等。

3.确定电路拓扑结构:根据需求选择适合的电路拓扑结构。

常用的三极管开关电路拓扑结构有共射极、共集电极和共基极。

每种拓扑结构具有不同的特点和应用。

4.定义电路输入和输出:确定电路的输入和输出端口。

输入端口通常是控制信号,输出端口通常是被控制的电路或装置。

定义好输入和输出有助于后续的电路设计和分析。

5.进行电路计算和仿真:根据所选用的电路拓扑结构,进行电路计算和仿真。

例如,根据输入电压和电流计算所需的三极管参数,如电阻、电容等。

使用电路仿真软件对电路进行仿真,并验证电路的性能和稳定性。

6.设计三极管的偏置电路:三极管开关电路必须具有适当的偏置电路,以保证正常工作。

通常使用电流源或电阻网络来设置恰当的偏置电流和电压。

偏置电路的设计需要根据所选用的三极管和电路拓扑结构进行相应调整。

7.设计输出驱动电路:三极管开关电路通常需要一个输出驱动电路,以把控制信号转换为供给被控制电路或装置的输出信号。

输出驱动电路的设计可以采用电阻加载、电流源或者开关电路等方法。

8.进行电路布局和布线:根据电路设计和计算结果,进行电路布局和布线。

将所选用的三极管和其他元件进行合理布局,并进行适当的线路连接。

布线时需要尽量降低电路的干扰和信号串扰,提高电路的可靠性和抗干扰性。

9.进行电路测试和调试:制作电路原型,并进行测试和调试。

检查电路中各个元件的正确性和连接性,观察电路的工作状态。

根据测试结果进行调整和优化,确保电路的性能和稳定性。

10.进行电路性能测试和验证:用合适的测试仪器和设备对电路进行性能测试和验证。

根据电路计算和仿真的结果,验证电路的性能和规格是否符合要求。

三极管的开关等效电路

三极管的开关等效电路
基极-集电极结和基极-发射极结。
半导体材料
硅(Si)或锗(Ge)。
三极管的工作原理
电流放大
通过控制基极电流来控制集电极 和发射极之间的电流,实现电流
放大。
电压控制
基极电压控制集电极和发射极之间 的电压。
开关作用
通过控制基极电压,使三极管在饱 和导通和截止两种状态之间切换。
三极管的开关状态
饱和状态
由于表面态和界面态变 化产生的噪声,表现为 低频噪声。
05 三极管开关等效电路的优 化设计
优化设计方法
01
02
03
04
减少元件数量
简化电路,减少元件数量,降 低成本和体积。
提高开关速度
优化电路结构,减小寄生参数 ,提高开关速度。
降低功耗
优化电路设计,降低功耗,提 高效率。
增强稳定性
优化元件参数,增强电路的稳 定性。
THANKS FOR WATCHING
感谢您的观看
功率放大器
在射频功率放大器中,三 极管开关等效电路用于ห้องสมุดไป่ตู้ 制信号的放大和传输。
04 三极管开关等效电路的特 性分析
开关时间特性
1 2
开启时间
从基极输入信号开始到集电极开始导通所需要的 时间。
关闭时间
从基极输入信号结束到集电极完全截止所需要的 时间。
3
延迟时间
从基极输入信号开始到集电极电流达到稳定值所 需要的时间。
三极管的开关等效电路
目录
• 三极管开关等效电路的基本概念 • 三极管开关等效电路的建立 • 三极管开关等效电路的应用 • 三极管开关等效电路的特性分析 • 三极管开关等效电路的优化设计
01 三极管开关等效电路的基 本概念

三极管典型开关电路

三极管典型开关电路

三极管典型开关电路三极管是一种常用的半导体器件,在电路中起着非常重要的作用。

其中,三极管的典型开关电路是一种常见且广泛应用的电路,用于实现对电路的开关控制。

下面将对三极管典型开关电路进行详细介绍。

三极管典型开关电路通常由三极管、电阻、电源等元器件组成。

其基本原理是通过控制三极管的输入信号,使得三极管处于导通或截止状态,从而实现电路的开关控制。

在三极管典型开关电路中,通常会采用双极型晶体管(NPN型或PNP型)来实现开关功能。

在NPN型三极管典型开关电路中,当输入信号为低电平时,三极管处于截止状态,电路中的电流无法流通,此时电路处于断开状态;当输入信号为高电平时,三极管处于饱和状态,电路中的电流可以流通,此时电路处于闭合状态。

通过控制输入信号的高低电平,可以实现对电路的开关控制。

在PNP型三极管典型开关电路中,其工作原理与NPN型相反。

当输入信号为高电平时,三极管处于截止状态,电路处于断开状态;当输入信号为低电平时,三极管处于饱和状态,电路处于闭合状态。

同样,通过控制输入信号的高低电平,可以实现对电路的开关控制。

三极管典型开关电路在实际电路设计中具有广泛的应用。

例如,可以用于数字电路中的开关控制、电源管理电路中的电路保护等方面。

此外,三极管的开关电路还可以实现电路的时序控制、电路的选择性切换等功能,极大地提高了电路的灵活性和可控性。

总的来说,三极管典型开关电路是一种常见且实用的电路,通过控制三极管的开关状态,可以实现对电路的开关控制。

在电子电路设计和应用中,三极管开关电路发挥着重要的作用,为电路的实现和功能的实现提供了关键的支持。

希望通过本文的介绍,读者对三极管典型开关电路有了更深入的了解,可以更好地应用于实际电路设计中。

8550典型开关电路

8550典型开关电路

8550典型开关电路1. 引言开关电路是电子电路中常见的一种电路类型,它可以实现电路的打开和关闭,控制信号的传输和处理。

8550典型开关电路是一种基于8550三极管的电路设计,通过对三极管的控制,实现电路的开关功能。

本文将介绍8550典型开关电路的原理、设计和应用。

2. 8550三极管简介8550是一种PNP型三极管,具有以下特性: - 集电极电流最大为700mA,集电极功耗最大为625mW; - 最大集电极-基极电压为-45V,最大集电极-发射极电压为-40V; - 最大电流放大倍数为200,最小直流电流放大倍数为80; - 工作温度范围为-55℃至150℃。

3. 8550典型开关电路原理8550典型开关电路基于8550三极管的PNP型特性,通过对三极管的控制电流来实现电路的开关功能。

下面是8550典型开关电路的原理图:R1+5V ---/\/\/\---+||+---------|---------+| | || | |R2 | |+5V ---/\/\/\---+ || |C1 | |+5V ---| |---+ | || | || | |---|---8550 || | || | || | || | |---|---GND || | || | |---|---LED || | || | |GND GND GND•R1和R2是限流电阻,用来限制电流流过8550三极管和LED;•C1是滤波电容,用来滤除电路中的噪声;•LED是发光二极管,用来显示电路的开关状态。

4. 8550典型开关电路设计8550典型开关电路设计的目标是实现电路的可靠开关功能,下面是设计步骤:步骤1:确定输入电压和电流根据具体应用场景,确定输入电压和电流的要求。

例如,假设输入电压为5V,输入电流为20mA。

步骤2:计算限流电阻R1和R2根据输入电压和电流的要求,使用欧姆定律计算限流电阻R1和R2的阻值。

假设LED的工作电压为2V,根据欧姆定律可得:R1 = (5V - 2V) / 20mA = 150ΩR2 = (5V - 0.7V) / 20mA = 215Ω根据市售电阻的阻值,选择最接近的标准阻值。

三极管开关电路设计(电路结构、参数计算)

三极管开关电路设计(电路结构、参数计算)

三极管开关电路设计(电路结构、参数计算)电路结构如图1所示,三极管(开关电路)基本结构由基极电阻,集电极电阻(负载)组成。

图1 三极管开关电路基本结构有些人设计的开关电路就没有基极电阻,有可能不是他不知道这种电路结构,而是他不会调参数,不管怎么改变Rb,始终电路都没有进入饱和区,最后将Rb短接后发现电路正常了,导致他认为这样电路是可以用的。

事实上,没有基极电阻,如果说是(单片机)的IO口接的控制引脚,那么单片机(工程师)控制单片机IO口输出高电平的时候,IO口上的电压只有0.7V左右。

那是由于单片机IO口的(电流)只有10mA左右,不能给三极管提供足够大大的电流,以至于拉低电压至三极管b、e之间的导通电压0.7V左右。

当给三极管基极能够提供足够电流,而控制电压大于三极管b、e之间电压极限电压的时候就会烧坏三极管,如果没有大于它的极限电压,但是电流很大,时间久了就会导致三极管热损坏。

所以只有设置合适的基极电阻才能保证电路的可靠性。

该电路存在一个问题,就是控制端没有接任何东西就会出现高阻状态,三极管的工作状态是不确定的。

为了安全起见,没有对三极管进行控制的时候,应该让三极管工作在截止区,要想NPN型三极管截止,Ib就要很小,可以选择在三极管基极接一个下拉电阻,如图2所示。

取值是要远大于(10倍以上)Rb的,这样才能下拉电阻不影响对三极管的控制。

我我个人的取值习惯是100K。

图2 带下拉电阻的开关电路如果我们想驱动无源蜂鸣器,那么就要在控制端输入一个方波(信号)进行控制,这时候就需要三极管进行快速切换,想加快三极管切换速度就要如图3所示,在Rb上并联一个加速(电容)。

图3 带加速电容的三极管开关电路其原理是,电容两端的电压不能发生突变,那么控制端给一个高电平的瞬间,电容可以视为短路,此时的电流最大,因此加快了三极管的导通速度,这个暂态过程很快就结束了,电容充电完成后进入了稳态,电容就形如开路,而不影响电路的正常工作。

介绍10种三极管开关驱动电路图 NPN和PNP三极管原理及电路设计

介绍10种三极管开关驱动电路图 NPN和PNP三极管原理及电路设计

介绍10种三极管开关驱动电路图NPN和PNP三极管原理及电路设计一、基本概念与原理三极管最主要的功能是(电流)放大((模拟)电路)和开关作用((数字电路)),常用的三极管有:S9014、S8550等型号。

三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。

由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

三极管最基本的作用是放大作用,它可以把微弱的电(信号)变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把(电源)的能量转换成信号的能量罢了。

三极管有一个重要参数就是电流放大系数β。

当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是基极电流β倍的电流,即集电极电流。

集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。

二、三极管放大(电路设计)与应用在电路设计当中,应用最多的当属三极管,它常常把微弱小信号经过放大来驱动蜂鸣器、(LED)、继电器等需要较大电流的器件。

三、三极管(开关电路)设计与应用(晶体管)作为开关使用时,要用PNP型来控制接Vcc的引线(作为下管),用NPN型的晶体管来控制接地的引线(作为上管);(P/N-MOS管也是同样道理)下面详细介绍10种三极管开关(驱动电路)图(1)NPN/PNP三极管反相器电路:Vin无输入电位,Q1截止;Vin高电平时Q1导通,Q2基极得高电位,Q2截止。

(2)两只NPN三极管反相器电路:Vin无输入电位Q1截止,Q2导通;Vin接入高电平Q1导通,促使Q2基极电位下级,Q2截止。

(3)PNP三极管开关电路:当输入端悬空时Q1截止。

VIN输入端接入低电平时,Q1导通,继电器吸合。

(4)PNP三极管开关电路:当Vin无输入电位时Q1截止;Vin 接入高电平Q1导通,继电器吸合。

pnp开关电路原理

pnp开关电路原理

pnp开关电路原理PNP开关电路原理PNP开关电路是一种基础的电路设计,它能够控制电路的开关,使电路的输出能够随着输入信号的变化而变化。

本文将介绍PNP开关电路的原理、设计和应用。

一、PNP管基本原理PNP管是由一层掺硼的p型半导体夹在两层掺磷的n型半导体中构成的三极管,它具有三个区域,在基区(B)加上一正偏电压(Vbe),可得到一个稳定的放大器。

PNP管的三个区域是集电区(C)、发射区(E)和基区(B),其中集电区和发射区是n型半导体,基区是p型半导体。

当PNP管的B极向正偏时,p类型半导体中的空穴进一步向B区扩散,形成一个少子(空穴)浓度大的区域,这个区域称为空穴耗尽区,由于B区中的空穴向n型半导体扩散,会使n型半导体中的电子大幅度增加,称为质子注入,形成两个载流子的扩散流,流入发射区,以及接近B区与接近C区两个集电极的夹层区域。

在正常工作时,发射极将n型半导体中大量的电子送入B区,与空穴结合,故进行放大器功能。

二、PNP开关电路的基本组成PNP开关电路包含三个主要组成部分:输入电路、控制电路和输出电路。

输入电路用于控制电路的输入,控制电路用于控制PNP管的导通和截止,输出电路用于连接负载。

(1)输入电路输入电路通常由一个高电平触发器和一个低电平触发器组成。

高电平触发器通过连接一个PNP管的基极,可以将PNP管置于导通状态,低电平触发器则可以将PNP管置于截止状态。

一般来说,输入电路可以根据实际应用需求进行设计,可以采用数字电路或模拟电路。

(2)控制电路控制电路主要负责控制PNP管的导通和截止。

控制电路一般由一个电容器和一个电阻器组成,电容器负责平滑输入信号,电阻器则负责确定PNP管的截止电压。

(3)输出电路输出电路负责连接负载。

输出电路通常由一个电阻器和一个PNP管组成,输出电阻器可以调节输出的电压,而PNP管则负责将电路的输出与负载相连接。

三、PNP开关电路的设计PNP开关电路的设计需要考虑多个因素,包括PNP管的特性、输入电路、控制电路、输出电路以及电路的特殊需求等。

三极管开关电路设计

三极管开关电路设计

三极管开关电路设计下面主要通过使用NPN三极管进行开关电路设计,PNP三极管的开关电路与NPN的类似。

一、三极管开关电路设计的可行性及必要性可行性:用过三极管的人都清楚,三极管有一个特性,就是有饱和状态与截止状态,正是因为有了这两种状态,使其应用于开关电路成为可能。

必要性:假设我们在设计一个系统电路中,有些电压、信号等等需要在系统运行过程中进行切断,但是又不能通过机械式的方式切断,此时就只能通过软件方式处理,这就需要有三极管开关电路作为基础了。

二、三极管基本开关电路概述如下(图.1)就是一个最基本的三极管开关电路,NPN的基极需连接一个基极电阻(R2)、集电极上连接一个负载电阻(R1)首先我们要清楚当三极管的基极没有电流时候集电极也没有电流,三极管处于截止状态,即断开;当基极有电流时候将会导致集电极流过更大的放大电流,即进入饱和状态,相当于关闭。

当然基极要有一个符合要求的电压输入才能确保三极管进入截止区与饱和区。

图.1 NPN基本开关电路三、三极管开关电路设计及分析(1)截止区、饱和区条件1、进入截止区条件:上面提到了要使三级管进入截止区的条件是当基极没有电流时候,但是在什么情况下能达到此要求呢?对硅三极管而言,其基极跟发射极接通的正向偏压约为0.6V,因此欲使三极管截止,基极输入电压(Vin)必须低于0.6V,以使三极管的基极电流为零。

通常在设计时,为了令三极管必定处于截止状态,往往使Vin值低于0.3V。

当然基极输入电压愈接近0V愈能保证三极管必处于截止状态。

2、进入饱和区条件:首先集电极要接一个负载电阻R1,基极要接一个基极电阻R2,如图.1所示。

欲将电流传送到负载上,则三极管的集电极与发射极必须短路。

因此必须使Vin达到足够高的电位,以驱动三极管进入饱和工作区工作。

三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则Vce便接近于0,而使三极管的集电极和发射极几乎呈短路。

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数2.1 NPN与PNP的区别NPN和PNP主要是电流方向和电压正负不同。

NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。

PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。

2.2 NPN和PNP作为开关的使用三极管做开关时,工作在截至和饱和两个状态。

一般是通过控制三极管的基极电压Ub 来控制三极管的导通与断开。

图1 NPN与PNP工作状态PNP NPN截止Ueb<Uon Ube<UonUb>Uc Uc>Ub放大Ueb>Uon Ube>UonUb>Uc Uc>Ub饱和Ueb>Uon Ube>UonUb<Uc Uc<Ub如上图1所示,对于NPN来说,使Ube<Uon,三极管断开,Ube>Uon,三极管导通,其中一般Ue接地,则只需控制Ub,使Ub>Uon即可使之导通。

对于PNP来说,使Ueb<Uon,三极管断开,Ueb>Uon,三极管导通,其中一般Uc接地,所以要使三极管导通既要控制Ue又要控制Ub使Ueb>Uon才行。

所以一般是Ue为某个固定电压值,只通过控制Ub来就可以控制三极管的导通与断开。

对比NPN与PNP可知:NPN做开关时,适合放在电路的接地端使用,如图2里面Q6; PNP 做开关时,适合放在电路的电源端使用,如图3。

我们一般使用芯片I/O口来控制LED灯,I/O口的逻辑电平一般为高电平3 V左右,低电平为0.3V左右。

因此可以直接控制NPN管开关,如图2里面的Q6;一般不直接控制PNP 管,如图3。

我们前控板设计LED的控制电路采用如下图2的NPN三极管对地较为合适,并且双色灯最好是使用共阳双色灯。

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数

NPN和PNP作为开关管的设计技巧以及全系列三极管参数NPN和PNP是两种常见的三极管类型,它们在电子设备中经常作为开关管来使用。

它们的设计技巧和参数对于正确选择和应用三极管至关重要。

下面将详细介绍NPN和PNP作为开关管的设计技巧以及全系列三极管参数。

设计技巧:1.极性选择:NPN和PNP是互补的三极管类型。

NPN三极管中,电流从发射极流入基极,再由集电极流出;而PNP三极管中,电流则从发射极流出基极,然后返回集电极。

选择极性要根据电路要求和输入/输出的电流方向来决定。

2.输入/输出电流:在设计开关电路时,需要确定所需的输入和输出电流。

这两个电流应该处于所选三极管的最大额定值内,以确保稳定和可靠的工作。

3.频率和速度:如果被驱动的负载要求高速开关,需选择具有较短开关时间和较高频率响应的三极管。

高频率的三极管可降低开关过程中的失真和功耗。

4.饱和和截止:饱和和截止是开关电路中的两个重要状态。

饱和状态下,三极管可以提供最大功率放大和最小电压降。

截止状态下,三极管是关闭的,没有电流通过。

根据电路的要求,选择合适的饱和和截止电流和电压参数。

全系列三极管参数:1.最大电流(Ic):这是三极管允许通过其集电极和发射极之间的最大电流。

应该选择一个可以满足所需负载电流的三极管。

2. 最大电压(Vceo):这是三极管在集电极和发射极之间的最大允许电压。

选择一个具有足够允许电压范围的三极管,以适应所驱动的负载电压。

3.最大功率(Pd):三极管最大允许的功率耗散。

应该选择一个具有足够高的最大功率值的三极管,以确保安全和可靠的工作。

4. 开关时间(ton和toff):开关时间是指三极管从饱和状态到截止状态或者从截止状态到饱和状态的过程时间。

要选择具有较短切换时间的三极管,以提高开关速度和响应。

5. 饱和电压降(Vce(sat)):在饱和状态下,三极管集电极和发射极之间的最小电压降。

低饱和电压降有助于减少功耗和电路效率。

三极管放大电路与开关电路的设计

三极管放大电路与开关电路的设计

三极管放大电路与开关电路的设计这一期中主要聊聊三极管,谈及三极管,但凡学过(模电)的都知道,先学了PN结,然后根据(二极管)单向导通性学的是二极管,紧接着学的就是三极管了。

三极管在模电中常常被用作放大的作用,但是在实际中也常常被用作开关作用,但是很多人在学了三极管后,就没有在实际中接触到三极管,同时也使用的是课本中“理想”的方法分析三极管电路,所以在应用中对三极管就非常“迷”,这一期首先通过课本的方式温习一遍由三极管组成的“共射电路”,然后通过查看datasheet的方式了解三极管的常用(参数),接着通过实际应用的方式,设计三极管放大电路与(开关电路)01基本共射电路结构图26 基本共射电路如图26所示,这是由NPN三极管组成的基本的共射电路,首先一个问题它为什么叫做共射电路?这是由于输入回路由基极和发射极组成,输出回路由集电极和发射极组成,由于发射极是两个回路的公共端,所以称该电路为共射放大电路,同理共基电路、共集电路也是这个原理起名的。

这里就不介绍三极管内部工艺,直接看共射电路常见的题目。

下图所示电路,已知Vcc=15V,β=100,Ube=0.7V。

请问:(1)、Rb=50kΩ时,输出电压Uo为多少?(2)、若T临界饱和,那么Rb至少为多少?图27 共射电路问题(1)首先求得基极(电流):再求得集电极电流:所以(电阻)Rc两端电压为:最后求得输出电压Uo为:那么怎么根据以上信息判断三极管T处于截止、饱和、放大区域呢?可以根据以下结论判断:截止区:发射结电压小于开启电压(反向偏置)且集电极反向偏置(集电结电压大于发射结电压):放大区:发射结正向偏置且集电极反向偏置:饱和区:发射结和集电结处于正向偏置:这里要注意发射结正偏和集电结正偏是不一样的,切勿搞混淆了。

这里三极管的发射结电压Ube=0.7V,集电结电压Uce=2V,所以:所以发射结正向偏置且集电结反向偏置,那么可以判断三极管处于放大区域。

芯电易:一键开关机的三极管开关电路设计经验分享

芯电易:一键开关机的三极管开关电路设计经验分享

一键开关机的三极管开关电路设计经验分享三极管开关电路是目前应用频率最频繁的开关电路形式之一,运用得当能够简化电路结构,并有效减少功耗。

今天我们将会在文章中,为大家分享一种能够做到一键开关机的三极管开关电路设计经验,大家一起来看看吧。

一个低功耗的一键开关机电路,这个电路的特点在于关机时所有三极管全部截止几乎不耗电。

原理很简单:利用Q10的输出与输入状态相反(非门)特性和电容的电流积累特性。

刚上电时Q6和Q10的发射结均被10K电阻短路所以Q6和Q10均截止,此时实测电路耗电流仅为0.1uA,L_out输出高,H_out输出低。

此时C3通过R22缓慢充电最终等于VCC电压,当按下S3后C3通过R26给Q10基极放电,Q10迅速饱和,Q6也因此饱和,H_out变为高电平,当C3放电到Q10be 结压降0.7V左右时C3不再放电,此时若按键弹开C3将进一步放电到Q10的饱和压降0.3V左右,当再次按下S3,Q10即截止。

这个电路可以完美解决按键抖动和长按按键跳档的问题,开关状态翻转只发生在按键接触的瞬间,之后即便按键存在抖动或长按按键的情况开关状态不会受到影响。

这是因为R22的电阻很大(相对R23,R26,R25)当C3电容的电压稳定后,R22远不足以改变Q10的开关状态,R22要能改变Q10的状态必须要等S3弹开后C3将流过R22的小电流累积存储,之后再通过S3的瞬间接触快速大电流释放从而改变Q10的状态。

非低功耗的三极管一键开关机电路:这个电路的原型来自互联网,参数有调整,原理和第一个低功耗电路相似在此不再赘述。

以上两个电路都深入了解之后再看本帖的主题一键三档电路:这个电路实际就是本帖前两个电路的融合,可以实现低功耗待机和1档、2档、关机等3个档位。

上电之初由于Q1,Q4,Q5的be结都并联了电阻,因此所有三极管都截止电路低功耗待机,C3开始充电到VCC电压。

当按下S1后,Q5饱和,同时Q1也因此饱和,L_out1输出低电平Q4截止—>Q3截止、Q2饱和,C3放电为0.3V(Q5的饱和压降)左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下面主要通过使用NPN三极管进行开关电路设计,PNP三极管的开关电路与NPN的类似。

一、三极管开关电路设计的可行性及必要性
可行性:用过三极管的人都清楚,三极管有一个特性,就是有饱和状态与截止状态,正是因为有了这两种状态,使其应用于开关电路成为可能。

必要性:假设我们在设计一个系统电路中,有些电压、信号等等需要在系统运行过程中进行切断,但是又不能通过机械式的方式切断,此时就只能通过软件方式处理,这就需要有三极管开关电路作为基础了。

二、三极管基本开关电路概述
如下(图.1)就是一个最基本的三极管开关电路,NPN的基极需连接一个基极电阻(R2)、集电极上连接一个负载电阻(R1)
首先我们要清楚当三极管的基极没有电流时候集电极也没有电流,三极管处于截止状态,即断开;当基极有电流时候将会导致集电极流过更大的放大电流,即进入饱和状态,相当于关闭。

当然基极要有一个符合要求的电压输入才能确保三极管进入截止区与饱和区。

图.1 NPN基本开关电路
三、三极管开关电路设计及分析
(1)截止区、饱和区条件
1、进入截止区条件:上面提到了要使三级管进入截止区的条件是当基极没有电流时候,但是在什么情况下能达到此要求呢?对硅三极管而言,其基极跟发射极接通的正向偏压约为0.6V,因此欲使三极管截止,基极输入电压(Vin)必须低于0.6V,以使三极管的基极电流为零。

通常在设计时,为了令三极管必定处于截止状态,往往使Vin值低于0.3V。

当然基极输入电压愈接近0V愈能保证三极管必处于截止状态。

2、进入饱和区条件:首先集电极要接一个负载电阻R1,基极要接一个基极电阻R2,如图.1所示。

欲将电流传送到负载上,则三极管的集电极与发射极必须短路。

因此必须使Vin达到足够高的电位,以驱动三极管进入饱和工作区工作。

三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则Vce便接近于0,而使三极管的集电极和发射极几乎呈短路。

在理想状况下,根据欧姆定律,
三极管呈饱和时,
1)集电极饱和电流应该为:
Ic(饱和)=Vcc/R1------------------(公式1)集电极饱和电流2)基极电流最少应为:
Ib(饱和)=Ic(sat)/β=Vcc/(β*R1)--------(公式2)基极饱和电流
上式表达出了Ic和Ib之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间有着甚大的差异。

欲使开关闭合,则其Vin值必须够高,以送出超过或等于(公式2)式所要求的最低基极电流。

由于基极回路只是一个基极电阻、基极与发射极接面的串联电路,故Vin可由下式来求解:3)基极输入电压Vin最少应为:
Vin=Ib(饱和)*R2 + 0.6V=====》Vin=(+0.6V*Vcc*R2)/(β*R1)----(公式3)基极饱和输入电压
一旦基极电压超过或等于(公式3)式所求得的数值,三极管便导通,即进入饱和区,使全部的供应电压均跨在负载电阻R1上,而完成了开关的闭合动作。

(2)实例分析之用三极管做为灯泡开关
如下电路图.2所示,灯泡的内阻为16欧姆,基极串接电阻为1K,三极管的直流电流增益为150,现在我们要确定Vin的电压为多少时候
可以使三极管处于截止、饱和状态,即可以使灯泡点亮或者熄灭。

图.2
1、灯泡熄灭
只要Vin小于0.3V,此时三极管进入截止区,集电极没有电流流过,灯泡自然就熄灭了。

2、灯泡点亮
要使灯泡点亮,则三极管的集电极必须有电流流过,即要进入饱和区。

根据公式可计算出:
集电极的饱和电流为(根据公式1):Ic(饱和)=24V/16R=1.5A
基极饱和电流为(根据公式2):Ib(饱和)=24V/(150*16)=10mA
基极输入电压为(根据公式3):Vin=10mA*1K+0.6V=10.6V 所以,当Vin大于或等于10.6V时候,灯泡就会点亮;反之,当Vin小
于或等于0.3V时候,灯泡会熄灭。

由此例子可以看出,欲利用三极管开关来控制大到1.5A的负载电流的启闭动作,只须要利用甚小的控制电压和电流即可。

此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其Vce趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。

(2)实例分析之用三极管做为电压输出开关
1、供电电压Vcc=9V;Vin使用MCU的GPIO口控制,输出电压为:0V与3.3V;要求Vout的输出电压为4V/10mA。

2、9014的技术参数:
集电极最大耗散功率PCM=0.4W(Tamb=25℃)
集电极最大允许电流ICM=0.1A集电极基极击穿电压BVCBO=50V集电极发射极击穿电压BVCEO=45V发射极基极击穿电压BVEBO=5V基极发射极饱和压降VBE(sat)=1V (IC=100mA; IB=5mA)
β=150
图.3
3、计算集电极上的电阻(R1)的值
集电极最大允许电流ICM=0.1A,所以
R1=Vcc/0.1A=9V/0.1A=90R,所以最小集电极的电阻为90R,我们不妨
定R1的电阻为10K。

所以我们取R1=10K。

由于Vout的电流输出最大为10mA,为了留够余量所以定为20mA或者30mA。

现在我们定为20mA,R1的功率为PR1=20mA*4V=0.08W<1/8。

最后
我们就可以定R1为10K贴片电阻(1/8W)。

4、计算负载电阻(R3的值)
当Vin=0V时候,三极管截止,9014的集电极没有电流流过,Vout的值是由R1、R2这两个电阻分压得来的。

根据分压我们就可以算出R3的电阻值了:R3=(R1*Vout)/(Vcc-Vout)=(10K*4V)/(9V-4V)=8K
由于8K电阻比较难买到,所以我们定一个较常见的8.2K,所以R3=8.2K 贴片电阻(1/8W)。

5、计算基极电阻(R2的值)
我们已经知道了Vin的上限为3.3V,根据公式1、2、3就可以计算
出R2的值了:
R2=(Vin-Vbe)*β*R1/VCC=(3.3V-1V)*150*10K/9V=383K,最后定R2=370K/贴片电阻
确定的参数:R1=10K/0603
R2=370K/0603
R3=8.2K/0603
测试结果:
Vin=3.3V时候:测试Vbe=0.567V接近于0.6V,三极管已经进入饱和区。

万用表上显示的是Vout为0.1V,实际上就是
Vce=0.1V<<4V。

Vin=0V时候:万用表上显示的是Vout为4.06V,即符合当初设想的4V电压输出。

图.4(Vin=3.3V)三极管进入饱和区
图.4(Vin=0V)三极管进入截止区。

相关文档
最新文档