正弦函数y=sinx的图象和性质

合集下载

6.1_正弦函数和余弦函数的图像与性质

6.1_正弦函数和余弦函数的图像与性质

6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。

正弦函数图像与性质

正弦函数图像与性质
正弦函数图像与性质
正弦函数图像的作出
以上我们作出了y=sinx,x∈[0,2π]的图 象,因为sin(2kπ+x)=sinx (k∈Z),所以正弦函 数y=sinx在x∈[-2π,0],x∈[2π,4π], x∈[4π,6π]时的图象与x∈[0,2π]时的形状 完全一样,只是位置不同。 现在把上述图象沿着x轴平移±2π, ±4π,……就得到y=sinx,x∈R的图象。 叫做正弦曲线.
若T>0,则定义域无上界;T<0则定义域无下界;
(2) “每一个值”,只要有一个反例,则f (x)就不为
周期函数(如f (x0+T)f (x0)); (3) T往往是多值的(如y=sinx, T=2k都是周 期,最小正周期是2π.)
(4) 奇偶性: 由sin(-x)=-sinx,可知:y=sinx为奇函数,

2
+2kπ,k∈Z时,正弦函数

2
取得最大值1;
②当且仅当x=- 数取得最小值-1 +2kπ,k∈Z时,正弦函
正弦函数y=sinx性质
(3) 周期性: 由sin(x+2kπ)=sinx (k∈Z)知: 正弦函数值是按照一定规律不断重复地取 得的这种性质称为三角函数的周期性。
对于函数f(x),如果存在一个非零常数T,

2
2
(2)sin(-
sin(-
0
23 5
)=-sin
)=-sin

2 5
17 4
2 5

4

4

2
0,
函数y=sinx在区间( ∴sin(-
23 5

2
)内为增函数,
17 4
)-sin(-

正弦函数的图像和性质

正弦函数的图像和性质

(2)描点作图:

(3)由上图可知:
π
函数y=sinx,x∈[0,2π],当x= 2
当x=

2
减区间是
时,函数值最大,最大值是 1 ,
时,函数值最小,最小值是 -1
π 3π
,
2 2 .
.增区间是
0,
π
2

, 2π


2
2.求函数y=2-3sinx的最大值,并写出自变量x在[0,2π]内的相应的取值.
第四章 三角函数
4.6 正弦函数的图像和性质
1.正弦函数y=sinx的图像:
2.正弦函数y=sinx的性质:
正弦函数
y=sinx
定义域
R
值域
[-1,1]
周期性
周期函数,T=2π
奇偶性
奇函数
单调性
π
0,
2
在[0,2π]内,增区间:


, 2π
2
;减区间:
π 3π
,
2 2
一、选择题
1.函数y=sinx的最小正周期等于( B ).
A. 4π
B. 2π
C. π
D.
π
2
2.下列各区间中为函数y=sinx的减区间的是( C ).
A. (0,π)
B. (π,2π)
C.
π 3π
,
2 2
D.

, 2π
2
二、填空题
1.函数y=2sinx的最大值是 2 ,最小值是
-2 .
2.函数y=5-3sinx的最大值是 8 ,最小值是
2 .
3.已知sinx=a+2,则a的取值范围为

正弦函数y=sin的图象与性质

正弦函数y=sin的图象与性质
ysinx()的图象
6
ysin1(x)的图象
36
纵坐标不变
(3)纵坐标伸长到原来2的倍
y2sin1y(x2s)i的n1(x图)的象图象
横坐标不变3 6 3 6
2
(1)向右平移
6
y
3
2
y=sin(x- ysin1(x) )① 36
1
o
7
13
2
26
-1
-2
y=sinx
-3
(画法)利 二"用 五点"画 法函y数 2sin1x()在
4
-
1
7
2
3
5
2
2
3
2
2
0
2
y1
3
2
2
y=sin x, x∈R
5
2
3
7
2
4
x
思考与交流:图中,起着关键作用的
点是哪些?找到它们有什么作用呢?
找 0到, 0 这 五 个2 ,关1 键点 ,就, 0 可 以 3画2 出, 1正 弦 2曲 ,线0 了!
如下表
x
0
2
3
2
2
y=sin x
0
1
0
-1
y 1
作图:
1 2
y=sin1 x
2
O
2
3
1
y=sinx
4 x
y 1
y=sin
1 2
x
2
3
4
O
x
1
y=sin2x
y=sinx
振幅相同
二、函数y=sinx(>0)的图象
y
y=sin1 x

1.5正弦函数y=sinx的图像与性质

1.5正弦函数y=sinx的图像与性质
北师大课标必修4 北师大课标必修4·§1.5
1.5.2 正弦函数的 图像
知识回顾
1. 三角函数是以角 实数)为自变量的函数 三角函数是以角(实数 为自变量的函数 实数 为自变量的函数.
y = sin x, x ∈ R
2. 常用画图的方法 描点法 常用画图的方法: π π π π y =sinx 过点 ( ,sin ),( ,sin ) 6 6 3 3 3 π 而 sin = ≈ 0.866, 不便于描 点 3 2
最大值? 取何值是到达最小值? 最大值?在x取何值是到达最小值? 取何值是到达最小值 关键点: 关键点:把 2x +
π
π
看作一个整体。 看作一个整体。
6
π π
处到达最大值1。 解: f ( x) = sin( 2 x + ) 在 2 x + = + 2kπ 处到达最大值 。即, 6 6 2 达到最大值1。 当 x = π + kπ (k ∈ z ) 时, f ( x) = sin(2 x + π ) 达到最大值 。 6 6 π π π f ( x) = sin( 2 x + ) 在 2 x + = − + 2kπ 处达到最小值 。即, 处达到最小值-1。 6 6 2 π x = − + kπ (k ∈ z ) 时, f ( x) = sin(2 x + π ) 达到最小值 。 达到最小值-1。 当 3 6
想一想
如何作出正弦函数的图象( 如何作出正弦函数的图象(在精确度要求不太高 正弦函数的图象 时)?
y 1
π
2
(0,0) o (0,0) ( ,1) 2π ( 2 ,1) π ( 2 ,1)
π

正弦函数、余弦函数的图像和性质

正弦函数、余弦函数的图像和性质
-
图象的最高点 图象的最高点 与x轴的交点 轴的交点
x
1-
( 0 ,1 ) (2π ,1)
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6
π ( π ,0 ) (32 ,0) 2π 2 图象的最低点 (π ,−1) 图象的最低点
-
应用“ 例1.应用“五点法”作图。 应用 五点法”作图。
π
π
例2.分别利用函数的图像和三角函数 先两种方法,求下列不等式的解集:
1 (1) sin x ≥ ; 2 1 5π (2) cos x ≤ (0 < x ≤ ); 2 2
例3.判断y = cos x + 1, x ∈ [0,2π ]与下列 直线交点的个数: 3 ( )y = 2; (2) y = ; (3) y = 0. 1 2


y
1-
数、 图

图象的最高点 ( ,1) 图象的最高点 2 与x轴的交点 轴的交点
( 0 , 0 ) (π , 0 ) (2π ,0)
x
π
-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6

图象的最低点 (32 ,−1 图象的最低点 π )
简图作法 (1) 列表 列出对图象形状起关键作用的五点坐标) 列表( (2) 描点 定出五个关键点) 描点( y (3) 连线 用光滑的曲线顺次连结五个点) 连线(

1.3.1正弦函数的性质

1.3.1正弦函数的性质

sin x的周期: ...... 4、 2、 2、 4、 6 ......
例如:y=sinx的最小正周期T=2π
例4求下列函数的周期: f(x
( 1 )y sin 3x
2π x y=sinu的周期为 T 8 (2)y sin 4 u →u+2π 2 (3)y A sin ( x ),(A , 0) 3x →3x+2π ( 30x )
性质一:正弦函数 y=sinx 定义域和值域
定义域为R,值域为[-1,1]
π x 2kπ (k Z)时,ymax 1; 2 π x 2kπ (k Z)时,ymin 1; 2
例1、下列各等式能否成立?为什么? (1)2sinx=3; (2)sin2x=0.5
1 sin x 1
2

3 2

2
2
3
4

5 2
0
-1
2
3 2
5 2
7 2
x
3 y sin x的减区间: [ 2k, 2k ] 2 2

(k Z)
性质三:正弦函数 y=sinx 的单调性
增区间: π [ 2kπ , 2kπ ] 2 2
减区间: 3 π [ 2kπ , 2kπ ] 2 2
例8 求函数y sin(2 x

)图象的对称轴方程及对称中心坐标.
练习1:
1 求函数y sin( x )图象的对称轴方程及对称中心坐标. 2 3
5 对称轴方程x 2k (k Z ); 3 2 对称中心(2k , 0)(k Z ) 3
习2、函数y sin(2 x ) 3 kπ π x (k Z ) 2 12 __, 的对称轴是__ __________

正弦函数y=sinx的图象与性质

正弦函数y=sinx的图象与性质

§4.4 正弦函数的性质教学目标:1、进一步熟悉单位圆中的正弦线;2、理解正弦诱导公式的推导过程;3、掌握正弦诱导公式的运用;4、能了解诱导公式之间的关系,能相互推导;5、理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;6、能熟练运用正弦函数的性质解题。

二、教学重、难点重点: 正弦函数的诱导公式,正弦函数的性质。

难点: 诱导公式的灵活运用,正弦函数的性质应用。

第一课时 正弦函数诱导公式 一、教学思路【创设情境,揭示课题】 在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2k π+α)=sin α (k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。

如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。

这就是我们这一节课要解决的问题。

【探究新知】 1.复习:(公式1)sin(360︒k +α) = sin α2.对于任一0︒到360︒的角,有四种可能(其中α为不大于90︒的非负角)[[[[⎪⎪⎩⎪⎪⎨⎧β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角),当为第三象限角),当为第二象限角),当为第一象限角,当36027036027018018018090180)900 (以下设α为任意角) 3. 公式2:设α的终边与单位圆交于点P(x ,y ),则180︒+α终边与单位圆交于点P’(-x ,-y ),由正弦线可知:sin(180︒+α) = -sin α4.公式3:如图:在单位圆中作出α与-α角的终边, 同样可得:sin(-α) = -sin α,5.公式4:由公式2和公式3可得:P’(P(x ,-y )sin(180︒-α) = sin[180︒+(-α)] = -sin(-α) = sin α,同理可得: sin(180︒-α) = sin α, 6.公式5:sin(360︒-α) = -sin α 【巩固深化,发展思维】 1.例题讲评例1:求下列函数值(1)sin(-1650︒); (2)sin(-150︒15’); (3)sin(-47π) 解:(1)sin(-1650︒)=-sin1650︒=-sin(4×360︒+210︒)=-sin210︒=-sin(180︒+30︒)=sin 30︒=21(2) sin(-150︒15’)=-sin150︒15’=-sin(180︒-29︒45’) =-sin29︒45’=-0.4962(3) sin(-47π)=sin(-2π+4π)=sin 4π=22 例2.化简:()()()()()πααπαπαπαπ---+-+-sin 3sin sin 3sin 2sin 解:(略,见教材P24)2.学生练习教材P24练习1、2、3 二、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

高二数学正弦函数的图像和性质

高二数学正弦函数的图像和性质
[2kπ,(2k+1)π] (k∈Z)上都是减函数,其值从1减小 到-1.
解:由 cosx≥0 得:+2kπ 2 (k∈Z) ∴函数定义域为[- +2kπ, +2kπ] 2 2 +2kπ≤ x ≤ 2
例:求函数y = 2 cos x +1 的定义域、值域, 并求当x为何值时,y取到最大值,最大值为 多少?
正弦、余弦函数的奇偶性、单调性
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-


2
o
-1

2

3 2
2
5 2
x
3
7 2
4
x
cosx
- -1



2

0
1

2


-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
2 的最小正周期为
例:求证 1)y=cos2x+sin2x的周期为
证明:f ( x ) cos 2( x ) sin 2( x cos(2 x 2) sin(2 x 2 cos 2 x sin 2 x f ( x)
知: 函数y=sinx和y=cosx都是周期函数,2kπ(k∈Z且 k≠0)都是它的周期,最小正周期是 2π。
周期性
注意:(1)周期T为非零常数。 (2)等式f(x+T)=f(x)对于定义域M内任意一个x都 成立。 (3)周期函数f(x)的定义域必为无界数集(至少一 端是无界的)

正弦、余弦、正切函数的图象与性质

正弦、余弦、正切函数的图象与性质

讲解新课:正弦、余弦函数的图象(1)函数y=sinx 的图象:叫做正弦曲线第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象:叫做余弦曲线 根据诱导公式,可以把正弦函数y=sinx 的图象向左平移2π单位即得余弦函数y=cosx 的图象.y=cosxy=sinxπ2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11y x-11o xy(3)用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0) 余弦函数y=cosx x [0,2]的五个点关键是哪几个(0,1) (2π,0) (,-1) (23π,0) (2,1)讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx探究 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

正弦函数

正弦函数

• 求使下列函数取得最大值 的自变量x的集合,并说 出最大值是什么? • y=-2sinx,x∈R
2 k -

2
;2.
例3. 求使下列函数取得最大值的自变量x的集合, 并说出最大值是什么? (1)y=sin2x,x∈R;(2)y=-2sin2x+1,x∈R. y
y=sinx (xR)
-3
5 2
2k - ,2k ( k Z ); 0, 3
y
1
-4 -3 -2
-
o
-1

2
3
4
5
6
x
定义域 xR
y=sinx (xR)

域 y[ - 1, 1 ]
二、余弦函数y=cosx, xR的图象:
(1)、 y=cosx, x[0,2]的图象。 (2)、 y=cosx, xR的图象。 Y y=cosx,x R
1
-2 - O -1 余弦函数y=cosx, xR的图象可以通过将正弦曲线向左平行移动2个单位长 度而得到。余弦函数的图象叫做余弦曲线。 用“五点法”作出y=cosx, x[0,2]的图象: 在y=cosx, x[0,2]的图象上起着关鍵作用的点是以下五个: 2 3 X
正弦线
y
1
α的终边
P
-1
M
O
1
x
-1
有向线段MP为角a的正弦线,即sina=MP
2 一. 正弦函数y=sinx,x[0, ]的图象:
2 3
5 6
2
3 6
11 6
y
1
● ● ● ● ● ●

7 6 4 3 5 3
7 4 3 5 6 3 2 3

正弦函数、余弦函数的图象和性质7

正弦函数、余弦函数的图象和性质7

(2) y=3sin(2x-
+2k, +2k],kZ 上单调递减 2 2 3 [ +2k, +2k],kZ上单调递增 函数在 2 2
4

)

正弦、余弦函数的奇偶性、单调性
(3) y= ( tan 9 )sin2x
解: 0 tan 9 1
8
8
单调减区间为 单调增区间为
正弦、余弦函数的奇偶性、单调性
例1 不通过求值,指出下列各式大于0还是小于0: (1) sin(

) – sin( 18



10
)
解: 2 10 18 sin(
5

2
又 y=sinx 在[
)

10
) < sin(

18
即:sin( 18 ) – sin( 10 )>0
3 5
3 5
=cos
4
又 y=cosx 在 [0, ] 上是减函数 即: cos
17 ) 4
3 5
– cos

4
<0
<0
正弦、余弦函数的奇偶性、单调性
例2 求下列函数的单调区间: (1) y=2sin(-x ) 解:y=2sin(-x ) = -2sinx
函数在 [
解: 2k 2 x 2k
3 4 2 8 8 3 3 7 2k 2 x 2k k x k 2 4 2 8 8 3 所以:单调增区间为 [k , k ] 8 8 3 7 , k ] 单调减区间为 [k 8 8 k x k
正弦、余弦函数的奇偶性、单调性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

:【本讲教育信息】一. 教学内容:1.3.1 正弦函数的图象和性质二. 教学目的1、掌握用几何法绘制正弦函数y sin x,x R =∈的图象的方法;掌握用五点法画正弦函数的简图的方法及意义;2、掌握正弦函数y sin x,x R =∈的性质及应用; |3、掌握正弦型函数y Asin(x ),x R =ω+ϕ∈的图象(特别是用五点法画函数y Asin(x ),x R =ω+ϕ∈的图象)、性质及应用。

三. 教学重点、难点重点:1、用五点法画函数y Asin(x ),x R =ω+ϕ∈的简图;2、函数y Asin(x ),x R =ω+ϕ∈的性质及应用;3、函数y sin x,x R =∈与y Asin(x ),x R =ω+ϕ∈的图象的关系。

难点: 。

1、正弦函数y sin x,x R =∈的周期性和单调性的理解;2、函数y sin x,x R =∈与y Asin(x ),x R =ω+ϕ∈的图象的关系。

四. 知识分析1、正弦函数图象的几何作法采用弧度制, x 、y 均为实数,步骤如下:(1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从这个圆与 x 轴交点 A 起把圆分成 12 等份;|(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、、2π的正弦线; (4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份;(5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合; (6)用光滑曲线把这些正弦线的终点连结起来。

2、五点法作图描点法在要求不太高的情况下,可用五点法作出,y sin x,x [0,2]=∈π的图象上有五点起决定作用,它们是3(0,0),(,1),(,0),(,1),(2,0)22πππ-π。

描出这五点后,其图象的形状基本上就确定了。

\因此,在精确度要求不太高时,我们常常先描出这五个点,然后用平滑的曲线将它们连接起来,就得到在相应区间内正弦函数的简图,这种方法叫做五点法。

注意:(1)描点法所取的各点的纵坐标都是查三角函数表得到的数值,不易描出对应点的精确位置,因此作出的图象不够精确。

(2)几何法作图较为精确,但画图时较繁。

(3)五点法是我们画三角函数图象的基本方法,要切实掌握好,与五点法作图有关的问题曾出现在历届高考试题中。

(4)作图象时,函数自变量要用弧度制,这样自变量与函数值均为实数,因此在 x 轴、 y 轴上可以统一单位,作出的图象正规,便于应用。

(5)如果函数表达式不是y sin x =,则那五点就可能不是3(0,0),(,1),(,0),(,1),22πππ-(2,0)π|如:用“五点法”作函数y 1sin x,x [0,2]=+∈π的简图,所用的五个关键点列表就是:而用“五点法”作函数y sin(2x )3π=+的简图,开始的一段图象所用的五个关键点列4、正弦函数的值域从正弦线可以看出:正弦线的长度小于或等于单位圆半径的长度; 从正弦曲线也可以看出:正弦曲线分布在 y = 1 和 y =-1 之间,说明|sinx|≤1,即正弦函数的值域是[-1 , 1 ]。

·注意:这里所说的正弦函数的值域是[-l,1],是指整个正弦曲线或一个周期内的正弦曲线。

如果定义域不为全体实数,那么正弦函数的值域就可能不是[-1,1]。

如y sin x,x 0,2π⎡⎤=∈⎢⎥⎣⎦,则值域就是[0,1], 因而在确定正弦函数的值域时,要特别注意其定义域。

5、周期函数的定义一般地,对于函数 y =f ( x ) ,如果存在一个不为零的常数 T ,使得当 x 取定义域内的每一个值时, f(x +T)=f(x)都成立,那么就把函数 y = f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。

注意:( 1)定义应对定义域中的每一个 x 值来说,只有个别的 x 值或只差个别的 x 值满足f(x +T)=f(x)或不满足都不能说 T 是 f(x)的周期。

例如:4sin)24sin(π=π+π 但是3sin)23sin(π≠π+π 就是说,2π不能对x 的定义域内的每一个值都有sin(x )sin x2π+=, 因此2π不是 sinx的周期 。

<(2)从等式f(x +T)=f(x)来看,应强调的是与自变量 x 本身相加的常数才是周期,如 f (2x + T) = f (2x) , T 不是f(2x)的周期,而应写成 f(2 x + T)=Tf[2(x )]2+= f( 2x ) ,则T2是 f ( 2x)的周期。

(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期,今后提到的三角函数的周期,如未特别指明,一般都是指它的最小正周期。

(4)并不是所有周期函数都存在最小正周期.例知,常数函数 f ( x ) = C ( C 为常数) , x ∈R ,当 x 为定义域内的任何值时,函数值都是 C ,即对于函数 f( x)的定义域内的每一个值 x ,都有 f ( x + T ) = C ,因此 f (x)是周期函数,由于 T 可以是任意不为零的常数,而正数集合中没有最小者,所以 f (x)没有最小正周期。

再如函数⎩⎨⎧=)(0)(1)(是无理数是有理数x x x D 设 r 是任意一个有理数,那么当 x 是有理数时, x + r 也是有理数,当 x 为无理数时, x + r 也是无理数,就是说 D ( x )与 D ( x + r )或者等于 1 或者等于 O ,因此在两种情况下,都有 D ( x + r ) = D ( x ) ,所以 D ( x )是周期函数, r 是 D ( x )的周期,由于 r 可以是任一有理数,而正有理数集合中没有最小者,所以 D (x)没有最小正周期。

(5)“f ( x + T )=f ( x ) ”是定义域内的恒等式,即对定义域内的每一个值都成立, T 是非零常数,周期 T 是使函数值重复出现的自变量 x 的增加值。

(6)周期函数的周期不只一个,若T 是周期,则 kT ( k ∈N *)一定也是周期。

(7)在周期函数 y =f (x )中,T 是周期,若 x 是定义域内的一个值,则 x + kT 也一定属于定义域,因此周期函数的定义域一定是无限集。

?6、正弦函数的周期性(1)从正弦线的变化规律可以看出,正弦函数是周期函数,2k (k Z k 0)π∈≠且是它的周期,最小正周期是 2π。

(2)正弦函数的周期也可由诱导公式 sin ( x + 2k π)=sinx ( k ∈Z)得到。

7、正弦函数的奇偶性正弦函数 y = sinx ( x ∈R )是奇函数。

(1)由诱导公式 sin (-x ) =-sinx 可知上述结论成立,》(2)反映在图象上,正弦曲线关于原点 O 对称;(3)正弦曲线是中心对称图形,其所有的对称中心为( k π, 0 )。

正弦曲线也是轴对称图形,其所有的对称轴方程为x k ,x Z2π=π+∈。

注意:正弦曲线的对称轴一定是经过正弦曲线的最高点或最低点,此时正弦值为最大值或最小值。

8、正弦函数的单调性由正弦曲线可以看出:当x 由-π2增大到π2时,曲线逐渐上升,sinx 由-1增大到1;当x 由π2增大到32π时,曲线逐渐下降,sinx 由1减小到-1。

由正弦函数的周期性知道:正弦函数y x =sin 在每一个闭区间[-++ππππ2222k k ,](k Z ∈)上都从-1增大到1,是增函数;在每一个闭区间[ππππ22322++k k ,](k Z ∈)上,都从1减小到-1,是减函数。

也就是说正弦函数y x =sin 的单调区间是:[-++ππππ2222k k ,]及[ππππ22322++k k ,](k Z ∈)!9、函数图象的左右平移变换如在同一坐标系下,作出函数y x =+sin()π3和y x =-sin()π4的简图,并指出它们与y x =sin 图象之间的关系。

解析:函数y x =+sin()π3的周期为2π,我们来作这个函数在长度为一个周期的闭区间上的简图。

设x Z +=π3,那么sin()sin x Z +=π3,x Z =-π3当Z 取0、ππππ2322、、、时,x 取-πππππ36237653、、、、。

所对应的五点是函数y x=+sin()π3,x∈-[]ππ353,图象上起关键作用的点。

列表:x -π3π623π76π53πx+π30 π2π32π2πsin()x+π30 1 0 -1 0、类似地,对于函数y x=-sin()π4,可列出下表:x π434π54π74π94πx-π40 π2π32π2πsin()x-π40 1 0 -1 0描点作图(如下)利用这类函数的周期性,可把所得到的简图向左、右扩展,得出y x=+sin()π3,x R∈及y x=-sin()π4,x R∈的简图(图略)。

由图可以看出,y x=+sin()π3的图象可以看作是把y x=sin的图象上所有的点向左平行移动π3个单位而得到的,y x=-sin()π4的图象可以看作是把y x=sin的图象上所有的点向右平行移动π4个单位得到的。

注意:一般地,函数y x =+≠sin()()ϕϕ0的图象,可以看作是把y x =sin 的图象上所有的点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动||ϕ个单位而得到的。

'推广到一般有:将函数y f x =()的图象沿x 轴方向平移||a 个单位后得到函数y f x a a =+≠()()0的图象。

当a>0时向左平移,当a<0时向右平移。

10、函数图象的横向伸缩变换如作函数y x =sin2及y x=sin 12的简图,并指出它们与y x =sin 图象间的关系。

解析:函数y x =sin2的周期T ==22ππ,我们来作x ∈[]0,π时函数的简图。

设2x Z =,那么sin sin 2x Z =,当Z 取0、ππππ2322、、、时,所对应的五点是函数y Z Z =∈sin [],,02π图象上起关键作用的五点,这里x Z =2,所以当x 取0、π4、πππ234、、时,所对应的五点是函数y x x =∈sin []20,,π的图象上起关键作用的五点。

列表:函数y x=sin 12的周期T ==2124ππ,我们来作x ∈[]04,π时函数的简图。

列表:描点作图,如图:利用这类函数的周期性,我们可以把上面的简图向左、右扩展,得出y x =sin2,x R∈及y x=sin 12,x R ∈的简图(图略)。

从上图可以看出,在函数y x =sin2的图象上横坐标为x 02(x R 0∈)的点的纵坐标同y x =sin 上横坐标为x 0的点的纵坐标相同(例如,当x 02=π时,sin()sin 22210⋅==x π,sin sinx 021==π)。

相关文档
最新文档