第4章 平面机构力分析

合集下载

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解(平面机构的力分析)【圣才出品】

第4章平面机构的力分析4.1 复习笔记一、机构力分析的任务、目的和方法1.作用在机械上的力根据力对机械运动影响的不同,可分为两大类。

(1)驱动力①定义驱动机械运动的力称为驱动力。

②特点驱动力与其作用点的速度方向相同或成锐角,其所作的功为正功,称为驱动功或输入功。

(2)阻抗力①定义阻止机械运动的力称为阻抗力。

②特点阻抗力与其作用点的速度方向相反或成钝角,其所作的功为负功,称为阻抗功。

③分类a.有效阻抗力机械在生产过程中为了改变工作物的外形、位置或状态而受到的阻力,即工作阻力。

克服这类阻力所完成的功称为有效功或输出功。

b.有害阻抗力机械在运转过程中所受到的非生产阻力。

克服这类阻力所作的功称为损失功。

2.机构力分析的任务和目的(1)确定运动副中的反力运动副反力是指运动副两元素接触处彼此作用的正压力和摩擦力的合力。

(2)确定机械上的平衡力或平衡力偶平衡力是指机械在已知外力的作用下,为了使该机构能按给定的运动规律运动,必须加于机械上的未知外力。

3.机构力分析的方法对于不同的研究对象,适用的方法不同。

(1)低速机械惯性力可以忽略不计,只需要对机械作静力分析。

(2)高速及重型机械①惯性力不可以忽略,需对机械作动态静力分析。

②设计新机械时,由于各构件尺寸、材料、质量及转动惯量未知,因此其动态静力分析方法如下:a.对机构作静力分析及静强度计算,初步确定各构件尺寸;b.对机构进行动态静力分析及强度计算,并据此对各构件尺寸作必要修正;c.重复上述分析及计算过程,直到获得可以接受的设计为止。

二、构件惯性力的确定构件惯性力的确定有一般力学法和质量代换法。

1.一般力学方法如图4-1-1(a)所示为曲柄滑块机构,借此说明不同运动形式构件所产生的惯性力。

(1)作平面复合运动的构件惯性力系有两种简化方式。

①简化为一个加在质心S i上的惯性力F I2和一个惯性力偶矩M I2,即F I2=-m2a S2,M I2=-J S2α2②简化为一个大小等于F I2,而作用线偏离质心S2一定距离l h2的总惯性力F I2′,而l h2=M I2/F I2F′I2对质心S2之矩的方向应与α2的方向相反。

西工大教材-机械原理各章习题及答案

西工大教材-机械原理各章习题及答案
η = η1 •η 22 •η3 = 0.95 × 0.972 × 0.92 = 0.822
电动机所需的功率为
p = ρ • v /η = 5500 ×1.2 ×10−3 / 0.822 = 8.029(KW )
5-8 在图示斜面机构中,设已知摩擦面间的摩擦系数 f=0.2。求在 G 力作用下(反行程),此斜面 机构的临界自锁条件和在此条件下正行程(在 F 力作用下)的效率。 解 1)反行程的自锁条件 在外行程(图 a),根据滑块的平衡条件:
解 1 ) 取 比 例 尺 μ 1 = 1mm/mm 绘 制 机 构 运 动 简 图 ( 图 b )
(a)
2 )计算该机构的自由度
n=7
pι=9
ph=2(算齿轮副,因为凸轮与齿轮为一体) p’=
F’= F=3n-2pe-ph
=3x7-2x8-2 =1
G7
D 64 C
EF
3
9
B
2
8
A
ω1
b)
2-6 试计算如图所示各机构的自由度。图 a、d 为齿轮一连杆组合机构;图 b 为凸轮一连杆组合 机构(图中在 D 处为铰连在一起的两个滑块);图 c 为一精压机机构。并问在图 d 所示机构中, 齿轮 3 与 5 和齿条 7 与齿轮 5 的啮合高副所提供的约束数目是否相同?为什么?
C3 重合点继续求解。
解 1)速度分析(图 b)取重合点 B2 与 B3,有
方向 大小 ?
v vv vB3 = vB2 + vB3B2 ⊥ BD ⊥ AB // CD ω1lAB ?
D
C
3 d3
ω3
4
ω3 90°
2
B(B1、B2、B3)
ω1
A1 ϕ = 90°

机械原理 第四章

机械原理 第四章
大小相等、方向相反、作用 在同一条直线上,作用线与 轴颈B、C 的中心连线重合。 R12
C B M1 1 A 2
R32
3 D
1
4
由机构的运动情况连
杆2 受拉力。
2)当计及摩擦时,作用力应切于摩擦圆。
f0r
C B 2 M1 1 A
转动副B处:w21为顺时针方向
FR12切于摩擦圆上方。
运动副中摩擦力的确定(5/8)
(2)总反力方向的确定 1)根据力的平衡条件,确定不计摩擦 时总反力的方向; 2)计摩擦时的总反力应与摩擦圆相切; 3)总反力FR21 对轴心之矩的方向必与轴 颈1相对轴承2的相对角速度的方向相反。
运动副总反力判定准则
1、由力平衡条件,初步确定总反力方向(受 拉或压) 2、对于转动副有:FR21恒切于摩擦圆
3、对于转动副有:Mf 的方向与ω 12相反 对于移动副有:∠R21V12=(90°+φ)
例1:如图所示为一四杆机构。曲柄1为主动件,在力矩
M1的作用下沿w1方向转动,试求转动副 B及 C中作用力
的方向线的位置。 解: 1)在不计摩擦时,各转动副中的作用力应通过轴颈中心
构件 2为二力杆此二力
n
b)求使滑块沿斜面等速下滑所需水平力F’
根据平衡条件:G + F’R21 + F’ = 0
大小:√ 方向:
α+φ G

? √
? √
作图
得:
F’=Gtg(α-φ)
α F21 F’ 1 v α G 2 F’R21 α-φ n G
n FN
F’R21
φ
F’
若α>φ,则F’为阻力; 若α<φ,则F’方向相反,为驱动力

平面机构力分析习题解答

平面机构力分析习题解答

第四章平面机构的力分析解答 典型例题解析例4-1 图4-1所示以锁紧机构,已知各部分尺寸和接触面的摩擦系数f ,转动副的摩擦圆图上虚线圆,在P 力作用下工作面上产生夹紧力Q,试画此时各运动副中的总反力作用线位置和方向(不考虑各构件的质量和转动惯量) 。

图4-1 解[解答] (1) BC 杆是二力杆,由外载荷P 和Q 判断受压,总反力23R F 和43R F 的位置和方向见图。

(2) 楔块4所受高副移动副转动副的三个总反力相平衡,其位置方向及矢量见图。

(3) 杆2也是三力杆,所受的外力P 与A,B 转动副反力相平衡,三个力的位置见图。

例4-2 图示摇块机构,已知,90ABC 曲柄长度,86,200,1002mm l mm l mm l BS AC AB 连杆的质量,22kg m 连杆对其质心轴的转动惯量22.0074.0m kg J S ,曲柄等角速转动s rad /401 , 求连杆的总惯性力及其作用线。

[解答] (1) 速度分析,/41s m l v AB B 其方向垂直于AB 且为顺时针方向 32322C C C B C B C大小: s m /4 0 0 ? 方向: AB BC取mmsm v /2.0 作速度图如(b ),得 02232 B C B C l v(2)加速度分析,/160221s m l a AB B 其方向由B 指向A 。

32323t C2B n C2B 2 C C rC C k C B C大小: 160 0 ? 0 0 ? 方向:A B B C 2BC BCBC取mms m a 2/8 作加速度图如图(C)222/80s m s p a a s 2222/100s m C C a a B C t 222222/76.923160s rad l l l a ABAC B C tB C ,逆时针方向。

(3)计算惯性力,惯性力矩N a m F S I 160222 ,方向如图( )所示。

机械原理复习题(第3、4、5、8章)

机械原理复习题(第3、4、5、8章)

第3章平面机构的运动分析第4章平面机构的力分析第5章机械的效率和自锁第8章平面连杆机构及其设计一、填空题:α=,则传动角γ=___________度,传动角越大,1、铰链四杆机构的压力角040传动效率越___________。

2、下图为一对心曲柄滑块机构,若以滑块3为机架,则该机构转化为机构;若以构件2为机架,则该机构转化为机构。

3、移动副的自锁条件是;转动副的自锁条件是。

4、曲柄摇杆机构中,当和共线时出现死点位置。

:5、曲柄摇杆机构中,只有取为主动件时,才有可能出现死点位置。

处于死点位置时,机构的传动角γ=__________度。

6、平行四边形机构的极位夹角θ=,它的行程速比系数K=。

7、曲柄滑块机构中,若增大曲柄长度,则滑块行程将。

8、如下图所示铰链四杆机构,70mm,150mm,110mm,90mm====。

若以a b c da杆为机架可获得机构,若以b杆为机架可获得机构。

9、如图所示铰链四杆机构中,若机构以AB杆为机架时,为机构;以CD 杆为机架时,为机构;以AD杆为机架时,为机构。

~10、在平面四杆机构中,和为反映机构传力性能的重要指标。

11、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作运动,即得到双曲柄机构。

12、在摆动导杆机构中,若以曲柄为原动件,该机构的压力角为,其传动角为。

13、相对瞬心与绝对瞬心的相同点是,不同点是;在由N个构件组成的机构中,有个相对瞬心,有个绝对瞬心。

/二、判断题:1、对于铰链四杆机构,当机构运动时,传动角是不变的。

()2、在四杆机构中,若有曲柄存在,则曲柄必为最短杆。

()3、平面四杆机构的行程速度变化系数K 1,且K值越大,从动件急回越明显。

()4、曲柄摇杆机构中,若以摇杆为原动件,则当摇杆与连杆共线时,机构处于死点位置。

()5、曲柄的极位夹角θ越大,机构的急回特性也越显著。

()6、在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。

2653编号机械原理习题集分析

2653编号机械原理习题集分析

机械原理习题集新疆大学机械设计教研室目录第1章绪论 3第2章机械的结构分析 4第3章平面机构的运动分析 6第4章平面机构的力分析 9第5章机械的效率和自锁 11第6章机械的平衡 12第7章机械的运转及其速度波动的调节 13第8章平面连杆机构及其设计 15第9章凸轮机构及其设计 17第10章齿轮机构及其设计 19 第11章轮系及其设计 21第12章其他常用机构 23第一章绪论复习思考题1、试述构件和零件的区别与联系?2、何谓机架、原动件和从动件?第2章机械的结构分析复习思考题1、两构件构成运动副的特征是什么?2、如何区别平面及空间运动副?3、何谓自由度和约束?4、转动副与移动副的运动特点有何区别与联系?5、何谓复合铰链?计算机构自由度时应如何处理?6、机构具有确定运动的条件是什么?7、什么是虚约束?习题1、画出图示平面机构的运动简图,并计算其自由度。

(a)(b) (c)2、一简易冲床的初拟设计方案如图。

设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。

试绘出其机构运动简图,分析其运动是否确定,并提出修改措施。

3、计算图示平面机构的自由度;机构中的原动件用圆弧箭头表示。

(a) (b) (c)(d) (e) (f)第3章平面机构的运动分析复习思考题1、已知作平面相对运动两构件上两个重合点的相对速度12A A V 及12B B V 的方向,它们的相对瞬心P 12在何处?2、当两构件组成滑动兼滚动的高副时,其速度瞬心在何处?3、如何考虑机构中不组成运动副的两构件的速度瞬心?4、利用速度瞬心,在机构运动分析中可以求哪些运动参数?5、在平面机构运动分析中,哥氏加速度大小及方向如何确定?习题1、试求出下列机构中的所有速度瞬心。

(a) (b)(c) (d)2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。

机械原理作业集第2版参考答案

机械原理作业集第2版参考答案

机械原理作业集(第2版)参考答案(注:由于作图误差,图解法的答案仅供参考)第一章绪论1-1~1-2略第二章平面机构的结构分析2-12-22-3 F=1 2-4 F=1 2-5 F=1 2-6 F=12-7 F=0机构不能运动。

2-8 F=1 2-9 F=1 2-10 F=1 2-11 F=22-12 F=12-13 F=1 2为原动件,为II级机构。

8为原动件,为III级机构。

2-14 F=1,III级机构。

2-15 F=1,II级机构。

2-16 F=1,II级机构。

F=1,II级机构。

第三章平面机构的运动分析3-13-2(1)转动中心、垂直导路方向的无穷远处、通过接触点的公法线上(2)P ad(3)铰链,矢量方程可解;作组成组成移动副的两活动构件上重合点的运动分析时,如果铰链点不在导路上(4) 、 (5)相等(6) 同一构件上任意三点构成的图形与速度图(或加速度图)中代表该三点绝对速度(或加速度)的矢量端点构成的图形, 一致 ;已知某构件上两点的速度,可方便求出第三点的速度。

(7)由于牵连构件的运动为转动,使得相对速度的方向不断变化。

3-31613361331P P P P=ωω 3-4 略3-5(1)040m /s C v .=(2)0.36m /s E v = (3) ϕ=26°、227° 3-6~3-9 略3-10(a )、(b )存在, (c )、(d )不存在。

3-11~3-16 略 3-17第四章 平面机构的力分析、摩擦及机械的效率4-14-24-3 )sin )((211212l l ll l l f f V +++=θ4-4 F =1430N 4-5~4-9略232/95.110s m v -==ωB v JI v4-10 )2()2(ρρη+-=b a a b4-11 5667.0 31.110==≤ηϕα 4-12 8462.0=η 4-13 605.0=η4-14 2185.0=η N Q 3.10297= 4-15 7848.0113.637==ηN F4-16 KW P 026.88224.0==η 4-17 KW P 53.96296.0==η4-18 ϕα2≤ 4-19 F =140N4-20 ϕαϕ-<<O 90第五章 平面连杆机构及其设计5-15-2(1) 摇杆(尺寸),曲柄(曲柄与连杆组成的转动副尺寸),机架(连杆作为机架) (2) 有,AB ,曲柄摇杆机构 ;AB ;CD 为机架(3) 曲柄 与 机架 (4) 曲柄摇杆机构、曲柄滑块机构、摆动导杆机构 (5) 曲柄摇杆机构、摆动导杆机构;曲柄滑块机构 (6) 等速,为主动件 (7) 7 (8) 往复 ,且 连杆与从动件 (9) 选取新机架、刚化搬移、作垂直平分线;包含待求铰链 且 位置已知 (10) 9 ; 5 5-3 70 < l AD <670 5-4~5-18 略5-19 l AC =150mm l CD =3000mm h =279.9 mm5-20 a =63.923mm b =101.197mm c =101.094mm d =80mm第六章 凸轮机构及其设计6-16-26-3(1)等加速等减速、余弦加速度(2)刚性、柔性(3)理论廓线(4)互为法向等距曲线(5)增大基圆半径、采用正偏置 (6)增大基圆半径、减小滚子半径(7)提高凸轮机构运动的轻巧性和效率、避免加速度过大造成冲击 6-4略 6-56-6 ~ 6-13略 6-146-15 6-16略第七章 齿轮机构及其设计7-1︒==6858.70822rad πδ︒='=︒≡====1803064.3432.1700min max 0δδαααmmh mm r 6332.343776.51240-='='-=δy x6395.185947.4060='-='=δy x7-27-3(1) (2)7-4 z = 41.45 7-5略7-6 (1) (2) 7-7 7-8略 7-9 7-10 7-11略7-12 (1) (2) (3) 7-13(1) (2) (3) 7-14略7-15 7-16略7-17 共有7种方案 7-18~7-19 略 7-20302021==z z mmr mms mm s a b a 0923.1052816.178173.6===634.1=εαmmj mmc mma t 77.269.494.15523.23='='='=α'smm v mm L /490==刀294-==x z 8.04.88==x z 0399.02='x 9899.482234117229.1142444153.44='''=='==K K Kρθα mmr K K 3433.702444='= α8879.22α='mm r mm r 2.618.4021='='mmd z mmm 120304===5.0-=x mms 827.4=058.1-=x7-21 7-22 略7-23正传动, 7-24~7-25 略 7-26(1)正传动(2) 7-27 略 7-287-29 略第八章 齿轮系及其设计8—18—28—3(1)从动轮齿数的连乘积除以主动轮齿数的连乘积、数外啮合次数或用画箭头的 (2)用画箭头的(3)有无使行星轮产生复合运动的转臂(系杆) (4)相对运动原理(5)一个或几个中心轮、一个转臂(系杆)、一个或几个行星轮(6)转化轮系中A 轮到B 轮的传动比、周转轮系中A 轮到B 轮的传动比、AB i 可以通过H ABi 求解(7)找出周转轮系中的行星轮、转臂及其中心轮 (8)传动比条件、同心条件、均布装配条件、邻接条件(9)传动比很大结构紧凑效率较低、要求传动比大的传递运动的场合、传动比较小效率较高、传递动力和要求效率较高的场合mm a 5892.90='mm r a 93.581=13.7291β=116.36v z = 2.6934γε=2222(1)175(2)185163(3) 5.7106(4)112.5a f d mm d mm d mma mmβ=====(10)差动轮系 8-4 8-58-6 8-7 8-8 8-98-10 8-11 8-12(a ) (b ) 8-13(1) (2) 8-14 z 2≈68 8-15 8-168-17 (1) (2) 8-188-198-20 m in /28.154r n B -=8-21只行星轮满足邻接条件件,只行星轮不满足邻接条34144803mml z H ==8-22 162/108/5463/42/2136/24/12321===z z z第九章 其他常用机构9-1 9-2 9-3 9-4mms 075.0=232==n k mml B 3=8.658=ϕm in/84r n =mm R 975.23=32143211''-=z z z z z z i H m in/3r n H =NF 64.308=5.141-=i 072.016-=i m in /600r n H -=m in/385.15r n H =31=H i 8.11=H i 0=H n min /667.653197min /2min /340042r n r n r n A ≈===m in /47.26r n c =m in/1350r n c -=min /6349.063407r n ≈=4286.0731-≈-=H i .1533.433=i第十章 机械的运转及其速度波动的调节10-110-210-3 2 05.050kgm J Nm M e er =-=10-4222212334111()()e e z z J J J J m m e M M Qe z z =++++=- 10-520.14.20J kg m M Nm ==-10-6 2334.()cos cos ABr G l h J M F G gφφ==- 10-7332.18221857e e J kgm MNm ==10-811100/50/rad s rad s αω==10-9maxmax minmin 30.048140.962/2 39.038/0,2rad s rad s δωφπωφπ=====10-102280.4730.388F FJ kgm J kgm '== 10-1102max max 623.1/min104.1654 2.11329F n r J kgm φ===10-12max max minmin 0.06381031.916/min 968.08/mine bn r nr δφφφφ===== 10-1326maxmin 302F eb f Nm J kgm ωφωφ==→→第十一章 机械的平衡11-111-211-3 2.109252.66o b b r cm θ==11-412.31068.5273bA bB m kg m kg==11-511-611-711-8)(2)(2 , )b )( )( , )a ⅡⅡ ⅠⅠ ⅡⅡ ⅠⅠ 上下动不平衡静平衡上下动不平衡静平衡mrr m mr r m mr r m mr r m b b b b b b b b ====oⅡb Ⅱo b Ⅰgm W W W 90 84.08419 gm 0628.1Ⅱb 3Ⅰb ==='==θθ0B 0A 120 285.0 8584.260 285.0 8584.2======bA bB bA bA kg m kgmm W kg m kgmm W θθ0Ⅱb 0Ⅰb 147 725.0 290316 65.1 660======b Ⅱb Ⅱb Ⅰb Ⅰkg m kgmm W kg m kgmm W θθ。

机械设计基础第四章平面机构运动简图及自由度

机械设计基础第四章平面机构运动简图及自由度
2) 2) F≥1时,原动件数大于机构自由度,机构遭到 破坏;原动件数小于机构自由度,机构运动不确定。 只有当原动件数目等于机构自由度数时,机构才有 确定的运动。
三、计算机构自由度时应注意的几种情况
1)复合铰链
由三个或三个以上构件组成的轴线重合的转动副称为复合铰链。
由m个构件组成的复合铰链应含有(m-1)个转动副。
两构件用运动副联接后,彼此的相对运动受到某些约束。每个 低副引入两个约束,每个高副引入一个约束。
设某平面机构,除机架外共有n个活动构件,又有pL个 低副和pH个高副,根据自由构件的自由度、运动副引入 的约束,活动构件之间的关系,可以得出平面机构自由 度的计算公式如下:
平面机构的自由度 F = 3n - 2PL – PH
一、构件及其自由度
一个自由构件作平面运动时, 具有三个独立运动;沿x轴和y轴 的移动以及绕垂直于xOy平面内 任一点A转动。
一个作平面运动的自由构件 具有三个自由度。
二、运动副与约束
运动副:机构中两构件直接接触的可动联接。
运动副元素:两构件上参加接触而构成运动的部分, 如点、线、面。 约 束:两构件用运动副联接后,彼此的相对运动受 到某些限制。
b.两构件上某两点间 的距离在运动过程中 始终保持不变时;
c.联接构件与被联接 构件上联接点的轨迹 重合时;
虚约束经常发生的场合:
d.机构中对运动不起作用的对称部分。
e.两构件组成若干个轴线互相重合的转动副.
采用虚约束是为了改善构件的受力情况; 传递较大功率;或满足某种特殊需要。
例题1
n=8 Pl=11 Ph=1 F=1
§4.2.2 平面机构运动简图
机构运动简图是用规定的运动副符号及代表构件的线条来表 示机构的运动特性,并按一定的比例画成的简单图形。并利 用机构运动简图对机构进行结构、运动和动力等分析。

上海理工大学2019年攻读硕士学位研究生初试820《机械原理》考试大纲

上海理工大学2019年攻读硕士学位研究生初试820《机械原理》考试大纲

《机械原理》考试大纲和参考书目
参考教材:1. 孙垣主编.机械原理(第7版). 高等教学出版社,2006年
2. 邹慧君等主编.机械原理(第2版).高等教育出版社,2006年
第1章绪论
机械原理本课程研究的对象及内容,课程的学习特点、方法和学习要求,机械原理发展现状,机械学在机械工程学科的地位和作用。

第2章机构的结构分析
机构结构分析的目的,机构的组成和机构运动简图绘制;平面机构自由度的概念和计算方法,机构具有确定运动的条件。

平面机构的组成原理、结构分类及,机构结构的型综合的概念。

第3章平面机构的运动分析、
机构运动分析内容和和方法,用速度瞬心法作机构速度分析的原理和步骤,用矢量方程图解法作机构的速度分析,解析法进行机构运动分析概述。

第4章平面机构的力分析
机构力分析的内容的和方法,构件惯性力的确定。

运动副中摩擦力的确定,机构受力分析。

第5章机械的效率和自锁
机械的效率,机械的自锁。

第6章机械的平衡
机械平衡的目的及内容,刚性转子的平衡计算,刚性转子的平衡实验介绍,转子的许用不平衡量,平面机构的平衡的基本概念。

第7章机械的运转及其速度波动的调节。

机械原理第四章 力分析

机械原理第四章 力分析

FN21/2
G
FN21/2
式中, fv为 当量摩擦系数 fv = f / sinθ
若为半圆柱面接触: FN21= k G,(k = 1~π/2)
摩擦力计算的通式:
Ff21 = f FN21 = fvG
其中, fv 称为当量摩擦系数, 其取值为:
G
平面接触: fv = f ; 槽面接触: fv = f /sinθ ; 半圆柱面接触: fv = k f ,(k = 1~π/2)。
说明 引入当量摩擦系数之后, 使不同接触形状的移动副中 摩擦力的计算和比较大为简化。因而这也是工程中简化处理问题
的一种重要方法。
(2)总反力方向的确定
运动副中的法向反力与摩擦力 的合力FR21 称为运动副中的总反力, 总反力与法向力之间的夹角φ, 称 为摩擦角,即
φ = arctan f
FR21
FN21
机械原理
第四章 平面机构的力分析
§4-1 概述 §4-2 运动副中总反力的确定 §4-3 不考虑摩擦时平面机构的动态静力分析 §4-4 机械的效率和自锁 §4-5 考虑摩擦时机构的受力分析
§4-1 概述
一、作用在机械上的力
有重力、摩擦力、惯性力等,根据对机械运动的影响,分为两类: (1)驱动力 驱动机械运动的力。 与其作用点的速度方向相同或者成锐角; 其功为正功, 称为驱动功 或输入功。
放松:M′=Gd2tan(α φv)/2
三、转动副中摩擦力的确定
G
1 径向轴颈中的摩擦 1)摩擦力矩的确定
转动副中摩擦力Ff21对轴颈的摩
擦力矩为 Mf = Ff21r = fv G r
轴颈2 对轴颈1 的作用力也用
ω12
Md O

第四章平面机构的力分析习题及答案

第四章平面机构的力分析习题及答案

第三章平面结构力分析一、填空题1、力对机械运动影响的不同分为、;2、构件惯性力的确定有、;3、为时构件在质量代换前后,构件的惯性力和惯性力偶矩保持不变,应满足三个条件;4、作用在机械系统上的内力和外力各有:。

二、判断题(答A表示说法正确.答B表示说法不正确)1、质量代换法主要应用于绕非质心轴转动的构件和作平面复杂运动的构件。

2、惯性力是一种加在有不变速运动的构件上的虚拟力。

3、平面机构中的运动副计有:移动副,转动副和平面低副三种。

三、简答题1、机构力分析的方法?2、构件组的静定条件是什么? 为什么说基本杆组都是静定的?3、考虑摩擦时机构的受力分析的具体方法及步骤?四、分析计算题1、图a所示导轨副为由拖板 1 与导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b所示为由转动轴1与轴承2组成的复合转动副,轴1绕其轴线转动。

现已知各运动副的尺寸如图所示,并设G 为外加总载荷,各接触面间的摩察系数均为f。

试分别求导轨副的当量摩察系数f v 和转动副的摩察圆半径ρ。

2、机械效益△是衡量机构力放大程度的一个重要指标。

其定义为在不考虑摩擦的条件下机构的输出力(力矩)与输入力(力矩)之比值,即△=│M r / M d│=│F r / F d│。

试求图示机构的机械效益。

(图示为一小型压力机)第三章平面结构力分析习题解答一、填空题1、驱动力;2、一般力学方法、质量代换法3、代换前后构件重力,惯性力、驱动力,阻力,运动副反力;4、的质量不变、代换前后构件的质心位置不变、代换前后构件对质心轴的转动惯量不变;二、判断题(答A表示说法正确.答B表示说法不正确)1、( A );2、(B);3、(B)三、简答题1、机械力分析的方法有如下两类:(1)作静力分析即不计构件惯性力的机构力分析对于低速机械,因其惯性力小,故常略去不计。

此时只需对机械作静力分析。

(2)作动态静力分析即将惯性力视为一般外力加于相应构件上,再按静力分析的方法进行分析。

精密机械设计第4章平面连杆机构

精密机械设计第4章平面连杆机构

曲柄摇杆机构
特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。
雷达天线俯仰机构
(天线→摇杆)→调整天线 俯仰角的大小
2 . 双曲柄机构:
连架杆均为曲柄→ ┌主动曲柄: 匀速转动 └从动曲柄: 变速转动
作用:将等速回转转变为等速或变速回转。
特例:平行四边形机构 特征:两连架杆等长且平行,
二.急回运动和行程速比系数 (以曲柄摇杆机构为例)
从动件作往复运动的平面连杆机构中,若从动件工作行程的平 均速度小于回程的平均速度,则称该机构具有急回特性。
工作行程时间>空回行程时间
在曲柄摇杆机构中,当从动件 (摇杆)位于两极限位置时, 曲柄与连杆共线。此时对应的
主动曲柄之间所夹的锐角θ
叫作极位夹角。
l3≤(l4 –l1) + l2 l2≤(l4– l1) + l3
l1+l4≤ l2 + l3
l1+ l3 ≤ l2 + l4 l1+l2 ≤ l3 + l4
将以上三式两两相加得: l1≤ l2
即:AB 为最短杆 l1最短
l1≤l3 l1≤l4
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度之和 (2)最短杆是连架杆或机架
常用γ的大小来表示
γ是α的余角。
机构传力性能的好坏
由于在机构运动过程中,角是变化的, 因此设计时一般要求: γmin≥40°
min 出现在什么位置?
当∠BCD最小或最大时,即在主动曲柄与机架共线的 位置,都有可能出现γmin
主动件与机架共线的两个位置之一,传动角最小.
四.死点位置
从动件与连杆共线( =0) →卡死

机械原理 第四章 平面机构的力分析

机械原理 第四章 平面机构的力分析

FN 21 FN 21dq
1
0
设: FN 21 g(G)
FN 21 FN 21dq g(G) dq kG
0
0
(k ≈1~1.57)
Ff 21 fFN 21 kfG
q
2
FN21
G
令kf fv Ff 21 fvG
4)标准式
不论两运动副元素的几何形状如何,两元素间产生的滑动摩 擦力均可用通式:
❖拧紧——螺母在力矩M作用下逆着G力等速向上运动,相当于在滑块2上加
一水平力F,使滑块2沿着斜面等速向上滑动。
F G tg( ) M F d2 d2 G tg( )
22
❖ 放 松 —— 螺 母
G/2
G/2
顺着G力的方向等
1
速向下运动,相 当于滑块 2 沿着
2
G
F G
斜面等速向下滑。
i 1
2)代换前后构件的质心位置不变;

❖以原构件的质心为坐标原点时,应满足: 代
n
mi xi
i 1 n
0
mi
i 1
yi
0
3)代换前后构件对质心的转动惯量不变。

动 代 换
n
mi
x
2 i
y i2
Js
i 1
动代换:
用集中在通过构件质心S B
的直线上的B、K 两点的代换
S
b
c
C
质量mB 和 mK 来代换作平面
F G tg( )
M F d2 d2 G tg( ) 22
时,M ' 0 阻力矩(与运动方向相 反)
当 时,M ' 0
时,M ' 0 驱动力(与运动方向相 同)

第4、5章 机构受力分析及自锁

第4、5章 机构受力分析及自锁
(正行程) 正行程)
根据力的平衡条件 r r r P + R + Q = 0 ⇒ P = Qtg(α + ϕ )
二、移动副中的摩擦(续) 移动副中的摩擦(
2)求保持滑块1沿斜面2等速下滑所需的水平力 P’ )求保持滑块1沿斜面2等速下滑所需的水平力 滑块
(反行程) 反行程)
根据力的平衡条件 r r r P'+R + Q = 0
c mB = m b+c b mC = m b+c
B及C可同时任意选择,为工程计算提供了方便和条件; 及 可同时任意选择 为工程计算提供了方便和条件; 可同时任意选择, 有误差,将产生惯性力偶矩的误差: 代换前后转动惯量 Js有误差,将产生惯性力偶矩的误差:
∆MI = −[(mBb2 + mC c2 ) − J s ]α = −(mbc − J s )α
MI PI
2. 作平面移动的构件 等速运动: 等速运动: PI=0,MI =0 ,
r 变速运动: 变速运动: PI = −maS r
一、一般力学方法(续) 一般力学方法(
3. 绕定轴转动的构件 1)绕通过质心的定轴转动的构件 ) 等速转动: 等速转动:PI =0,MI=0; , 变速运动: 变速运动:只有惯性力偶 MI = −J Sαs 2)绕不通过质心的定轴转动, )绕不通过质心的定轴转动, 等速转动: 等速转动:产生离心惯性力
§9 - 2
一、一般力学方法
1. 作平面复合运动的构件: 作平面复合运动的构件:
构件惯性力的确定
上的惯性力系可简化为: 构件BC上的惯性力系可简化为: 加在质心S上的惯性力 和惯性力偶MI。
r r P = −m I和MI ,

第4章不考虑摩擦时平面机构的力分析

第4章不考虑摩擦时平面机构的力分析

第4章不考虑摩擦时平面机构的力分析题4-2在图示的凸轮机构中,已知各构件的尺寸、生产阻力F r的大小及方向以及凸轮和推杆上的总惯性力F I1′和F I2′,试以图解法求各个运动副中的反力和需要施加在凸轮轴上的平衡力偶矩M b。

(注:已知各力的大小自己确定,要求列出力的矢量方程,并作图求解未F´题4-2图知力)解:题4-4在图示的四杆机构中,已知ω1=20s-1,l AB=140mm,l BC=400mm,l CD=400mm,l AD=600mm,构件2和3的重量分别为G2=47N,G3=56N,对其形心的转动惯量为J S2=0.286kg.m2,J S3=0.505kg.m2,构件1的质量略去不计,试求需要加在构件1上的平衡力以及各个运动副中的反力。

解:4D题4-4图第5章 摩擦与效率题5-1图a)所示的导轨副为由拖板1和导轨2组成的复合移动副,拖板的运动方向垂直于纸面;图b)所示为由转轴1和轴承2组成的复合转动副,绕轴线OO 转动。

现已知各个运动副的尺寸,并设G 为外加总载荷,各接触面之间的摩擦系数均为f 。

试分别求导轨副的当量摩擦系数f V 和转动副的摩擦圆半径ρ。

解:1)求图a)所示的导轨副的当量摩擦系数f Va)Ob)题5-1图故f V =F/G =2)求图b)所示的导轨副的摩擦圆半径ρ故ρ=M f /G =题5-2图示为一锥面径向推力轴承,已知其几何尺寸如图所示,设轴1上承受有铅直总载荷G ,轴承中的滑动摩擦系数为f ,试求轴1上所受的摩擦力矩M f (分别以新轴端和跑合轴端来加以分析)。

提示:可以利用当量摩擦系数的概念直接引用平轴端轴承的公式求得。

解:若为新轴端轴承,则若为跑合轴端轴承,则题5-3图示为一曲柄滑块机构的三个位置,F 为作用在活塞上的力,转动副A 及B 上所画的虚线小圆为摩擦圆,试决定在此三个位置时作用在连杆AB 上的作用力的真实方向(各构件的重量及惯性力略去不计)。

掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt

掌握构件惯性力的确定方法和机构动态静力分析的方法;-培训课件.ppt

F21 = fN 21 = kfQ 令kf = fv F21 = fvQ
不论两运动副元素的几何形状如何,两元素间产生的 滑动摩擦力均可用通式:F21 = fN 21 = fvQ 来计算。
ƒv ------当量摩擦系数
..
14
一、移动副中的摩擦(续)
5)槽面接触效应 当运动副两元素为槽面或圆柱面接触时,均有ƒv>ƒ
i =1
2)代换前后构件的质心位置不变;
以原构件的质心为坐标原点时,应满足:
n

mi xi
i =1 n
=
0
mi yi
i =1
= 0
3)代换前后构件对质心的转动惯量不变。
( ) n
mi
x
2 i
+
y
2 i
= Js
i =1
..
8
二、质量代换法(续)
4. 两个代换质量的代换法
用集中在通过构件质心S 的直线上的B、K 两点的代 换质量mB 和 mK 来代换作平面运动的构件的质量的代换 法。
=
d2 2
Qtg (a
..
-v)
21
三、转动副中的摩擦
1. 轴颈摩擦
..
22
三、转动副中的摩擦(续)
1)摩擦力矩和摩擦圆
摩擦力F21对轴颈形成的摩擦
力矩 M f = F21r = f vQr

用总反力R21来表示N21及F21
由力平衡条件
R21 = -Q ②
Md = -R21×= -M f
..
10
§4–3 运动副中的摩擦力的确定
1. 移动副中摩擦力的确定
F21=f N21 当外载一定时,运动副两元素间法向反力 的大小与运动副两元素的几何形状有关:

机械原理(西工大第七版)习题册答案1——7章

机械原理(西工大第七版)习题册答案1——7章

第二章平面机构的结构分析题2-1 图a 所示为一简易冲床的初拟设计方案。

设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。

试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。

解:1)取比例尺,绘制机构运动简图。

(图2-1a) 2)要分析是否能实现设计意图,首先要计算机构的自由度。

尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A 上,只能作为一个活动件,故3=n 3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。

分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。

故需增加构件的自由度。

3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。

(1) 在构件3、4之间加一连杆及一个转动副(图2-1b)。

(2) 在构件3、4之间加一滑块及一个移动副(图2-1c)。

(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-1d)。

11(c)题2-1(d)54364(a)5325215436426(b)321讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。

用一个高副代替一个低副也可以增加机构自由度,如图2-1(d )所示。

题2-2 图a 所示为一小型压力机。

图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。

在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。

同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。

最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。

机械原理总复习

机械原理总复习

机械原理总复习¾遵守考场纪律;¾提早10分钟到场,按座位表入座,带考试证,书包集中放在讲台两侧;¾带齐作图仪器(三角板,量角器,圆规等)及计算器,考试时不能互相借用。

¾发试卷后,先写名字及成绩登记表上的序号,注意听主考教师的讲解。

¾复习以笔记,作业为主,结合课堂上讲过的例题进行复习。

1.基本概念:运动副,运动链,机构具有确定运动的条件,进行高副低代必须满足的条件等。

2.基本公式:32L H F n P P =−−⎧⎪⎨⎪⎩复合铰链局部自由度虚约束??4→⎧⎪→⎨⎪→⎩复合铰链如何计算? 局部自由度什么时候有如何处理虚约束种常见情况。

3.基本的解题方法(1)自由度计算——写公式,高副低代前计算自由度,并且要先找出复合铰链,确定转动副的数目,排除局部自由度及虚约束后再计算自由度。

(2)高副低代(3)分解基本杆组——(4)确定机构的级别例1.确定图示机构的自由度,并确定机构的级别。

分析:机构中B处为局部自由度,没有虚约束,G处是复合铰链。

去掉局部自由度后,机构中有7个活动构件,9个低副,2个高副。

解:解:(2)机构级别确定高副低代后的机构如图所示,具体拆出的三个基本杆组图所示。

杆组的最高级别为Ⅲ级,故该机构的级别为Ⅲ级。

例2:计算图示机构的自由度(若存在复合铰链、局部自由度及虚约束请指出),并确定机构的级别(杆组必须画图表示并注明其级别)。

1.基本概念(1)速度瞬心的定义(绝对瞬心、相对瞬心)(2) 瞬心的数目(3) 瞬心位置的确定(4) 三心定理2.基本公式(1).(2)用矢量方程图解法作机构的分析a)按同一构件上两点间的关系列方程b)按两构件重合点关系列方程(1)2N N K −=Va⎧⎨⎩3.基本解题方法(1)要列出矢量方程,分析各矢量的大小及方向;(2)V影像原理及a影像原理的运用;(3)要符合多边形的运用;(4)要有方向,是对构件而言,所以下标要清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满足前两个代换条件的代换,其惯性力不变,称为静代换;满足 上述三个代换条件的代换,其惯性力和惯性力偶矩都不变,称为 动代换
徐州工程学院
工程计算中最常见的质量代换用两个或三个代换质量,本节只讨 论应用较多的两质量代换 1、动代换 选定运动副中心B为一代换点,以质心S为原点,以BS方向为 X轴建立坐标系。 选取另一代换点K,根据动代换条 件可得 mB mK m
徐州工程学院
为了简化计算,将摩擦力F21的计算式统一表示为: F21= f ·N21= fv· G
fv——称为当量摩擦系数,它相当于把其它接触视为平面 接触时的摩擦系数。
fv
运动副两元素为平面接触时:f v= f 运动副两元素为槽面接触时:f v= f / sinθ
运动副两元素为半圆柱面接触时: f v= kf
将PI2和MI2合成一个不作用在质心的总惯性力P’I2 ,其作用 线离质心S距离为: h=MI2 / PI2 ,矩与ε2相反。
徐州工程学院
aS2 ε2 2 S2
2
2、作平面移动的构件
1 θ
1
aS3
3
S3
PI3
对于作平面移动的构件,由于没有角加速度,其 惯性力系可简化为一个作用在质心S上的惯性力。 如图机构中的滑块3,作用在质心S上的惯性力为:
徐州工程学院
二、质量代换法
按一定条件将构件的分布质量用集中在若干选定点的假想质量 来代换的方法称为质量代换法。该假想的集中质量称为代换质 量,代换质量所集中的点称为代换点 质量代换法使用条件: 1)集中在各代换点的质量总和应等于原构件的质量,即代换前 后构件的质量不变 2)集中在各代换点的质量的总质心应与原构件的质心相重合, 即代换前后构件的质心位置不变 3)集中在各代换点的质量对质心轴的转动惯量总和应等于原构 件对该轴的转动惯量,即代换前后对质心轴的转动惯量不变。
图4-8
现来讨论摩擦力对轴颈所产生的摩擦力矩Mf,以及确 定总反力的作用线。
则拧紧螺母所需的力矩为: M = G d2 tan(α+ψv) /2 放松螺母所需的力矩为: M′= G d2 tan(α-ψv) /2
图4-6
徐州工程学院
三、转动副中的摩擦 转动副在各种机械中应用很广,常见的有轴和轴承以 及各种铰链。 转动副中的摩擦按载荷作用的不同分为两种:轴颈的 摩擦和轴端摩擦。 1、轴颈的摩擦 轴颈是指轴放在轴承中的部分。 轴颈和轴承构成转动副。 如图4-8所示,轴颈1受有径向载 荷G(包括自重),在驱动力矩Md 的作用下以ω12方向在轴承2中等速 转动。轴颈半径为 r,轴颈与轴承 之间的摩擦系数为f。 徐州工程学院
徐州工程学院
2、阻抗力:阻止机械运动的力。 阻抗力与其作用点的速度方向相反或成钝角,其所作 的功为负功,称为阻抗功。 阻抗力又可分为两种: 1)有效阻力,即工作阻力: 用来克服为了改变工作物的外形、位置或状态等所受 到的阻力,如机床上的切削阻力,起重机上重物的重力等。 克服有效阻力所作的功,称为有效功或输出功。 2)有害阻力: 机械在运动过程中所受到的非生产阻力,如摩擦力、 介质阻力等一般为有害阻力。 克服有害阻力所作的功,称为损失功。
2、三角形(普通)螺纹螺旋副中的摩擦
如图4-6所示为三角形(普通)螺纹,其螺旋副中的 摩擦可简化为一槽形滑块沿槽形斜面滑动的摩擦问题。 在研究三角形(普通)螺纹螺旋副中的摩擦时,只要 用当量摩擦角ψv代入矩形螺纹公式中的摩擦角ψ即可。 fv = f / sin(90°-β)= f / cosβ ψv= arctan fv 其中:90°-β为三角形螺纹的楔形 半角,β为螺纹工作面的牙形斜角。
徐州工程学院
两接触面间摩擦系数f 相同时,摩擦力F21的大小取决 于接触面的几何形状: 1)两构件沿单一平面接触(图a)
Hale Waihona Puke ∵ N21 =G ∴ F21 = f G
2)两构件沿单一槽形角为2θ的槽 面接触(图b) b) c) 图4-2 ∵ N21 =G / sinθ ∴ F21 = f G / sinθ 3)两构件沿单一半圆柱面接触(图c) ∵其接触面各点处的法向反力均沿径向 ∴法向反力的数量总和可表示为kG,则F21 = f kG。 接触面为点、线接触时:k≈1 系数k 接触面为整个半圆柱面均匀接触时: k=π/ 2 其余情况下:k=1~π/ 2
所需的水平力F ′。
图 4-3 徐州工程学院
图4-4
解: 1)滑块等速上升:如图4-3a) 斜面2对滑块1的总反力为R21。 根据力的平衡条件: G + F + R21=0
方向:√ √ √v12 大小: √ ? ? 作力多边形,如图4-3 b)。 ∴ F = G· tan(α+ψ)
图4-3 a)
图4-3 b)
§4—1 概 述
一、作用在机械上的力
机械在运动过程中,作用在机械上的力包括:原动力、 生产阻力、重力、惯性力、运动副反力(可分为摩擦力和 正压力)。
根据力对机械运动影响的不同,可将其分为两大类: 1、驱动力:驱使机械运动的力。 驱动力与其作用点的速度方向相同或成锐角,其所作 的功为正功,称为驱动功或输入功。
徐州工程学院
2)滑块等速下滑:如图4-4a) 斜面2对滑块1的总反力为R21′。 根据力的平衡条件: G + F ′ + R21′=0 方向:√ √ √v12 大小:√ ? ? 作力多边形,如图4-4 b)。 ∴ F ′= G·tan(α-ψ)
图4-4 a)
由以上分析可知,当已经列出 了正行程的力关系式后,反行程的 力关系式可以直接用 -ψ代替ψ即可, 而不必再作力多边形来求解。
mB mC m mB (b) mC c 0
求解得:
mc bc mb mC bc mB
静代换可以同时任选两个代换点,但由于不满足代换前后对 质心轴的转动惯量不变得条件,故惯性力偶矩将产生误差
徐州工程学院
误差大小:
M i [ J S (mBb 2 mC c 2 )] [ J S m bc]
1、矩形螺纹螺旋副中的摩擦 如图4-5a) 所示为矩形螺纹螺旋副, 其中1为螺母、2为螺杆。由于螺杆2的 螺纹可以设想是由一斜面卷绕在圆柱 体上形成的,所以可将螺母1与螺杆2 螺旋副中的摩擦简化为滑块1沿斜面2 滑动(图b)的斜面摩擦来研究。 徐州工程学院
图4-5a)
图4-5 b)
设螺母1上受有轴向载荷G,在
∵ 一般θ≤90°、 k≥1 ∴ fv>f,即其它接触比平面接触的摩擦力大。 ∴ 常利用其它接触的移动副来增大摩擦力,如三角带传
动、三角螺纹联接。
徐州工程学院
摩擦角:
总反力R21与法向反力N21所夹的锐 角ψ,称为摩擦角。 tgψ=
F21 f N 21 N 21 = N 21 =f
∴ψ= arctan f
螺母上加一力矩M,使螺母旋转并逆 着G力等速向上运动(对螺纹联接来 说,这时为拧紧螺母),则在图b中, 就相当于在滑块2上加一水平力F,使
滑块2沿着斜面等速上升。 则: F =G· tan(α+ψ) α为螺杆在中径d2上的螺纹导
程角,即: tanα= l /πd2= zp /πd2。
图4-5 a)
图4-5 b)
与 fv 相对应的摩擦角ψv 称为当量摩擦角,ψv= arctan fv 。 总反力R21方向的确定: 1)总反力与法向反力偏斜一摩擦角ψ 。 2)总反力F R21与法向反力偏斜的方向与构件1相对于构 件2的相对速度V12的方向相反。
徐州工程学院
例:如图4-3、4-4所示的斜面机构中,将滑块1置于升角 为α的斜面2上,G为作用在滑块1上的铅垂载荷(包括 滑块自重)。试求: 1)使滑块1沿斜面2等速上升(通常称此行程为正行程) 时所需的水平驱动力F; 2)保持滑块1沿斜面2等速下滑(称此行程为反行程)时
PI3=-m3 aS3
徐州工程学院
3、作定轴转动的构件 对于作定轴转动的构件(如图机 构中的曲柄杆1 ),其惯性力系的简 化有以下两种情况:
aS1 S1
1
2 MI1 h PI1
3
ε1
P’I1
①绕不通过质心的定轴转动的构件(如凸轮等),惯性力系 为一作用在质心的惯性力和惯性力偶矩: PI1=-m1 aS1 MI1=-JS1ε1 将PI1和MI1合成一个不作用在质心的总惯性力P’I1 ,其作用 线离质心S距离为:h=MI1 / PI1 ,矩与ε1相反。 ②绕通过质心的定轴转动的构件(飞轮等),因其质心加速度为 零,因此惯性力系仅有惯性力偶矩: MI1=-JS1ε1
图4-2 a)
§4—3 运动副中摩擦力的确定
平台2对滑块1产生的反力有:法向反力N21、摩擦力F21。 它们的合力称为总反力,以R21表示。 即: R21= N21+F21 其中: f——摩擦系数;(N21 =G) 大小 : F =f N 21 21 F21 方向:与1相对于2的相对速度V12的方向相反。
徐州工程学院
图4-4 b)
F ′= G·tan(α-ψ) 注意: 在反行程中G为驱动力,当α>ψ时, F ′为正值,是阻 止滑块沿斜面加速下滑的阻抗力;当α<ψ时, F ′为负值, 其方向与图示方向相反, F ′为驱动力,其作用是促使滑 块沿斜面等速下滑。
徐州工程学院
二、螺旋副中的摩擦 当组成螺旋副的两构件(螺母、螺杆)作相对运动时, 如两者的螺纹间受有载荷,则在螺纹接触面间将产生摩擦 力。 螺纹可分:矩形螺纹、三角形 (普通)螺纹。
徐州工程学院
二、机构力分析的任务和目的
研究机构力分析的任务和目的主要有以下两方面: 1、确定各运动副中的反力(正压力与摩擦力的合力); 运动副中的反力对于整个机械来说是内力,而对某个 构件来说则是外力。
2、确定机械上的平衡力(或平衡力偶矩)。
所谓平衡力是指机械在已知外力的作用下,为了使该 机械能按给定的运动规律运动,还必须加于机械上的未知 外力。
相关文档
最新文档