人教版高中数学必修第一册全册优质课件【精品】
合集下载
人教版(新教材)高中数学第一册(必修1)精品课件5:4.3.2 对数的运算
3.判断正误(正确的打“√”,错误的打“×”)
(1)积、商的对数可以化为对数的和、差.( )
(2)loga(xy)=logax·logay.( ) (3)log2(-5)2=2log2(-5).( )
(4)由换底公式可得 logab=lloogg- -22ba.(
)
[答案] (1)√ (2)× (3)× (4)×
针对训练 1.计算: (1)log535-2log573+log57-log51.8; (2)log2 478+log212-12log242-1; (3)12lg4392-43lg 8+lg 245.
[解] (1)原式=log5(5×7)-2(log57-log53)+log57-log595 =log55+log57-2log57+2log53+log57-2log53+log55=2. (2)原式=log2 478+log212-log2 42-log22 =log2 48×7×1422×2=log221 2
=2llgg23··l2gl3g2=4. ②原式=lologg55132·lologg73794=log13 2·log3 49
1 =lglg312·lglg394=-2llgg23··223llgg32=-32.
(2)[证明] ①logab·logba=llggab·llggab=1. ②loganbn=llggbann=nnllggba=llggab=logab.
题型二 对数换底公式的应用 典例 2 (1)计算:①log29·log34; ②log5 2×log79 .
log531×log73 4 (2)证明:①logab·logba=1(a>0,且 a≠1;b>0,且 b≠1); ②loganbn=logab(a>0,且 a≠1,n≠0).
人教版高中数学必修第一册第一章优质课件
概念求解. 【解】 由题设可知,一方面A是集合{a,b,c, d}的子集,另一方面A又真包含集合{a,b},故集 合A中至少含有两个元素a,b,且含有c,d两个元 素中的一个或两个. 故满足条件的集合有{a,b,c},{a,b,d},{a, b,c,d}.
【名师点拨】 (1)正确区分子集与真子集概 念是解题的关键.(2)写一个集合的子集时, 按子集中元素个数的多少,以一定顺序来写 不易发生重复和遗漏现象.
集合常用大写字母表示,如集合A,集合B... 元素则常用小写字母表示,如a,b...
3.集合元素的性质 (1)确定性:集合中的元素必须是确定的. 如果a是集合A的元素,就说a属于集合A,
记作a ∈ A; 如果a不是集合A的元素,就说a不属于集合A,
记作a A.
(2)互异性:集合中的元素必须是互不相同的.
子 集
是集合B中的元 素,我们就说 这两个集合有 包含关系,称
A⊆B ______
或 __B_⊇_A__
(2)设A为任何 一个集合,则 A_⊆__A;规定:
∅_集__
4.集合相等与真子集
名 称
定义
符号
集
如果
合 相
__A__⊆_B_且__B_⊆_A____, 那么就说集合A与
知新益能
1.Venn图的概念 用平面上__封__闭__曲__线___的内部代表集合,这种图 称为Venn图. 2.空集的定义 不含任何元素的集合叫做__空__集____,记作__∅___. 3.子集
名 称
定义
符号
Venn图 表示
性质
如果集合A中任
(1)A⊆B,
意一个元素都
B⊆C⇒_A_⊆__C__;
练习
1.用符号“ ”或“ ”填空
【名师点拨】 (1)正确区分子集与真子集概 念是解题的关键.(2)写一个集合的子集时, 按子集中元素个数的多少,以一定顺序来写 不易发生重复和遗漏现象.
集合常用大写字母表示,如集合A,集合B... 元素则常用小写字母表示,如a,b...
3.集合元素的性质 (1)确定性:集合中的元素必须是确定的. 如果a是集合A的元素,就说a属于集合A,
记作a ∈ A; 如果a不是集合A的元素,就说a不属于集合A,
记作a A.
(2)互异性:集合中的元素必须是互不相同的.
子 集
是集合B中的元 素,我们就说 这两个集合有 包含关系,称
A⊆B ______
或 __B_⊇_A__
(2)设A为任何 一个集合,则 A_⊆__A;规定:
∅_集__
4.集合相等与真子集
名 称
定义
符号
集
如果
合 相
__A__⊆_B_且__B_⊆_A____, 那么就说集合A与
知新益能
1.Venn图的概念 用平面上__封__闭__曲__线___的内部代表集合,这种图 称为Venn图. 2.空集的定义 不含任何元素的集合叫做__空__集____,记作__∅___. 3.子集
名 称
定义
符号
Venn图 表示
性质
如果集合A中任
(1)A⊆B,
意一个元素都
B⊆C⇒_A_⊆__C__;
练习
1.用符号“ ”或“ ”填空
人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系
[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D
高中数学必修一全册课件(精校版)
函数的表示方法
函数的表示方法主要有三种,即解析法、列表法和图象法。解析法是用数学表达式表示两个变 量之间的对应关系;列表法是通过列表给出部分自变量与函数的对应值;图象法是用图象表示 两个变量之间的对应关系。
函数的基本性质
函数的单调性
函数的奇偶性
函数的周期性
函数的单调性是指函数在某个 区间上的增减情况。如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x) 在区间I上是增函数;如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x) 在区间I上是减函数。
,记作A=B。
空集
不含任何元素的集合叫做空集, 记作∅。空集是任何集合的子集 ,是任何非空集合的真子集。
集合的基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,叫做集合A与集合B的并集,记作A∪B。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,叫做集合A与集合B的交集,记作A∩B。
平面外一条直线与此平面内的一 条直线平行,则该直线与此平面 平行。
平面与平面平行的判定
一个平面内的两条相交直线与另 一个平面平行,则这两个平面平 行。
平行直线的性质
平行于同一直线的两条直线互相 平行;平行线间距离相等;平行 线间同位角、内错角相等。
直线与直线平行的判定
同位角相等,或内错角相等,或 同旁内角互补。
02
基本初等函数(Ⅰ)
指数函数
1 2ห้องสมุดไป่ตู้3
指数函数的概念
形如y=a^x(a>0且a≠1)的函数叫做指数函数 。
函数的表示方法主要有三种,即解析法、列表法和图象法。解析法是用数学表达式表示两个变 量之间的对应关系;列表法是通过列表给出部分自变量与函数的对应值;图象法是用图象表示 两个变量之间的对应关系。
函数的基本性质
函数的单调性
函数的奇偶性
函数的周期性
函数的单调性是指函数在某个 区间上的增减情况。如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x) 在区间I上是增函数;如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x) 在区间I上是减函数。
,记作A=B。
空集
不含任何元素的集合叫做空集, 记作∅。空集是任何集合的子集 ,是任何非空集合的真子集。
集合的基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,叫做集合A与集合B的并集,记作A∪B。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,叫做集合A与集合B的交集,记作A∩B。
平面外一条直线与此平面内的一 条直线平行,则该直线与此平面 平行。
平面与平面平行的判定
一个平面内的两条相交直线与另 一个平面平行,则这两个平面平 行。
平行直线的性质
平行于同一直线的两条直线互相 平行;平行线间距离相等;平行 线间同位角、内错角相等。
直线与直线平行的判定
同位角相等,或内错角相等,或 同旁内角互补。
02
基本初等函数(Ⅰ)
指数函数
1 2ห้องสมุดไป่ตู้3
指数函数的概念
形如y=a^x(a>0且a≠1)的函数叫做指数函数 。
人教版(新教材)高中数学第一册(必修1)精品课件3:1.3 第1课时 并集与交集
解析 ∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.
D.{1,5}
∴B={x|x2-4x+3=0}={1,3}.
答案 C (3)集合A={(x,y)|x>0},B={(x,y)|y>0},求A∩B并说明其几何意义.
(3)图形语言:
、
.阴影部分为 A∪B.
(4)性质:A∪B=_____B_∪__A____,A∪A=___A_____,A∪∅=___A_____,A∪
B=A⇔___B_⊆__A______,A____⊆____A∪B.
[微体验]
1.集合A={1,2,3,4},B={1,3,5,7},则A∪B=( )
(1)两集合用列举法给出:①依定义,直接观察求并集;②借助Venn图 写并集. (2)两集合用描述法给出:①直接观察,写出并集;②借助数轴,求出 并集. (3)一个集合用描述法,另一个用列举法:①直接观察,找出并集;② 借助图形,观察写出并集. 提醒:若两个集合中有相同元素,在求其并集时只能算作一个.
A.{1,3}
B.{1,2,3,4,5,7}
C.{5,7}
D.{2,4,5,7}
解析 集合A与B所有的元素是1,2,3,4,5,7,A∪B={1,2,3,4,5,7}. 答案 B
2.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )
A.{x|-1<x<3}
B.{x|-1<x<0}
(3)图形语言:
,阴影部分为 A∩B.
(4)性质:A∩B=_____B_∩__A____,A∩A=____A____,A∩∅=____∅____, A∩B=A⇔____A_⊆_B______,(A∩B)____⊆____(A∪B),(A∩B)____⊆____A,
人教版(新教材)高中数学第一册(必修1)精品课件1:3.1.2 函数的表示法
3.对分段函数的四点说明 (1)分段函数在各段上自变量的取值范围不可能有公共部分. (2)分段函数是一个函数,只是各段上对应法则不同而已. (3)图象:分段函数的图象由几部分构成,有的可以是光滑的曲线,有的 也可以是一些孤立的点、线段、射线、直线等. (4)求值关键:求分段函数的某些函数值的关键是“分段归类”,即自变 量的取值属于哪一段,就用哪一段的解析式,一定要坚持定义域优先的 原则.
Байду номын сангаас
答案 C
知识点2 分段函数
(1)前提:在函数的定义域内. (2)条件:在自变量x的不同取值范围内,有着_不__同__的__对__应__关__系_______. (3)结论:这样的函数称为分段函数.
[微体验]
1.下列图象是函数 y=xx2-,1x,<x0≥,0 的图象的是(
)
解析 由于f(0)=0-1=-1,所以函数图象过点(0,-1);当x<0时,y= x2,则函数图象是开口向上的抛物线y=x2在y轴左侧的部分.因此只有图 象C符合. 答案 C
[变式探究] 将本例(2)中的已知条件改为 f1x=1-x x2呢?
解 方法一:换元法.设 t=1x,则 x=1t (t≠0),
1 代入 f1x=1-x x2,得 f(t)=1-t1t 2=t2-t 1.故 f(x)=x2-x 1(x≠0,且 x≠±1).
1 方法二:∵f1x=1-x x2=1x2x-1,∴f(x)=x2-x 1(x≠0,且 x≠±1).
y=m2mx,x-0≤10x≤m1,0,x>10. 由 y=16m,可知 x>10. 令 2mx-10m=16m,解得 x=13(立方米). 答案 A
随堂本课小结
1.如何求函数的解析式 求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量 进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意 有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方 程组法(消元法). 2.如何作函数的图象 一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确 定函数的定义域,再在定义域内化简函数解析式,然后列表描出图象,画图 时要注意一些关键点,如与坐标轴的交点,端点的虚实问题等.
高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)
能
其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能
人教版高中数学必修1全套课件
函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题
人教版(新教材)高中数学第一册(必修1)精品课件3:1.5.2 全称量词命题和存在量词命题的否定
方程x2+x-m=0有实数根”,其否定形式是
﹁p:存在实数m,使得x2+x-m=0没有实数根.
1
注意到当Δ=1+4m<0时,即m<- 时,一元二次方程
4
没有实数根,所以﹁p是真命题.
(2)这一命题的否定形式是﹁q:∀x∈R,都有x2+x+
1 2 3
2
1>0,由x +x+1=(x+ ) + >0知.﹁q是真命题.
又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4.
所以,所求实数m的取值范围是(4,+∞).
规律方法
(1)对任意的实数x,a>f(x)恒成立,只需a>f(x)max.
若存在一个实数x0,使a>f(x0)成立,只需a>f(x)min.
(2)有关恒成立的问题,一是转化为二次函数,
利用数形结合求解,二是利用分离参数法求解.
即m>-x2+2x-5=-(x-1)2-4.
要使m>-(x-1)2-4对于任意x∈R恒成立,
只需m>-4即可.
故存在实数m,使不等式m+f(x)>0对于任意x∈R恒
成立,此时,只需m>-4.
(2)不等式m-f(x0)>0可化为m>f(x0),若存在一个实数
x0,使不等式m>f(x0)成立,只需m>f(x)min.
π
∵sinx+cosx= 2sin(x+4)≤ 2恒成立,
∴﹁r 是假命题.
题型三
例3
含有一个量词的命题的否定
写出下列命题的否定,并判断其真假:
(1)p:不论m取何实数,方程x2+x-m=0必有实数根;
(2)q:存在一个实数x0,使得x+x0+1≤0;
﹁p:存在实数m,使得x2+x-m=0没有实数根.
1
注意到当Δ=1+4m<0时,即m<- 时,一元二次方程
4
没有实数根,所以﹁p是真命题.
(2)这一命题的否定形式是﹁q:∀x∈R,都有x2+x+
1 2 3
2
1>0,由x +x+1=(x+ ) + >0知.﹁q是真命题.
又f(x)=(x-1)2+4,∴f(x)min=4,∴m>4.
所以,所求实数m的取值范围是(4,+∞).
规律方法
(1)对任意的实数x,a>f(x)恒成立,只需a>f(x)max.
若存在一个实数x0,使a>f(x0)成立,只需a>f(x)min.
(2)有关恒成立的问题,一是转化为二次函数,
利用数形结合求解,二是利用分离参数法求解.
即m>-x2+2x-5=-(x-1)2-4.
要使m>-(x-1)2-4对于任意x∈R恒成立,
只需m>-4即可.
故存在实数m,使不等式m+f(x)>0对于任意x∈R恒
成立,此时,只需m>-4.
(2)不等式m-f(x0)>0可化为m>f(x0),若存在一个实数
x0,使不等式m>f(x0)成立,只需m>f(x)min.
π
∵sinx+cosx= 2sin(x+4)≤ 2恒成立,
∴﹁r 是假命题.
题型三
例3
含有一个量词的命题的否定
写出下列命题的否定,并判断其真假:
(1)p:不论m取何实数,方程x2+x-m=0必有实数根;
(2)q:存在一个实数x0,使得x+x0+1≤0;
人教版(新教材)高中数学第一册(必修1)优质课件:5.1.1任意角
规律方法 判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.
①终边落在第一象限的角为锐角; ②锐角是第一象限角; ③第二象限角为钝角; ④小于90°的角一定为锐角; ⑤角α与-α的终边关于x轴对称.
(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺 时针方向旋转820°至OC处,则β=________.
解析 (1)终边落在第一象限的角不一定是锐角, 如400°的角是第一象限角,但不是锐角, 故①的说法是错误的;同理第二象限角也不一定是钝角,故③的说法也是错 误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的. (2)两次旋转后形成的角为60°+(-820°)=-760°,β=-760°+720°=-40°. 答案 (1)②⑤ (2)-40°
[微思考] 1.角的概念推广后角的范围有怎样的变化?
提示 角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正 角、负角与零角. 2.终边相同的角相等吗?相等的角终边相同吗? 提示 当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不 一定相等.
题型一 与任意角有关的概念辨析 【例1】 (1)下列说法中,正确的是________(填序号).
三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》 中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托 勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.
喜帕恰斯
[读图探新]——发现现象背后的知识 伦敦眼(英文名:The London Eye),全称英国航空伦敦眼 (The British Airways London Eye),又称千禧之轮,坐落在伦 敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一, 也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开 幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内 外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客 约25名,回转速度约为每秒0.26米,即一圈需时30分钟.
人教版(新教材)高中数学第一册(必修1)精品课件5:2.2 第1课时 基本不等式
[证明] (1-a)(1-b)(1-c)=(b+c)(a+c)(a+b)≥ 2 bc·2 ac·2 ab=8abc. 当且仅当 b=c=a=13时,等号成立.
类型 3 基本不等式a+2 b≥ ab的几何解释 [探究问题] 1.如何用 a,b 表示 PQ、OP 的长度? [提示] 由射影定理可知 PQ= ab,而 OP=12AB=a+2 b.
知 a2+b2≥2ab.
(2)设 x>0,y>0,比较1x+1y和 2xy的大小.
[提示]
在不等式 a+b≥2
ab中令 a=1x,b=1y可得1x+1y≥
2 xy.
2.基本不等式的证明 一般地,对于任意实数 a,b,我们有 a2+b2≥2ab, 当且仅当_a_=__b__时,等号成立. 特别地,如果 a>0,b>0,我们用__a__,__b__分别代替 a,b 可得 a+b≥_2___a_b_, 通常我们把上式写作 ab≤a+2 b(a>0,b>0).
(2)基本不等式的文字叙述 两个非负数的算术平均数_不__小__于__它们的几何平均数. (3)意义 ①几何意义:半径_不__小__于___半弦. ②数列意义:两个正数的_等__差___中项不小于它们的__等__比__中项.
思考:(1)不等式 a2+b2≥2ab(a,b∈R)成立吗?如何证明?
[提示] 成立,证明如下:由 a2+b2-2ab=(a-b)2≥0,
规律方法 利用基本不等式证明不等式的注意点 (1)在利用基本不等式证明时,要注意查看基本不等式成立的条件
是否满足,若所证明的不等式中含有等号,还要注意等号是否能成立. (2)在证明过程中,常需要把数、式合理地拆成两项或多项,或恒
等地变形配凑成适当的数、式,以便利用基本不等式.
类型 3 基本不等式a+2 b≥ ab的几何解释 [探究问题] 1.如何用 a,b 表示 PQ、OP 的长度? [提示] 由射影定理可知 PQ= ab,而 OP=12AB=a+2 b.
知 a2+b2≥2ab.
(2)设 x>0,y>0,比较1x+1y和 2xy的大小.
[提示]
在不等式 a+b≥2
ab中令 a=1x,b=1y可得1x+1y≥
2 xy.
2.基本不等式的证明 一般地,对于任意实数 a,b,我们有 a2+b2≥2ab, 当且仅当_a_=__b__时,等号成立. 特别地,如果 a>0,b>0,我们用__a__,__b__分别代替 a,b 可得 a+b≥_2___a_b_, 通常我们把上式写作 ab≤a+2 b(a>0,b>0).
(2)基本不等式的文字叙述 两个非负数的算术平均数_不__小__于__它们的几何平均数. (3)意义 ①几何意义:半径_不__小__于___半弦. ②数列意义:两个正数的_等__差___中项不小于它们的__等__比__中项.
思考:(1)不等式 a2+b2≥2ab(a,b∈R)成立吗?如何证明?
[提示] 成立,证明如下:由 a2+b2-2ab=(a-b)2≥0,
规律方法 利用基本不等式证明不等式的注意点 (1)在利用基本不等式证明时,要注意查看基本不等式成立的条件
是否满足,若所证明的不等式中含有等号,还要注意等号是否能成立. (2)在证明过程中,常需要把数、式合理地拆成两项或多项,或恒
等地变形配凑成适当的数、式,以便利用基本不等式.
人教版(新教材)高中数学第一册(必修1)优质课件:5.7三角函数的应用
解 (1)由题意可作图如图.过点O作地面平行线ON,过点B作ON的垂线BM交 ON于点M.
当π2<θ≤π 时,∠BOM=θ-π2. h=|OA|+0.8+|BM|=5.6+4.8 sinθ-π2; 当 0≤θ≤π2,π<θ≤2π 时,上述解析式也适合. 则 h 与 θ 间的函数解析式为 h=5.6+4.8sinθ-π2.
解析 设 y=Asin(ωt+φ)(A>0,ω>0),则从表中数据可以得到 A=4,ω=2Tπ =02.π8=52π,又由 4sin φ=-4.0,得 sin φ=-1,取 φ=-π2,则 y=4sin52πt-π2, 即 y=-4cos52πt. 答案 y=-4cos52πt
一、素养落地 1.通过本节课的学习,重点提升学生的数学抽象、数学运算、数学建模素养. 2.三角函数模型构建的步骤:
解 (1)由题图知 A=300,设 t1=-9100,t2=1180,
则周期 T=2(t2-t1)=21180+9100=715. ∴ω=2Tπ=150π. 又当 t=1180时,I=0,即 sin150π·1180+φ=0,而|φ|<π2,∴φ=π6.
故所求的解析式为 I=300sin150πt+π6.
【训练4】 一物体相对于某一固定位置的位移y(cm)和时间t(s)之间的一组
对应值如下表所示,则可近似地描述该物体的位置y和时间t之间的关系的一个
三角函数式为
.
t0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
y -4.0 -2.8 0.0 2.8 4.0 2.8 0.0 -2.8 -4.0
1φ
(3)简谐运动的频率由公式___f=__T_=__2_π_给出,它是做简谐运动的物体在单位时间内
人教版(新教材)高中数学第一册(必修1)精品课件1:5.2.1 三角函数的概念(一)
答案
(1)34或-34
(2) -1123
5 13
-152
[方法总结] 求任意角的三角函数值的两种方法 方法一:根据定义,寻求角的终边与单位圆的交点 P 的坐标,然后利用定义得出 该角的正弦、余弦、正切值. 方法二:第一步,取点:在角 α 的终边上任取一点 P(x,y),(点 P 与原点不重合); 第二步,计算 r:r=|OP|= x2+y2; 第三步,求值:由 sin α=yr,cos α=xr,tan α=xy(x≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.
第五章 三角函数
5.2 三角函数的概念
5.2.1 三角函数的概念(一)
课程标准
核心素养
通过对三角函数概念的学
借助单位圆理解三角函数(正 习,提升“直观想象”、
弦、余弦、正切)的定义.
“逻辑推理”、“数学运
算”的核心素养.
Байду номын сангаас目索引
课前自主预习 课堂互动探究 随堂本课小结
课前自主预习
知识点 三角函数的定义
3 3
课堂互动探究
探究一 已知角的终边上一点求三角函数值
例 1 (1)在平面直角坐标系中,角 α 的终边与单位圆交于点 A,点 A 的纵坐标为35,则 tan α=________. (2)若角 α 的终边经过点 P(5,-12),则 sin α=________,cos α= ________,tan α=________.
[跟踪训练 1] 如果 α 的终边过点 P(2sin 30°,-2cos 30°),那么
sin α 的值等于( )
A.12
B.-12
C.-
3 2
D.-
3 3
人教版(新教材)高中数学第一册(必修1)精品课件6:1.5.1 全称量词与存在量词
C.3
D.4
(2)下列命题为存在量词命题的是( ) A.偶函数的图象关于y轴对称 B.正四棱柱都是平行六面体 C.不相交的两条直线是平行直线 D.存在实数大于等于3
[答案] (1)B (2)D [解析] (1)中,只有②③含有全称量词,故选B. (2)中,只有选项D含有存在量词,故选D.
[方法规律总结] 1.判断一个语句是全称量词命题还是存在量词命题的步 骤: (1)首先判定语句是否为命题,若不是命题,就当然不是 全称量词命题或存在量词命题. (2)若是命题,再分析命题中所含的量词,含有全称量词 的命题是全称量词命题,含有存在量词的命题是存在量 词命题.
牛刀小试 [答案] 问题1:(1)不是命题,因为无法判断真假; (2)(3)是命题. 问题2:(2)强调任意一个x∈Z;(3)强调所有的三角 函数.
知识点2 存在量词命题 新知导学 4.短语“__存__在__一__个__”、“__至__少__有__一__个__”在逻辑中通 常叫做存在量词,并用符号“___∃___”表示,含有存 在量词的命题,叫做 存在量词命题 . 5.存在量词命题的表述形式:存在M中的一个x0,使 p(x0)成立,可简记为,__∃_x_0_∈__M__,__p_(x_0_)__.
命题1 全称量词命题与存在量词命题的辨析
例 1 (1)下列命题:
①至少有一个 x,使 x2+2x+1=0 成立;
②对任意的 x,都有 x2+2x+1=0 成立;
③对任意的 x,都有 x2+2x+1=0 不成立;
④存在 x,使 x2+2x+1=0 不成立.
其中是全称量词命题的个数为( )
A.1
B.2
新知导学 3.常用的全称量词还有“所有”、“每一个”、“任 何”、“任意”、“一切”、“任给”、“全部”, 表示__整__体__或__全__部___的含义.
人教版(新教材)高中数学第一册(必修1)优质课件:第一课时对数函数的概念及其图象和性质
2.对数函数y=logax(a>0,且a≠1)的图象和性质 a>1
0<a<1
图象
定义域
_(__0_,_+_∞__)___ Nhomakorabea值域
___R___
性 过定点 质 函数值的
变化
过定点(__1_,__0_)_,即 x=1 时,y=0
当 0<x<1 时,__y<__0_, 当 0<x<1 时,__y_>_0_,
当 x>1 时,_y_>__0__, 当 x>1 时,__y_<_0__
单调性 在(0,+∞)上是_增__函__数___ 在(0,+∞)上是_减__函__数__
拓展深化
[微判断]
1.函数 y=logx12是对数函数.( × ) 提示 对数函数中自变量x在真数的位置上,且x>0,所以错误.
2.函数y=2log3x是对数函数.( × ) 提示 在解析式y=logax中,logax的系数必须是1,所以错误.
函数;由于⑥中log4x的系数为2,
∴⑥也不是对数函数.只有③④符合对数函数的定义. (2)由题意设 f(x)=logax(a>0 且 a≠1),则 f(4)=loga4=-2,所以 a-2=4,故 a=12,
f(x)=log1x,所以 f(8)=log18=-3.
2
2
答案 (1)B (2)-3
规律方法 判断一个函数是对数函数的方法
问题 1 考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用 t
=log5 730 1P(P 为碳 14 含量)估算出土文物或古遗址的年代 t,那么 t 是 P 的函数吗?为
2
人教版(新教材)高中数学第一册(必修1)精品课件1:3.1.1 函数的概念
例1 下列对应中是A到B的函数的个数为( )
(1)A=R,B={x|x>0},f:x→y=|x|;
(2)A=Z,B=Z,f:x→y=x2;
图1
(3)A=[-1,1],B={0},f:x→y=0;
(4)A={1,2,3},B={a,b},对应关系如图1所示:
(5)A={1,2,3},B={4,5,6},对应关系如图2所示:
[微思考] (1)任何两个集合之间都可以建立函数关系吗? 提示 不一定,两个集合必须是非空的数集. (2)什么样的对应可以构成函数关系? 提示 两个非空数集之间是一一对应关系或多对一可构成函数关系.
知识点2 区间及相关概念
(1)一般区间的表示
设a,b是两个实数,而且_____a_<_b_____,我们规定:
{x|x≤b}
_____(_-__∞__,__b_]_____
数轴表示
{x|x<b}
_____(_-__∞__,__b_)_____
[微体验]
1.下列区间与集合{x|x<-2或x≥0}相对应的是( )
A.(-2,0)
B.(-∞,-2]∪[0,+∞)
C.(-∞,-2)∪[0,+∞)
D.(-∞,-2]∪(0,+∞)
定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
______[_a_,__b_]_____
{x|a<x<b}
开区间
______(_a_,__b_)_____
{x|a≤x<b} 半闭半开区间 ______[_a_,__b_)_____
{x|a<x≤b} 半开半闭区间 ______(_a_,__b_]_____