加法原理和乘法原理讲座例1.试卷
【七年级奥数】第22讲 加法原理和乘法原理(例题练习)
![【七年级奥数】第22讲 加法原理和乘法原理(例题练习)](https://img.taocdn.com/s3/m/8a5d8715e97101f69e3143323968011ca300f77b.png)
第22讲加法原理和乘法原理——练习题一、第22讲加法原理和乘法原理(练习题部分)1.书架上有三排书.第一排共有12本书.第二排共有20本书,第三排共有15本书.小明从中取一本书来阅读.问他有几种不同的取法?2.某班有男生18人,女生15人.从中选出一人去参加夏令营,问有多少种不同的选法?3.第一个口袋中装2个球,第二个口袋中装4个球,第三个口袋中装5个球,球各不相同.(1)从口袋中任取一个小球,有多少种不同的取法?(2)从三个口袋中各取一个球,问有多少种不同的取法?4.如图,从甲地到乙地有两条路.从乙地到丙地有三条路.从甲地到丙地有四条路.问从甲地到丙地共有多少种不同的走法?5.把多项式(a1+a2+a3)(b1+b2+b3+b4)(c1+c2) 展开,展开式中有多少种不同的项?6.求2000的正约数的个数.7.用1、2、3、4这四个数字可组成多少个不同的三位数?8.将6个人分成甲、乙两组,每组至少1人.有多少种不同的分法?9.从南京到上海的某次快车,中途要停靠六个大站.铁路局要为这次快车准备多少种不同的车票?这些车票中最多有多少种不同的票价?10.4个人站成一排合影,共有多少种不同的排法?11.用2、3、4这三个数字组成没有重复数字的三位数.(1)求这些三位数的数字和的和;(2)求这些三位数的和.12. 2000的正约数中,有多少个偶数?13.用数字0、1、2、3、4可以组成多少个(1)四位数?(2)四位偶数?(3)没有重复数字的四位数?(4)没有重复数字的四位偶数?(5)没有重复数字的正整数?14.三封信,随机地投入四个信箱中.有多少种不同的投信方法?15. 5人站成一排照相,其中一人必须站在中间.有多少种站法?16.有多少个被3整除并且含有数字9的三位数?17.如图,对地图中的A、B、C、D、E这五个部分用四种不同的颜色染色.相邻的部分不能用相同的颜色,不相邻的部分可以用相同的颜色.有多少种不同的染色方法?答案解析部分一、第22讲加法原理和乘法原理(练习题部分)1.【答案】解:小明从中取一本,共有三种方法:一种是从第一排取,共12种不同的取法;一种是从第二排取,共20种不同的取法;一种是从第三排取,共15种不同的取法;∴12+20+15=47(种),答:他有47种不同的取法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.2.【答案】解:从中选一人,共有两种选法:一种是从男生选,共有18种选法;一种是从女生选,共有15种选法;∴18+15=33(种),答:有33种不同的选法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.3.【答案】(1)解:从口袋中任取一个小球有三种办法:第一种是从第一个口袋中取球,共有2种不同的方法;第二种是从第二个口袋中取球,共有4种不同的方法;第三种是从第三个口袋中取球,共有5种不同的方法;∴2+4+5=11(种).答:有1种不同的取法.(2)解:从三个口袋中各取一个球,可分三步进行:第一步是从第一个口袋中取一球,有2种不同的方法;第二步是从第二个口袋中取一球,有4种不同的取法;第三步是从第三个口袋中取一球,有5种不同的方法;∴2×4×5=40(种).答:有40种不同的取法.【解析】【分析】使用乘法原理与加法原理的不同之处在于:用加法原理时,完成一件事情有n类办法,不论用哪一类办法,都能完成这件事.而用乘法原理时,完成一件事情可分为n步,但不论哪一步,都只是完成这件事情的一部分,只有每一步都完成了;这件事情才得以完成.因此,这n步缺一不可.这就是使用乘法原理还是使用加法原理的主要区别.4.【答案】解:从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种是从甲地到乙地有2条路,从乙地到丙地有3条路,故共有2×3=6条路;∴4+2×3=10(种).答:从甲地到丙地共有10种不同的走法.【解析】【分析】从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种需要分成两步:先从甲地到乙地有2条路,再从乙地到丙地有3条路,根据加法原理和乘法原理计算即可.5.【答案】解:多项式含a的有3项,含b的有4项,含c的有2项,∴展开式中不同的项有:3×4×2=24(种).【解析】【分析】这个多项式的乘积是有三个部分组成:第一部分含a的有3项,第二部分含b的有4项,第三部分含c的有2项,根据乘法原理计算即可.6.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.7.【答案】解:百位数字有4种选法,十位数字有4种选法,个位数字有4种选法,∴4×4×4=64.∴可组成64个不同的三位数.【解析】【分析】三位数分成三步:第一步选百位数字有4种选法,第二步选十位数字有4种选法,第三步选个位数字有4种选法,根据乘法原理计算即可.8.【答案】解:∵每个人都可分在甲组,也可分在乙组,即有2种分法,根据乘法原理可得:2×2×2×2×2×2=64(种),又∵这64种方法种,有1种是6个人全在甲组,有1种是6个人全在乙组,∴64-1-1=62(种).答:有62种不同的分法.【解析】【分析】每个人都可以分在甲组或乙组,即有2种分法,根据乘法原理算出所有分法;然后去掉一些不符题意的;这种做法常常有很好的效果.9.【答案】解:∵中途有6个大站,∴一共有6+2=8(站),∴7+6+5+4+3+2+1=28(种),∴两个车站的往返车票各一种,即两种,∴28×2=56(种),答:铁路局要为这次快车准备56种不同的车票;这些车票中最多有28种不同的票价.【解析】【分析】根据题意可知从南京到上海一共8个站,从第一站到其他各站有7种,从第二站到下边各站有6种,从第三站到下边各站有5种,……,从第七站到下边各站有1种,根据加法原理计算单程车票的种类,即可计算往返车票的种类和票价.10.【答案】解:第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,∴4×3×2=24(种).答:共有24种不同的排法.【解析】【分析】根据题意可知第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,根据乘法原理计算即可得出答案.11.【答案】(1)解:百位数字有3种方法,十位数字与百位数字不同,有2种方法,个位数字与百位、十位数字不同,有1种方法,∴3×2×1=6(种),∴这些三位数的数字和的和为:(2+3+4)×6=54.答:这些三位数的数字和的和为54.(2)解:依题可得三位数为:432,423,324,342,234,243,∴这些三位数的和为:432+423+324+342+234+243=1998.答:这些三位数的和为1998.【解析】【分析】(1)选三位数分成三步:第一步百位数字有3种方法,第二步十位数字与百位数字不同,有2种方法,第三步个位数字与百位、十位数字不同,有1种方法,根据乘法原理计算即可.(2)根据题意写出所有的三位数,再将这些数字加起来即可得出答案.12.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个),∴奇约数有:3+1=4(个),∴偶约数有:20-4=16(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.13.【答案】(1)解:千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,∴4×5×5×5=500(个).答:可以组成500个四位数.(2)解:个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,∴3×5×5×4=300(种).答:可以组成300个四位偶数.(3)解:∵数字不能重复,∴千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,∴4×4×3×2=96(种).答:没有重复数字的四位数有96种.(4)解:∵数字不能重复且为偶数,∴①若个数数字为0时,则十位数字与个位数字不同,则有4种不同的选法;百位数字与个位、十位数字不同,则有3种不同的选法;千位数字与个位、十位、百位数字不同,则有2种不同的选法,∴4×3×2=24(种),②个位数字从2、4数字中选有2种不同的选法,则千位数字与个位数字不同,则有3种不同的选法,百位数字与个位、千位数字不同,则有3种不同的选法;十位数字与个位、百位、千位数字不同,则有2种不同的选法,∴2×3×3×2=36(种),∴24+36=60(种).答:没有重复数字的四位偶数有60种.(5)解:①一位数有4个;②两位数有4×4=16(个);③三位数有4×4×3=48(个);④四位数有4×4×3×2=96(个);⑤五位数有4×4×3×2×1=96(个);∴没有重复数字的正整数有:4+16+48+96+96=260(个).答:没有重复数字的正整数有260.【解析】【分析】(1)千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,根据乘法原理计算即可.(2)个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,根据乘法原理计算即可.(3)由于数字不能重复,从而千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,根据乘法原理计算即可.(4)根据题意分情况分析:①若个数数字为0时,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;②个位数字从2、4数字中选有2种不同的选法,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;再将两种选法加起来即可.(5)根据题意分情况讨论:①一位数;②两位数;③三位数;④四位数;⑤五位数;再分别求出个数,求和即可.14.【答案】解:每封信都有4种投法,依题可得:4×4×4=64(种).答:有64种不同的投信方法.【解析】【分析】根据题意可知每封信都有4种投法,根据乘法原理计算即可.15.【答案】解:∵一人必须站在中间,∴第一个人有4种不同的排法,第二个人有3种不同的排法,第四个人有2种不同的排法,第五个人有1种不同的排法,∴4×3×2=24(种).答:有24种站法.【解析】【分析】根据题意可知一个人的位置已经固定,再将剩余的4人排列,根据乘法原理计算即可.16.【答案】解:依题可分类讨论:①9在个位:由于需被3整除且个位是9,根据被3整除的数,其各位数字之和也能被3整除的定理,百位和十位数字之和能被3整除;所以百位和十位组成的两位数也能被3整除.百位和十位从10到99,共有90个数,每3个数一组,必有一个被3整除,共30个.②9在十位:同上分析,有30个.③9在百位:与上面不同的是,个位和十位组成的两位数应该从00到99,共100个数,能被3整除的有34个.以上三种情况有重复的,那就是9不止一个的时候.④□99,有3个.⑤9□9,有4个.⑥99□,有4个.⑦999,有1个.∴共有30+30+34-3-4-4+1 =84(个).【解析】【分析】根据题意分情况讨论:①9在个位;②9在十位;③9在百位,根据被3整除的数的特征分析得出各部分数的个数,再把其中重复的找出来,计算即可.17.【答案】解:根据题意可知:A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;∴4×3×2×2×2=96(种).答:有96种不同的染色方法.【解析】【分析】根据题意可知A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;由乘法原理计算即可.。
加法原理与乘法原理练习题(详解)
![加法原理与乘法原理练习题(详解)](https://img.taocdn.com/s3/m/c1d6b10848d7c1c709a14525.png)
加法原理与乘法原理1.一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A.8种B.12种 C.16种 D.24种答案 C2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( )A.48 B.59 C.60 D.100 答案 A3.某电话局的电话号码为168~×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有( )A.20个 B.25个 C.32个 D.60个答案 C4.在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为( )A.20 B.10 C.5 D.24 答案 B5.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( )A.8种 B.15种 C.125种 D.243种答案 D6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种答案 B7.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( )A.40 B.13 C.10 D.16 答案 B8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )A.336种 B.120种 C.24种 D.18种答案 A9.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种 B.20种 C.25种 D.32种答案 D10.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( ) A.14 B.23 C.48 D.120 答案 C11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种 C.24种 D.30种答案 C12.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.答案 413.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案1214.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种?15.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色.(1)共有多少种不同的涂色方法?(2)若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法?解析(1)由于1至4知,不同的涂色方法有54=625种.(2)第一类,1号区域与3号区域同色时,有5×4×4=80种涂法,第二类,1号区域与3号区域异色时,有5×4×3×3=180种涂法.依据分类加法计数原理知,不同的涂色方法有80+180=260(种).16.用0,1,…,9这十个数字,可以组成多少个.(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?(4)小于500,且末位数字是8或9的无重复数字的三位整数?(5)小于100的无重复数字的自然数?解析由于0不可在最高位,因此应对它进行单独考虑.(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步乘法计数原理知,符合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,符合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字可有9种选择,个位数字有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×9×8=288(个).(4)百位数字只有4种选择,个位数字只有2种选择,十位数字可有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×2×8=64(个).(5)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,符合题意的两位数共有9×9=81(个).由分类加法计数原理知,符合题意的自然数共有10+81=91(个).17.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、第二象限中的不同点的个数有( )A.18个 B.16个 C.14个 D.10个答案 C18.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落可能性共有( )A .6种B .36种C .63种D .64种 答案 C19.已知互不相同的集合A 、B 满足A ∪B ={a ,b },则符合条件的A ,B 的组数共有________种. 答案 920.已知a ,b ∈{0,1,2,…,9},若满足|a -b |≤1,则称a ,b “心有灵犀”.则a ,b “心有灵犀”的情形共有( )A .9种B .16种C .20种D .28种 答案 D21.(2012·广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19答案 D 22.把10个苹果分成三堆,要求每堆至少有1个,最多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种 答案 A23.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8 答案 D24.若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有________种不同情况(没有并列冠军)? 答案 5325.有1元、2元、5元、10元、50元、100元人民币各一张,则由这6张人民币可组成________种不同的币值. 答案 6326.三边长均为整数,且最大边长为11的三角形共有________个.答案 3627.设椭圆x 2m +y 2n=1的焦点在y 轴上,m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆个数为________. 答案 2028.如图所示,在连接正八边形的三个顶点而成的三角形中与正八边形有公共边的三角形有________个.答案40欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
加法原理与乘法原理(1).许兴华
![加法原理与乘法原理(1).许兴华](https://img.taocdn.com/s3/m/c4964000763231126edb1165.png)
例3.(1)有5本不同的书要全部借给3名学生,有 多少种不同的借法? (2)将3个工人分配到5个车间去工作,有多少种 不同的分配方案?
解:(1)因为每本书都要借出去,每 本书都有3种选法,所以共有 3×3×3×3×3=35=243(种)借法. (2)因为每个工人必须分配完,每 个工人有5种分法,所以共有 5×5×5=53=125(种)分法.
[解] N=10×10×10×10=10000
兴 T 华
许
N S
E
E
V
课
Firstpage首页 upward return next last 铃
件
( 变式 )乘积 ( a 1 a 2 )( b1 b 2 b 3 )( c 1 c 2 c 3 ) 展开后共有多少项 ?
( 分析 )( a 1 a 2 )( b1 b 2 b 3 )( c 1 c 2 c 3 )
兴 T 华
许
N S
E
E
V
课
Firstpage首页 upward return next last 铃
件
例1、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的 体育杂志. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、 2、 3层各取1本书,有多少 种 不同取法?
A,
兴 T 华
许许
E
N S
客”即是。
E N 兴S T 华
E
E
V 课 V
课
件 Firstpage首页 upward return next last 铃 件
个位数字除8外均有9种情形.另外200也符合题 意,故三位数中,共有9×9+1=82(个)符合要求.
六年级奥数培训第4讲 乘法原理和加法原理
![六年级奥数培训第4讲 乘法原理和加法原理](https://img.taocdn.com/s3/m/1cbe878abceb19e8b8f6ba70.png)
第4讲乘法原理和加法原理一、知识要点在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。
做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。
二、精讲精练【例题1】由数字0,1,2,3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?【思路导航】在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。
①要求组成不相等的三位数,所以数字可以重复使用。
百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。
②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。
练习1:1.有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2.在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。
将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?【思路导航】要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。
所以,需要分两大类来考虑:两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。
练习2:1.在1~1000的自然数中,一共有多少个数字1?2.在1~500的自然数中,不含数字0和1的数有多少个?3.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?【例题3】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?【思路导航】从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。
初中数学竞赛—奥数讲义计数专题:加法原理、乘法原理及答案
![初中数学竞赛—奥数讲义计数专题:加法原理、乘法原理及答案](https://img.taocdn.com/s3/m/5c5cf3e783d049649b6658aa.png)
华杯赛计数专题:加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例题:例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?【答案】180【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.【答案】162【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.【答案】480个【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例6.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.【答案】(1)120(个);(2)96(个);(3)36(个).【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例7.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?【答案】90(种)【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例8.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?【答案】150(种)【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,1和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例9.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?【答案】40(个)【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例10.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?【答案】81(种);1944(种)【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例11. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?【答案】768(种)【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H 进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H 的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.。
四年级下册数学试题-奥数专题讲练:第10讲 乘法原理与加法原理 精英篇(解析版)全国通用
![四年级下册数学试题-奥数专题讲练:第10讲 乘法原理与加法原理 精英篇(解析版)全国通用](https://img.taocdn.com/s3/m/dcad179752d380eb63946d49.png)
第十讲乘法原理与加法原理乘法原理一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,则完成这件事一共有N=m1×m2×…×m n种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。
”【例1】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法分析:①5个人排成一排照相,从左到右共5个位置。
第一个位置可从5个人中任选一人,有5种选法;第二个位置只能从剩下的4个人中任选一人,有4种选法,同理,第三、第四、第五个位置分别有3种、2种、1种选法。
每个位置上站了一人就是一种排法。
根据乘法原理,共有5×4×3×2×1=120种排法。
②5个人排成两排照相,可先排前排、再排后排,依次也有5个位置,类似①的方法可得共有5×4×3×2×1=120种排法。
③这里,限定某人必须站在中间,他的位置固定了,而其余4人可以任意站位,类似①的分析可知共有4×3×2×1=24种排法。
④这里,限定某人必须站在两头,这件事分两步完成,第一步,安排限定的人,有2种方法;第二步,安排其它的4人,类①的分析,有4×3×2×1=24种方法,根据乘法原理,共有2×(4×3×2×1)=24×2=48种排法.【例2】(小数报数学竞赛初赛)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色.共有多少种不同的染色方法?分析:用红、黑、绿、蓝、紫五种颜色依次染色,根据乘法原理,共有5×4×3×3×3×3×3=4860种不同的染色方法.【例3】(1)(迎春杯决赛)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(2)(兴趣杯少年数学邀请赛决赛)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?分析:(1)设甲方先放棋子,乙方后放棋子.那么甲方可以把棋子放在棋盘的任意位置,故甲方有:10×9=90种不同的放置方法.对应甲方的第一种放法,乙方按规定必须去掉甲方棋子所在的行与列,而放置在剩下的任意位置,所以乙方有:9×8=72种不同的放置方法.因此,总共有:72×90=6480种不同的放置方法.(2)第一列有2种放法.第一列放定后,第二列又有2种放法.…如此下去,共有2×2×2×2=16种不同的放法.【例4】有10块糖,每天至少吃一块,吃完为止。
四年级思维拓展-加法原理与乘法原理 (1)
![四年级思维拓展-加法原理与乘法原理 (1)](https://img.taocdn.com/s3/m/8135eac232d4b14e852458fb770bf78a65293a9c.png)
加法原理和乘法原理☜知识要点1.加法原理做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N= m1+ m2+…+ m n种不同的方法,这就是加法原理。
2.乘法原理做一件事,完成它需要分成m个步骤,做第一步有a1种不同的方法,做第二步有a2种不同的方法,…,做第n步有a n种不同的方法,那么完成这件事共有:M= a1×a2×…× a n种不同的方法,这就是乘法原理。
3.运用加法原理和乘法原理解题常用的方法:枚举法、分类法、配对法、图表法。
☜精选例题【例1】下图是某街区人行路示意图,从A到D有多少种走法?DA☝思路点拨:从A到D的走法有两类:第一类从A经C到D有3走法,分别经过P,M,N;第二类从A经B到D,有2种走法,分别经过E,F。
两类走法种每种走法都能独立完成从A到D。
☝标准答案:3+2=5(种)答:从A到D有5种走法。
✌活学巧用1.从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?2. 一个盒子里装有5个小球,另一个盒子里装有9个小球,所有这些小球颜色各不相同。
若从两个盒子里任取一球,有多少种不同的取法?3.上海去江苏某地,每天有5班火车、3班汽车。
试问:乘坐这些交通工具有多少种不同的走法?4.学校羽毛球队有12名男队员,10名女队员。
现要推选一名运动员去台上领奖,有多少种选法?【例2】学校四年级有3个班,各班分别有男生18人、20人、16人。
从中任选一人当升旗手,有多少种选法?☝思路点拨:解决这个问题有3类办法,分别从(1)班、(2)班、(3)班男生中选1人。
从四(1)班18名男生中任意选一人有18种选法;同理从四(2)班20名男生中任意选一人有20种选法;从四(3)班16名男生中任意选一人有16种选法;所以根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:☝标准答案:18+20+16=54(种)答:共有54种选法。
加乘法原理教师版
![加乘法原理教师版](https://img.taocdn.com/s3/m/b949606ff5335a8102d2206a.png)
加法原理前言:加法原理:完成一件事,如果有n类办法:在第一类办法中有a1种不同的做法,第二类方法中有a2种不同的做法……第n类办法中有a n种不同的做法,那么完成这件事有N= a1+ a2+…+a n种不同的方法.成功秘诀:加法原理就是一步到位.王牌例题:【例1】难度★★★一天中,从甲地到乙地有3班火车,4班汽车,2班轮船,在这一天中从甲地到乙地,乘坐这些交通具有多少种不同的走法?【练习】某火车站,上站台有电梯2部,自动梯1部,扶梯3部,试问上站台有多少种不同的走法?【例2】难度★★★小冬到新华书店买书.他喜欢的书有5种数学书,3种科幻小说,6种古典小说.他带的钱只能买其中的一种,他有多少种不同的选择方法?【练习】小强到图书馆借书,其中他喜欢的书有4本英语小说,2本科幻杂志,5本漫画.他每次只能借阅一本,那他有多少种不同的借法?【例3】难度★★★有1分、2分、5分币各一枚,可以从中组成多少种币值的人民币?【练习】某人有一个5分币,四个2分币,八个1分币,现在要拿出8分钱,有几种不同的拿法?【例4】难度★★★★若取1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号,可以得到多少个不同的乘积(最少插一个乘号)?【练习】甲地到乙她,一天中有三班汽车,二班火车,还有二班飞机.这一天从甲地到乙地有多少种不同的走法?【例5】难度★★★★从1—9这九个数字中,每次取两个数字,这两个数的和大于10,能有多少种取法?【练习】在两位整数中,十位数字小于个位数字的共有多少个?课后作业:1、从甲地到乙地,每天有3班火车、2班轮船和6班汽车可乘,问一天中从甲地到乙地有几种不同的走法?2、从武汉到南京,有4种可使用的交通工具:飞机、火车、轮船和汽车.已知每一天中,有两个航班,5次火车,3班轮船和6班汽车.问一天中从武汉到南京有多少种不同的走法?3、书架上层有5种不同的故事书,中层有7种不同的科技书,下层有4种不同的历史书.如果要从书架上任取一本书,有多少种不同的取法?4、兰兰向妈妈要6分钱买一根冰棒,妈妈叫兰兰从袋子里取硬币.袋子里有1分、2分、5分硬币各6枚.兰兰要拿6分钱,可以有几种拿法,用算式表示出来.5、书架上有6本不同的画报和7本不同的书.每次取一本看,有多少种取法?6、十把钥匙开十把锁.但钥匙已经搞乱了,问最多试多少次即可将钥匙和锁配起来?7、10名围棋手举行单循环赛(每两名选手都要比赛一次),共要安排多少盘比赛?乘法原理前言:乘法原理:做一件事,如果需要分成n个步骤,做第一步有a1种不同的方法,做第二步有a2种不同的方法……做第n步有a n种不同的方法,那么完成这件事共有:N=a1×a2×…×a n种不同的方法.王牌例题:【例1】难度★★★从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,试问从甲地经乙地到丙地共有多少种不同的走法?【练习】从甲地到乙地可坐飞机、火车、汽车;从乙地到丙地可坐飞机、火车、汽车、轮船,某人从甲地经乙地到丙地共有几种走法?【例2】难度★★★小冬到新华书店买书,他喜欢的数学书有5种,科幻小说有3种,歌曲集有2种.数学书、科幻小说、歌曲集他各买一本有多少种不同的选法?【练习】书架上有6本不同的数学书,4本不同的语文书.(1)从中任取一本书,有多少种不同的取法?(2)数学、语文书各取一本,有多少种不同的取法?【例3】难度★★★学校食堂中午提供3种主食,6种菜和2种汤,如果想点一种主食,一份菜和一种汤,共有多少种不同的方法?【练习】小明有5件不同的上衣、3条不同的裤子和2条不同的围巾,从中取出一件上衣、一条裤子和一条围巾,能配成多少种不同的装束?【例4】难度★★★如图共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子,问共有多少种不同的放法?课后作业:1、有3名医生、3名护士被分配到3所小学为学生体检,每所学校1名医生、1名护士,共有种不同的分配方法.2、从A到B有4条路可走,从B到C有3条路可走,从A到C还有2条路可直接到达.从A到C一共有多少种不同的走法?3、王芳有四件上衣,三条裤子,两双皮鞋.她能有多少天穿戴装束不同?4、两个学校进行围棋比赛,双方各出5名男队员和3名女队员,每一方的一名队员都要和另一方的每一个队员进行一场比赛.共要进行多少场比赛?若每一方的男队员和另一方的男队员都比赛一场:每一方的女队员和另一方的女队员都赛一场,而男队员与女队员不进行比赛,一共要比赛多少场?5、书架上有8本不同的小说和10本不同的漫画,大头要从书架上任意取一本书,有多少种不同的取法?加乘原理的综合例 1、有五张卡片,分别写有 1、2、4、5、8,现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数?提示:简单的乘法原理,以此判断出个位、十位、百位有几种选法。
第1讲四年级数学思维能力拓展专题突破系列(十六)加乘原理讲义(含答案)
![第1讲四年级数学思维能力拓展专题突破系列(十六)加乘原理讲义(含答案)](https://img.taocdn.com/s3/m/60690ff0915f804d2a16c181.png)
四年级数学思维能力拓展专题突破系列(十六)加乘原理------加乘原理基础(1)1、使学生掌握乘法原理主要内容,掌握乘法原理运用的方法。
2、使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系。
3、培养学生准确分解步骤的解题能力。
1、掌握乘法原理的定义。
2、会用乘法原理解决问题。
例题1:马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。
问:小丑的帽子和鞋共有几种不同搭配?例题2:从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。
问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?例题3:小明有许多套服装,上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配。
问共可组成多少种不同的搭配?例题4:“数学”英文单词是“MA THS”。
用红、黄、蓝、绿、紫五种颜色分别去给字母染色,每个字母的颜色都不一样。
这些颜色可以染出多少种不同的搭配方式?例题5:由数字0、1、2、3组成三位数,(1)可以组成多少个不相等的三位数?(2)可以组成多少个没有重复数字的三位数?即是该课程的课后测试练习1:从分别写有1、3、5、7、9的五张卡片中任取两张,作成一道两个一位数的乘法题,问:(1)有多少个不同的乘积?(2)有多少个不同的乘法算式?练习2:一从南京到上海的某次快车中途要停靠六个大站。
铁路局要为这次快车准备多少种不同的车票?这些车票中最多有多少种不相同的票价?练习3:用两个3,一个1,一个2可组成不同的四位数,这些四位数共有多少个?练习4:在下面一排数字中间的任意两个位置写上两个“+”号,可以得到三个自然数相加的加法算式,所有可以得到这样的不同的加法算式共有多少个?1 2 3 4 5 6 7 8 9练习5:由数字2、3、4、5、6、7、8共可组成多少个没有重复数字的四位奇数?练习1:解析:(1) 要考虑有多少个不同乘积,第一次有5种情况,第二次有4种情况,又因为它们之间没有顺序性,有5×4÷2=10 (种)。
15加法原理和乘法原理1
![15加法原理和乘法原理1](https://img.taocdn.com/s3/m/eebd2650312b3169a451a47f.png)
题型二:乘法原理的应用 1、从甲地到乙地,要从甲地先乘火车到丙地,再 于次日从丙地乘汽车到乙地,一天中,火车有3班, 汽车有2班,那么两天中,从甲地到乙地共有__ 6种 不同的走法? 2、现有高一学生8人,高二学生10人,高三学生5 人,组织物理课外活动小组,每一年级选一名组 400种不同的选法? 长,有___ 3.如图:甲 乙,在儿童公园中有四 个圆圈组成的连环道路,从甲走到乙,不同的路线 的走法有(D )。
6、若a,b∈N*,且a+b≤5,则在直角坐标平面 10 内的点(a,b)共有________ 个
题型五:排数字问题
1、银行卡密码由六位数字组成,每一位的数字均 6 10 从0到9中选一个,那么可以组成_____ 个六位数字 的密码
5 2、有数字 1,2,3,4,5 可以组成_____ 个三 位数
(A)2种 (B)8种 (C)12种 (D)16种
4、一个口袋内装有5个小球,另一个口袋装有4个 小球,所有这些小球的颜色互不相同.从两个口袋 20 种不同的取法 内各取一个小球,有_____
5、集合P={1,2,3},Q={2,3,4,5},定义P※Q= {(a,b)|a∈P,b∈Q},则集合P※Q中元素的个 12 数为 _______ 6、已知a∈{-1,2,3},b∈{0,1,3,4},r∈{1,2}则方 程(x-a)2+(y-b)2=r2所表示的不同的圆的个数 24 有 ______ 个
题型三:投信问题 4 1、有1封信,投入4个邮箱,有_____种不同的投法, 有5封信,投入4个邮箱,有____ 45 种不同的投法
2、四名运动员参加跳高、跳远、铁饼比赛,每 4 3 种不同的报名数 人选报一项,求有____
3、动物园的一个大笼子里,有4只老虎,3只羊, 同一只羊不能被不同的老虎分食,问老虎将羊吃光 3 的情况有________ 种 4 4、5名旅客投宿到一个旅店的3个房间,问共有 5 ______ 3 种不同的住店方法
四年级奥数讲义:加法原理与乘法原理
![四年级奥数讲义:加法原理与乘法原理](https://img.taocdn.com/s3/m/0b87c33c6294dd88d1d26b2e.png)
四年级奥数讲义:加法原理与乘法原理◆温故知新:1. 加法原理:如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数.2.乘法原理:如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数.3.分类是指完成一件事有几类不同的方法,从中任意选取一类即可,它们之间可以相互替代,任意选取一类都可以完成这件事.这种情况下一般要用到加法原理.4.分步是指完成一件事情有几步不同步骤,每一步都必须执行,他们之间不可以相互替代,少一步都不能完成这件事.这种情况下一般要用到乘法原理.5.加法原理的类与类之间会满足下列要求:(1)只能选择其中的某一类,而不能几类同时选;(2)类与类之间可以相互替代,只需要选择某一类就可以满足要求.6.乘法原理的步与步之间满足下列要求:(1)每步都只是整件事情的一个部分,必须全部完成才能满足结论;(2)步骤之间有先后的顺序,先确定好一步,再做下一步,直到最后.7.标数法的运用.◆练一练1.小明去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个.他准备找一家餐厅吃饭,一共有多少种不同的选择?2.小明进入一家中餐厅后,发现主食有3种,热菜有4种.他打算主食和热菜各买一种,一共有多少种不同的买法?3.电影院里有10个空座位,小红和小丽去看电影,每个人坐一个座位,共有多少种不同的坐法?◆例题展示例题1小高一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机.经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班.任意选择其中一个班次,有多少种出行方法?练习1书架上有8本不同的小说和10本不同的漫画,大头要从书架上任意取一本书,有多少种不同的取法?例题2“IMO”是“国际数学奥林匹克”的编写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色.现有五种不同颜色的笔,按上述要求能有多少种不同的涂色方法?练习2把“CHINA”这五个字母涂上五种不同的颜色,每个字母只能涂一种颜色.共有多少种涂色方法?例题3老师要求墨莫在黑板上写出一个减法算式,要求被减数必须是三位数,减数必须是两位数.请问墨莫共有多少种不同的写法?练习 3 (1)小高在练习本上写出一个加法算式,要求其中一个加数是四位数,另一个加数是两位数,请问小高一共有多少种不同的写法?(2)有6个不同的文具盒,5支不同的铅笔,3支不同的钢笔,2把不同的尺子.若从中各取一个,配成一套学习用具,最多可以配成多少套不同的学习用具.例题4 书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书都各不相同.请问:(1)如果从所有的书中任取1本,共有多少种不同的取法?(2)如果从每一层中各任取1本,共有多少种不同的取法?(3)如果从中取出2本不同类别的书,共有多少种不同的取法?练习4商店里有三类笔:铅笔、钢笔和圆珠笔.铅笔有4种颜色,钢笔有3种颜色,圆珠笔有2种颜色.(1)要买任意一支笔,有多少种买法?(2)要从三类笔中各买一支,有多少种买法?(3)要买两支不同类的比,有多少种买法?◆拓展提高拓展1从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路.如果要求所走路线不能重复,那么从甲地到丙地共有多少条不同的路线?练习1有两个不同的骰子,每个骰子的6个面上分别标有数字1、2、3、4、5、6.任意摆放这两个骰子,如果要求朝上的面所标数字之和为偶数,共有多少种放法?拓展2 在下图中,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?BA练习2 图中,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?BA◆思维挑战挑战如图所示,蚂蚁在线段上爬行,只能按照箭头的方向行走.请问:从A点走到B点的不同路线有多少条?◆作业1、题库中有三种类型的题目,数量分别为30道、40道和45道,要从三种类型的题目中取出一道题目,共有多少种不同的取法?2、传说地球上有7颗不同的龙珠,如果找齐这7颗龙珠,并且按照特定顺序排成一行就会有神龙出现.邪恶的沙鲁找到了这7颗龙珠,但是他不知道排列的特定顺序.请问:运气不好的沙鲁最多要试几次才能遇见神龙?3、图书馆有30本不同的数学书、20本不同的英语书和10本不同的语文书.(1)小莫要去图书馆借1本书,有多少种不同的选择?(2)小莫三种书都要各借一本,有多少种不同的选择?4、萱萱要从4幅水墨画、3幅油画和2幅水彩画中选取两幅不同类型的画布布置客厅,有几种选法?5、图中,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?BA。
加法原理和乘法原理讲座例1.试卷
![加法原理和乘法原理讲座例1.试卷](https://img.taocdn.com/s3/m/e70f2debf90f76c661371af7.png)
加法原理和乘法原理讲座例题从4个男生,5个女生中各选一人担任组长,有多少种不同的选法?2、5个文具盒,4支铅笔,3支钢笔,2把直尺,各取一件配成一套学习用具,最多能配多少套不同的学习用具?3、一天上午要上语文、数学、体育各一节课,这半天的三节课有几种不同的排法。
4、有不同的语文书6本,数学书8本,英语书5本,音乐书4本,从中任取一本,共有多少种取法?5、两个木箱内装有不同颜色的球,第一个木箱里装有4个,第二个木箱里装有7个。
(1)从两个木箱里任了一个球,有多少种不同的取法?(2)从两个木箱里各取一个球,有多少种不同的取法?6、从1-9这九个数中,每次取2个数,这两个数的和必须大于10,能有多少种取法?7、在1-100的自然数中,一共有多少个数字?8、在1-100的自然数中,一共有多少个数字1?9、用2、3、5、7四个数字可以组成(1)多少个三位数(2)多少个没有重复数字的三位数10、用1、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?11、用0、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?12、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。
可以表示多少种不同的信号?13、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,现有红、黄、蓝色的彩旗各一面,可以表示出多少种不同的信号?14、用数字0、1、3、5可以组成多少个两位数?可以组成多少个没有重复数字的两位数?三、最大与最小1、从0、1、2、4、6、8、9这七个数中,选出5个数字组成一个能被5整除,并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的故事书,每天看的页数不同,而且一天中最少看3次,那么看完这本收最多需要几天?3、把自然数1、2、3、4、。
39、40依次排列,划去65个数,得到的多位数最大是多少?4、把17分成几个自然数的和,再求出这些数的积,要使得积尽可能地大,最大的积是多少?5、把1、2、3、4、5、9填入方框里,要使两个三位数的积最大,怎样填?6、比较下面两个积的大小A=987654321X123456789B=687654321X423456789四、包含与排除1、某班学生,每人至少有乒乓球或羽毛球中的一样,已知有乒乓球的有41人,有羽毛球的33人,两者都有的有22人,这个班共有多少人?2、光明小学四年级一班学生到野外每人都采集到标本,采集到昆虫标本的有29人,采集到植物标本的有31人,两种标本都采集到的有9人,全班共有学生多少人?3、四二班学生在体育课时除2名因病请假的学生名都参加了体育考试,考了短跑的有32人,考了跳远的有26人,两样都考了的11人,那么四二班共有学生多少人?4、在100人中,会下中国象棋的有66人,会下国际象棋的有49人,这两种棋都不会的有19人,两种棋都会下的有几人?5、有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中,既懂英语,又懂俄语的有多少人?6、某校四年级有学生135人,报名参加体育组的有120人,参加文艺组的有98人。
小学数学《乘法原理与加法原理》练习题(含答案)
![小学数学《乘法原理与加法原理》练习题(含答案)](https://img.taocdn.com/s3/m/d4e52974453610661fd9f427.png)
小学数学《乘法原理与加法原理》练习题(含答案)乘法原理一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,则完成这件事一共有N=m1×m2×…×m n种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。
”【例1】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法【例2】(1)有三本不同的书放到5张同样的书桌上,一共有多少种放法?(2)一个三位数,如果它的每一位数字都不小于另一个三位数对应数位上的数字,就称它“吃掉”另一个三位数。
例如,532吃掉311,123吃掉123。
但726与267相互都不被吃掉。
问:能吃掉678的三位数共有多少个?(3)由数字2、3、4、5、6、7、8共可组成多少个没有重复数字的四位奇数?【例3】(小数报数学竞赛初赛)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色.共有多少种不同的染色方法?【例4】(1)(迎春杯决赛)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有(2)(兴趣杯少年数学邀请赛决赛)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?【例5】有10块糖,每天至少吃一块,吃完为止。
问:共有多少种不同的吃法?【例6】(第十五届《迎春杯》决赛)如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。
01加法原理与乘法原理.ppt
![01加法原理与乘法原理.ppt](https://img.taocdn.com/s3/m/f8da15ff0066f5335a8121d6.png)
9.1 加法原理和乘法原理
加法原理 做一件事情,完成它可以有n类办法,在第 一类办法中有m1种不同的方法,在第二类办法中有m2种 不同的方法,……,在第n类办法中有mn种不同的方法 。那么完成这件事共有
N=m1+m2+…+mn 种不同的方法。
乘法原理 做一件事情,完成它需要分成n个步骤,做 第一步有m1种不同的方法,做第二步有m2种不同的方 法,……,做第n步有mn种不同的方法,那么完成这件 事有
N=m1×m2×…×mn 种不同的方法。
9.1 加法原理和乘法原理
㈢ 例题 1. 某班级有男三好学生5人,女三好学生4人。 (1)从中任选一人去领奖, 有多少种不同的选法? (2) 从中任选男、女三好学生各一人去参加座谈
会,有多少种不同的选法?
分析: (1) 完成从三好学生中任选一人去领奖这件事,共有2类 办法,
点评: 解题的关键是从总体上看做这件事情是“分类完 成”,还是“分步完成”。“分类完成”用“加法原理 ”;“分步完成”用“乘法原理”。Biblioteka 9.1 加法原理和乘法原理
2.在所有的两位数中,个位数字大于十位数字的 两位数共有多少个?
分析1: 按个位数字是2,3,4,5,6,7,8,9分成8类,在每一 类中满足条件的两位数分别是
会,有多少种不同的选法?
分析: (2) 完成从三好学生中任选男、女各一人去参加 座谈会这件事, 需分2步完成, 第一步, 选一名男三好学生,有 m1 = 5 种方法; 第二步, 选一名女三好学生,有 m2 = 4 种方法; 所以, 根据乘法原理, 得到不同选法种数共有 N = 5 × 4 = 20 种。
1个,2个,3个,4个,5个,6个,7 个,8 个. 则根据加法原理共有 1 +2 +3 +4 + 5 + 6 + 7 + 8 =36 (个).
15-16加法原理和乘法原理
![15-16加法原理和乘法原理](https://img.taocdn.com/s3/m/7a08100502d276a200292eba.png)
【知识要点】如果完成一件事有几类方法,只要选择任意一类方法中的一种方法,这件事就可以完成。
而且其中任何两种方法都不相同,那么,完成这件事的方法总数,就等于各类方法数的总和。
这个原理就称为加法原理。
用字母表示如下:如果完成一件任务有几类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同方法……在第n类方法中有m n种不同方法,那么完成这件任务共有N=m1+m2+……+m n种不同的方法。
应用加法原理解题的关键是,将所有计数对象依据同一标准,分为不重复,不遗漏的若干类。
【例题选讲】例1.学校组织读书活动,要求每个同学读一本书。
小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本。
那么,小明借一本书可以有多少种不同的选法?例2.一把钥匙只能开一把锁,现在有10把钥匙和10把锁,最少要试验多少次才能配好全部的钥匙和锁?例3.把一元钱换成角票,有几种换法(人民币角票有五角、二角、一角三种)?例4.从1~9这九个数字中,每次取两个数字,这两个数字的和必须大于10,那么共有几种取法?【课内练习】1.有不同的红手帕5个,粉红手帕6个,绿手帕3个,白手帕2个。
小刚从中任意拿一个则共有多少种不同的取法?2.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。
如果每天有20班火车,6班飞机,8班汽车和4班轮船,那么共有多少种不同的走法?3.一把钥匙只能开一把锁,现在有10把钥匙10把锁,至少要试验多少次才能打开所有的锁?4.现有7个苹果分给3个人,每人至少一个,问有多少种不同的分法?5.把12支铅笔分给三个人,每个人都得偶数支且每人至少得2支的分法有多少种?6.从0—9这10个数字中每次取2个数字,这两个数字和必须不大于10,共有几种取法?7.如图,A、B、C、D、E、F、G表示7个城市,每两个城市之间要修一条不经过其它城市的高速公路。
问共需要修几条这样的高速公路?8..数字之和是6的四位数共有多少个?9.旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?10.将10颗相同的珠子分成三份,共有多少种不同的分法?11.有一堆火柴共10根,每次取走1~3根,把这堆火柴全部取完有多少种不同取法?12.一平面上有15个点,每两点之间可做一条直线,如果没有三点或三个以上的点在同一条直线上,那么这15个点之间可连成多少条直线?A·B··C·D·EF·G·四年级数学思维训练第29讲加法原理基础训练小升初重点题型讲解1.一天中,从甲地到乙地有3班火车,4班汽车,2班轮船,在这一天中从甲地到乙地,乘坐这些交通工具有多少种不同的走法?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。
小学数学奥林匹克试卷加法和乘法原理
![小学数学奥林匹克试卷加法和乘法原理](https://img.taocdn.com/s3/m/88d22c6a326c1eb91a37f111f18583d049640f9b.png)
加法和乘法原理公式P是排列公式,从N个元素取R个进行排列即排序;公式C是组合公式,从N个元素取R个,不进行排列即不排序;1加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.2乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.1.张东参加由18个人出席的联欢会,他与这些人一一握手,张东一共握了几次手2.从甲地到乙地,每天有2班轮船,4班火车,6班汽车,那么这一天中乘坐这些交通工具,从甲地到乙地共有多少种走法3.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路;那么从甲地经乙地到丙地共有多少不同的路4.如图,其中有7个点和10条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过,问:这只甲虫最多有几种不同走法5. 在一个圆周上有十个点,以这些点为端点或顶点,可以画出多少条或多少个不同的1线段,2三角形,3四边形6.在自然数中,用两位数作被减数,一位数作减数,共能组成多少个不同的减法算式7.书架上层放有6本不同的数学书,下层放有5本不同的语文书;l从中任取一本,有多少种不同取法2从中任取一本数学书与语文书,有多少种不同取法8. 用0、1、2、3四个数字可以组成多少个没有重复数字的四位偶数9.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最多要试验多少次就能配好全部的钥匙和锁10.用一张10元、一张5元、一张2元、一张1元,可组成多少种不同的币值11.上海电话号码有7个数码,其中第一个数字不为0,而且数字不重复,这样的电话号码共有多少个12.圆上有12个点,以每3个点为顶点画一个三角形,一共可以画多少个三角形若以每4个点为顶点画一个四边形,一共可以画多少个四边形13.如图,从甲地到乙地有两条路线,乙地到丁地也有两条路线;从甲地到丙地只有一条路线,丙地到丁地有三条路线;那么从甲地到丁地共有多少种不同走法14.一座房屋有四个门分别为A、B、C、D,从某一个门进,又从其它的门出的方法共有多少种完成下列的树状图;15.某信号兵用红、黄、蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以挂一面、二面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种信号的质因数的表示形式为72=_______,它有_______个约数;17. 1有五本不同的书,分别借给了3名同学,每人借一本,有多少种不同借法2有三本不同的书,5名同学来借,每人最多借一本,借完为止,有多少种不同借法18.题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张小试卷,问该题库共可组成这样的小试卷多少张19.小张和小王共有书不超过20本,试问他们各自有书本的本数有多少种不同情况20.用1克、3克、9克三个砝码砝码只能放在一个秤盘上,可以秤出几种不同重量的物体如果砝码可以任意放,那么用1克、3克、9克三个砝码可以秤出几种不同重量的物体21.把全部三位正整数同时印刷出来,“0”这个铅字需要多少个22.有A,B,C,D,E5人,任选2人组成互助学习小组,共有几种组成方法23.下图是一个棋盘,将一个白子和一个黑子放在棋盘交叉点上,但不能在同一条线上;问:共有多少种不同的放法24.有男生7人,女生6人,从中选出4名中队委员,要求适合下列条件,各有多少种选法1男、女学生各2名;2至少选1名女生;。
微专题:乘法原理与加法原理经典题型(含解析)
![微专题:乘法原理与加法原理经典题型(含解析)](https://img.taocdn.com/s3/m/478edbc40d22590102020740be1e650e52eacfc7.png)
【学生版】微专题:乘法原理与加法原理【主题】“计数” 就是数事物的个数,这是数学学科发展的起点,也是我们从小学开始就在学习的,可以说,随着大家掌握的内容越来越多,我们计数的能力也变得越来越强大;数学学习和日常生活中,我们经常会遇到类似“统计完成一件事”、““共有多少种方法” 的集数问题,学习一些基本的计数原理,以便能够解决更多的计数问题;1、乘法原理(分步计数原理)做一件事,需要依次完成n 个步骤,其中完成第一步有1a 种不同的方法,完成第二步有2a 种不同的方法,……,完成第n 步有n a 种不同的方法;那么完成这件事共有123n N a a a a =⋅⋅⋅⋅种不同的方法;2、加法原理(分类计数原理)做一件事,完成它有n 类办法,其中第一类办法有1a 种不同的方法,第二类办法有 2a 种不同的方法,……,第n 类办法有n a 种不同的方法;那么完成这件事共有123n N a a a a =++++种不同的方法;正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”;【典例】例1、用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?【提示】;【答案】;【解析】;【说明】;例2、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【提示】;【答案】;【解析】;【说明】;例3、给程序模块命名,需要用3个字符,其中首字符要求用字母~A G 或~U Z ,后两个要求用数字1~9;问最多可以给多少个程序命名?例4、如图所示的电路图,从A到B共有条不同的线路可通电。
例5、如图,一只蚂蚁沿着长方体的棱,从顶点A爬到相对顶点C1,求其中经过3条棱的路线共有多少条? 【提示】阅读理解、“建模”转化;【归纳】两个原理的联系与区别1、联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法;2、区别3、利用分步乘法计数原理解题的注意事项(1)明确题目中所指的“完成一件事”是什么事,完成这件事需要几步;(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,无论缺少哪一步,这件事都不可能完成;(3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐一去做,才能完成这件事,各步之间既不能重复也不能遗漏;(4)对于同一个题目,标准不同,分步也不同;分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是不同步骤的方法不能互相替代;4、利用分类加法计数原理解题的注意事项(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎么才算是完成这件事;(2)完成这件事的n类办法,无论用哪类办法中的哪种方法都可以单独完成这件事,而不需要用到其他的方法;(3)确立恰当的分类标准,准确地对“完成这件事的办法”进行分类,要求每一种方法必属于某一类办法,不同类办法的任意两种方法不同,也就是分类必须既不重复也不遗漏;从集合的角度看,若完成一件事分A,B两类办法,则A∩B=⌀,A∪B=I(I表示全集);【即时练习】1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有()A.14种B.7种C.24种D.49种【错解】B学生进出体育场大门需分两类,一类从南侧的4个门进,一类从北侧的3个门进,由分类加法计数原理,共有7种方案.【错因分析】错解中由于没有审清题意,误用计数原理.事实上,题目中不仅要考虑从哪个门进,还需考虑从哪个门出,应该用分步乘法计数原理去解决.2、如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.93、有六名同学报名参加三项智力项目,每项限报一人,且每人至多参加一项,则不同的报名方法有__________种.4、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有__________个.5、有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?(3)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?【教师版】微专题:乘法原理与加法原理【主题】“计数” 就是数事物的个数,这是数学学科发展的起点,也是我们从小学开始就在学习的,可以说,随着大家掌握的内容越来越多,我们计数的能力也变得越来越强大;数学学习和日常生活中,我们经常会遇到类似“统计完成一件事”、““共有多少种方法” 的集数问题,学习一些基本的计数原理,以便能够解决更多的计数问题;1、乘法原理(分步计数原理)做一件事,需要依次完成n 个步骤,其中完成第一步有1a 种不同的方法,完成第二步有2a 种不同的方法,……,完成第n 步有n a 种不同的方法;那么完成这件事共有123n N a a a a =⋅⋅⋅⋅种不同的方法;2、加法原理(分类计数原理)做一件事,完成它有n 类办法,其中第一类办法有1a 种不同的方法,第二类办法有 2a 种不同的方法,……,第n 类办法有n a 种不同的方法;那么完成这件事共有123n N a a a a =++++种不同的方法;正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”;【典例】例1、用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?【提示】注意:理解用什么编号,能编“多少种”、“不同”总的方法;【答案】36;【解析】因为大写的英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码;【说明】上述计数过程的基本环节是:1、确定分类标准,根据问题条件分为字母号码和数字号码两类;2、分别计算各类号码的个数;3、各类号码的个数相加,得出所有号码的个数;利用分类加法计数原理解题时的注意事项:1、根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;2、分类时,注意完成这件事件的任何一种方法必须属于某一类,不能重复。
加法原理和乘法原理讲座例1.doc试卷
![加法原理和乘法原理讲座例1.doc试卷](https://img.taocdn.com/s3/m/87be5113650e52ea54189809.png)
一、加法原理和乘法原理讲座例题1、从4个男生,5个女生中各选一人担任组长,有多少种不同的选法?2、5个文具盒,4支铅笔,3支钢笔,2把直尺,各取一件配成一套学习用具,最多能配多少套不同的学习用具?3、一天上午要上语文、数学、体育各一节课,这半天的三节课有几种不同的排法。
4、有不同的语文书6本,数学书8本,英语书5本,音乐书4本,从中任取一本,共有多少种取法?5、两个木箱内装有不同颜色的球,第一个木箱里装有4个,第二个木箱里装有7个。
(1)从两个木箱里任了一个球,有多少种不同的取法?(2)从两个木箱里各取一个球,有多少种不同的取法?6、从1-9这九个数中,每次取2个数,这两个数的和必须大于10,能有多少种取法?7、在1-100的自然数中,一共有多少个数字?8、在1-100的自然数中,一共有多少个数字1?9、用2、3、5、7四个数字可以组成(1)多少个三位数(2)多少个没有重复数字的三位数10、用1、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?11、用0、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?12、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。
可以表示多少种不同的信号?13、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,现有红、黄、蓝色的彩旗各一面,可以表示出多少种不同的信号?14、用数字0、1、3、5可以组成多少个两位数?可以组成多少个没有重复数字的两位数?三、最大与最小1、从0、1、2、4、6、8、9这七个数中,选出5个数字组成一个能被5整除,并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的故事书,每天看的页数不同,而且一天中最少看3次,那么看完这本收最多需要几天?3、把自然数1、2、3、4、。
39、40依次排列,划去65个数,得到的多位数最大是多少?4、把17分成几个自然数的和,再求出这些数的积,要使得积尽可能地大,最大的积是多少?5、把1、2、3、4、5、9填入方框里,要使两个三位数的积最大,怎样填?6、比较下面两个积的大小A=987654321X123456789B=687654321X423456789四、包含与排除1、某班学生,每人至少有乒乓球或羽毛球中的一样,已知有乒乓球的有41人,有羽毛球的33人,两者都有的有22人,这个班共有多少人?2、光明小学四年级一班学生到野外每人都采集到标本,采集到昆虫标本的有29人,采集到植物标本的有31人,两种标本都采集到的有9人,全班共有学生多少人?3、四二班学生在体育课时除2名因病请假的学生名都参加了体育考试,考了短跑的有32人,考了跳远的有26人,两样都考了的11人,那么四二班共有学生多少人?4、在100人中,会下中国象棋的有66人,会下国际象棋的有49人,这两种棋都不会的有19人,两种棋都会下的有几人?5、有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中,既懂英语,又懂俄语的有多少人?6、某校四年级有学生135人,报名参加体育组的有120人,参加文艺组的有98人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、加法原理和乘法原理讲座例题1、从4个男生,5个女生中各选一人担任组长,有多少种不同的选法?2、5个文具盒,4支铅笔,3支钢笔,2把直尺,各取一件配成一套学习用具,最多能配多少套不同的学习用具?3、一天上午要上语文、数学、体育各一节课,这半天的三节课有几种不同的排法。
4、有不同的语文书6本,数学书8本,英语书5本,音乐书4本,从中任取一本,共有多少种取法?5、两个木箱内装有不同颜色的球,第一个木箱里装有4个,第二个木箱里装有7个。
(1)从两个木箱里任了一个球,有多少种不同的取法?(2)从两个木箱里各取一个球,有多少种不同的取法?6、从1-9这九个数中,每次取2个数,这两个数的和必须大于10,能有多少种取法?7、在1-100的自然数中,一共有多少个数字?8、在1-100的自然数中,一共有多少个数字1?9、用2、3、5、7四个数字可以组成(1)多少个三位数(2)多少个没有重复数字的三位数10、用1、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?11、用0、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?12、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。
可以表示多少种不同的信号?13、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,现有红、黄、蓝色的彩旗各一面,可以表示出多少种不同的信号?14、用数字0、1、3、5可以组成多少个两位数?可以组成多少个没有重复数字的两位数?三、最大与最小1、从0、1、2、4、6、8、9这七个数中,选出5个数字组成一个能被5整除,并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的故事书,每天看的页数不同,而且一天中最少看3次,那么看完这本收最多需要几天?3、把自然数1、2、3、4、。
39、40依次排列,划去65个数,得到的多位数最大是多少?4、把17分成几个自然数的和,再求出这些数的积,要使得积尽可能地大,最大的积是多少?5、把1、2、3、4、5、9填入方框里,要使两个三位数的积最大,怎样填?6、比较下面两个积的大小A=987654321X123456789B=687654321X423456789四、包含与排除1、某班学生,每人至少有乒乓球或羽毛球中的一样,已知有乒乓球的有41人,有羽毛球的33人,两者都有的有22人,这个班共有多少人?2、光明小学四年级一班学生到野外每人都采集到标本,采集到昆虫标本的有29人,采集到植物标本的有31人,两种标本都采集到的有9人,全班共有学生多少人?3、四二班学生在体育课时除2名因病请假的学生名都参加了体育考试,考了短跑的有32人,考了跳远的有26人,两样都考了的11人,那么四二班共有学生多少人?4、在100人中,会下中国象棋的有66人,会下国际象棋的有49人,这两种棋都不会的有19人,两种棋都会下的有几人?5、有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中,既懂英语,又懂俄语的有多少人?6、某校四年级有学生135人,报名参加体育组的有120人,参加文艺组的有98人。
规定:每人至少参加一项。
问:只参加体育小组和只参加文艺小组的各是多少人?7、学校组织了50名队员的文艺演出队,有19人排练唱歌的节目,有15人排练舞蹈,既唱歌又跳舞的有7人。
问:1、只唱歌的有几人?2、只跳舞的有几人?3、排练歌舞节目以外的其他的节目的有多少人?8、如图边长6厘米的正方形,与长5厘米宽4厘米的长方形重叠地放在桌上,重叠部分是边长3厘米的正方形。
那么桌面被盖住的部分是多少平方厘米?9、小明和小强同时从相距1500米的甲、乙两地出发,沿同一条道路相向而行,小明行了1050米时,小强行了840米。
这时小明和小强是相向(或是背向)相距多少米?五、尾数1、1×2×3×4......1998×1999的尾数。
2、求351×79-128×93的尾数3、991×993×995×997×()的尾数是0,()的数的尾数可以是哪几个数?4、下列各数中哪一个是,相邻自然数的积,写出算式。
(1)182 (2)123 (3)5333 (4)22245、一个自然数的平方尾数只能是:6、两个相邻自然数的积的尾数只能是:7、求1+2+3+。
+1999+2000的尾数。
8、求412+422+432.+。
572+582+592的尾数9、1993×1993×1993×1993×1993.。
×1993有199 3个1993相乘的积的尾数是多少?七、利用对应差求未知数1、李师傅第一天工作7小时,第二天工作4小时,第一天比第二天多加工54个零件,如果李师傅每小时加工的零件数相同,那么他两天各加工多少个零件?2、李师傅第一天比第二天多加工零件90个,第一天每小时加工40个,第二天每小时加工25个,如果两天加工的时间相同,两天各加工零件多少个?3、科技小组的同学做航模,第一组做了60架,第二组做了36架,(1)、如果两组人数相同,第一组比第二组平均每人多做2架,这两组学生各有多少人?(2)、如果两组学生每人做的架数相同,第一组比第二组多6人,每个学生做多少架?4、买5支钢笔和3个文具盒共付出85元,买2支钢笔和3个文具盒共付出61元,钢笔和文具盒的单价是多少元?5、买5支钢笔和44个文具盒共付出100元,买2支钢笔和3个文具盒共付出61元,钢笔和文具盒的单价是多少元?6、甲乙两个修路队共同修一条路,甲队每天修90米,乙队每天修75米,两队同时各从路的一端开始修,结果也甲队比乙队早2天修到路的中点,那么两队修的这条路共多少米?7、暑假里小刚每天早上按时从家至少年宫学习,如果每分钟走80米,就可早到5分钟,如果每分钟走60米,就要迟到3分钟,小刚家到少年宫的距离是多少米?8、植树队第一天植树5小时,第二天植树8小时,第二天比第一天多植树198棵,这个植树队两天各植树多少棵?9、甲乙两车同时从A地出发,开往B地,甲车每小时行48千米,乙车每小时行60千米,乙车到达B地时,甲车距B地还有72千米,AB两地相距多少千米?10、师徒共同加工一批零件,师傅每小时加工60个,徒弟每小时加工48个,徒弟提前一小时上班,师傅工作几小时,师徒两个做的零件个数相同?11、某电器厂每天上班时间相同,第一天生产甲种产品,平均每小时生产44个,第二天生产乙种产品,平均每小时生产32个,甲种产品比乙种多生产96个。
问两种产品各做了多少个?12、公司买9张桌子和5把椅子,共用去900元,买来同样的3张桌子和椅子5把,共用去450元。
桌子和椅子的单价各是多少元?13、一辆汽车从甲地出发,计划两天到达乙地,第一天每小时行68千米,所行的路程比全程的一半多44千米,第二天如果行驶的时间与第一天相同,那么每小时行46千米,就可以准时到达乙地。
甲乙两地的距离是多少千米?八、盈亏问题1、学校给住校生分配宿舍,如果每个房间住4人,则多出24人没有宿舍安排;如果每个房间住6人,则恰好安排完。
问房间和学生各多少?2、服装店购进一批服装,如果每套卖128元,就盈利2640元;如果每套卖90元,就亏本400元。
那么这批服装有多少套?购入这批服装的总价是多少元?3、用绳子测量井深,把绳子三折来量,井外余2米;把绳子四折来量,绳子上端井口还差1米,这时正好与水面平齐。
求绳子长多少米?4、老师给全班同学发作业本,如果每人发8本,就剩40本,如果每人发10本,就差50本。
全班有学生多少人?这批作业本有多少本?5、李老师买了一块布,给小朋友们做服装,如果做8件,则多14米布,如果做10件则多4米布,每件衣服用布多少米?这块布有多少米?6、体育商店降价出售一批运动鞋,如果每双卖80元,就要亏本1200元;如果每双卖65元,就要亏本3000元,那么这批运动鞋有多少双?原来每双的购入价是多少元?7、小红去文具店买作业本,她把带的钱买5本还剩4元,买8本还剩4角,每本作业本多少钱?小红带了多少钱?8、红星机械厂生产一批家用绞磨机,如果每天生产176个,延误计划时间8天;如果每天生产220个,仍然延误计划时间2天。
计划多少天完成任务?这批绞磨机有多少个?9、少先队员去植树,如果每人各挖5个树坑,还有3个树坑没人挖;如果其中2个各挖4个,其余的人各挖6个树坑,就恰好挖完全部树坑。
问少先队中一共挖了多少个对坑?10、某车间要生产一批零件,如果每个工人生产50个,就剩14个零件没有人生产;如果每个工人增加4个零件,恰好有一名工人分配不到零件。
这批零件有多少个?11、李师傅加工一批零件,如果每天做50个,比原计划晚8天完成;如果每天做60个,就可以提前5天完成。
这批零件共多少个?12、工程队修一条路,如果每天修260米,修完全路长就得延长8天;如果每天修300米,修完全路长仍得延长4天。
这条路长多少米?计划修多少天?13、学校分配学生宿舍,如果每个房间住6人,就有38人没有住处;如果每个房间住8人,还空出4个房间,这个学校有多少个房间,住宿学生有多少人?14、小明读一本小说,如果每天读15页,则到规定的日期还剩15页;如果每天读17页,则在规定时间的最后一天要少读5页,规定几天读完这本书?这本书共多少页?九、鸡免同笼1、在同一个笼子中,有若干只鸡和免,从笼子上看有40个头,从笼子下数有130只脚,那么这个笼子中装有免、鸡各多少只?2、鸡与免共40只,鸡的脚数比免的脚数少70只,问鸡与免各多少只?3、学校购买每支价格为4角和8角的两种铅笔,共花了68元,已知8角一支的铅笔比4角一支的铅笔多40支,那么两种铅笔各买了多少支?4、寺庙里有大和尚和小和尚共100人,一起吃馒头,大和尚每人吃3个,小和尚平均每3个吃1个,一共吃了100个馒头。
问大和尚和小和尚各有多少人?5、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种虫共21只,有140条腿和24对翅膀,求每种虫各有几只?6、现有12个盒子,共装着80个棋子,大号盒子装8个棋子,中号盒子装7个棋子,小号盒子装5个棋子,其中中号盒子最多,问中盒子有几个?十、行程问题1、Ab两地间的距离为200千米,王师傅从A地到B地每小时行50千米,从B地返回A地时每小时少行10千米,王师傅从A地到B地比从B地到A地少用多少小时?2、小李骑车从家到学校要走1800米的路程,计划6分钟赶到,他先以每分钟200米的速度行了2分钟,剩下路程要每分钟行多少米才能按时到达学校?3、同学们参加徒步野游的活动。