插补原理及控制方法

合集下载

数控技术第3章插补原理

数控技术第3章插补原理

5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高

插补原理

插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。

插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。

插补算法经过几十年发展,不断成熟,种类很多。

一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。

脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。

1数字积分插补是脉冲增量插补一种。

下面将首先阐述一下脉冲增量插补工作原理。

2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。

这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。

一个脉冲所产生坐标轴移动量叫做脉冲当量。

脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。

采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。

脉冲增量插补主要有逐点比较法、数据积分插补法等。

逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。

这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。

数控技术课件5-现代数控轨迹插补原理与控制的方法2

数控技术课件5-现代数控轨迹插补原理与控制的方法2



Pi+1
刀具运动轨迹




O Y
a)光滑轨迹
b)非光滑轨迹
图 3-17 轨迹前瞻控制示意图
◎数控系统按允许进给速度的大小,以最大加速度和加速度变化率
在P i
点之前的
ps 点开始减速,使达到时,速度正好满足允许速度
要求,并在走过P 点后逐步加速,使恢复正常。
i
◎实现轨迹前瞻控制需解决:
一是减速特征识别,二是进给速度处理两个问题。
f(t)
f(t) fn
fn
O
tn
td
t
图3-15 自动加速曲线
O
tn
td
t
图3-16 自动减速曲线
3 柔性自动减速控制
设给定的减速曲线如图3-16所示,如同加速度控制一样将其作为 样板,以数表的形式存放于加减速曲线库中。根据减速曲线数表实现 自动减速控制的过程如下:
首先,根据减速开始前的进给速度F1,减速过程结束后的希望进 给速度F2,求出减速过程速度差 FD= F1 -F2。
插补前加减速控制拐角制动减速控制前馈控制前瞻控制速度加速度钳制伺服滞后控制加减速的实现加速时采用瞬时速度概念速度由零或初始速度开始v由瞬时速度参加插补瞬时速度逐渐增加瞬时速度与给定的匀速进行比较到达给定速度时以给定速度参加插补减速时要预测减速点速度由已有速度开始v提高速度不冲击的措施减小摩擦滚动静压气浮代替滑动提高伺服电机的转矩及性能匹配电机惯量郁负载惯量的关系减小运动部件负载惯量缩短传动链零传动采用电主轴直线电机力矩电机提高机床刚度和润滑特性柔性加减速保证机床运动平稳反应快跟踪精度高实现以过渡过程时间最少为目标的最优加减速控制使机床满足高速加工要求的优良加减速特性已成为现代数控系统研究开发中必须解决的关键问题之一

第三章 数控插补原理

第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。

插补原理及控制方法课件

插补原理及控制方法课件

基于粒子群优化算法的路径规划
02
利用粒子群优化算法的群体搜索特性,寻找最优解,提高插补
路径的合理性。
基于模拟退火算法的路径规划
03
利用模拟退火算法的全局搜索能力,寻找最优解,提高插补路
Байду номын сангаас径的合理性。
结合机器学习算法优化插补控制参数
基于神经网络的参数优化
利用神经网络的自学习能力,根据历史数据学习最优参数,提高插补控制的精度。
案例二:圆弧插补算法的实现与优化
圆弧插补定义
圆弧插补原理
圆弧插补算法实现
圆弧插补优化
圆弧插补是指通过在两个给定 点之间插入若干个点,以绘制 圆弧的插补算法。
通过确定圆心和半径,以及起 始点和终点,计算出各点的坐 标值。常用的算法包括中心法 、极坐标法和参数方程法等。
一种常见的实现方法是使用参 数方程,通过设置起始点、终 点和圆心位置,以及需要插入 的点数,计算出各点的坐标值 。
一种常见的实现方法是使用参数方程,通过设置 起始点和终点,以及需要插入的点数,计算出各 点的坐标值。
直线插补原理
通过计算两个点之间的斜率和截距,确定直线方 程,然后根据需要插入的点数,计算出各点的坐 标值。
直线插补优化
对于复杂图形,需要优化直线插补算法,以减少 计算量和提高效率。一种常见的方法是使用样条 曲线插补,将直线分成若干段,每段使用不同的 斜率和截距。
对于复杂图形,需要优化圆弧 插补算法,以减少计算量和提 高效率。一种常见的方法是使 用样条曲线插补,将圆弧分成 若干段,每段使用不同的半径 和中心位置。
案例三:多轴插补算法的实现与优化
• 多轴插补定义:多轴插补是指通过同时控制多个轴的运动,以实现复杂形状的 插补算法。

第三章 插补原理及控制方法

第三章  插补原理及控制方法

昆明学院戴丽玲
12
3-1 逐点比较法插补
6)四个象限直线的插补 第二、三、四象限的 直线插补,其逐点比较法 直线插补原理与第一象限 直线相同,只是注意在处 理时计算公式
+Y F≽0
F x y x i e i iy e
中的各坐标值取做绝对值 即可。
-X
F<0
F<0
+X
F≽0 -Y
图3.6 四象限直线插补
2019/2/14
昆明学院戴丽玲
23
3-2 数字积分法插补
数字积分法又称数字微分分析法( DDA ,Digital Differential Analyzer),数字积分法具有运算速度快,脉 冲分配均匀的特点,易于实现多坐标的联动及描绘平面各 种函数曲线。 一、数字积分法的数学原理 Y 如右图,函数在 [t0 , tn ]的定积分,即 为函数在该区间的面积: Yi-1 Yi Y=f(t)
终点判别
Σ=4+4=8 Σ=8-1=7 Σ=7-1=6 Σ=5 Σ=4 Σ=3 Σ=2 Σ=1 Σ=0
F0=0 F1<0 F2<0 F3<0 F4>0 F5<0 F6>0 F7>0
-x +y +y +y -x +y -x -x
2
3 4 5 6
F1=F0-2x0+1 =0-2*4+1=-7 F2=F1+2y1+1 =-7+2*0+1=-6 F3=F2+2y2+1=-3 F4=F3+2y3+1=2 F5=F4-2x4+1=-3 F6=F5+2y5+1=4 F7=F6-2x6+1=1 F8=F7-2x7+1=0

第四部分插补原理与速度控制

第四部分插补原理与速度控制

(3)迭代法偏差函数F的推导
①设加工点P在圆弧外侧或圆弧上,则加工偏差F≥0, 刀具需向X坐标负方向进给一步,即移动到新的加工点
P(Xi+1,Yi)。新加工点的偏差为: Fi+1,i = (Xi – 1)2 +Yi2 -(X02 + Y02)
=Xi2-2Xi+1-X02+Yi2-Y02 =F-2Xi+1 ②设加工点P在圆弧内侧,则加工偏差F<0,刀具需向
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
③偏差计算 计算新加工点相对直线的偏差,作为下一步 偏差判别的依据。
④终点判别 判断是否到达终点,未到达终点则返回第一 步,继续插补,到终点,则停止本程序段的插补。终 点判别可采用两种方法:一是每走一步判断Xi-Xe≥0及 Yi-Ye≥0是否成立,如成立,则插补结束否则继续。二 是把每个程序段中的总步数求出来,即n=|Xe | + | Ye | , 每走一步n-1,直到n=0为止。
线 型 偏差判别

1
2

3
4
F≥0
-Y
+X
+Y
-X
G02
F<0
+X
+Y
-X
-Y
F≥0
-X
-Y
+X
+Y
G03
F<0
+Y
-X
-Y
+X
(3)圆弧插补自动过象限处理
为了加工二个象限或二个以上象限的圆弧,圆弧插 补程序必须具有自动过象限功能。自动过象限程序包 括象限边界处理、过象限判断及数据处理等模块。

第三章 插补原理及控制方法

第三章 插补原理及控制方法
2。插补的精度指标
逼近误差(直线逼近曲线)、计算误差和圆整误差
要求:综合效应(轨迹误差)不大于系统的最小运动指令或脉冲当量。
3。合成速度的均匀性指标
合成速度的均匀性——插补运算输出的各轴进给量,经运动合成的实际速度与给定的进给速度的符合程度。
(3)偏差计算 根据递推公式算出新加工点的偏差值。
(4)终点判别 用来确定加工点是否到达终点。
若已到达,则应发出停机或转换新程序段信号。一般用X和Y坐标所要走的总步数J来判别。令J=Xe+Ye,每走一步则了减1,直至J=0。
实际加工中零件形状各式各样:
由直线、圆弧组成的零件轮廓;
由诸如自由曲线、曲面、方程曲线和曲面体构成的零件轮廓,对这些复杂的零件轮廓最终还是要用直线或圆弧进行逼近以便数控加工。
为满足几何尺寸精度要求,刀具中心轨迹应与零件轮廓形状一致,但实际应用时往往用一小段直线或圆弧去逼近,从而使得控制算法简单,计算量减少。
综上所述,系统的刀补工作状态,始终存有三个程序段的信息。
刀具补偿的转接处理是对所有的编程轨迹作矢量处理,
综上所述,逐点比较法直线插补每走一步都要完成四个步骤(节拍),即:
(1)位置判别 根据偏差值Fi,j大于零、等于零、小于零确定当前加工点的位置。
(2)坐标进给 根据偏差值Fi,j大于零、等于零、小于零确定沿哪个方向进给一步。
数字积分器的工作原理
求函数y=f(t)在区间[t0,tn]的定积分
即求
若将积分区间[t0,tn]等分成很多小区间△t(其中△t=ti+1,ti),则面积S可近似看成为很多小长方形面积之和,即
如将△t取为一个最小单位时间(即一个脉冲周期时间),即△t=1,则

第三章插补原理及控制方法

第三章插补原理及控制方法



终点判别
N
终点?



结束
25
二、逐点比较法圆弧插补---其它象限
y
F>0
y
F>0

F<0
F<0
三 章
o
x
o
x




逆圆
顺圆
及 控
各象限插补进给方向, 各象限插补进给方向,远

远离原点坐标值加一接 离原点坐标值加一,接近

近原点坐标值减一。
原点坐标值减一。

26
作业
试推导逐点比较法第一象限顺圆弧 第 插补的递推公式,并画出程序流程图。
逐点比较插补计算法(简称逐点比较法)

三 章
数字积分插补计算法(简称数字积分法)
插 时间分割插补计算法(简称时间分割法)


理 及
样条插补计算方法等。




2
3-1 逐点比较法插补
逐点比较插补计算法(简称逐点比
第 较法)又称区域判别法。


其原理是:计算机在控制加工轨迹过
插 程中逐点计算和判断加工偏差以控制坐

当M点在直线上时, + Δ X
y
插 补
(αi= α)

M (x i y j )
A

及 控
tg αi= tg α

方 法
αi

x
6
其中 tg αi= y j / xi
tgα= y e / x e
tg αi -tgα= y j / xi - y e / x e

插补原理及控制方法

插补原理及控制方法

因为插补运算是实时性很强的运算,若算法太复杂,计算机的每次插补运算的时间必然加长,从而限制进给速度指标和精度指标的提高。

3.插补方法的分类❑脉冲增量插补(行程标量插补)特点:✓每次插补的结果仅产生一个单位的行程增量(一个脉冲当量)。

以一个一个脉冲的方式输出给步进电机。

其基本思想是:用折线来逼近曲线(包括直线)。

✓插补速度与进给速度密切相关。

因而进给速度指标难以提高,当脉冲当量为10μm时,采用该插补算法所能获得最高进给速度是3-4 m/min。

✓脉冲增量插补的实现方法较简单,通常仅用加法和移位运算方法就可完成插补。

因此它比较容易用硬件来实现,而且,用硬件实现这类运算的速度很快的。

但是也有用软件来完成这类算法的。

✓这类插补算法有:逐点比较法;最小偏差法;数字积分法;目标点跟踪法;单步追综法等✓它们主要用早期的采用步进电机驱动的数控系统。

✓由于此算法的速度指标和精度指标都难以满足现在零件加工的要求,现在的数控系统已很少采用这类算法了。

❑数字增量插补(时间标量插补)❑特点:插补程序以一定的时间间隔定时(插补周期)运行,在每个周期内根据进给速度计算出各坐标轴在下一插补周期内的位移增量(数字量)。

其基本思想是:用直线段(内接弦线,内外均差弦线,切线)来逼近曲线(包括直线)。

插补运算速度与进给速度无严格的关系。

因而采用这类插补算法时,可达到较高的进给速度(一般可达10m/min以上)。

数字增量插补的实现算法较脉冲增量插补复杂,它对计算机的运算速度有一定的要求,不过现在的计算机均能满足要求。

这类插补方法有:数字积分法(DDA)、二阶近似插补法、双DDA插补法、角度逼近插补法、时间分割法等。

这些算法大多是针对圆弧插补设计的。

这类插补算法主要用于交、直流伺服电机为伺服驱动系统的闭环,半闭环数控系统,也可用于以步进电机为伺服驱动系统的开环数控系统,而且,目前所使用的CNC系统中,大多数都采用这类插补方法。

插补原理及控制方法

插补原理及控制方法
2 2
P点在圆弧外侧时,则OP大于圆弧半径R,即
X i Yj R2 0
2 2
P点在圆弧内侧时,则OP小于圆弧半径R,即
X i Yj R2 0
2 2
用F表示P点的偏差值,定义圆弧偏差函数判别式为
Fi , j X i Y j R 2
2 2
(3-5)
当动点落在圆弧上时,一般约定将其和F>0一并考虑。
1、 插补原理 一般来说,逐点比较法插补过程可按以下四个步 骤进行。
开始 偏差判别 坐标进给 偏差计算
3 2 1 终点判别 O 1 2 3 N 4 x y
E(4,3)
Y 给结束
图5-3
偏差判别:根据刀具当前位置,确定进 给方向。 坐标进给:使加工点向给定轨迹趋进, 即向减少误 差方向移动。 偏差计算:计算新加工点与给定轨迹之 间的偏差,作为下一步判别依据。 终点判别:判断是否到达终点,若到达 ,结束插补;否则,继续以上四个步骤( 如图3-3所示)。
二、基准脉冲插补
(一)、逐点比较法 加工图3-1所示圆弧AB,如果刀具在起始点A,假设 让刀具先从A点沿-Y方向走一步,刀具处在圆内1点 。为使刀具逼近圆弧,同时又向终点移动,需沿+X 方向走一步,刀具到达2点,仍位于圆弧内,需再沿 +X方向走一步,到达圆弧外3点,然后再沿-Y方向 走一步,如此继续移动,走到终点。
第五章 插补原理及控制方法
一、概述
在数控加工中,一般已知运动轨迹的起点坐标 、终点坐标和曲线方程,如何使切削加工运动沿 着预定轨迹移动呢?数控系统根据这些信息实时 地计算出各个中间点的坐标,通常把这个过程称 为“插补”。
数控系统根据这些信息实时地计算出各个中间点 的坐标,通常把这个过程称为“插补”。 插补实质上是根据有限的信息完成“数据点的 密化”工作。

第四部分插补原理与速度控制-

第四部分插补原理与速度控制-
Fi+1,i= XeYi+1 – XiYe= Xe(Yi+1) – XiYe = XeYi – XiYe +Xe =F + Xe
⑷插补步骤
逐点比较法的直线插补过程,每走一步要进行以下四 个步骤,具体如下:
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
②当F<0时,应该向+Y方向发一脉冲,使刀具向+Y方 向前进一步,以接近该直线。
③当F=0时,既可以向+X方向发一脉冲,也可以向+Y 方向前进一步。但通常将F=0和F>0做同样的处理,既 都向+X方向发一脉冲。
⑶迭代法偏差函数F的推导 为了减少计算量,通常采用迭代法计算偏差函数F:即每
走一步,新加工点的偏差用前一点的偏差递推出来。
(二)数字增量(数据采样)插补算法
1.数字增量插补的特点
数字增量插补也称数据采样插补,它为时间标量 插补,这类插补算法的特点是插补运算分两步完成: 第一步是粗插补:计算出插补周期内各坐标轴的增量 值。第二步是精插补:根据采样得到的实际位置增量 值,计算跟随误差,得到速度指令,输出给伺服系统, 通常称为精插补。
P (Xi,Yi)
若P点在直线OA下方,则: XeYi – XiYe < 0
F<0
X
定义F= XeYi – XiYe偏差函数,则可得到如下结论: 当F=0时,加工点P落在直线上;
当F>0时,加工点P落在直线上方;
当F<0时,加工点P落在直线下方;
⑵进给方向判别
①当F>0时,应该向+X方向发一脉冲,使刀具向+X方 向前进一步,以接近该直线。

插补的原理

插补的原理

插补的原理插补是数控加工中的重要概念,它是指在机床进行加工过程中,根据加工轨迹的要求,通过控制机床的运动轴进行插补运动,从而实现复杂曲线的加工。

插补的原理是数控加工中的核心内容之一,下面将从插补的基本原理、插补的分类以及插补的应用等方面进行详细介绍。

首先,插补的基本原理是数控加工中的基础知识,它包括直线插补和圆弧插补两种基本插补方式。

直线插补是指机床在直线轨迹上进行插补运动,而圆弧插补则是指机床在圆弧轨迹上进行插补运动。

在数控加工中,插补运动是通过控制机床各个坐标轴的运动来实现的,通过对各个坐标轴的速度、加速度和位置进行合理的控制,可以实现复杂曲线的加工。

其次,插补可以根据其运动方式的不同进行分类,主要包括直线插补、圆弧插补、螺旋线插补等。

直线插补是最简单的插补方式,它是通过控制机床的各个坐标轴,使其在直线轨迹上进行插补运动。

圆弧插补则是在圆弧轨迹上进行插补运动,它需要通过对圆弧的半径、起点和终点等参数进行合理的控制。

螺旋线插补则是在三维空间中进行插补运动,它需要对螺旋线的半径、螺距、起点和终点等参数进行合理的控制。

不同的插补方式可以实现不同形状的曲线加工,从而满足不同加工要求。

最后,插补在数控加工中有着广泛的应用,它可以实现复杂曲线的加工,提高加工精度和效率。

在实际加工中,通过合理的插补运动,可以实现各种复杂曲线的加工,如汽车零部件、航空航天零部件、模具等领域的加工。

同时,插补运动还可以实现多轴联动,从而实现更加复杂的加工要求,如五轴联动加工、六轴联动加工等。

因此,插补在数控加工中具有非常重要的意义,它是实现复杂曲线加工的关键技术之一。

综上所述,插补是数控加工中的重要概念,它通过合理的运动控制,实现复杂曲线的加工。

插补的基本原理包括直线插补和圆弧插补,可以根据其运动方式的不同进行分类。

插补在数控加工中有着广泛的应用,可以实现各种复杂曲线的加工,提高加工精度和效率。

因此,深入理解插补的原理对于提高数控加工的质量和效率具有重要意义。

插补原理及控制方法

插补原理及控制方法

插补原理及控制方法插补原理是指在数控机床运动控制系统中,通过对多个轴同时进行定长或定角度的运动控制,实现复杂曲线的加工。

插补控制方法包括线性插补和圆弧插补两种。

一、线性插补线性插补是指在工件加工中,沿直线轨迹进行直线段的插补控制方法。

线性插补的原理是通过控制系统对多个轴的运动速度和方向进行精确控制,使得工件能够沿着设定的直线路径进行加工。

线性插补的控制方法包括点位控制和连续控制两种。

1.点位控制点位控制是将每个插补段分解成多个线性插补点,通过对每个点的坐标进行控制,实现工件的加工。

点位控制方式适用于工件形状简单、精度要求不高的情况下。

2.连续控制连续控制是通过对每个时间段内的轴位置进行插补计算,实现工件的连续运动。

此命令适用于工件形状复杂、精度要求较高的场景。

在连续控制中,通常使用插补算法进行计算,将每个时间段内需要插补的线性段分割成多个小段,并根据小段的长度和速度来确定每个小段的运动规律。

二、圆弧插补圆弧插补是指在数控机床加工中,通过对多个轴的运动进行控制,实现工件上圆弧曲线的加工。

圆弧插补的原理是通过对多个轴进行同步运动,控制圆弧路径的切线和加工速度,使得工件能够按照设定的半径和圆弧角度进行加工。

圆弧插补的控制方法包括圆心插补法和半径插补法。

1.圆心插补法圆心插补法是通过控制系统中的插补算法,计算每个时间段内轴的位置和速度,实现工件画圆弧的加工。

在圆心插补中,需要手动指定圆心的坐标位置和圆弧的半径、角度来实现加工。

2.半径插补法半径插补法是指通过在控制系统中指定圆弧的起点、终点和半径来实现工件圆弧的加工。

在半径插补中,插补算法会根据起始点和终点的位置,计算出圆心的位置和圆弧的角度,从而实现工件的加工。

总结:插补原理及控制方法是数控机床系统中非常重要的部分,通过对多个轴的运动进行精确控制,实现工件曲线轨迹的加工。

线性插补适用于直线段的加工,圆弧插补适用于曲线段的加工。

掌握插补原理及控制方法,对于数控机床加工精度的提高和加工效率的提高具有重要意义。

第二讲 插补原理

第二讲  插补原理

不同象限,顺逆不同,插补公式也不一样。
例.用DDA法进行圆弧插补,半圆弧AE起点A(0,5),
终点E(5,0),半径r=5。 解:溢出基值
m=r=5
Δx=y0=5
y
A
x轴增量值
y轴增量值
Δy=x0=0 0
∑x=∑y=0
插补过程如下: E
x
三、提高积分法插补的精度
减小DDA圆弧插补轮廓误差的措施
以控制各轴从而形成要求的轮廓轨迹,这种“数据
密化”机能就称为“插补”。 插入 补充 数据点 得到具体控制方法 加密 数据点
零件程序 … N12 G00 X12 Y24 N13 G01 X24 Y56 …
y
56
24
0
12
24
x
二.软件插补算法 Ⅰ.脉冲增量插补
原理
产生的单个行程增量,以一个个脉冲
方式输入给伺服系统。
y
56
24
脉冲当量: 一个控制脉 冲所对应的 控制坐标轴 的移动量 (转动量)。
12
24
0
x
应用
步进电机为驱动装置的开环数控系统。
机 床
计算机 数控柜
步进电机 驱动电源
步进 电机 滚珠丝杆
Ⅱ.数字采样插补(时间标量插补)
插补程序每调用一次,算出坐标轴在一个周期 中的增长段(不是脉冲),得到坐标轴相应的指令 位置,与通过位置采样所获得的坐标轴的现时的实
0
Fi+1 = Fi -Ye
2.若沿+y向走一步,即
, yi1 yi 1 xi1 xi F x y x y i1 e i1 i1 e
于是有
y Pi+ 1
E(xe,ye)

第四章 插补原理与速度控制

第四章 插补原理与速度控制

n=6=N完
四象限直线插补
A2(-Xe,Ye)
A1(Xe,Ye)
A3(-Xe,-Ye) 直线插补各象限偏差符号和相应的进给方向
A4(Xe,-Ye)
(二)圆弧插补(第一象限顺圆插补)
1、偏差判别函数 2、偏差计算与进给方向 3、终点判别 4、举例
1、偏差判别函数



用P(x,y)表示某 一时刻刀具的位 置,则偏差函数 为: F=x2+y2-R2 F>0 在圆外 F<0 在圆内 F=0 在圆上
X11= X10=7 Y11= Y10+1=8
n=11<N
X12 =X11 -1=6 n=12=N Y12 = Y11=8 到达终 点
Y 8 6
B(6,8)
4
2
2
4
6
8
10
四个象限圆弧插补
F>0
F>0 F>0 F<0 F<0 F<0 F<0
F>0
F<0
F>0 F<0 F>0
F<0
F<0
F>0 F>0
+X +X,+Y +X
20-16=4 24-16=8 18-16=2 20-16=4
+X,+Y +X
+X,+Y +X +X,+Y +X +X,+Y
22-16=6 16-16=0
20-16=4 24-16=8 18-16=2 22-16=6 16-16=0
19-16=3
18-16=2
17-16=1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CNC系统对于直线和圆弧的控制并不是严格按照直线 CNC系统对于直线和圆弧的控制并不是严格按照直线 和圆弧轨迹进行控制。 和圆弧轨迹进行控制 。 上图为加工某一轮廓时的刀具轨 迹曲线, 运动进行切削加工。 迹曲线,加工时要求刀具沿曲线L运动进行切削加工。 我们可以进行这样的分析, 我们可以进行这样的分析 , 首先将曲线 L 分割为 l0、 若干段, l1、…li、…lN若干段,再用直线和圆弧代替这些小的曲 线段, 足够小时, 就接近了原曲线; 线段 , 当逼近误差 δ 足够小时 , 就接近了原曲线 ; 然后 运动的合成, 数控系统通过各坐标方向 最小位移量 运动的合成 , 不断 地控制刀具相对工件运动, 走出直线和圆弧, 地控制刀具相对工件运动 , 走出直线和圆弧 , 从而非常 逼近的走出所需的刀具轨迹曲线。 数字化 ” 逼近的走出所需的刀具轨迹曲线 。 这体现出了 “ 数字化” 的概念。 的概念。 这种在允许误差范围内, 用沿直线或圆弧( 这种在允许误差范围内 , 用沿直线或圆弧 ( 逼近函 合成的分段运动代替任意曲线运动, 数 ) 的 最小位移量 合成的分段运动代替任意曲线运动 , 以得到所需的刀具运动轨迹的方法, 以得到所需的刀具运动轨迹的方法 , 是数字控制的基本 构思之一,这个过程就是插补。 构思之一,这个过程就是插补。
插补开始
偏差判别
坐标进给
偏差计算 N 终点判别 Y 插补结束
二、逐点比较法直线插补 如图所示, 如图所示 , 对 XY平面第 平面第 一象限直线段进行插补。 一象限直线段进行插补 。 直 线段起点位于坐标原点O, 线段起点位于坐标原点 ,终 点 位 于 A ( Xe,Ye ) 。 设 点 P ( Xi, Yi) 为任一动点 ( 加 , ) 为任一动点( 工点、插补点) 工点、插补点)。 点在直线OA上时 上时, 当P点在直线 上时, 点在直线 XeYi – XiYe = 0 当P点在直线 上方时, 点在直线OA上方时, 点在直线 上方时 XeYi – XiYe > 0 点在直线OA下方时 下方时, 当P点在直线 下方时, 点在直线 XeYi – XiYe < 0
数字控制中采取的思路是,用少数几种典型曲线 数字控制中采取的思路是,用少数几种典型曲线 中采取的思路是 来逼近加工零件时所需要的各式各样的曲线( 轨迹) 来逼近加工零件时所需要的各式各样的曲线 ( 轨迹 ) , 常用的典型曲线是直线和圆弧。CNC系统只须对少数几 常用的典型曲线是直线和圆弧。CNC系统只须对少数几 种典型轨迹曲线(直线和圆弧)进行运算及控制。 种典型轨迹曲线(直线和圆弧)进行运算及控制。 用 典 型曲线代 替原曲线, 然后用各 坐标方向 最小位移 量的合成 代替典型 曲线。 曲线。
第二章
机床数控装置的插补原理
一、插补的基本概念 数控加工的零件可分为曲线类零件和曲面类零件两种。 的零件可分为曲线类零件和曲面类零件两种 数控加工的零件可分为曲线类零件和曲面类零件两种 。 曲线类零件——由直线、 ——由直线 曲线类零件——由直线、圆弧或其它形式平面曲线组 成零件的轮廓(例如平面凸轮廓面) 成零件的轮廓(例如平面凸轮廓面); 曲面类零件——由典型曲面(如圆柱面、圆锥面等) ——由典型曲面 曲面类零件——由典型曲面(如圆柱面、圆锥面等) 以及自由曲面构成零件的表面。 以及自由曲面构成零件的表面。 数控加工时,CNC系统控制的是刀具相对于工件的运 数控加工时,CNC系统控制的是刀具相对于工件的运 动轨迹,它是以刀具上某个特殊点 刀具上某个特殊点相对于工件的运动轨 动轨迹 ,它是以刀具上某个特殊点相对于工件的运动轨 迹来表示。刀具运动轨迹在几何上表示为曲线, 迹来表示。刀具运动轨迹在几何上表示为曲线, 不同的 零件表面需要控制的刀具轨迹曲线是各式各样的。 零件表面需要控制的刀具轨迹曲线是各式各样的。 对每一种曲线的控制都要有相应的算法——例如 例如 对每一种曲线的控制都要有相应的算法 G01、G02、G03指令对应的算法,所以由 指令对应的算法, 、 、 指令对应的算法 所以由CNC系统 系统 实现对所有这些曲线的控制计算是不可能的。 实现对所有这些曲线的控制计算是不可能的。
采用逐点比较法计算的关键是, 采用逐点比较法计算的关键是 , 选择能反映 加工点与给定轨迹图形偏差的偏差判别函数, 加工点与给定轨迹图形偏差的偏差判别函数 , 以 及偏差的计算公式。 及偏差的计算公式。
采用逐点比较法插补计算 , 每走一步要进行以下四 采用逐点比较法 插补计算, 插补计算 个步骤,具体如下: 个步骤,具体如下: ① 偏差判别 根据偏差确定刀具相对轨迹图形的位置。 根据偏差确定刀具相对轨迹图形的位置。 根据偏差判别的结果, ② 坐标进给 根据偏差判别的结果,决定控制沿哪个坐 标轴进给一步,以接近轨迹图形。 标轴进给一步,以接近轨迹图形。 计算新加工点相对轨迹图形的偏差, ③ 偏差计算 计算新加工点相对轨迹图形的偏差,作为 下一步偏差判别的依据。 下一步偏差判别的依据。 判断是否到达终点, ④ 终点判别 判断是否到达终点,未到达终点则返回第 一步,继续插补;到终点,则停止本程序段的插补。 一步,继续插补;到终点,则停止本程序段的插补。 终点判别可采用三种方法: 终点判别可采用三种方法: 1)判断插补(进给)的总步数; )判断插补(进给)的总步数; 2)分别判断各坐标轴的进给步数; )分别判断各坐标轴的进给步数; 3)仅判断进给步数较多的坐标轴的进给步数。 )仅判断进给步数较多的坐标轴的进给步数。
常用的插补 插补、 功能有直线插补 功能有直线插补、 圆弧插补, 圆弧插补,有的 数控系统还具有 抛物线等插补功 抛物线等插补功 能 。数控系统中 完成插补功能的 装置叫插补器 插补器。 装置叫插补器 。 在 CNC 系 统 中 , 插补功能主要由 软件来实现, 软件来实现, 称 软件插补。 为软件插补。
第一节 逐点比较法插补
早期数控机床广泛采用的方法, 早期数控机床广泛采用的方法 ,又称 一、插补原理及特点 代数法、醉步法,适用于开环系统。 代数法、醉步法,适用于开环系统。
原理 每走一步控制系统都要将加工点与给定的轨迹 图形相比较,以决定下一步进给方向, 图形相比较 , 以决定下一步进给方向, 使之逼近加工轨 每个插补循环由偏差判别、进给、 迹。 每个插补循环由偏差判别、进给、 偏差函数计算和 组成。逐点比较法可以实现直线插补、 终点判别四个步骤组成。逐点比较法可以实现直线插补 、 圆弧插补及其它曲线插补。 圆弧插补及其它曲线插补。 运算直观,插补误差小于一个脉冲当量, 特点 运算直观,插补误差小于一个脉冲当量, 输出 脉冲均匀,而且输出脉冲的速度变化小,调节方便。 脉冲均匀,而且输出脉冲的速度变化小, 调节方便。 每 次仅向一个坐标轴输出一个进给脉冲, 次仅向一个坐标轴输出一个进给脉冲, 在两坐标系统中 应用较为方便。 应用较为方便。
Y Ae (Xe,Ye) F>0 Pi (Xi,Yi) F<0 X O
选择Fi=XeYi – XiYe 为偏差函数。 为偏差函数。
1、偏差函数 、 Y Ae (Xe,Ye) 对于第一象限直线OA上任一点 对于第一象限直线 上任一点 P(X,Y),X/Y = Xe/Ye , e − XYe = 0 , YX F>0 Pi( (Xi,Yi) 该点的偏差函数Fi为: 该点的偏差函数 Fi = Yi X e − X iYe F<0 2、偏差判别及进给方向 、 O X 方向走一步; 若Fi= 0,表示加工点位于直线上,规定向 +X 方向走一步; ,表示加工点位于直线上,规定向 方向走一步; 若Fi> 0,表示加工点位于直线上方,向 +X 方向走一步; ,表示加工点位于直线上方, 方向走一步。 若Fi< 0,表示加工点位于直线下方,向+Y 方向走一步。 ,表示加工点位于直线下方, 3、偏差函数的计算 、 偏差函数采用递推法计算, 偏差函数采用递推法计算,即由前一点偏差计算后一点偏 差。
采用逐点比较法计算的关键是, 采用逐点比较法计算的关键是 , 选择 能反映加工点与给定轨迹图形偏差的偏差 能反映加工点与给定轨迹图形偏差的 偏差 判别函数,以及偏差的计算公式。 判别函数,以及偏差的计算公式。
Fi = Yi X e − X iYe
方向走一步, 当Fi>=0,向 +X 方向走一步 , Fi = Xe Yi -XiYe 方向走一步, 当Fi<0,Fi>=0,向 +X 方向走一步 , Xi+1 = Xi +1 Fi = Xe Yi -XiYe Fi+1 = XeYi –Ye(Xi +1) =Fi-Ye 方向走一步, 当Fi<0,规定 +Y 方向走一步,则有 , Yi+1 = Yi +1 Fi+1 = Xe(Yi +1)-YeXi Fi = Xe Yi -XiYe =Fi +Xe 4、终点判别 、 直线插补的终点判别可采用三种方法。 直线插补的终点判别可采用三种方法。 1)判断插补或进给的总步数; )判断插补或进给的总步数; 2)分别判断各坐标轴的进给步数; )分别判断各坐标轴的进给步数; 3)仅判断进给步数较多的坐标轴的进给步数。 )仅判断进给步数较多的坐标轴的进给步数。
5、逐点比较法直线插补举例 、 对于第一象限直线OA,终点坐 对于第一象限直线 , 标Xe=6 ,Ye=4,插补从直线起点 ,插补从直线起点O 开始, 开始,故F0=0 。终点判别采用判 断进给总步数: 断进给总步数:N=6+4=10,将其 , 存入终点判别计数器中, 存入终点判别计数器中,每进给一 步减1, 步减 ,当N=0,则停止插补。 ,则停止插补。 O
根据零件轮廓线型的有限信息, 插补 根据零件轮廓线型的有限信息 , 计算出刀 具的一系列加工点( 具的一系列加工点 ( 在起点和终点间插入一些中间 完成所谓的数据“密化”工作。 点),完成所谓的数据“密化”工作。 插补有二层意思: 插补有二层意思: 一是用基本线型拟合其它轮廓曲 一是用基本线型拟合其它轮廓曲 体现在编程阶段) 线;(体现在编程阶段) 二是用小的直线段逼近产生基本 二是用小的直线段逼近产生基本 线型(如直线、圆弧等) 线型(如直线、圆弧等)。 (通 常所说的插补概念) 常所说的插补概念) 插补运算具有实时性 具有实时性, 插补运算 具有实时性 , 直接影 响刀具的实时运动。插补运算的速 响刀具的实时运动。 度和精度是数控装置的重要指标。 度和精度是数控装置的重要指标。 插补原理也叫轨迹控制原理。 插补原理也叫轨迹控制原理。
相关文档
最新文档