结构方程模型 PPT课件

合集下载

27结构方程模型(SEM)PPT课件

27结构方程模型(SEM)PPT课件

SEM的来源
• 心理计量学:
• Spearman认为,人类心智能力测验得分之间的相互关 系,可以被视为是由这些分数背后所具有的一个潜的 共同因素(common factor)的影响结果。
• Thurston认为,在复杂的智力测量背后,应该存在着 不同且独立的一组共同因素,他称之为核心心智能力 (primary mental abilities),由于这一组共同因素的存 在,构成了智力测验得分的复杂关系。研究者必须找 出这些因素,才能利用此一因素结构来对智力测验得 分之间的共变(协方差)关系,得到最理想的解释, 得出最大的解释力。
SEM发展历史
• 从发展历史来看,结构方程模式的起源甚早,但其核心 概念在1970年代初期才被相关学者专家提出,到了1980 年代末期即有快速的发展。基本上,结构方程模式的概 念与70年代主要高等统计技术的发展(如因素分析)有 着相当密切的关系,随着计算机的普及与功能的不断提 升,一些学者(如Jöreskog, 1973; Keesing, 1972; Wiley, 1973)将因子分析、路径分析等统计概念整合,结合计 算机的分析技术,提出了结构方程模型的初步概念,可 以说是结构方程模型的先驱者。而后Jöreskog与其同事 Sörbom进一步发展矩阵模式的分析技术来处理共变结构 的分析问题,提出测量模型与结构模型的概念,并纳入 其LISREL之中,积极促成了结构方程模式的发展。
SEM基本模型
• 简单来说,SEM可分测量方程 (measurement equation)和结构方程 (structural equation)两部分。
• 测量方程描述潜变量与指标之间的关系, 如家庭收入指标等社会经济地位的关系、 三科成绩与学业成就的关系。而结构方程 则描述潜变量之间的关系,如社会经济地 位与学业成就的关系。

《结构方程模型》课件

《结构方程模型》课件

SEM 发表的期刊论文有比较优势吗? (Babin, Hair, Boles, 2008)
• 1. 不用SEM 的PAPERS 是否比较容易被拒绝? • 2. 使用SEM 的PAPERS 是否评价比较高? • 3. 使用SEM 是否对reviewers 较有影响力? • 4. 模型适配度好坏是否会影响reviewers评价? • 5. 美国人使用SEM 是否比其它国家的学者多? • 6. 美国人用SEM投稿是否比其它国家的人有优
势?
SEM 常用的名词
• 参数(parameter): – 又称为母数,带有「 未知 」与「 估计」的特
质。如没有特別说明,一般指的是自由参数。 • 自由参数(free parameter): – 在Amos所画的每一条线均是一個参数,除设
为固定参数者外; – 自由估計参数愈多,自由度(df) 愈小。 • 固定参数(fix parameter): – Amos 图上被设定为0 或1或任何数字的线,均
图形
功能说明
图形
功能说明
变量之间的属性拖拽
放大镜检视
维持对称性 放大选取区域 放大路径图
贝氏估计 多群组分析 列印路径图
缩小路径图 路径图整页显示在屏幕上 调整路径图大小符合书面
上一步 下一步 模式搜索
绘制四个观察变量 建立因果关系 调整箭头位置
利用复制功能确保大小一致 内生变量增加残差 调整变量位置
1. SEM 能做些什么?
Structural Equation Modeling(SEM) 是近期成长快速的 统计技术(Herhberger, 2013)
• 愈来愈多的SEM 文章发表在心理学、管理学与社会学期 刊上
• SEM 已成为心理学、管理学与社会学学者最常用的统计 技术

结构方程模型LISREL肖前国PPT精选文档

结构方程模型LISREL肖前国PPT精选文档
(3)潜在变量的平均方差抽取量AVE>0.5 (使用计算插件)
每组观察变量可以被潜在变量的平均解释程度(百分比)。
(4) 参数统计量的估计值显著,即t值的绝对值大于1.96
(5)标准化残差的绝对值小于3
(6)修正指标MI(Modification indices)小于3.84
13
14
第一节 结构方程模型的理论概
Observed Variables: jk1 jk7 jk13 jk19 jk25 jk2 jk8 jk14 jk20 jk26 jk3 jk9 jk15 jk21 jk27 m1 m2 m3 Raw Data from file
30
31
2 计算多个变量间的测量模型的卡方值:
Observed Variables:
2.书籍:结构方程模型的原理与应用(邱皓政)
2
2.视频:【文光讲堂】结构方程模型(SEM);(周文光老师)
第一节 结构方程模型的理论概 述
一、基本概念与知识: 1.基本原理:
检验样本数据的协方差矩阵与理论假设模 型隐含的协方差矩阵间的差异。 2.基本构成: 测量模型(验证性因素分析)、结构模型 (路径分析)
生活事件 S1 -> 积极乐观 H1 ->生活满意度 M
-> 情绪调控 H2ห้องสมุดไป่ตู้->生活满意度 M
积极乐观 H1:j11-j14 情绪调控 H2:j16-17 生活事件 S1:sh1-27 生活满意度 M:myd1-4
38
两种程序表示
Raw Data from file 'E:\LEARNING\
词与选择性选项区分大小写;变量
名最多八字符;变量间以空一格分开;

spss统计分析及应用教程第9章结构方程模型ppt课件

spss统计分析及应用教程第9章结构方程模型ppt课件

❖ 模型识别
自由参数:未知并需要估计的参数。
固定参数:不自由的并固定于设定值的参数。如在测量模型中,或 者将每个潜在变量标识的因子负荷之一设定为1,或将该潜在变量 的方差设定为1;对于结构方程,一些通径系数应该被设定为0,这 意味着被设定为无影响作用。
限制参数,那些未知的,但被规定相等于另一个或另一项参数值的 参数。
• Estimation标签下提供了模型拟合方法的选项,在AMOS分析中 使用最多的是最大似然法,当然,在这一标签之下也提供了其他 几种拟合方法;
• Numerical标签下提供了模型分析过程中迭代法设定的选项,因 为模型的拟合实际上是用迭代法予以实现的;Bias标签下提供了 采用数据资料协方差矩阵进行模型拟合时的一些设定选项;
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标。 潜变量:其测量是通过一个或几个可观察指标来间接完成的。 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变 量。 内生潜在变量:由模型内变量作用所影响的变量(因变量)。
注意:把路径图文件存储在某一特定位置后,在该文件夹 中将会出现几个名字相同而后缀不同的存储文件,其中, *.amw是所存储的路径图文件;*.bk1和*.bk2是自动生 成的备份文件,可以通过Retrieve Backup打开; *.AmosTNP、*.AmosTN、*.AmosP、*.amp都是 AMOS的文件管理文件,可以双击这些文件打开相应的存 储文件。*.amo是模型拟合之后出现的拟合结果文件。

结构方程模型(SEM)PPT课件

结构方程模型(SEM)PPT课件
• 例如:我们以学生父母教育程度、父母职业及其 收入(共六个外显变量),作为学生家庭社会经济 地位(潜变量)的指标,我们又以学生中、英、数 三科成绩(三个外显变量),作为学业成就(潜变量) 的指标。
SEM的特点
• 理论先验性 • 同时处理测量与分析问题 • 以协方差的应用为核心 • 适用大样本分析
SEM的来源
• 心理计量学:
• Spearman认为,人类心智能力测验得分之间的相互关 系,可以被视为是由这些分数背后所具有的一个潜的 共同因素(common factor)的影响结果。
• Thurston认为,在复杂的智力测量背后,应该存在着 不同且独立的一组共同因素,他称之为核心心智能力 (primary mental abilities),由于这一组共同因素的存 在,构成了智力测验得分的复杂关系。研究者必须找 出这些因素,才能利用此一因素结构来对智力测验得 分之间的共变(协方差)关系,得到最理想的解释, 得出最大的解释力。
• 期刊与论文:
• 专门期刊:《结构方程模型》(Structural Equation Modeling )
• 很多社会、心理等变量,均不能准确地及直接地 量度,这包括智力、社会阶层、学习动机等,我 们只好退而求其次,用一些外显指标(observable indicators),去反映这些潜变量。
SEM基本模型
• 测量模型:对于指标与潜变量(例如六个社会经
济指标与社会经济地位)间的关系,通常写成如下 测量方程:
x=Λxξ+δ y=Λyη+ε
• x,y是外源(如六项社经指标)及内生(如中、英、数成 绩)指标。δ,ε是X,Y测量上的误差。
• Λx是x指标与ξ潜变量的关系(如六项社会经济地位指标 与潜社会经济地位的关系)。Λy是y指标与η潜变量的关 系(如中、英、数成绩与学业成就间关系)。

结构方程模型 ppt课件

结构方程模型  ppt课件

CONTENTS
01 概念介绍 02 基本原理
03 案例分析
04 实际操作
ppt课件
2
01 概念介绍
1.基本概念
结构方程模型(Structural Equation Modeling, SEM)是一种验证性多元统计分析技术, 是应用线性方程表示观测变量与潜变量之间,以及潜变量之间关系的一种多元统计方法, 其实质是一种广义的一般线性模型。
ppt课件
19
02 基本原理
3.模型拟合——主要拟合度指标
(3)整体模型拟合度
a) χ2卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假设是模型协方差阵等 于样本协方差阵。如果模型拟合的好,卡方值应该不显著。在这种情况下,数据拟合不好的模型被拒绝。
b) RMR 是残差均方根。RMR 是样本方差和协方差减去对应估计的方差和协方差的平方和,再取平均值的平方根。 RMR应该小于0.08,RMR越小,拟合越好。
2.模型评价——参数估计 (1) 假设条件 ① 测量模型误差项δ,ε的均值为零 ② 结构模型的残差项ζ的均值为零 ③ 误差项ε,δ与因子η,ξ之间不相关,误差项ε与δ不相关 ④ 残差项ζ与ξ ,η ,δ之间不相关 (2)参数估计策略 ① 加权最小平方策略(WLS) ② 最大概似法(ML) ③ 无加权最小平方法(ULS) ④ 一般化最小平方法(GLS) ⑤ 渐进分布自由法(ADF)


5

6
结构模型:反映潜在变量之间因果关系
方程式: 1 11 1 1 2 21 1 21 1 2
0 0
B



21
0

结构方程模型初级介绍ppt课件

结构方程模型初级介绍ppt课件

篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
例子:员工工作满意度的测量
概念模型:
x
工作方式选择
工作自主权
工作目标调整
任务完成时间充裕度
工作负荷轻重
工作负荷
工作节奏快慢
工作内容丰富程度 工作多样性程度
表2 模型拟合优度结果
指标 DF Χ2 P NFI NNFI CFI IFI GFI AGFI RFI RMR RMSEA
指标值 687 1386.64 0.0 0.901 0.937 0.950 0.951 0.861 0.817 0.861 0.0584 0.0457
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
结构方程(structural
equation),描述潜变量之间的
关系,如工作自主权与工作 满意度的关系。
工作自主权
工作满意度
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(一)测量模型
对于指标与潜变量(例如两个工作自主权指标与工作自主权)间的关系,通常 写为以下测量方程:
工作单调性
工作满意度
y
目前工作满意度 工作兴趣 工作乐趣
工作厌恶程度
篮球比赛 是根据 运动队 在规定 的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(2)模型拟合(model

结构方程课件

结构方程课件

一般方程模型
结构方程模型通常包括三个矩阵方程式:
Λx—外生观测变量与外生潜变量直接的关系,是外生观测变 量在外生潜变量上的因子载荷矩阵; Λy—内生观测变量与内生潜变量之间的关系,是内生观测 变量在内生潜变量上的因子载荷矩阵; В—路径系数,表示内生潜变量间的关系; Г—路径系数,表示外生潜变量对内生潜变量的影响; ζ—结构方程的残差项,反映了”在方程中未能被解释的部 分。
系。 (7)变量之间没有任何连接线,表示假定它们之间没有直接联系。
结构方程与回归分析的比较
回归分析有几方面的限制: (1)不允许有多个因变量; (2)假设自变量不存在测量误差; (3)自变量间的多重共线性会妨碍 结果解释; (4)结构方程模型不受这些方面的 限制 。
结构方程模型的四大步骤
1、模型构建 构建研究模型,具体包括:观测变量(指标)与潜变量(因 子)的关系,各潜变量之间的相互关系等 。
2、模型拟合 对模型求解,其中主要对整体模型参数的估计,求得参数 使模型隐含的协方差距阵与样本协方差距阵的“差距”最 小 。并验证各个各拟合指数是否通过。
3、模型评价 (1)检查每条路径系数的显著性;
(2)各参数与预设模型的关系是否合理。 4、模型修正
模型扩展(调整修正指数)或模型限制(调整CR系数)
假设模型与独立模型的卡方差异
非正规拟合指数NNFI 替代性指标 非集中性参数NCP
相对拟合指数CFI
用模型自由度和参数数目调整的NFI
假设模型的卡方值距离中央卡方值分布 的离散程度 假设模型与独立模型的非中央性差异
接受标准
适用情形
越小越好 了解残差特性 <.08 了解残差特性
<2
不受模型复杂程度影响

结构方程模型讲义_图文

结构方程模型讲义_图文
Extracted Estimates) ﹥该因子与其他因子的 共同变异抽取值(相关系数的平方),则表明 数据具有较高的辨别有效性( Fornell&Larcker,1981)。 变异数抽取估计值:计算各因子非测量误差的 变异数占变异数的比值。 R2(判定系数coefficient of determination): 已解释变异占总变异的百分比
何时能说X引起Y?
X时间在先。(纵向设计) 明确说明因果方向,比如不可逆,或者循环。 (同时测
量设计) 常识、理论、经验研究的成果都可以成为说明的线索。 难以说明怎么办? X与Y之间的关系不因引进第三变量而消失 (统计控制) 。
结构方程模型的结构
结构方程模型可以分为测量方程( measurement)和结构方程(structural equation)两部分
插入新变量
点击Data菜单Insert Variables选项,打开对话框 点击OK键,在光标的左边,一个新变量就被插入到数据文件中 点击Data菜单Define Variables选项激活Define Variables对话框 选中刚才插入的变量 点击Rename键,键入新的变量名 点击OK键回到Define Variables对话框 点击Define Variables对话框中的OK键得到PSF窗口 点击File菜单上Save as选项,在“文件名”字符区键入新的文件名 这样,一个新变量被插入到原有的数据集中并存储为新的文件名
Factor Loading
三个因子与各变量之间的相关系数,称为因子 载荷量(loading)
系数绝对值越大,与相应因子的相关强度越强 。
因子旋转
因子旋转:用一个正交阵右乘已经得到的因子载荷阵(由线性代 数可知,一次正交变化对应坐标系的一次旋转),使旋转后的因 子载荷阵结构简化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.结构方程的基本原理?
二、结构方程模型的结构
结构方程模型的结构示意图如下所示:
3.结构方程的基本原理?
首先了解几个概念:
(1)观测变量:可直接测量的变量,通常是指标 (2)潜变量:潜变量亦称隐变量,是无法直接观测并测量的变 量。潜变量需要通过设计若干指标间接加以测量。 (3)外生变量 :是指那些在模型或系统中,只起解释变量作用 的变量。它们在模型或系统中,只影响其他变量,而不受其他变量的 影响。在路径图中,只有指向其他变量的箭头,没有箭头指向它的变 量均为外生变量。 (4)内生变量:是指那些在模型或系统中,受模型或系统中其 它变量包括外生变量和内生变量影响的变量,即在路径图中,有箭头 指向它的变量。它们也可以影响其它变量。
构建研究模型,具体包括:观测变量 (指标)与潜变量(因子)的关系,各 潜变量之间的相互关系等
模型拟合
对模型求解,其中主要是模型参数的估 计,求得参数使模型隐含的协方差距阵 与样本协方差距阵的“差距”最小
模型评价
检查1.路径系数/载荷系数的显著性; 2.各参数与预设模型关系是否合理; 3.各拟合指数是否通过
结构方程模型
1.什么是结构方程模型? 2.为什么使用结构方程模型? 3.结构方程模型的基本原理? 4.结构方程模型的应用步构方程模型?
结构方程模型( Structural Equation Model)是基于变 量的协方差矩阵来分析变量之间关系的一种统计方法, 所以也称为协方差结构分析。
它是综合运用多元回归分析、路径分析和验证型因子 分析等方法而形成的一种统计数据分析工具。其核心概念 在20世纪70年代初期被提出,到80年代末期得以快速发展 成为多元数据分析的重要工具,广泛应用于心理学、经济 学、社会学、行为科学等领域。
2.为什么使用结构方程模型?
心理、教育、社会等领域有很多概念难以直接准确测 量,称之为潜变量,如智力、学习动机、家庭社会经济地 位等等。我们只能用一些外显指标去间接测量这些潜变量。 另外,有时候需要处理多个原因和多个结果的关系。这些 都是传统的统计方法不能很好解决的问题
间的结构; (4) 允许更具弹性的模型设定。
5.结构方程的优缺点?
二、结构方程模型的局限性
结构方程模型也存在一定的局限性: (1)给定的模型可能会产生无法解释的结果; (2)特定的方法可能需要很大的样本含量; (3)需要满足多变量正态分布的假设; (4) 很少用于预测的应用; (5)完全掌握结构方程需要基础知识、练习和努力; (6)很多问题还没有很好的答案和可以遵循的指南。
3.结构方程的基本原理?
结构方程模型在形式上是反映隐变量和显变量关系的 一组方程,一般来讲由两类矩阵方程构成:
(1)测量方程(Measurement Equation)
(2)结构方程(Structural Equation)
(一)测量方程:
测量方程用来描述隐变量和显变量之间的关系,可以写成如
下通式:
(二)结构方程:
结构方程用来描述隐变量之间的关系的关系,可以写成如下 通式:
η=Βη+Γξ+ζ
其中:ξ——外生潜变量组成的向量; η——内生潜变量组成的向量;
B——内生隐变量间的系数矩阵;
Γ——外生潜变量系数阵; ζ——结构方程的参差项,反映方程中未能被解释的部分。
4.结构方程的应用步骤?
模型构建
传统的统计建模分析方法不能有效处理潜变量,而结 构方程模型能同时处理潜变量和显变量(指标)。传统的 线性回归分析不允许有多个因变量存在测量误差,假设自 变量是没有误差的,结构方程模型则没有这些限制。
3.结构方程的基本原理?
一、结构方程模型的原理
结构方程模型的基本思路是:
首先,根据已有理论和知识,经推理和假设形成一个关于一组变量之 间相互关系的模型; 然后,经过测查,获得一组观测变量 (外显变量 )数据和基于此数据 而形成的协方差矩阵,这种协方差矩阵称为样本矩阵。 最后,将构想的假设模型与样本矩阵的拟合程度进行检验,如果假设 模型能拟合客观的样本数据,说明模型成立;否则就要修正,如果修 正之后仍然不符合拟合指标的要求,就要否定假设模型。
模型修正
(1)模型扩展(使用修正指数) (2)模型限制(使用临界比率)
5.结构方程的优缺点?
一、结构方程模型的优点
总的来说,与传统的统计建模分析方法相比,结构方程模 型主要有以下几个优点: (1)允许回归方程的自变量含有测量误差; (2)可以同时处理多个因变量; (3)可以在一个模型中同时处理因素的测量和因素之
谢谢观看!
x x
y y
其中:x——外生潜变量ξ的可测变量组成的向量;
y——内生潜变量η的可测变量组成;
ξ——外生潜变量组成的向量;
η——内生潜变量组成的向量;
∧x——外生指标与外生变量之间的关系,是外生指标在外生 潜变量上的因子负荷矩阵;
∧y——内生指标与内生变量之间的关系,是内生指标在内生 潜变量上的因子负荷矩阵。
相关文档
最新文档