数学建模房价预测及影响因素问题

合集下载

数学建模房价预测及影响因素问题

数学建模房价预测及影响因素问题

一、问题重述1.1背景分析自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。

近几年在国家积极的财政政策刺激下,我国房地产市场处于不断发展阶段。

然而,与美国等发达国家住房市场进入成熟期不同,我国正处在城市化和工业化进程加速阶段,住房水平低和需求比较旺盛,这是我国住房市场快速发展的重要基础。

中国房地产一方面在快速发展之时,在总体上对经济社会的发展确实起到了促进作用;另一方面由于不规范的房的销售价格行为、地价的上升造成放的开发成本提高等因素造成房价不断上涨,严重超出了普通居民的购买能力,给其造成了巨大的购房压力。

1.2问题重述根据近几年中国上海房地产市场现状,解决以下四个问题:(1)结合对房地产的了解,收集近几年上海房地产的价格走势,预测未来三年上海房价的状况。

(2)结合对上海市近几年来房价的了解,分析并建立合理的数学模型,得出“国五条”具体怎样影响房价。

(3)综合考虑上海的CPI,结合对房价的了解,谈谈房价如何对CPI产生影响。

(4)在2012年拥有100万元人民币的前提下,写出一种合理的分配方案,用这笔钱投资到CPI中的各项因素。

二、问题分析2.1对于问题一的分析问题一要求根据近几年上海房地产的价格走势,来预测未来三年上海房价的情况。

首先,通过在《上海统计年鉴》找到上海近几年的房价, 为得到较为准确的预测,我们选取了最近十年上海的房价,因为长时间的数据能反映更多更合理的问题,不会太过片面对结果造成较大偏差。

历时十年,期间政府的宏观调控或制定的稳定物价等等措施必然会对房价造成影响,如果考虑政策措施和其他因素的影响,问题将变得非常复杂。

反而,我们可以将这些因素看作市场经济的调控,房价因受到这些因素影响而产生变化。

那么,实际呈现出来的房价变化就应该是有效的房价变化。

我们在模型的假设部分阐述了不考虑政府的政策措施对近几年房价的影响。

综合了以上分析,我们将搜集到的数据整理制成表格,绘制出年份-房价变化折线图,可以发现随着年份的增长,上海房价也在不断增长,且在一条直线周围上下波动,因此我们建立一元线性回归模型,来寻求上海房价与年份的线性关系。

房价问题的数学建模

房价问题的数学建模

房价问题的数学建模一、摘要:我国房地产业自20世纪末走出低谷以来,其迅猛发展的势头备受世人瞩目,不仅因其作为国民经济的支柱产业而对国家宏观经济运行产生巨大的影响,更因其与广大百姓的自身利益休戚相关而令人关注。

住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

论文以房价作为主要研究对象,通过对历年房价走势的分析,对房价进行拟合,找出影响其涨落的因素;对未来房价的走势进行预测;研究“二手房” 房价、租金、与房价间的关系;并通过历年来国家颁布的政策与房价之间的关系,分析政策所起的作用。

二、问题提出:住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

近年来,随着我国经济的飞速增长,房价过快增长,且一直居高不下。

介于此种现象,通过下面的工作,对此问题进行分析及预测。

三、基本假设:首先,在所调查城市中,由于各类房价差异很大,而对于大多数市民来说,关心最多的应该就是商品房的价格,因此我们选此城市的商品房价格,来作为这次调查的代表进行分析。

其次,影响房价的客观因素主要有市场因素和非市场因素。

其中,由房屋自身因素和环境因素组成的非市场因素在总影响中所占比重较小,且相对较稳定,可忽略其对房价涨落的影响;市场因素是房价的主要决定因素,其中主要包括政治因素、经济因素、行政因素和社会因素。

目前的中国,社会局势相对稳定,故政治因素以及社会因素的影响便可以忽略,而其中经济因素中的土地成本和人们的收入水平是目前的主导因素,在行政因素中主要是国家地区通过颁布法令调节税率来,达到影响房价的目的,按国家的规定营业税为商品房售价的5%,土地交易契税税率为3%,设定土地贷款年利率为 5.4%相应贷款年限设为两年。

最后,房地产商对利益的追求即利润是形成房价的一个主观原因。

在地价指数中,利润被设定为商品房售价的10%。

四、符号的假设与建立模型:在模型中,通过对已知地价指数的算法和由搜集得到的数据的拟合,模拟出房价与地价、人们收入以及税率和综合成本(除了土地出让金以外,开发商完成楼盘开发所支付的费用)之间的一个数学关系。

房价数学模型预测

房价数学模型预测

威海房价的模型预测摘要随着全国房价的高速上升,在这几年过程,一直有关于房价拐点的争论。

在此,我们尝试对此问题做初步探讨。

首先,本文分析了许多可能影响房价的因素,并从中挑选出三个最主要的因素,即物价水平、税收、适婚人口数。

进而根据数学知识,建立了威海房价中短期预测模型,房价为Y(t)。

Y(t)=a*dS(t)/dt+b*dX(t)/dt+c*r*dm(t)/dt+N再利用数学模型,结合威海地区2004-2011房价资料,预测2012-2013年的房价。

预测得出房价大约5500元/平。

最后,根据前面得到的结果,我们预测房价拐点会在2060年左右到来,由于近几十年房价不会降,所以我们建议买房人密切关注房价走势和政府有关政策,如果有条件还是尽量买房吧,买房保值增值。

关键字:房价预测威海数学模型一问题重述全国房价一直在高速上升,在这几年过程,一直有关于房价拐点的争论。

是否楼市的拐点真的到来?影响房价的因素众多,大的方面有,国家的宏观经济环境,国家的宏观调控,地方政府对宏观调控的执行力,人民的住房需求,热钱的投机。

而宏观调控的手段众多,如廉租房建设,经济适用房建设,提高税收,打击投机,企业房贷资金紧缩,提高准备金率,不批准房地产企业上市圈钱等等。

1、从影响房价的因素中挑选出最主要的因素,说明理由。

2、建立房价中短期预测模型。

3、收集威海地区2004-2011房价资料,用前面的模型预测2012-2013年的房价。

4、根据3的结果,写一个500字的报告,论证房价的拐点是否到来,并给买房的人具体意见。

二模型的基本假设1.我们收集的数据在误差允许范围内真实有效;2. 2015 年之前房地产业健康稳定发展;3.在着重讨论主要因素时,其他的次要因素对主要因素的影响可以忽略;4假设剔除材料中空缺的数据对计算结果没有影响;三符号说明四问题分析与模型准备房价是受许多因素影响的,包括国家宏观经济环境,国家的宏观调控,地方政府对宏观调控的执行力,人民的住房需求,热钱的投机,而宏观调控的手段众多,如廉租房建设,经济适用房,提高税收,打击投机,企业房贷资金紧缩,提高准备金率,不批准房地产企业上市圈钱等。

房价问题数学建模房价合理性预测

房价问题数学建模房价合理性预测
2
测, 但可能未考虑到影响因素对房价的本质性影响,故我们取灰色关联分析法分 析得到的关联度较大的因素,作为相关数据列,将房价作为特征数据列,建立 GM(1.N) 模型。而每个影响因素又是一个不确定性的灰色系统,所以我们用 GM(1.1)模型预测每个因素的走势,将两个模型结合起来,得到一个考虑影响因 素下的房价预测新数据,最后与仅用 GM(1.1)模型预测的房价数据做对比,从而 更全面、准确地分析两所城市的房价走势,引申到全国的房价走势。 2.3. 问题三的分析 针对问题三, 要探讨对房价调控的合理性措施,我们综合问题二利用灰色关 联分析所求的各个因素与房价关联度, 根据其关联度的大小确定房价调控的优先 权重,其次在根据 2005 年-2014 年各个因素与房价增长率的对比,得到每个因 素与房价之间的相互制约关系,再结合第二问通过灰色预测模型对未来 10 年房 价的预测值分析和第一问对房价合理性的双指标评判标准得到对于房价的直接 调控和简洁调控措施。 2.4. 问题四分析 问题四要求定量分析房价对经济发展的影响, 首先引入问题二中灰色关联度 得到的相关系数作为初始权重, 并从问题二得到的相关因素中,选取商品房销售 价格和房地产开发投资的加权平均代表房价指标,人均生产总值,恩格尔系数及 城市居民人均可支配收入的加权平均代表经济指标, 理清房价指标与经济指标的 相互关系,以房价作为自变量,经济作为因变量,建立多项式拟合模型。对于收 集到的数据, 先进行权重归一化和影响因素无量纲化的数据预处理,再将房价作 为自变量,经济作为因变量,运用 matlab 对其进行多项式拟合,并得到拟合曲 线和拟合多项式。通过拟合曲线分析房价的变化对经济发展的影响。
三. 模型假设
1.房价首付按 30%计算。 2.贷款年限为 30 年。 3.收集到的数据都是正确可靠的。 4.以商品房平均销售价格作为房价,假设全市房价相同为平均水平。 5.本文仅考虑人均可支配收入、 年末总人口、 房屋造价、 房地产开发投资额、 国内生产总值、恩格尔系数、商品房销售面积、竣工房屋面积、人均储蓄存款年 末余额、土地交易价格指数对房价的影响。

大学生数学建模_房价预测

大学生数学建模_房价预测

西安邮电学院第九届大学生数学建模竞赛参赛作品参赛队编号: 016赛题类型代码: A题2 房价问题摘 要随着我国房地产市场的不断升温,居民买房难愈来愈严重。

定一个合适的房价既照顾到居民的需求也满足方差开发商的盈利需要是十分必要的,要达到这些目的都要用到数学模型来进行量化。

在本文中,我们经研究解决了城市房价模型,找出了影响房价的主要因素,建立预测下一阶段的房产均价的一个模型,同时也对政策对调控房价所起的作用作了详细的分析说明。

在解决房价模型问题时,我们用了多元线性回规模型和蛛网模型同时对相关变量进行分析和处理,最终找出了影响房价的主要因素为生产成本和供需关系。

并对房价的形成、演化机理和房地产投机进行了深入细致的分析。

模型一,我们通过比较西安房价近11年来的变化及城镇居民收入变化情况,找到买房难的根结。

模型二,在房价预测方面,我们选用多元线性回归,蛛网模型同时对相关变量进行分析和处理,最终找出影响房价的主要因素为生产成本和供需关系,求出房价预测的计算表达式。

模型三,我们取定一个时间段内某几个房价新政,结合新政出台时间前后某地房价的变化情况分析了房价新政对房价的调控作用。

我们选取房价新政的标准是根据政策内容对相关经济指标有直接作用效果。

最终我们发现,新政出台后,虽然房价依然是居高不下,但房价上涨速率得到了一定的控制,变化渐缓。

关键字:楼市 预测 蛛网模型 线性回归一、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度宽松的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。

但有的城市房价过高,上涨过快,加大了居民通过市场解决住房问题的难度,另一方面,部分投机者也通过各种融资渠道买入房屋囤积,期望获得高额利润,也是导致房价居高不下的原因之一。

关于房价问题的数学模型

关于房价问题的数学模型

关于房价问题的数学模型一.问题简述房价问题事关民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一。

现在就以下几个方面的问题进行讨论:1通过对影响房价因素的分析并建立房价的数学模型,对房价的合理性进行定量分析。

2根据分析结果,预测房价的未来走势。

3通过对模型的求解,进一步探讨使得房价合理的具体措施。

二模型假设引起房地产市场波动的因素有很多,居民收入、供求比例、房贷利率、容积率、建设成本和人口结构及变化趋势等众多因素。

我们从中提取重要因素对次要因素作出如下假设:1政府宏观调控政策,仅考虑税收政策、货币政策、土地政策的影响。

忽略其他政策的影响。

2忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。

3城市消费状况用人均收入来代替。

4令房价为销售均价,忽略地域差异。

5忽略房屋质量对房价的影响。

三、符号说明四、问题分析与基本思路1.1房地产价格上涨的影响因素(1)居民收入与房地产价格居民收入的增加是影响房价上涨的首要原因。

改革开放以来,我国居民收入大幅度增加,恩格尔系数——食品占总支出的比重明显下降,消费结构不断升级,投资能力越来越强。

随着居民收入的大幅度上升,居民的消费观念在一定程度上从储蓄转化为投资,而购置房产则是居民较理性的投资选择,因而对房屋的需求显著增加。

尤其在在住房制度改革的推动下,住房的有效需求得以更大程度地释放,家庭结构的变化和城镇化的推进又扩大了住房需求。

这是房价保持上涨态势最显而易见的原因。

根据市场导向原则,需求的增加必然会导致投资的增加,投资力度的加大必然是在给房地产行业升温,房价被进一步拉高。

当房价超出与居住需求相符的水平时,投机就会出现,进而导致空置率偏高。

这样,房价就在消费需求、投资需求、投机需求的共同推动下不断攀升,早买房、买大房的住房消费行为成为居民应对房价快速上涨的选择。

另外,随着居民收入的增加,人均可支配收入也会相应增加,就会在一定程度上刺激消费。

大学生数学建模_房价预测

大学生数学建模_房价预测

大学生数学建模_房价预测
一、问题的提出房地产问题一直是人们的热议话题,尤其是近几年更是成为人们关注的问题。

不错,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。

为此,对房产业的了解就显得颇为紧急,而房价问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。

问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。

问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。

问题三:选择某一地区(以西安为例),通过分析____年至____年房价变化与影响因素之间的关系,预测下一阶段该地区房价的走势。

问题四:通过分析结果,给出房产商和购房者的一些合理建议。

二、模型假设和符号说明假设假设
一、房地产产品具有一定的生产周期假设
二、房价的计算只考虑人均可支配收入和生产成本假设
三、理想房价是仅基于成本得到的房价,不考虑供求假设
四、成本的花费包括地价(地面地价)、建筑费用和各种税收假设
五、不考虑其他影响如(地理位置,环境等)符号说明:_1代表人均可支配收入,_2代表建造成本,y为房产均价,其中a和
三、模型建立与求解我们主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解除出性方程组,其中用到的主要数学软件是matla。

关于房价问题数学建模分析

关于房价问题数学建模分析

关于房价问题数学建模分析摘要:近几年,我国出台了一系列事关民生国情的利民政策,但房价的持续增高仍让很多人把买房当成了一种奢望。

本文根据题目要求,进行了合理假设,主要从影响房价的因素方面考虑,建立相应数学模型,根据数据分析了我国当前房价的合理性,预测房价未来走势,提出具体措施使房价回归合理,并进行定量分析。

关键词:房价升高数学模型正态分布模型一、问题重述房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。

请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施。

二、问题分析考虑评判房价的合理性,我们首先想到与房价密切相关的各种因素,认为房屋的合理定价应该由房屋所在城市的经济发达程度、环境优美度、居民归属感等生活标准来反应,而这些项目又有很多是难以量化的指标,因此我们采用了城市居民年人均收入刻画生活标准。

房屋的价格应该满足本市居民的居住需要,于是这部分我们没有引入投资等市场因素。

三、数学模型的建立及求解(一)模型假设:引起房地产市场波动的因素有很多,居民收入、供求比例、空置率、货币政策、建设成本、国家政策和人口结构及变化趋势等众多因素。

我们从中提取重要因素对次要因素作出如下假设:1、城市消费状况用人均收入来代替。

2、忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。

3、在同一地区房价为销售均价,没有街道区域差异。

4、根据经济发展状况分别对部分城市来概括全国城市的房屋均价,排除特殊情况。

(二)城市房价合理性模型建立及分析符号说明:Mes:单位面积商品房售价Sqr:当地人均住房居住面积Te:预期使用当年全年收入归还房贷所需年数Mr:购买商品房支付的总价Se:当地人均年收入Mr=Mes*Sqr模型建立 :若以当地人均年收入Se作为人口收入正态分布模型的x=0,人均年收入的n2倍定为x=n,则x~N(0,1),函数图象如图3-1(a)所示。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题在当今社会,住房问题一直是人们关注的焦点,而住房的合理定价更是关系到广大民众的切身利益。

无论是购房者希望买到性价比高的房子,还是开发商想要制定出有竞争力又能盈利的价格策略,都离不开对住房合理定价的深入研究。

要探讨住房的合理定价,首先得明确影响住房价格的诸多因素。

地理位置毫无疑问是其中最为关键的一点。

位于市中心繁华地段、交通便利、周边配套设施完善(如学校、医院、商场等)的房子,价格往往较高。

比如,在一线城市的核心区域,由于土地资源稀缺,交通、商业、教育等资源高度集中,住房价格可能会达到令人咋舌的水平。

相反,地处偏远郊区,交通不便,周边设施匮乏的房子,价格则相对较低。

房屋的品质和建筑结构也对价格有着显著影响。

房屋的面积大小、户型设计是否合理、朝向采光如何、建筑质量高低等方面,都会在价格上有所体现。

一般来说,面积宽敞、户型方正通透、采光良好、建筑质量过硬的房子,价格会偏高。

而那些面积狭小、户型不合理、采光差、建筑存在质量问题的房子,价格自然会大打折扣。

市场供需关系也是决定住房价格的重要因素。

当市场上购房需求旺盛,而房屋供应相对不足时,价格往往会上涨。

反之,如果市场上房屋供应过剩,而购房需求疲软,价格则可能下跌。

例如,在一些经济发展迅速、人口流入量大的城市,由于对住房的需求持续增加,房价呈现上涨趋势。

而在一些经济发展缓慢、人口流出的地区,住房市场可能会出现供大于求的情况,房价也就难以维持高位。

政策法规对住房价格的影响也不容小觑。

政府出台的房地产调控政策,如限购、限贷、限售等,都会直接或间接地影响住房价格。

税收政策的调整,如房产税的征收,也会对住房的持有成本和交易成本产生影响,从而对房价起到调节作用。

在进行数学建模来确定住房的合理定价时,我们可以将上述因素量化为具体的变量和参数。

以地理位置为例,可以根据距离市中心的距离、周边配套设施的完善程度等因素赋予不同的分值,并将这些分值转化为相应的权重。

房地产数学建模

房地产数学建模

房地产问题分析摘要房地产行业与百姓的生活息息相关。

近年来,由于房地产价格的不断攀升,房地产行业已经引起了社会的广泛关注。

本文分别就影响房地产价格的因素和未来房地产价格的趋势进行了细致的分析研究和预测,并最终提出了相应的改进措施和调控房价的建议。

对于问题一,由于影响房地产价格的因素众多,我们就选取了人均消费水平,人均GDP 占有量,人口密度,土地成本,银行贷款利率五个与房地产价格有着密切关系的指标在全国范围内进行研究分析。

我们采用一元线性回归模型利用SPSS 统计软件分别对五个指标与房地产价格进行线性回归,得到线性回归方程和相关系数。

并通过分析得出:土地成本、人均GDP占有量、人口密度(市场需求)、人均消费水平这四个因素对房地产价格的影响较大,而银行贷款利率的影响相对要小一些。

因此,最后我们使用多元线性回归模型,利用SPSS 软件对四个变量进行了多元线性回归,并得出了回归方程。

问题二,虽然线性回归对房价的形成预测比较高,但它只是根据有限的几个因素来确定的,于是我们通过分析确定了可以利用华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的灰色预测模型来进行求解。

我们建立了灰色预测模型并进行了模型的求解。

通过对模型的求解,预测得了未来几年的房价,并就调控房价提出了一些政策建议,对建议可能产生的效果进行了科学的预测和评价。

关键词:房地产SPSS MATLAB 灰色预测模型线性回归模型一、问题重述虽然国家多次进行宏观调控,多次调整利率、存款准备金率等,试图对房地产市场进行调控,但自1998年实行房改以来,我国大部分城市的房价出现了普遍持续上涨情况。

一方面,房价的上涨使得新进入城市或需要购房者的生存成本大幅增加,导致许多中低收入人群买房难,其它消费也无法提升;另一方面,部分投资或投机者通过各种融资渠道买入房屋进行出租或空置,期望因房价上涨而获得超高回报,导致房价居高不下。

因此,如何分析影响房地产市场的因素,从而进行有效的抑制房地产价格的过快上涨,同时能够抑制房地产市场的投机行为,是一个需要进行全面而深入研究的问题,也是普罗大众非常关心的社会问题。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。

本文依照题中所给出的数据,对3个问题分别建立模型并求解。

针对问题1,首先利用Excel 建立图表,绘制出历年房价走势图。

然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。

同时,求出确定性系数2R ,依据2R 是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。

计算得出的指数型及二阶多项式型拟合方程:0.12811()678.81i x i e =、22()12.5950.274716.38x i i i =++,由此预测出2010年房价分别为4080元/平米、3888元/平米。

为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。

通过比较实际值与预测值的平均偏差值ME 的大小,选择出合适的α。

预测出2010年的房价为3800元/平米。

最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量1x 、2x 、3x 的原始数据,以实际房价()P i 作为因变量,用Matlab 软件拟合出多元线性方程:1123()0.02020.1389() 1.1319()0.0084()f P i x i x i x i ∧=--⨯+⨯+⨯。

代入相关数据,求出历年的最终房价预测值为3866元/平米。

针对问题2,通过Excel 绘制出历年平均房价与人均GDP 的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数2R 。

2R 的值分别为:0.8673;0.9929;0.9982;0.9986。

由此判断,因2阶多项式型拟合方程的2R 不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:2()(706)[()]0.3236()177.06P i E G i G i ∧=--⨯+⨯-为平均房价与人均GDP 的关系方程。

最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP 的关系。

数学建模一等奖优秀论文——房地产

数学建模一等奖优秀论文——房地产

房地产业可持续发展问题摘要房地产业是我国国民经济重要的组成部分,近年来房价问题成了人们热议的话题。

本文针对房地产业可持续发展问题进行了探究,建立了合适的模型。

问题一:利用灰色预测方法建立了杭州房地产价格的预测模型,查找2003年到2011年杭州房地产价格数据用MATLAB求解对接下来两年杭州的房地产价格进行了预测。

针对土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格这五个因素对商品房售价的影响建立了灰色关联度模型,按照各自关联度由大到小排序,最后得到五个因素影响程度由大到小为土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格。

问题二:考虑买房者的买房压力,用按揭还款公式计算出房价作为房地产价格合理区间的上限;同时考虑房地产商的合理利润,以利润为20%时的房价作为房地产价格合理区间的下限。

用最新数据求解得到房地产价格合理区间为(5435元,8069.5元)问题三:先综合考虑保障性住房比例以及其他各个因素对房价的影响,建立多元线性回归方程。

用SPSS求解出线性回归方程后再以其他因素相同时来考虑保障性住房比例对房价影响。

最后得出保障性住房比例的增加会使得房价减少,其系数为-0.104。

.这也说明影响程度并不大。

问题四:结合前三问的研究成果和目前的房地产市场形式。

从目前房价虚高的原因,制定符合中国国情的房价合理区间,处理房价问题手段探索三个方面对房地产市场进行了分析和总结。

对处理房价问题提出了4点建议。

关键词:灰色预测 MATLAB 按揭还款公式线性回归 SPSS一、问题重述房价问题是近几年人们热议的话题,“买房贵,买房难”成为当今社会的一大问题,已经严重的影响到了社会的和谐发展。

政府在也在不断的出台政策进行宏观调控,这些举措在一定程度上防止了房地产市场的大起大落,维护了房地产市场的可持续发展。

目前,房地产市场进入观望状态,成交量大幅减少,但大多数大中城市房价环比仍上涨。

房价预测数学建模

房价预测数学建模

一、摘要房价对经济发展和社会稳定有重大影响,本题的提出是为了探讨各房价的相关影响因素对房价的影响作用并依据相关分析结果给出调节房价的相关措施,并最终将房价的变动反映到经济发展上来.在目前民众普遍关注房价变动的情况下,本题的求解具有很大的应用价值为解决合理性评估问题,我们建立了房屋购买力模型:0XKY式中X代表城镇居民年人均可支配收入,Y代表每平米房价。

给合理性评估提供了一个参考标准,从而有效地评估了房价的合理性。

为解决房价走势问题,我们建立了多元线性回归分析和基于主成分分析的回归分析两个模型,在多元回归分析模型中,通过对各因素的回归拟合分析,建立回归方程,从而达到预测走势的目的。

在主成分分析模型中,通过相关算法,求解出主成分,并建立房价和综合主成分的回归方程,达到预测目的。

二、问题的提出房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,在这种情况下,对房价的合理性判断及走势的预测对于国家制定相关政策,稳定经济发展有重要意义.本题就是在这种背景下提出的.请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施,以及可能对经济发展产生的影响,并进行定量分析。

三、条件假设1: 本模型是针对基础房价进行讨论,基础房价指的是不考虑宏观调控政策影响的完全市场行为下的房价.2: 建筑成本有房地产投资总额和固定房屋竣工面积来反映.3: 忽略一些炒作对房价的影响.4:忽略经济危机等突发性事件对房价的影响。

四、符号约定五、问题分析.经过对问题的审阅,题目中包含四个问题:1.结合相关数据,定量分析有代表性的几类城市房价的合理性.2.结合相关数据,定量分析有代表性的几类城市房价的未来走势.3.根据以上分析结果,提出调控房价的具体措施.4.定量分析房价走势对经济发展的影响.在对问题有了初步认识后,我们查阅了经济学以及房地产的相关资料,给出了问题中所要求的对房价有影响的相关因素的数据,主要包括:房地产投资总额(亿元)、房屋竣工面积(2m)、生产总值(亿元)、总人口数、居民消费水平、人均GDP、商品房销售面积、城镇居民家庭人均可支配收入。

房价的数学模型

房价的数学模型

关于解决房价的问题摘要近些年来,房价问题已成为老百姓普遍关注的问题。

本文以昆明住房的销售价格,通过分析各种因素建立模型得出预测昆明未来房价,并根据预测结果对房产商和使用者给出一些合理性的意见:问题一,建立经验模型,通过因素分析和数据调查得出影响平均每平方米的房价的主要因素有房地产开发成本X,房产价值Y,开发商成本A,其中开发商的成本中地价占了60%是整个房价影响最大的因素。

问题二,通过前几年房价的平均价格用最小二乘法计算出2012年的均价,然后通过2012前几个月的房价用最小二乘法对后面几个月进行预测,两次得出的结果相弥补最后得出后面几个月房价在[8344,8608]之间波动。

问题三,通过乔根森的使用者成本理论得出每年业主需要耗费多少,租金一般不能低于业主的成本,推出租金和房价的关系Pt>Zt/[(1-Ty)i-(1-Tg)y+&]。

又根据收益法确定二手房的价格得出二手房房价、租金和房价之间的关系V=。

问题四,通过问题一的结论中国家政策对昆明房地产发展的影响做出一些合理的描述。

问题五,通过问题三的结论进一步研究发现;V'=,当V'= 0时是最好的购二手房的时期,此时我们可以得到Vmin,这时购买二手房比新房划算。

而Zt'=,因为R的值很小(一般在0.05~0.08之间),此时当n得值越小,Zt'的值越趋近于零,即不考虑收益率在住房短时间内应该租房;当房价低迷时,R<0,这时我们租房时间n越大对租房者越划算,在这两种情况下租房都比买房划算。

关键词:房价问题收益法乔根森的使用者成本理论最小二乘法、问题重述住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

2008年受国际金融危机的影响,部分购房需求受到抑制,2009年在国家税收、土地等调控政策作用下,一度受到抑制的需求得到释放,适度放宽的货币政策使信贷规模加大,为房地产开发和商品房购买提供了比较充裕的资金,房地产市场供求大增,带动了整体回升。

房价预测数学建模

房价预测数学建模

房价预测数学建模房价预测是指通过数学建模方法,对未来一定时期内的房价进行预测和分析。

房价预测在经济学和金融领域具有重要的应用价值,对政府、房地产市场参与者以及普通居民都有重要意义。

本文将介绍房价预测的数学建模方法,并探讨其应用和局限性。

房价预测的数学建模方法主要包括回归分析、时间序列分析和机器学习方法。

首先,回归分析是一种常用的房价预测方法。

它基于统计学原理,通过将房价作为因变量,收集并整理一系列可能影响房价的自变量数据,建立回归模型来分析它们之间的关系。

常用的回归模型包括线性回归、多项式回归和逻辑回归等。

通过对历史数据的回归分析,可以得到房价与自变量之间的数学关系,从而对未来的房价进行预测。

其次,时间序列分析也是一种常见的房价预测方法。

它基于时间序列数据的特点,通过分析房价随时间的变化趋势和周期性变动,建立时间序列模型来预测未来的房价。

常用的时间序列模型包括移动平均模型、自回归移动平均模型和季节性模型等。

时间序列分析方法对于具有一定规律性和周期性的房价数据预测较为有效。

此外,机器学习方法在房价预测领域也得到了广泛应用。

基于大数据和人工智能技术,机器学习方法可以通过对大量房价数据的学习和模式识别,建立复杂的预测模型来预测未来的房价。

常用的机器学习方法包括神经网络、支持向量机和决策树等。

机器学习方法在房价预测中具有较高的灵活性和准确性。

房价预测的数学建模方法具有一定的局限性。

首先,房价受到很多因素的影响,包括宏观经济因素、政策因素、地理因素等。

单一的数学模型并不能完全反映这些复杂的影响因素。

其次,房价预测存在一定的不确定性,无法完全准确预测未来的房价。

最后,数学模型的建立需要大量的房价数据和有效的指标,而这些数据并不总是容易获取。

综上所述,房价预测的数学建模方法包括回归分析、时间序列分析和机器学习方法。

这些方法在房价预测中发挥着重要作用,但仍然存在一定的局限性。

未来的研究可以进一步探索新的建模方法,提高房价预测的准确性和可靠性。

房地产价格预测(数学建模论文)

房地产价格预测(数学建模论文)

装订线摘要房价问题事关国计民生,已经成为全民关注的焦点议题之一。

本文主要对房价的合理性进行分析,估测了房价未来走势。

同时进一步探讨使得房价合理的具体措施,根据分析结果,定量分析可能对经济发展产生的影响。

对于房价合理性的分析,选取北京,咸阳,大庆三类城市数据,以居民承受能力满意度和房地产商收益满意度作为目标函数,建立了多目标规划模型分析合理性。

此外,考虑到目前中国的房地产市场存在一定的泡沫成分,为使模型更贴近实际,利用CPI指数修正模型,分析出实际房价不合理,存在严重的泡沫成分。

针对房价的未来走势,采用灰色预测模型对未来房价进行预测。

绘制房价未来走势曲线,得到在国家政策及社会环境相对稳定的条件下,房价仍然会继续上涨的结论。

并根据所得结果,提出了调整房价的三点措施。

利用房价的财富效应以及房产投资与GDP之间协整关系分析了房价对国民经济的影响。

由分析得知:房价的不合理上涨会使房地产财富虚增,产生房地产泡沫,影响国民经济的正常发展。

考虑到所涉及的经济学变量均是非平稳的。

为了避免建立虚假回归模型,在对房价模型进行修正和分析房价对国民经济的影响时,我们利用EVIEWS软件,建立了基于单元根检验的协整性分析模型。

关键词:多目标规划灰色预测模型EVIEWS 单位根检验与协整分析一、问题重述1.1问题背景房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。

1.2问题提出请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据分析以下问题:(1)选取我国具有代表性的几类城市对房价的合理性;(2)房价的未来走势等问题进行定量分析,(3)根据分析结果,进一步探讨使得房价合理的具体措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、问题重述背景分析自1998年我国实行住房改革以来,房地产行业已经逐渐成长为拉动中国经济增长的龙头产业。

近几年在国家积极的财政政策刺激下,我国房地产市场处于不断发展阶段。

然而,与美国等发达国家住房市场进入成熟期不同,我国正处在城市化和工业化进程加速阶段,住房水平低和需求比较旺盛,这是我国住房市场快速发展的重要基础。

中国房地产一方面在快速发展之时,在总体上对经济社会的发展确实起到了促进作用;另一方面由于不规范的房的销售价格行为、地价的上升造成放的开发成本提高等因素造成房价不断上涨,严重超出了普通居民的购买能力,给其造成了巨大的购房压力。

问题重述根据近几年中国上海房地产市场现状,解决以下四个问题:(1)结合对房地产的了解,收集近几年上海房地产的价格走势,预测未来三年上海房价的状况。

(2)结合对上海市近几年来房价的了解,分析并建立合理的数学模型,得出“国五条”具体怎样影响房价。

(3)综合考虑上海的CPI,结合对房价的了解,谈谈房价如何对CPI产生影响。

(4)在2012年拥有100万元人民币的前提下,写出一种合理的分配方案,用这笔钱投资到CPI中的各项因素。

二、问题分析对于问题一的分析问题一要求根据近几年上海房地产的价格走势,来预测未来三年上海房价的情况。

首先,通过在《上海统计年鉴》找到上海近几年的房价, 为得到较为准确的预测,我们选取了最近十年上海的房价,因为长时间的数据能反映更多更合理的问题,不会太过片面对结果造成较大偏差。

历时十年,期间政府的宏观调控或制定的稳定物价等等措施必然会对房价造成影响,如果考虑政策措施和其他因素的影响,问题将变得非常复杂。

反而,我们可以将这些因素看作市场经济的调控,房价因受到这些因素影响而产生变化。

那么,实际呈现出来的房价变化就应该是有效的房价变化。

我们在模型的假设部分阐述了不考虑政府的政策措施对近几年房价的影响。

综合了以上分析,我们将搜集到的数据整理制成表格,绘制出年份-房价变化折线图,可以发现随着年份的增长,上海房价也在不断增长,且在一条直线周围上下波动,因此我们建立一元线性回归模型,来寻求上海房价与年份的线性关系。

然后根据最小二乘法来确定其中参数(一次项系数和常数项)的值,最终确定此回归方程。

然后通过求判定系数2R的值,来判断模型对数据的拟合程度,确定该方程的合理性。

最终对x进行赋值,得到相应的房价。

对于问题二的分析问题二要求找出“国五条”具体如何影响房价的,就是求“国五条”五项措施对房价影响的比重,即某项措施的影响大小,从而反应出“国五条”是如何影响房价的增长问题。

首先,根据题目信息,运用层次分析法,建立层次分析模型。

以调控房价为目标层,以不规范房的销售价格行为和地价上升致开发成本提高作为准则层,以五项措施作为措施层。

这里准则层在选择时,在参考了题目给定的房价上涨的两个原因外,通过查阅资料发现,土地增值税也对房价产生不少影响,所以准则层有三个因素。

然后求各层中各个指标的重要程度,即权重。

第一步,根据实际情况和经验,比较得出不规范房的销售价格行为和地价上升致开发成本提高对房价上涨影响程度大小,总结成它们的判断矩阵,通过Matlab求出各项的权向量。

接着对准则层进行误差分析,确定层次建立的合理性,继而总结出不规范房的销售价格行为和地价上升致开发成本提高对房价变化导致怎样的影响。

第二步,仍根据经验和实际情况,比较完善稳定房价工作责任制,坚决抑制投机投资性购房,增加普通商品住房及用地供应,加快保障性安居工程规划建设和加强市场监管这五个调控措施在不规范的销售价格行为和地价上涨两个准则下的相对重要程度,建立它们之间的判矩阵,计算措施层五项措施的权向量,即是反应重要程度的权重。

比较各个权重大小,将各个措施重要程度排序,进一步分析出各措施具体是如何影响房价的。

对于问题三的分析问题三要求综合考率上海的CPI,结合第一问和第二问对房价的了解,分析房价的变动对全国居民消费价格指数(CPI)的影响。

显然,我们难以根据房价的变动直接得出其与上海居民消费价格指数(CPI)的直接关系,也就是说房价不是直接影响CPI的指标,但房价却可以影响CPI中的某项指标来进一步影响CPI。

在CPI的各项指标中,居住这项指标与房价关系最为紧密,其他的几乎毫无联系,且可以判断,这两项必定存在直接的关系。

因此我们将各项指标概括为居民的消费水平,即居民对于购房或者用于房地产的其他开支,例如装修和增加设施,但主要还是对房地产的购买。

在经济市场中存在一个经济现象:商品价格上涨,购买力下降,反之则价格上升。

在没有其他因素的影响下,将保持这个规律。

应用于本问中,房价上涨,居民对房屋的购买支出会相对减少,而在这一段时间内CPI指数便会相对降低,这样就可以初步确定,房价和CPI之间的关系了。

然而,我们要考虑两个问题:一,房价变动与购房支出的关系;二,购房支出预CPI 指数的关系。

房价变动对居民购房消费的影响是可以借鉴经济学中价格变动对消费者消费的影响,两者之间一定存在某种对应关系。

其次,购房支出可通过拟合近几年上海居民购房总支出与上海CPI,得到两者之间的线性关系。

最后,整合这两问便可得出房价与CPI之间具体的关系。

对于问题四的分析问题四中,假定有100万元,要求我们投资到CPI中的各项因素,然后写出一种合理的方案。

显然,这是一个投资问题,投资问题最重要的一点就是追求收益的最大化,否则投资是无意义的。

但是本题有多个模糊点,就是投资一年还是多年,投资到一项指标还是多项指标;如果投资多年,能不能够从第二年或者第三年后重复投资亦或停止投资以及每年的投资与获益率是否受其他因素的影响等等。

因此,在综合考虑之后,我们对问题进行合理优化,将问题确定为:100万元用于对CPI八项指标的投资。

联系第一问,假定投资时间为三年,且没有重复投资或中途终止投资的现象。

然而要保证三年后的利润最高,并将资金合理分配给八项指标,这属于优化配置类线性规划问题。

显然,各项指标之间不具有太多的关联性。

因此,我们可建立线性优化目标函数,利用Lingo软件进行求解,最终得到最优解和最优配置方案。

三、模型假设结合本题的实际,为了确保模型求解的准确性和合理性,我们排除了一些因素的干扰,提出以下几点假设:1、考虑到上海市各个地区的房价各有不同,并且受到多种因素影响,因此在搜集资料时,我们选择性搜集了从2003年2012年上海每年的总体房价,即每年的房价直接由官方统计数据给出,不再自己结合影响因素统计;2、在问题已的求解时,暂不考虑任何政府措施;3、在不改变题意的情况下,我们将问题四总结出一个较为清楚的问题;4、不考虑CPI各项指标之间的关联性;5、不考虑投资时存在的风险。

四、符号说明及名词解释符号说明为了便于问题的求解,我们给出以下符号说明:名词解释1.CPI全国居民消费价格指数(CPI),是度量居民生活消费和服务价格水平随时间变动的相对数,综合反映居民购买的生活消费品和服务价格水平的变动情况。

它涵盖全国城乡居民生活消费的食品、烟酒及用品、衣着、家庭设备用品及维修服务、医疗保健和个人用品、交通和通信、娱乐教育文化用品及服务、居住等八大类。

2.投资回报率经济学名词,指投资后所得的收益与成本间的百分比率。

投资回报率一般可分为总回报率和年回报率。

总回报率是不论资金投入时间,直接计算总共的回报率,亦即:总回报率=利润/投入成本。

年回报率则是计算平均资金投入一年所得到的回报率。

五、模型的建立与求解经过以上的分析和准备,我们将逐步建立以下数学模型,进一步阐述模型的实际建立过程。

问题一的建立与求解 5.1.1 对数据的定量分析通过查阅上海统计年鉴的房地产相关资料,我们得到上海近十年来房地产的价格情况,统计整理后制成如下表格,见表1:表1 2003-2012年上海房产价格表由上表不难发现,上海房价从03年到07年一直呈增长之势,不过在07年到08年出现小幅度下降,但在08年以后一直处于持续增长阶段,并在09年突破一万元,创历史新高,总的来说呈上升之势。

但为进一步清楚反映出房价的总体走势,我们将表1绘制成折线图,如下所示:图1 2002-2012年房价变化折线图 图2 2002-2012年房价变化散点图 由图1可以清楚地得到,由于各种可变动因素的影响,近十年来上海房价总体上呈波动上升的趋势,但仍然有些年份变化趋于平缓或略有下降。

因此,为进一步得出房价随年份变化的关系,在下面建立模型求解。

5.1.2建立一元线性回归模型 (1) 模型建立我们进一步将表1的数据绘成散点图,如图2 。

描出散点图可发现,随着年份的增长,房价也在不断增加,且房价的值总是在一条正斜率的直线上上下波动,散点的趋势很符合一元线性直线,即年份与房价之间可能存在线性关系,故基于对散点图的观察和相关问题分析,我们建立一元线性回归方程求解。

首先,我们建立一元线性回归模型。

假设房价y 与年份x 存在关系:2, ~(0,)y a bx N εεσ=++其中a 、b 及2σ都是不依赖于x 的未知参数,b 称为回归系数,因变量y 由两部分组成,一部分是x 的线性函数a bx +,另一部分是随机误差ε,是人不可控制的。

(2) 最小二乘法估计a 、b 值然而要使误差达到最小,即样本观测值与估计值的差最小,但由于差值的符号不确定等因素的影响,然要使结果最优化,最终确定求差值的方差,使之更具有说服力。

即求:2211(,)()nni i i i i Q a b y a bx ε====--∑∑达到最小为原则,对未知参数a 和b 的估计称为未知参数a 和b 的最小二乘估计,估计值记为ˆa和ˆb 。

这时称 ˆˆˆya bx =+ 为y 关于x 的经验回归方程,简称为回归方程。

其图像为直线。

根据公式111122211111()()()()ˆ()()ˆ1ˆˆn n n ni i i i i i i i i i n nni i i i i i n n i i i i n x y x y x x y y b n x x x x b a y x y bx n n =========⎧---⎪⎪==⎪--⎨⎪⎪=-=-⎪⎩∑∑∑∑∑∑∑∑∑ 求得ˆa,ˆb 的值。

其中ˆ1285.32a =,ˆ2570197b =-; 因此,可得出y 关于x 的回归方程:y=1285.322570197x -(3) 拟合优度检验以上y 关于x 的回归方程是否可以作为反映近十年来房价的变化还有待检验。

而一元线性回归方程的检验,可以通过判定系数2R 来判别。

其判别条件为:可决系数则越靠近1,模型对数据的拟合程度越好。

通常有这样的判别系数关系式:222ˆˆ()()()i i i i Y Y Y Y Y Y -=-+-∑∑∑和判别系数求法:222ˆ()1()ii iY Y RY Y -=--∑∑可求出判定系数为:20.926R =这可以解释为,该线性回归方程可以反映出表1中92.6%的数据,即数据具有很好的符合性,因此可以采用此方程。

相关文档
最新文档