第五章晶体中电子能带理论1小结

合集下载

固体物理-第5章-晶体中电子能带理论-5.9

固体物理-第5章-晶体中电子能带理论-5.9

Ⅰ.ΔZ的确定
在k空间作
E
k
E

E
k
E
E
两等能面,等能面间状态数ΔZ
V
在 k 空间,状态分布密度 2 3
Z
V
2
V 3
等能面E和E E之间
V
2
3
dsdk
dk----两等能面间的垂直距离; ds----k空间等值面上的面积元。
第五章 晶体中电子能带理论§5.9 等能面 能态密度
Ⅱ.关于ΔE
(1)电子热容是由费米面附近电子激发所引起;
(2)接触电势差是费米面附近的电子流动产生的;
(3)讨论金属电导问题时,认为电流是由于费米面附近 能态占据状况的变化所引起等。
第五章 晶体中电子能带理论§5.9 等能面 能态密度
问题1:等能面?能态密度?
一、等能面
K空间,电子的能量等于定值的曲面
对自由电子,能量:Ek
2
k
2
,等能面:同心球面.
2m
二、能态密度
能态密度N(E)定义:
若能量在E~E+E 之间的能态数目Z,则 N (E) lim Z E0 E
或N (E) dZ dE
第五章 晶体中电子能带理论§5.9 等能面 能态密度
N(E) 第五章 晶体中电子能带理论§5.9 等能面 能态密度
问题2: 费米面?
当T=0时,k空间中占有电子和不占有电子区域的分界面。
或k空间中能量为EF的等能面。
ky
费米球
费米面
EF
2 2m
kF 2
kx
kF
自由电子的费米面
第五章 晶体中电子能带理论§5.9 等能面 能态密度
费米能级EF

第五章 晶体中电子能带理论

第五章 晶体中电子能带理论

第五章固体电子论基础在前面几章中,我们介绍了晶体的结构、晶体的结合、晶格振动及热学性质以及晶体中缺陷与扩散,其内容涉及固体中原子(或离子)的状态及运动规律,属于固体的原子理论。

但要全面深入地认识固体,还必须研究固体中电子的状态及运动规律,建立与发展固体的电子理论。

固体电子理论的发展是从金属电子理论开始的。

金属具有良好的导热和导电能力,很早就为人们所应用的研究。

大约 1900年左右,特鲁德首先提出:金属中的价电子可以在金属体内自由运动,如同理想气体中的粒子,电子与电子、电子与离子之间的相互作用都可以忽略不计。

后来洛仑兹又假设:平衡时电子速度服从麦克斯韦——玻耳曼兹分布律。

这就是经典的自由电子气模型。

自由电子的经典理论遇到根据性的困难——金属中电子比热容等问题。

量子力学创立以后,大约在 1928年,索末菲提出金属自由电子论的量子理论,认为金属内的势场是恒定的,金属中的价电子在这个平均势场中彼此独立运动,如同理想气体中的粒子一样是“自由”的;每个电子的运动由薛定谔方程描述,电子满足泡利不相容原理,故电子不服从经典的统计分布而是服从费米——狄拉克统计律。

这就是现代的金属电子理论——通常称为金属的自由电子模型。

这个理论得到电子气对晶体热容的贡献是很小的,解决了经典理论的困难。

但晶体为什么会分为导体、绝缘体和半导体呢?上世纪30年代初布洛赫和布里渊等人研究了周期场中运动的电子性质,为固体电子的能带理论奠定了基础。

能带论是以单电子在周期性场中运动的特征来表述晶体中电子的特征,是一个近似理论,但对固体中电子的状态作出了较为正确的物理描述,因此,能带论是固体电子论中极其重要的部分。

本章首先讲述了金属的自由电子模型;然后介绍单电子在周期场中的运动;并用两种近似方法——近自由电子近似和紧束缚近似,讨论周期场中单电子的本征值和本征态,得出能带论的基本结果;在讲述晶体中电子的准经典运动后,介绍了金属、绝缘体和半导体的能带模型等。

晶体的能带理论

晶体的能带理论

晶体的能带理论一、能带理论(Energy band theory )概述能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。

它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。

即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。

二、能带的形成图11.电子共有化对于只有一个价电子的简单情况:电子在离子实电场中运动,单个原子的势能曲线表示如图1。

图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示)即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。

实际的晶体是三维点阵,势场也具有三维周期性。

图3分析:1.能量为E1的电子,由于E1小,势能曲线是一种势阱。

因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动;2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动;3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。

这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。

价电子受母原子束缚最弱,共有化最为显著!可借助图4理解电子共有化:图4晶体中大量的原子集合在一起,而且原子之间距离很近.致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。

晶体中电子的能带理论图解

晶体中电子的能带理论图解

晶体中电子的能带理论1.价电子的共有化模型设想物体由大量相同原子组成。

这些原子在空间的排列与实际晶体排列相同,但原子间距很大,使每一原子可看成自由原子,这时孤立原子中的电子组态及相应能级都是相同的,成为简并能级。

一原子中电子特别是外层电子(价电子)除受本身原子的势场作用外,还受到相邻原子的势场作用。

其结果这些电子不再局限于某一原子而可以从一个原子转移到相邻的原子中去,可以在整个晶体中运动,这就是所谓价电子的共有化。

布洛赫(F.Bloch)定理:周期势场中运动的电子其势能函数应满足周期性条件:U(x)=U(x+nl)其中:l为晶格常数(相邻格点的间距)n为任意整数电子满足定态薛定谔方程为:布洛赫证明:定态波函数一定具有下列特征:布洛赫定理说在周期场中运动的电子波函数Φ(x)为自由电子波函数与具有晶体结构周期的函数u(x)的乘积,具有这种形式的波函数称为布洛赫函数或称为布洛赫波。

克龙尼克—潘尼模型(Kronig-Penney Model)考虑一粒子处在一维周期性方势阱中的运动在0<x<l区域势函数为l=b1+b2在势阱内:其中则在势垒内:其中则由布洛赫定理:且有:再结合波函数的单值有限连续可得:由于-1<coskl<1对等式左侧的k1k2(或E)附加了限制。

令:超越方程为:f(E)=coskl K的变化使E变化,有的E可能使| f(E)|>1粒子不可能取这样的能量——禁带。

特例:对自由电子:k1=k2=k则:根据以上讨论,显然有在金属中要量子化。

2.固体能带在晶体中,原来的简并能级即自由原子中的能级分裂为许多和原来能级很接近的能级,形成能带。

理论计算表明,原先自由原子中电子的s能级分裂为和原来能级很接近N个能级,形成一个能带,称为s能带。

其中N为组成晶体的原子数。

例:N=6 (晶体由6个原子组成)结论:①分裂的新能级在一定能量范围内,一般不超过102eV数量级,而晶体原子数目N极大。

第五章 晶体中电子能带理论

第五章 晶体中电子能带理论

ˆ 具有晶格周期性。 因此晶体中单电子哈密顿量 H
ˆ ˆ ˆ ˆ ˆ T ( Rn ) H (r ) (r ) H (r Rn ) (r Rn ) H (r )T ( Rn ) (r )
ˆ, H ˆ ] HT ˆ ˆ TH ˆˆ 0 [T

Байду номын сангаас

n1 n2 n3 ˆ ˆ ˆ ˆ 可得到 T ( Rn ) (r ) T (a1 ) T (a2 ) T (a3 ) (r ) n1 n2 n3 (a1 ) (a2 ) (a3 ) (r ) ( Rn ) (r ) n1 n2 n3 即 ( Rn ) (a1 ) (a 2 ) (a 3 ) (a1 )、 (a2 )、 (a3 ) ? 设晶体在 a1、a 2、a3方向各有 N 1、N 2、N 3个原胞 ,
第五章 晶体中电子 能带理论
能带理论

能带论是目前研究固体中的电子状态,说明固体性质最重
要的理论基础。

能带理论是用量子力学的方法研究固体内部电子运动的理 论。它曾经定性地阐明了晶体运动的普遍特点,并进而说 明了导体与绝缘体、半导体的区别所在,解释了晶体中电 子的平均自由程问题。

能带论的基本出发点是认为固体中的电子不再是完全被束


, 2 e
ik a2
, 3 e
ik a3

( Rn ) e ---布洛赫定理 ik Rn (r Rn ) e (r )
ik Rn
( Rn ) e ik Rn (r Rn ) e (r ) ---布洛赫定理

第五章_晶体的能带理论

第五章_晶体的能带理论
2 ˆ (r ) H 2 (r ) V (r ) 2m 2 2 2 2 [ ] V ( r Rn ) 2 2 2 2m ( x Rnx ) ( x Rny ) ( x Rnz )
2 2 ˆ (r R ) ( r Rn ) V ( r Rn ) H n 2m
uk K n ( r ) a( k K n K h )eiK h r a( k K l )ei( K l K n )r
l h
k态和k+Kn态
实际是同一 电子态
k K ( r ) ei ( k K
n
n
)r
uk K n ( r )
eik r a(k K l )eiK l r k (r )
简约波矢,对应平移操作算符本征值量子数, 物理意义是原胞之间电子波函数的位相变化。
a3 a O
ˆ ( a ) ( r ) ( r a ) eik1 a1 ( r ) T 1 1
2
a1 O
O 波函数
O波函数
12
( Rn ) [ (a1 )]n [ (a2 )]n [ (a3 )]n
可以得到 即
ˆ ( R ) [T ˆ ( a )] n1 [ T ˆ ( a )] n2 [ T ˆ ( a )] n3 T n 1 2 3
ˆ ( R ) (r ) ( R ) (r ) [(a )]n1 [(a )]n2 [(a )]n3 (r ) T n n 1 2 3
l1 l1 l1 将 k b1 b2 b3 N1 N2 N3
bi bi k i 代入,得 2 2
Ni Ni li 2 2
i=1,2,3

能带理论课程总结

能带理论课程总结

能带理论课程总结能带理论是一种近似的理论,在固体中存在大量的电子,它们的运动是相互联系着的,每个电子的运动都要受到其它电子运动的牵连。

这种多电子系统严格的解显然是不可能的。

能带理论是单电子近似的理论,就是把每个电子的运动看成是独立的在一个等效势场中的运动。

能带理论的出发点是固体中的电子不再束缚于个别的原子,而是在整个固体内运动,称为共有化电子。

在讨论共有化电子的运动状态时假定原子实处在平衡位置,而把原子实偏离平衡位置的影响看成微扰,对于理想晶体,原子规则排列成晶格,晶格具有周期性,因而等效势场也具有周期性,晶体中的的电子就是在一个具有晶格周期性的等效势场中运动,其波动方程为:也有:为任意晶格矢量。

在研究能带理论时,我们往往通过近似模型的转化,将相关问题简单化。

通过假定体积为V=,有N个带正电荷Ze的例子是,结合系统哈密顿量和体系中的薛定谔方程,首先应用绝热近似的观点将系统哈密顿量简化,实现多粒子问题到多电子问题的转化,再通过单电子近似即用分离变量法对单个电子独立求解得单电子所受势场为:从而实现了多电子问题到单电子问题的转化,最后假定电子所受到的势场具有平移对称性即存在周期场近似,则把能带理论顺利转化为周期性场中的单电子近似问题了。

1、布洛赫定理布洛赫定理指出,当势场具有晶格周期性时,波动方程的解具有以下性质:上式就是布洛赫定理。

根据该定理得到波函数:即布洛赫函数。

Bloch 发现,不管周期势场的具体函数形式如何,在周期势场中运动的单电子的波函数不再是平面波,而是调幅平面波,其振幅也不再是常数,而是按晶体的周期而周期变化。

具体波动图像如下所示:2、近自由电子模型在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的。

因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰来求解。

近自由电子(NFE)模型的定性描述:在NFE 模型中,是以势场严格为零的Schrödinger方程的解(即电子完全是自由的)为出发点的,但必须同时满足晶体平移对称性的要求,我们称之为空格子模型。

固体物理-第5章-晶体中电子能带理论-5.11

固体物理-第5章-晶体中电子能带理论-5.11
导体的电阻率 ~ 106 cm 半导体的电阻率 ~ 102 109 cm 绝缘体的电阻率 ~ 1014 1022 cm
问题1:导体、绝缘体和半导体的能带论解释?
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
一、满带电子不导电
晶体中电子能量 En (k ) En (k )
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
金属和绝缘体的转变:Wilson转变
任何非导体材料在足够大的压强下可以实现价带和
导带的重叠,从而呈现金属导电性。
(金属化压强)
典型例子:低温下固化的隋性气体在足够高的压强 下可以发生金属化的转变。
Xe在高压下5d能带和6s能带发生交叠,呈现金属 化转变。
空带 禁带
空带 禁带
导体
有导带
绝缘体
绝缘体禁带宽
半导体
半导体禁带窄
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
取决于
晶体是否为导体
电子在能带中的分布情况 关键:是否具有不满的能带?
第五章 晶体中电子能带理论§5.11 导体、半导体和绝缘体
满带、导带、近满带和空带 (1)满带:能带中所有电子状态都被电子占据。 (2)导带:电子参与导电的能带。 (3)近满带:能带中大部分电子状态被电子占据,只有少数空态。 (4)空带:能带中所有电子状态均未被电子占据。 (5)价带:由价电子能级分裂而形成的能带。
电子受力
F
eE
动量的变化
d (k
)
F
dt
dk
1
eE
dt
即所有电子以相同速度沿电场反向运动

第五章晶体中电子能带理论习题解答

第五章晶体中电子能带理论习题解答

晶体中电子能带理论思考题1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数)()(r r k.r k i k u e =ψ,对比本教科书(5.1)和(5.39)式可得)(r k u =rKK .)(1m i mm e a N ∑Ω.对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略.当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足)(n R r +ψ=)(r n k.R ψi e ,何以见得上式中k 具有波矢的意义? [解答]人们总可以把布洛赫函数)(r ψ展成付里叶级数rK k'h K k r ).()'()(h i he a +∑+=ψ,其中k ’是电子的波矢. 将)(r ψ代入)(n R r +ψ=)(r n k.R ψi e ,得到n k'.R i e =n k.R i e .其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答]波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N . 由于N 是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的.4. 4. 与布里渊区边界平行的晶面族对什么状态的电子具有强烈的散射作用? [解答]当电子的波矢k 满足关系式)2(=+⋅n n Kk K时, 与布里渊区边界平行且垂直于n K 的晶面族对波矢为k 的电子具有强烈的散射作用. 此时, 电子的波矢很大, 波矢的末端落在了布里渊区边界上, k 垂直于布里渊区边界的分量的模等于2/n K .5. 5. 一维周期势函数的付里叶级数nx ainn eV x V π2)(∑=中, 指数函数的形式是由什么条件决定的?[解答]周期势函数V (x ) 付里叶级数的通式为xi nn n e V x V λ∑=)(上式必须满足势场的周期性, 即xi nn a i x i nn a x i nn n n n n e V x V e e V e V a x V λλλλ∑∑∑====++)()()()(.显然1=a i n e λ.要满足上式, n λ必为倒格矢n a n πλ2=.可见周期势函数V (x )的付里叶级数中指数函数的形式是由其周期性决定的.6. 6. 对近自由电子, 当波矢k 落在三个布里渊区交界上时, 问波函数可近似由几个平面波来构成? 能量久期方程中的行列式是几阶的? [解答]设与三个布里渊区边界正交的倒格矢分别为321K ,K ,K , 则321K ,K ,K 都满足321 ,0)2(K ,K ,K K K k K ==+⋅n nn , 且波函数展式rKk K r ).()(1)(m i mm k e a N +∑=Ωψ中, 除了含有)( ,)( ,)( ,)0(321K K K a a a a 的项外, 其它项都可忽略, 波函数可近似为])( ,)( ,)( ,)0([1)().(3).(2).(1.321r K k r K k r K k r k k K K K r +++=i i i i e a e a e a e a N Ωψ.由本教科书的(5.40)式, 可得0)()()()()()()0()(233221122=-+-+-+⎥⎦⎤⎢⎣⎡-K K K K K K k a V a V a V a E m k , 0)()()()()()(2)0()(3312211221=-+-+⎥⎦⎤⎢⎣⎡-+K K K K K K K k K a V a V a E m k a V , 0)()()()(2)()()0()(3322221122=-+⎥⎦⎤⎢⎣⎡-+-+K K K K k K K K K a V a E m k a V a V , 0)()(2)()()()()0()(3222231133=⎥⎦⎤⎢⎣⎡-+-+-+K k K K K K K K K a E m k a V a V a V .由)( ,)( ,)( ,)0(321K K K a a a a 的系数行列式的值)(2)()()()()(2)()()()()(2)()()()()(222231333222122312122132122=⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡-k K K K K K K K k K K K K K K K k K K K K k E m k V V V V E m k V V V V E m k V V V V E m k .可解出电子的能量. 可见能量久期方程中的行列式是四阶的.7. 7. 在布里渊区边界上电子的能带有何特点? [解答]电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度)(2n K V E g =,)(n K V 是周期势场的付里叶级数的系数.不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交.8. 8. 当电子的波矢落在布里渊区边界上时, 其有效质量何以与真实质量有显著差别? [解答]晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F , 晶格对电子的作用力为F l , 电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , 又要保持上式左右恒等, 则只有Fa *1m =.显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m 的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m *与真实质量m 的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别.9. 9. 带顶和带底的电子与晶格的作用各有什么特点? [解答]由本教科书的(5.88)和(5.89)两式得m m m lF F F +=*.将上式分子变成能量的增量形式m tm t m t l d d d *ννν⋅+⋅=⋅F F F , 从能量的转换角度看, 上式可表述为mE mE m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=.由于能带顶是能带的极大值,22k E∂∂<0,所以有效质量222*k E m ∂∂= <0.说明此时晶格对电子作负功, 即电子要供给晶格能量, 而且电子供给晶格的能量大于外场力对电子作的功. 而能带底是该能带的极小值,22k E∂∂>0,所以电子的有效质量222*k E m ∂∂= >0.但比m 小. 这说明晶格对电子作正功. m*<m 的例证, 不难由(5.36)式求得n nV T mm 211*+=<1.10. 电子的有效质量*m 变为∞的物理意义是什么? [解答]仍然从能量的角度讨论之. 电子能量的变化m E m E m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=[]电子对晶格作的功外场力对电子作的功)d ()(d 1E E m -=.从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量*m 变为∞. 此时电子的加速度1*==F a m ,即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反. 11. 万尼尔函数可用孤立原子波函数来近似的根据是什么? [解答]由本教科书的(5.53)式可知, 万尼尔函数可表示为∑-=k R r k r ,R ),(1)(n n N W ααψ.紧束缚模型适用于原子间距较大的晶体. 在这类晶体中的电子有两大特点: (1) 电子被束缚在原子附近的几率大, 在原子附近它的行为同在孤立原子的行为相近, 即当r →R n 时, 电子波函数) ,(n R r k -αψ与孤立原子波函数)(n at R r -αϕ相近. (2) 它远离原子的几率很小, 即r 偏离R n 较大时, 2) ,(n R r k -αψ很小. 考虑到r 偏离R n 较大时,2)(n atR r -αϕ也很小, 所以用)(n atR r -αϕ来描述) ,(n R r k -αψ是很合适的. 取 ) ,(n R r k -αψ=)(k μ)(n atR r -αϕ. 将上式代入万尼尔函数求和中, 再利用万尼尔函数的正交性, 可得=)(r ,R n W α)(n atR r -αϕ. 也就是说, 万尼尔函数可用孤立原子波函数来近似是由紧束缚电子的性质来决定的.12. 紧束缚模型电子的能量是正值还是负值? [解答]紧束缚模型电子在原子附近的几率大, 远离原子的几率很小, 在原子附近它的行为同在孤立原子的行为相近. 因此,紧束缚模型电子的能量与在孤立原子中的能量相近. 孤立原子中电子的能量是一负值, 所以紧束缚模型电子的能量是负值. s 态电子能量(5.60)表达式∑⋅--=ni s s at s s ne J C E E R k k )(即是例证. 其中孤立原子中电子的能量ats E 是主项, 是一负值, s s J C --和是小量, 也是负值.13. 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么? [解答]以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分r R r R r r r d )()]()([)(*n ats n at N at s s V V J ----=⎰ϕϕΩ的大小又取决于)(r at sϕ与相邻格点的)(n at sR r -ϕ的交迭程度. 紧束缚模型下, 内层电子的)(r at s ϕ与)(n at s R r -ϕ交叠程度小, 外层电子的)(r at s ϕ与)(n at s R r -ϕ交迭程度大. 因此, 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽. 14. 等能面在布里渊区边界上与界面垂直截交的物理意义是什么? [解答]将电子的波矢k 分成平行于布里渊区边界的分量//k 和垂直于布里渊区边界的分量k ┴. 则由电子的平均速度)(1k E k ∇=ν得到////k ∂ , ⊥⊥∂∂=k E 1ν.等能面在布里渊区边界上与界面垂直截交, 则在布里渊区边界上恒有⊥∂∂k E /=0, 即垂直于界面的速度分量⊥ν为零. 垂直于界面的速度分量为零, 是晶格对电子产生布拉格反射的结果. 在垂直于界面的方向上, 电子的入射分波与晶格的反射分波干涉形成了驻波. 15. 在磁场作用下, 电子的能态密度出现峰值, 电子系统的总能量会出现峰值吗? [解答]由(5.111)式可求出电子系统的总能量⎰∑⎰=-==FFE ln E n b E EaE E E EN U 0002/1][d d )(∑=⎭⎬⎫⎩⎨⎧-=ln n F b a b E a 0n 2/32/3)(32-][32 {}∑=-=ln n F n b a b E ab 0n 2/3)(2-2其中m eB n b m V a c c n cc =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=ωωπω,21 ,282/322 . 对系统的总能量求微商B U ∂∂/, 其中有一项∑=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-ln F n m eB n E m e n ab 02121 . 可见, 每当F E m eB n =⎪⎭⎫ ⎝⎛+ 21时, 总能量的斜率B U ∂∂/将趋于∞, 也即出现峰值.16. 在磁场作用下, 电子能态密度的峰值的周期是什么? 简并度Q 变小, 峰值的周期变大还是变小? [解答]由(5.111)式可知, 在磁场作用下, 电子的能态密度cln c c n E m V E N ωπω ⎪⎭⎫ ⎝⎛+-=∑=211)2(8)(02/322.从上式不难看出, 能量E 分别等于c c c c l ωωωω 212... ,25 ,23 ,21+时, 能态密度都出现峰值. 相邻峰值间的能量差, 即峰值的周期为c ω .由(5.109)式可知, 简并度yx π2.其中yx L L 和分别是晶体在x 方向和y 方向的尺寸. 因为峰值的周期正比于c ω, 所以简并度Q 变小, 峰值的周期也变小.17. 当有电场后, 满带中的电子能永远漂移下去吗? [解答]当有电场后, 满带中的电子在波矢空间内将永远循环漂移下去, 即当电子漂移到布里渊区边界时, 它会立即跳到相对的布里渊区边界, 始终保持整体能态分布不变. 具体理由可参见图5.18及其上边的说明.18. 一维简单晶格中一个能级包含几个电子? [解答]设晶格是由N 个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N 个电子. 由于电子的能带是波矢的偶函数, 所以能级有(N /2)个. 可见一个能级上包含4个电子. 19. 本征半导体的能带与绝缘体的能带有何异同? [解答]在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献. 20. 加电场后空穴向什么方向漂移? [解答]加电场ε后空穴的加速度h m e t εν=d d ,其中h m 是空穴的质量, 是正值. 也就是说, 空穴的加速度与电场ε同方向. 因此, 加电场ε后空穴将沿电场方向漂移下去.。

能带理论--能带结构中部分概念的理解小结

能带理论--能带结构中部分概念的理解小结

本文是关于能带结构概念部分学习的小结,不保证理解准确,欢迎高中低手们批评指教,共同提高。

能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。

能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。

1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。

一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。

因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

2. 能带用来定性地阐明了晶体中电子运动的普遍特点。

价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。

在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。

对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。

对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。

3. 费米能级(Fermi level)是绝对零度下电子的最高能级。

根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。

“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。

海平面即是费米能级。

一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。

成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。

4. 能量色散(dispersion of energy)。

能带理论(1)(单电子近似和Bloch定理))

能带理论(1)(单电子近似和Bloch定理))
T f (r) f (r a ), 1, 2, 3
其中a1, a2, a3 为晶格的三个基矢。 平移算符T1, T2, T3是相互对易的。
TT f (r) T f (r a ) f (r a a ) TT f (r)
TT TT 0
H 2 2 V (r) 2m
平移算符与Hamiltonian 也是对易的。
1. 服从泡里不相容原理(费米子) 2. 服从能量最小原理 设孤立原子的一个能级 Enl ,它最多能容 纳 2 (2 +1)个电子。
这一能级分裂成由 N条能级组成的能带后, 能带最多能容纳2N(2 +1)个电子。
电子排布时,应从最低的能级排起。
有关能带被占据情况的几个名词:
1.满带(排满电子) 2. 价带(能带中一部分能级排满电子)
对于晶体电子在周期性势场中的运动满足schordinger方程多电子单电子描写晶体周期性势场中的单电子运动2bloch为了描述晶格的平移对称性引入平移算符t为晶格的三个基矢
固体电子论(II):能带理论
电子共有化 固体具有大量分子、原子或离子有规则 排列的点阵结构。
电子受到周期性势场的作用。
解定态薛定格方程(略), 可以得出两点重要结论:
un (k,r) un (k,r Rm )
• Bloch波是周期性调幅的平面波!周期性结构 中的波,都具有Bloch波的形式
n (k,r) eikrun (k,r)
un (k,r) un (k,r Rm )
• Bloch波是调幅的平面波eik.r,调幅函数un(k,r) 具有与晶体相同的周期性
• 为什么电子平均自由程那么大?电子在整个晶 体中运动,不再束缚于个别原子,共有化运动! 如果不考虑电-声子相互作和杂质缺陷等的散 射作用,Bloch电子的平均自由程是无限大。

18、第五章晶体中电子能带理论-布洛赫波函数

18、第五章晶体中电子能带理论-布洛赫波函数
德鲁德模型和索末菲模型都是把金属中导电的电子看成自由电子。
量子自由电子理论可以作为一种零级近似而归入能带理论。
第五章 晶体电子能带理论
第2页
第五章 晶体电子能带理论
1928年:美国物理学家布洛赫(1905-1983)(出生 于瑞士的苏黎世)
考虑了晶格周期电势对电子的运动状态的影响,提出 了能带理论 清楚地给出了固体中电子动量和能量的多重关系,比 较彻底地解决了固体中电子的基本理论问题 建立了对包括金属、半导体、绝缘体的固体电性质的 统一理论。
Page 15
引进平移算符 Tˆ
其作用于任何函数 f ( x) 上的结果是使坐标x平移n个周期
Tˆf ( x) f ( x a) Tˆn f ( x) f ( x na)
(7) (8)
平移算符与哈密顿算符对易,即对于任意函数 f ( x)
第五章 晶体电子能带理论
第 15 页
§5.1 布洛赫波函数
第三项和第四项:是N个离子实的动能和库仑相互作用势能;
最后一项:是电子与离子实之间的库仑相互作用势能。
这是一个量级为 1023 / cm3 的NZ+N多体问题,无法直接求解,需要做一些
假设和近似,主要有三点:
第五章 晶体电子能带理论
第6页
第五章 晶体电子能带理论
Page 7
1、绝热近似
基于电子和离子实在质量上的巨大差别,电子的速度远大于原子核 的速度。因此,在考虑电子的运动时,认为核不动,而电子是在固定不 动的原子核(离子实)产生的势场中运动。
代表电子i与所有其它电子的相互作用势能,它不仅考虑了
其它电子对电子i的相互作用,而且也计入了电子i对其它电子的影响。
第五章 晶体电子能带理论
第8页

第五章 晶体中电子能带理论讲解

第五章 晶体中电子能带理论讲解
的数量级,这是一个非常复杂多体问题,不做简
化处理根本不可能求解。
I.
Born - Oppenheimer (波恩 - 奥本海默)近似(绝热近
似):离子实质量比电子大,运动慢,而电子对离子的
运动响应非常迅速,以至于认为离子固定在瞬时位置上 。所有原子核都周期性地静止排列在其格点位置上, 电 子围绕着原子核在其固有势场中做高速运动。在这种近 似模型下原子核的动能等于零,而势能则是一个固定的
ˆ, H ˆ ] 0 证明平移算符与哈密顿算符对易:[T
ˆ 两者具有相同的本征函数:T

( Rn ) ei k R
n
利用周期性边界条件 确定平移算符的本征值,给出电子波函数的形式式
1、平移对称算符 T ( Rn )
T ( Rn ) f ( r ) f ( r Rn )
能带论的三个基本(近似)假设:

假定在体积 V=L3 晶体中有N 个带正电荷 Ze 的离子实,相应
地有NZ个价电子,那么该系统的哈密顿量为:

哈密顿量中有5部分组成,前两项为电子的动能和电子之间 的相互作用能,三、四项为离子实动能和相互作用能 ,第五 项为电子与离子实之间的相互作用能。

由于晶体中离子和电子数密度通常在1029/ 平方米
2. 布洛赫定理
当势场具有晶格周期性时,波动方程的解具有如下性质:
ik Rn ( r Rn ) e ( r ),
其中 k 为电子波矢, Rn n1 a1 n2 a2 n3 a3 是格矢。
布洛赫定理的证明
步骤
引入平移算符:T ( Rn )
到的原子实和其余电子的相互作用势具有平移对称性。

能带理论5电子能带理论

能带理论5电子能带理论
为张量,一般情况下
3.一维情况
为标量,但标量并不等于是常量,m*也与能带结构有关。
4.仍以一维情况为例。设m为电子的惯性质量,FL为电子所受到的晶格场力;F外为电子所受到的晶体以外产生的场所施加的力。dv/dt=1/m·F=1/m(F外+FL)与dv/dt=1/m*F外比较,显然FL的影响包含m*中去了。比较可得
考虑固体中单电子的薛定谔方程:
式中哈密顿量的第一项是电子的动能,第二项是晶体势场;
是第n个能带且具有动量k的能级;
晶体势场可以表述为原子势场
这里
是晶格矢量,
是第l个原胞中第a 个原子的位矢。
的线性叠加,即
描述固体中电子的波函数。
波函数
可用LCAO的基矢
来展开
第l个原胞中第a个原子的第j个轨道,N是单位体积的晶格数目。
体心立方晶格的第一布里渊区
体心立方晶格的倒格子是面心立方格子。本图中用实心圆点标出了倒格点。在倒空间中画出它的第一布里渊区。如果正格子体心立方体的边长是a,则倒格子为边长等于4π/a的面心立方。
主要的对称点: Γ: ;H: ; P: ;N:
§6 紧束缚方法
三.导体 半导体和绝缘体
在非导体中,电子恰好填满最低的一系列能带(通常称为价带),其余的能量较高的能带(通常称为导带)中没有电子。由于满带不产生电流,尽管晶体中存在很多电子,无论有无外场力存在,晶体中都没有电流。
在导体中,部分填满能带(通常也称为导带)中的电子在外场中将产生电流。
本征半导体和绝缘体的能带填充情况是相同的,只有满带和空带,它们之间的差别只是价带和导带之间的能带隙(band gap)宽度不同,本征半导体的能隙较小,绝缘体的能隙较大。本征半导体由于热激发,少数价带顶的电子可能激发到导带底,在价带顶造成空穴,同时在导带底出现传导电子,产生所谓本征导电。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

布洛赫电子(Bloch electron) 把遵从周期势单电子薛定谔方程的电子,或用布洛赫波 函数描述的电子称为布洛赫电子,相应的描述晶体电子行 为的这种波称为布洛赫波。
布洛赫定理的证明 对属于布拉维格子的所有格矢 Rn ,只要证得
(r Rn ) eik •Rn (r ) 即可。
证 明 思
格子的所有格矢,则单电子薛定谔方程:
H
(r
)
2
2m
2
V
r
(r是按布拉维格子周期性调幅的平面波,即
k (r) eik
ruk (r )

u k
r
u k
r Rn
对 Rn 取布拉维格子的所有格矢成立。 Rn n1a1 n2a2 n3a3
(r Rn ) eik•Rn (r )
(1)引入平移对称算符 T Rn
(2)说明: [Tˆ , Hˆ ] 0
路 (3) Tˆ (Rn ) eikRn Rn n1a1 n2a2 n3a3
波矢k的取值与物理意义
k l1b1 l2b2 l3b3 N1 N2 N3
l1, l2 , l3 为整数 取分立值
(Rn ) eikRn
第五章 晶体中电子能带理论
模型的建立
绝热近似 单电子近似 周期场近似
将复杂的多粒子体系问题简化为周期场中单电子的运动
§5.1 布洛赫波函数
一、 布洛赫定理及证明 (有关周期场中单电子薛定谔方程的本征函数)
二、 波矢k的取值与物理意义
布洛赫定理(Bloch theorem)及证明
布洛赫定理:
对于周期性势场,即 V r V r Rn 其中 Rn 取布拉维
N Ω V 为晶体的体积
在第一布里渊区内,电子的波矢数目等于晶体的原胞 数目N=N1N2N3。在波矢空间内,由于N的数目很大,波 矢点的分布是准连续的。
电子的波矢密度为: V
(2π)3
k l1b1 l2b2 l3b3 N1 N2 N3
(Rn ) eikRn ei(k Kh )Rn
为使 k 与本征值一一对应,必须把波矢 k 的取值限制在
一个倒格子原胞区间内(第一布里渊区)
k取值是量子化的,在 k 空间均匀分布,一个 k 值
平均占据体积:
k b1 ( b2 b3 ) Ω* (2π)3 (2π)3 N1 N2 N3 N N Ω V
相关文档
最新文档