大数据结构与算法设计知识点

合集下载

计算机四大基础知识点总结

计算机四大基础知识点总结

计算机四大基础知识点总结计算机是现代社会不可或缺的一部分,它已经深入到我们的生活中的方方面面。

无论是工作、学习还是娱乐,我们都需要计算机来帮助我们处理数据、提高效率。

而要深入理解计算机,首先需要掌握计算机的四大基础知识点,包括计算机组织与体系结构、操作系统、数据结构与算法,以及编程语言。

一、计算机组织与体系结构1. 计算机的基本组成计算机主要由中央处理器(CPU)、随机存储器(RAM)、输入设备、输出设备和存储设备组成。

CPU是计算机的“大脑”,它负责执行指令、控制数据流通。

RAM是计算机的临时存储区域,用来存储数据和程序。

输入设备是用来输入数据和指令的设备,比如键盘、鼠标等。

输出设备是用来展示计算结果的设备,比如显示器、打印机等。

存储设备是用来长期存储数据和程序的设备,比如硬盘、光盘等。

2. 计算机的体系结构计算机的体系结构包括指令系统、总线结构、存储系统和输入/输出系统。

指令系统是CPU执行指令的集合,包括指令格式、寻址方式和指令执行的时序规定。

总线结构用于连接 CPU、内存和输入/输出设备,传输数据和指令。

存储系统包括RAM和存储设备,用来存储数据和程序。

输入/输出系统负责将数据从输入设备传输到存储设备或输出设备,以及从存储设备传输到输出设备。

3. 计算机的工作原理计算机工作的基本原理可以概括为:输入、处理、输出和存储。

首先,计算机通过输入设备接收数据和指令。

然后,CPU根据指令执行相应的运算和逻辑操作,得到结果。

最后,计算机将结果通过输出设备展示给用户,同时也会将数据和程序存储在存储设备里。

4. 计算机的性能指标计算机的性能指标包括速度、存储容量和可靠性。

速度是指计算机执行任务的快慢,通常用处理器的主频来表示。

存储容量是指计算机能够存储数据和程序的大小,通常用RAM和硬盘容量来表示。

可靠性是指计算机运行稳定性和故障率,通常用故障率和平均时间故障间隔来表示。

二、操作系统1. 操作系统的功能操作系统是计算机系统的核心软件,负责管理计算机的硬件资源和提供用户与计算机的接口。

数据结构知识点全面总结—精华版

数据结构知识点全面总结—精华版

第1章绪论内容提要:◆数据结构研究的内容..针对非数值计算的程序设计问题;研究计算机的操作对象以及它们之间的关系和操作..数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型..数据——所有能被计算机识别、存储和处理的符号的集合..数据元素——是数据的基本单位;具有完整确定的实际意义..数据对象——具有相同性质的数据元素的集合;是数据的一个子集..数据结构——是相互之间存在一种或多种特定关系的数据元素的集合;表示为:Data_Structure=D; R数据类型——是一个值的集合和定义在该值上的一组操作的总称..抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作;它由基本的数据类型构成..◆算法的定义及五个特征..算法——是对特定问题求解步骤的一种描述;它是指令的有限序列;是一系列输入转换为输出的计算步骤..算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求..①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析..时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理存储结构及在这种结构上所定义的操作运算..◆用计算语句频度来估算算法的时间复杂度..第二章线性表内容提要:◆线性表的逻辑结构定义;对线性表定义的操作..线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构..顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构..链式存储结构: 其结点在存储器中的位置是随意的;即逻辑上相邻的数据元素在物理上不一定相邻..通过指针来实现◆线性表的操作在两种存储结构中的实现..数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之..核心语句:Vi=x;顺序表修改操作的时间效率是O12 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1..注意:事先应判断: 插入位置i 是否合法表是否已满应当符合条件:1≤i≤n+1 或i=1; n+1核心语句:for j=n; j>=i; j--aj+1=a j ;a i =x;n++;插入时的平均移动次数为:nn+1/2÷n+1=n/2≈On3 删除——删除线性表的第i个位置上的元素实现步骤:①将第i+1 至第n 位的元素向前移动一个位置;②表长减1..注意:事先需要判断;删除位置i 是否合法应当符合条件:1≤i≤n 或i=1; n核心语句:for j=i+1; j<=n; j++aj-1=aj;n--;顺序表删除一元素的时间效率为:Tn=n-1/2 ≈On顺序表插入、删除算法的平均空间复杂度为O1单链表:1用单链表结构来存放26个英文字母组成的线性表a;b;c;…;z;请写出C语言程序.. #include<stdio.h>#include<stdlib.h>typedef struct node{char data;struct node *next;}node;node *p;*q;*head; //一般需要3个指针变量int n ; // 数据元素的个数int m=sizeofnode; /*结构类型定义好之后;每个node类型的长度就固定了;m求一次即可*/void build //字母链表的生成..要一个个慢慢链入{int i;head=node*mallocm; //m=sizeofnode 前面已求出p=head;for i=1; i<26; i++ //因尾结点要特殊处理;故i≠26{p->data=i+‘a’-1; // 第一个结点值为字符ap->next=node*mallocm; //为后继结点“挖坑”p=p->next;} //让指针变量P指向后一个结点p->data=i+‘a’-1; //最后一个元素要单独处理p->next=NULL ; //单链表尾结点的指针域要置空}}void display //字母链表的输出{p=head;while p //当指针不空时循环仅限于无头结点的情况{printf"%c";p->data;p=p->next; //让指针不断“顺藤摸瓜”}}(2)单链表的修改或读取(3)思路:要修改第i个数据元素;必须从头指针起一直找到该结点的指针p;然后才能:p>data=new_value读取第i个数据元素的核心语句是:Linklist *findLinklist *head ;int i{int j=1;Linklist *p;P=head->next;Whilep=NULL&&j<i{p=p->next;j++;}return p;}3.单链表的插入链表插入的核心语句:Step 1:s->next=p->next;Step 2:p->next=s ;6.单链表的删除删除动作的核心语句要借助辅助指针变量q:q = p->next; //首先保存b的指针;靠它才能找到c;p->next=q->next; //将a、c两结点相连;淘汰b结点;freeq ;//彻底释放b结点空间7.双向链表的插入操作:设p已指向第i 元素;请在第i 元素前插入元素x:①ai-1的后继从ai 指针是p变为x指针是s :s->next = p ; p->prior->next = s ;②ai 的前驱从ai-1 指针是p->prior变为x 指针是s;s->prior = p ->prior ; p->prior = s ;8.双向链表的删除操作:设p指向第i 个元素;删除第i 个元素后继方向:ai-1的后继由ai 指针p变为ai+1指针p ->next ;p ->prior->next = p->next ;前驱方向:ai+1的前驱由ai 指针p变为ai-1 指针p -> prior ;p->next->prior = p ->prior ;◆数组的逻辑结构定义及存储数组:由一组名字相同、下标不同的变量构成N维数组的特点:n个下标;每个元素受到n个关系约束一个n维数组可以看成是由若干个n-1维数组组成的线性表..存储:事先约定按某种次序将数组元素排成一列序列;然后将这个线性序列存入存储器中..在二维数组中;我们既可以规定按行存储;也可以规定按列存储..设一般的二维数组是Ac1..d1; c2..d2;则行优先存储时的地址公式为:二维数组列优先存储的通式为:◆稀疏矩阵含特殊矩阵的存储及运算..稀疏矩阵:矩阵中非零元素的个数较少一般小于5%学习重点:◆线性表的逻辑结构;指线性表的数据元素间存在着线性关系..在顺序存储结构中;元素存储的先后位置反映出这种线性关系;而在链式存储结构中;是靠指针来反映这种关系的..◆顺序存储结构用一维数组表示;给定下标;可以存取相应元素;属于随机存取的存储结构..◆链表操作中应注意不要使链意外“断开”..因此;若在某结点前插入一个元素;或删除某元素;必须知道该元素的前驱结点的指针..◆掌握通过画出结点图来进行链表单链表、循环链表等的生成、插入、删除、遍历等操作..◆数组主要是二维在以行序/列序为主的存储中的地址计算方法..◆稀疏矩阵的三元组表存储结构..◆稀疏矩阵的十字链表存储方法..补充重点:1.每个存储结点都包含两部分:数据域和指针域链域2.在单链表中;除了首元结点外;任一结点的存储位置由其直接前驱结点的链域的值指示..3.在链表中设置头结点有什么好处头结点即在链表的首元结点之前附设的一个结点;该结点的数据域可以为空;也可存放表长度等附加信息;其作用是为了对链表进行操作时;可以对空表、非空表的情况以及对首元结点进行统一处理;编程更方便..4.如何表示空表1无头结点时;当头指针的值为空时表示空表;2有头结点时;当头结点的指针域为空时表示空表..5.链表的数据元素有两个域;不再是简单数据类型;编程时该如何表示因每个结点至少有两个分量;且数据类型通常不一致;所以要采用结构数据类型..6.sizeofx——计算变量x的长度字节数;mallocm —开辟m字节长度的地址空间;并返回这段空间的首地址;freep ——释放指针p所指变量的存储空间;即彻底删除一个变量..7.链表的运算效率分析:1查找因线性链表只能顺序存取;即在查找时要从头指针找起;查找的时间复杂度为On..2 插入和删除因线性链表不需要移动元素;只要修改指针;一般情况下时间复杂度为O1..但是;如果要在单链表中进行前插或删除操作;因为要从头查找前驱结点;所耗时间复杂度将是On..例:在n个结点的单链表中要删除已知结点*P;需找到它的前驱结点的地址;其时间复杂度为On8. 顺序存储和链式存储的区别和优缺点顺序存储时;逻辑上相邻的数据元素;其物理存放地址也相邻..顺序存储的优点是存储密度大;存储空间利用率高;缺点是插入或删除元素时不方便..链式存储时;相邻数据元素可随意存放;但所占存储空间分两部分;一部分存放结点值;另一部分存放表示结点间关系的指针..链式存储的优点是插入或删除元素时很方便;使用灵活..缺点是存储密度小;存储空间利用率低..◆顺序表适宜于做查找这样的静态操作;◆链表宜于做插入、删除这样的动态操作..◆若线性表的长度变化不大;且其主要操作是查找;则采用顺序表;◆若线性表的长度变化较大;且其主要操作是插入、删除操作;则采用链表..9. 判断:“数组的处理比其它复杂的结构要简单”;对吗答:对的..因为——①数组中各元素具有统一的类型;②数组元素的下标一般具有固定的上界和下界;即数组一旦被定义;它的维数和维界就不再改变..③数组的基本操作比较简单;除了结构的初始化和销毁之外;只有存取元素和修改元素值的操作..10.三元素组表中的每个结点对应于稀疏矩阵的一个非零元素;它包含有三个数据项;分别表示该元素的行下标、列下标和元素值..11.写出右图所示稀疏矩阵的压缩存储形式..解:介绍3种存储形式..法1:用线性表表示:1;2;12 ;1;3;9; 3;1;-3; 3;5;14;4;3;24; 5;2;18 ;6;1;15; 6;4;-7法2:用十字链表表示用途:方便稀疏矩阵的加减运算方法:每个非0元素占用5个域法3:用三元组矩阵表示:稀疏矩阵压缩存储的缺点:将失去随机存取功能代码:1.用数组V来存放26个英文字母组成的线性表a;b;c;…;z;写出在顺序结构上生成和显示该表的C语言程序..char V30;void build //字母线性表的生成;即建表操作{int i;V0='a';for i=1; i<=n-1; i++Vi=Vi-1+1;}void display //字母线性表的显示;即读表操作{int i;for i=0; i<=n-1; i++printf "%c"; vi ;printf "\n " ;}void mainvoid //主函数;字母线性表的生成和输出{n=26; // n是表长;是数据元素的个数;而不是V的实际下标build ;display ;}第三章栈和队列内容提要:◆从数据结构角度来讲;栈和队列也是线性表;其操作是线性表操作的子集;属操作受限的线性表..但从数据类型的角度看;它们是和线性表大不相同的重要抽象数据类型..◆栈的定义及操作..栈是只准在一端进行插入和删除操作的线性表;该端称为栈的顶端..插入元素到栈顶的操作;称为入栈..从栈顶删除最后一个元素的操作;称为出栈..对于向上生成的堆栈:入栈口诀:堆栈指针top “先压后加”: Stop++=an+1出栈口诀:堆栈指针top “先减后弹”: e=S--top◆栈的顺序和链式存储结构;及在这两种结构下实现栈的操作..顺序栈入栈函数PUSHstatus PushElemType e{ iftop>M{上溢}else stop++=e;}顺序栈出栈函数POPstatus Pop{ iftop=L { 下溢}else { e=s--top; returne;}}◆队列的定义及操作;队列的删除在一端队尾;而插入则在队列的另一端队头..因此在两种存储结构中;都需要队头和队尾两个指针..队列:只能在表的一端进行插入运算;在表的另一端进行删除运算的线性表..链队列结点类型定义:typedef Struct QNode{QElemType data; //元素Struct QNode *next; //指向下一结点的指针}Qnode ; * QueuePtr ;链队列类型定义:typedef struct {QueuePtr front ; //队首指针QueuePtr rear ; //队尾指针} LinkQueue;链队示意图:①空链队的特征:front=rear②链队会满吗一般不会;因为删除时有free动作..除非内存不足③入队尾部插入:rear->next=S; rear=S;出队头部删除:front->next=p->next;2.顺序队顺序队类型定义:#define QUEUE-MAXSIZE 100 //最大队列长度typedef struct {QElemType *base; //队列的基址int front; //队首指针int rear; //队尾指针}Sueue建队核心语句:q . base=QElemType *mallocsizeof QElemType* QUEUE_MAXSIZE; //分配空间顺序队示意图:循环队列:队空条件: front = rear 初始化时:front = rear队满条件:front = rear+1 % N N=maxsize队列长度即数据元素个数:L=N+rear-front% N1)初始化一个空队列Status InitQueue Sueue &q //初始化空循环队列q{q . base=QElemType *mallocsizeofQElemType* QUEUE_MAXSIZE; //分配空间if q.base exitOVERFLOW;//内存分配失败;退出程序q.front =q.rear=0; //置空队列return OK;} //InitQueue;2)入队操作Status EnQueueSueue &q; QElemType e{//向循环队列q 的队尾加入一个元素eif q.rear+1 % QUEUE_MAXSIZE = = q.frontreturn ERROR ; //队满则上溢;无法再入队q.rear = q . rear + 1 % QUEUE_MAXSIZE;q.base q.rear = e; //新元素e入队return OK;}// EnQueue;3)出队操作Status DeQueue Sueue &q; QElemType &e{//若队列不空;删除循环队列q的队头元素;//由e 返回其值;并返回OKif q.front = = q.rear return ERROR;//队列空q.front=q.front+1 % QUEUE_MAXSIZE ;e = q.base q.front ;return OK;}// DeQueue◆链队列空的条件是首尾指针相等;而循环队列满的条件的判定;则有队尾加1等于队头和设标记两种方法..补充重点:1.为什么要设计堆栈它有什么独特用途①调用函数或子程序非它莫属;②递归运算的有力工具;③用于保护现场和恢复现场;④简化了程序设计的问题..2.为什么要设计队列它有什么独特用途①离散事件的模拟模拟事件发生的先后顺序;例如CPU芯片中的指令译码队列;②操作系统中的作业调度一个CPU执行多个作业;③简化程序设计..3.什么叫“假溢出”如何解决答:在顺序队中;当尾指针已经到了数组的上界;不能再有入队操作;但其实数组中还有空位置;这就叫“假溢出”..解决假溢出的途径———采用循环队列..4.在一个循环队列中;若约定队首指针指向队首元素的前一个位置..那么;从循环队列中删除一个元素时;其操作是先移动队首位置;后取出元素..5.线性表、栈、队的异同点:相同点:逻辑结构相同;都是线性的;都可以用顺序存储或链表存储;栈和队列是两种特殊的线性表;即受限的线性表只是对插入、删除运算加以限制..不同点:①运算规则不同:线性表为随机存取;而栈是只允许在一端进行插入和删除运算;因而是后进先出表LIFO;队列是只允许在一端进行插入、另一端进行删除运算;因而是先进先出表FIFO..②用途不同;线性表比较通用;堆栈用于函数调用、递归和简化设计等;队列用于离散事件模拟、OS作业调度和简化设计等..第四章串内容提要:◆串是数据元素为字符的线性表;串的定义及操作..串即字符串;是由零个或多个字符组成的有限序列;是数据元素为单个字符的特殊线性表..串比较:int strcmpchar *s1;char *s2;求串长:int strlenchar *s;串连接:char strcatchar *to;char *from子串T定位:char strchrchar *s;char *c;◆串的存储结构;因串是数据元素为字符的线性表;所以存在“结点大小”的问题..模式匹配算法..串有三种机内表示方法:模式匹配算法:算法目的:确定主串中所含子串第一次出现的位置定位定位问题称为串的模式匹配;典型函数为IndexS;T;posBF算法的实现—即编写IndexS; T; pos函数BF算法设计思想:将主串S的第pos个字符和模式T的第1个字符比较;若相等;继续逐个比较后续字符;若不等;从主串S的下一字符pos+1起;重新与T第一个字符比较..直到主串S的一个连续子串字符序列与模式T相等..返回值为S中与T匹配的子序列第一个字符的序号;即匹配成功..否则;匹配失败;返回值0..Int Index_BPSString S; SString T; int pos{ //返回子串T在主串S中第pos个字符之后的位置..若不存在;则函数值为0.// 其中;T非空;1≤pos≤StrLengthSi=pos; j=1;while i<=S0 && j<=T0 //如果i;j二指针在正常长度范围;{if Si = = Tj {++i; ++j; } //则继续比较后续字符else {i=i-j+2; j=1;} //若不相等;指针后退重新开始匹配}ifj>T0 return i-T0; //T子串指针j正常到尾;说明匹配成功; else return 0; //否则属于i>S0情况;i先到尾就不正常} //Index_BP补充重点:1.空串和空白串有无区别答:有区别..空串Null String是指长度为零的串;而空白串Blank String;是指包含一个或多个空白字符‘’空格键的字符串.2.“空串是任意串的子串;任意串S都是S本身的子串;除S本身外;S的其他子串称为S的真子串..”第六章树和二叉树内容提要:◆树是复杂的非线性数据结构;树;二叉树的递归定义;基本概念;术语..树:由一个或多个n≥0结点组成的有限集合T;有且仅有一个结点称为根root;当n>1时;其余的结点分为mm≥0个互不相交的有限集合T1;T2;…;Tm..每个集合本身又是棵树;被称作这个根的子树..二叉树:是nn≥0个结点的有限集合;由一个根结点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成..术语:P88◆二叉树的性质;存储结构..性质1: 在二叉树的第i层上至多有2i-1个结点i>0..性质2: 深度为k的二叉树至多有2k-1个结点k>0..性质3: 对于任何一棵二叉树;若2度的结点数有n2个;则叶子数n0必定为n2+1性质4: 具有n个结点的完全二叉树的深度必为性质5: 对完全二叉树;若从上至下、从左至右编号;则编号为i 的结点;其左孩子编号必为2i;其右孩子编号为2i+1;其双亲的编号必为i/2i=1 时为根;除外..二叉树的存储结构:一、顺序存储结构按二叉树的结点“自上而下、从左至右”编号;用一组连续的存储单元存储..若是完全/满二叉树则可以做到唯一复原..不是完全二叉树:一律转为完全二叉树方法很简单;将各层空缺处统统补上“虚结点”;其内容为空..缺点:①浪费空间;②插入、删除不便二、链式存储结构用二叉链表即可方便表示..一般从根结点开始存储..优点:①不浪费空间;②插入、删除方便◆二叉树的遍历..指按照某种次序访问二叉树的所有结点;并且每个结点仅访问一次;得到一个线性序列..遍历规则———二叉树由根、左子树、右子树构成;定义为D、L、R若限定先左后右;则有三种实现方案:DLR LDR LRD先序遍历中序遍历后序遍历◆树的存储结构;树、森林的遍历及和二叉树的相互转换..回顾2:二叉树怎样还原为树要点:逆操作;把所有右孩子变为兄弟讨论1:森林如何转为二叉树法一:①各森林先各自转为二叉树;②依次连到前一个二叉树的右子树上..法二:森林直接变兄弟;再转为二叉树讨论2:二叉树如何还原为森林要点:把最右边的子树变为森林;其余右子树变为兄弟树和森林的存储方式:树有三种常用存储方式:①双亲表示法②孩子表示法③孩子—兄弟表示法问:树→二叉树的“连线—抹线—旋转”如何由计算机自动实现答:用“左孩子右兄弟”表示法来存储即可..存储的过程就是树转换为二叉树的过程树、森林的遍历:①先根遍历:访问根结点;依次先根遍历根结点的每棵子树..②后根遍历:依次后根遍历根结点的每棵子树;访问根结点..讨论:树若采用“先转换;后遍历”方式;结果是否一样1. 树的先根遍历与二叉树的先序遍历相同;2. 树的后根遍历相当于二叉树的中序遍历;3. 树没有中序遍历;因为子树无左右之分..①先序遍历若森林为空;返回;访问森林中第一棵树的根结点;先根遍历第一棵树的根结点的子树森林;先根遍历除去第一棵树之后剩余的树构成的森林..②中序遍历若森林为空;返回;中根遍历森林中第一棵树的根结点的子树森林;访问第一棵树的根结点;中根遍历除去第一棵树之后剩余的树构成的森林..◆二叉树的应用:哈夫曼树和哈夫曼编码..Huffman树:最优二叉树带权路径长度最短的树Huffman编码:不等长编码..树的带权路径长度:树中所有叶子结点的带权路径长度之和构造Huffman树的基本思想:权值大的结点用短路径;权值小的结点用长路径..构造Huffman树的步骤即Huffman算法:1 由给定的n 个权值{ w1; w2; …; wn }构成n棵二叉树的集合F = { T1; T2; …; Tn } 即森林;其中每棵二叉树Ti 中只有一个带权为wi 的根结点;其左右子树均空..2 在F 中选取两棵根结点权值最小的树做为左右子树构造一棵新的二叉树;且让新二叉树根结点的权值等于其左右子树的根结点权值之和..3 在F 中删去这两棵树;同时将新得到的二叉树加入F中..4 重复2 和3 ; 直到F 只含一棵树为止..这棵树便是Huffman树..具体操作步骤:学习重点:本章内容是本课程的重点◆二叉树性质及证明方法;并能把这种方法推广到K叉树..◆二叉树遍历;遍历是基础;由此导出许多实用的算法;如求二叉树的高度、各结点的层次数、度为0、1、2的结点数..◆由二叉树遍历的前序和中序序列或后序和中序序列可以唯一构造一棵二叉树..由前序和后序序列不能唯一确定一棵二叉树..◆完全二叉树的性质..◆树、森林和二叉树间的相互转换..◆哈夫曼树的定义、构造及求哈夫曼编码..补充:1.满二叉树和完全二叉树有什么区别答:满二叉树是叶子一个也不少的树;而完全二叉树虽然前k-1层是满的;但最底层却允许在右边缺少连续若干个结点..满二叉树是完全二叉树的一个特例..2.Huffman树有什么用最小冗余编码、信息高效传输第七章图内容提要:◆图的定义;概念、术语及基本操作..图:记为G=V; E其中:V 是G 的顶点集合;是有穷非空集;E 是G 的边集合;是有穷集..术语:见课件◆图的存储结构..1.邻接矩阵数组表示法①建立一个顶点表和一个邻接矩阵②设图A = V; E 有n 个顶点;则图的邻接矩阵是一个二维数组A.Edgenn..注:在有向图的邻接矩阵中;第i行含义:以结点vi为尾的弧即出度边;第i列含义:以结点vi为头的弧即入度边..邻接矩阵法优点:容易实现图的操作;如:求某顶点的度、判断顶点之间是否有边弧、找顶点的邻接点等等..邻接矩阵法缺点:n个顶点需要n*n个单元存储边弧;空间效率为On2..2.邻接表链式表示法①对每个顶点vi 建立一个单链表;把与vi有关联的边的信息即度或出度边链接起来;表中每个结点都设为3个域:②每个单链表还应当附设一个头结点设为2个域;存vi信息;③每个单链表的头结点另外用顺序存储结构存储..邻接表的优点:空间效率高;容易寻找顶点的邻接点;邻接表的缺点:判断两顶点间是否有边或弧;需搜索两结点对应的单链表;没有邻接矩阵方便..◆图的遍历..遍历定义:从已给的连通图中某一顶点出发;沿着一些边;访遍图中所有的顶点;且使每个顶点仅被访问一次;就叫做图的遍历;它是图的基本运算..图常用的遍历:一、深度优先搜索;二、广度优先搜索深度优先搜索遍历步骤:①访问起始点v;②若v的第1个邻接点没访问过;深度遍历此邻接点;③若当前邻接点已访问过;再找v的第2个邻接点重新遍历..基本思想:——仿树的先序遍历过程..广度优先搜索遍历步骤:①在访问了起始点v之后;依次访问v的邻接点;②然后再依次顺序访问这些点下一层中未被访问过的邻接点;③直到所有顶点都被访问过为止..◆图的应用最小生成树;最短路经最小生成树MST的性质如下:若U集是V的一个非空子集;若u0; v0是一条最小权值的边;其中u0 U;v0 V-U;则:u0; v0必在最小生成树上..求MST最常用的是以下两种:Kruskal克鲁斯卡尔算法、Prim普里姆算法Kruskal算法特点:将边归并;适于求稀疏网的最小生成树..Prime算法特点: 将顶点归并;与边数无关;适于稠密网..在带权有向图中A点源点到达B点终点的多条路径中;寻找一条各边权值之和最小的路径;即最短路径..两种常见的最短路径问题:一、单源最短路径—用Dijkstra迪杰斯特拉算法二、所有顶点间的最短路径—用Floyd弗洛伊德算法一、单源最短路径Dijkstra算法一顶点到其余各顶点v0→j目的:设一有向图G=V; E;已知各边的权值;以某指定点v0为源点;求从v0到图的其余各点的最短路径..限定各边上的权值大于或等于0..二、所有顶点之间的最短路径可以通过调用n次Dijkstra算法来完成;还有更简单的一个算法:Floyd算法自学..学习重点:图是应用最广泛的一种数据结构;本章也是这门课程的重点..◆基本概念中;连通分量;生成树;邻接点是重点..①连通图:在无向图中; 若从顶点v1到顶点v2有路径; 则称顶点v1与v2是连通的..如果图中任意一对顶点都是连通的; 则称此图是连通图..非连通图的极大连通子图叫做连通分量..②生成树:是一个极小连通子图;它含有图中全部n个顶点;但只有n-1条边..③邻接点:若u; v 是EG 中的一条边;则称u 与v 互为邻接顶点..◆图是复杂的数据结构;也有顺序和链式两种存储结构:数组表示法重点是邻接距阵和邻接表..这两种存储结构对有向图和无向图均适用◆图的遍历是图的各种算法的基础;应熟练掌握图的深度、广度优先遍历..◆连通图的最小生成树不是唯一的;但最小生成树边上的权值之和是唯一的.. 应熟练掌握prim和kruscal算法;特别是手工分步模拟生成树的生成过程..◆从单源点到其他顶点;以及各个顶点间的最短路径问题;掌握熟练手工模拟..补充:1.问:当有向图中仅1个顶点的入度为0;其余顶点的入度均为1;此时是何形状答:是树而且是一棵有向树2.讨论:邻接表与邻接矩阵有什么异同之处1. 联系:邻接表中每个链表对应于邻接矩阵中的一行;链表中结点个数等于一行中非零元素的个数..2. 区别:对于任一确定的无向图;邻接矩阵是唯一的行列号与顶点编号一致;但邻接表不唯一链接次序与顶点编号无关..3. 用途:邻接矩阵多用于稠密图的存储而邻接表多用于稀疏图的存储3.若对连通图进行遍历;得到的是生成树若对非连通图进行遍历;得到的是生成森林..第八章查找内容提要:◆查找表是称为集合的数据结构..是元素间约束力最差的数据结构:元素间的关系是元素仅共在同一个集合中..同一类型的数据元素构成的集合◆查找表的操作:查找;插入;删除..◆静态查找表:顺序表;有序表等..针对静态查找表的查找算法主要有:顺序查找、折半查找、分块查找一、顺序查找线性查找技巧:把待查关键字key存入表头或表尾俗称“哨兵”;这样可以加快执行速度..int Search_Seq SSTable ST ; KeyType key {ST.elem0.key =key;for i=ST.length; ST.elem i .key=key; - - i ;return i;} // Search_Seq。

算法基本知识点总结

算法基本知识点总结

算法基本知识点总结一、算法的基本概念1. 算法的定义算法是用来解决特定问题的有限步骤的有序集合。

算法是一种计算方法,可以描述为一系列清晰的步骤,用来解决特定问题或执行特定任务。

2. 算法的特性(1)有穷性:算法必须在有限的步骤内结束。

(2)确定性:对于相同输入,算法应该产生相同的输出。

(3)可行性:算法必须可行,即算法中的每一步都可以通过已知的计算机能力来执行。

3. 算法的设计目标(1)正确性:算法应该能够解决给定的问题。

(2)可读性:算法应该易于理解和解释。

(3)高效性:算法应该能在合理的时间内完成任务。

二、算法的复杂度分析1. 时间复杂度算法的时间复杂度表示算法执行所需的时间长度,通常用“大O记法”表示。

时间复杂度反映了算法的运行时间与输入规模之间的关系。

常见的时间复杂度包括:(1)O(1):常数时间复杂度,表示算法的运行时间与输入规模无关。

(2)O(logn):对数时间复杂度,表示算法的运行时间与输入规模的对数成正比。

(3)O(n):线性时间复杂度,表示算法的运行时间与输入规模成正比。

(4)O(nlogn):线性对数时间复杂度,表示算法的运行时间与输入规模和对数成正比。

(5)O(n^2):平方时间复杂度,表示算法的运行时间与输入规模的平方成正比。

(6)O(2^n):指数时间复杂度,表示算法的运行时间与输入规模的指数成正比。

2. 空间复杂度算法的空间复杂度表示算法执行所需的内存空间大小。

常见的空间复杂度包括:(1)O(1):常数空间复杂度,表示算法的内存空间与输入规模无关。

(2)O(n):线性空间复杂度,表示算法的内存空间与输入规模成正比。

三、常见的算法设计思想1. 贪心算法贪心算法是一种选取当前最优解来解决问题的算法。

贪心算法的核心思想是从问题的某一初始解出发,通过一系列的局部最优选择,找到全局最优解。

2. 动态规划动态规划是一种将原问题分解成子问题来求解的方法。

动态规划通常适用于具有重叠子问题和最优子结构性质的问题。

《数据结构与算法》第四章-学习指导材料

《数据结构与算法》第四章-学习指导材料

《数据结构与算法》第四章串知识点及例题精选串(即字符串)是一种特殊的线性表,它的数据元素仅由一个字符组成。

4.1 串及其基本运算4.1.1 串的基本概念1.串的定义串是由零个或多个任意字符组成的字符序列。

一般记作:s="s1 s2 … s n""其中s 是串名;在本书中,用双引号作为串的定界符,引号引起来的字符序列为串值,引号本身不属于串的内容;a i(1<=i<=n)是一个任意字符,它称为串的元素,是构成串的基本单位,i是它在整个串中的序号; n为串的长度,表示串中所包含的字符个数,当n=0时,称为空串,通常记为Ф。

2.几个术语子串与主串:串中任意连续的字符组成的子序列称为该串的子串。

包含子串的串相应地称为主串。

子串的位置:子串的第一个字符在主串中的序号称为子串的位置。

串相等:称两个串是相等的,是指两个串的长度相等且对应字符都相等。

4.2 串的定长顺序存储及基本运算因为串是数据元素类型为字符型的线性表,所以线性表的存储方式仍适用于串,也因为字符的特殊性和字符串经常作为一个整体来处理的特点,串在存储时还有一些与一般线性表不同之处。

4.2.1 串的定长顺序存储类似于顺序表,用一组地址连续的存储单元存储串值中的字符序列,所谓定长是指按预定义的大小,为每一个串变量分配一个固定长度的存储区,如:#define MAXSIZE 256char s[MAXSIZE];则串的最大长度不能超过256。

如何标识实际长度?1. 类似顺序表,用一个指针来指向最后一个字符,这样表示的串描述如下:typedef struct{ char data[MAXSIZE];int curlen;} SeqString;定义一个串变量:SeqString s;这种存储方式可以直接得到串的长度:s.curlen+1。

如图4.1所示。

s.dataMAXSIZE-1图4.1 串的顺序存储方式12. 在串尾存储一个不会在串中出现的特殊字符作为串的终结符,以此表示串的结尾。

数据结构知识点总结(详细无题目)综述

数据结构知识点总结(详细无题目)综述

数据结构知识点总结(详细无题目)综述数据结构知识点总结内容概要:基本概念——线性表——栈与队列——树与二叉树——图——查找算法——排序算法一、基本概念1、数据元素是数据的基本单位。

2、数据项是数据不可分割的最小单位。

3、数据结构的逻辑结构物理结构顺序映像位置“相邻”非顺序映像指针表示关系4、算法特性:算法具有正确性、有穷性,确定性,、输入,输出正确性:能按设计要求解决具体问题,并得到正确的结果。

有穷性:任何一条指令都只能执行有限次,即算法必须在执行有限步后结束。

确定性:算法中每条指令的含义必须明确,不允许二义性可行性:算法中待执行的操作都十分基本,算法应该在有限时间内执行完毕。

输入:一个算法的输入可以包含零个或多个数据。

输出:算法有一个或多个输出 5、算法设计的要求:正确性:算法应能满足设定的功能和要求。

可读性:思路清晰、层次分明、易读易懂。

健壮性:输入非法数据时应能作适当的反应和处理。

高效性:解决问题时间越短,算法的效率就越高。

低存储量:完成同一功能,占用存储空间应尽可能少。

二、线性表1、线性表 List:最常用且最简单的数据结构。

含有大量记录的线性表称为文件。

2、线性表是n个数据元素的有限序列。

线性结构的特点:①“第一个”②“最后一个”③前驱④后继。

3、顺序表——线性表的顺序存储结构特点a) 逻辑上相邻的元素在物理位置上相邻。

b) 随机访问。

1) typedef struct{ DataType elem[MAXSIZE]; int length;} SqList;1...MAXSIZE-1==0==MAXSIZE0 4、线性表的链式存储结构1) 类型定义简而言之,“数据 + 指针”。

typedef struct LNode {DataType data; struct LNode *next; } LNode, *LinkList;data next 2) 不带头结点的空表判定为 L= =null 带头结点的空表判定为 L->next= =null 循环单链表为空的判定条件为 = =L 线性链表的最后一个结点的指针为NULL头结点的数据域为空,指针域指向第一个元素的指针。

数据结构总结知识点

数据结构总结知识点

第一章数据结构概念——数据结构,数据元素,数据项,数据类型,抽象数据类型,算法,等。

数据结构定义——指互相有关联的数据元素的集合,用D_S=( D, S ) 或S=( D, R) 表示。

数据结构内容——数据的逻辑结构、存储结构和运算算法效率指标——时间效率(时间复杂度)和空间效率(空间复杂度)总结:数据的逻辑结构和存储结构数据的逻辑结构是数据的机外表示,数据的存储结构是数据的机内表示。

(2) 一种数据的逻辑结构可以用多种存储结构来存储。

(3) 数据结构的基本操作是定义(存在)于逻辑结构,计算机程序设计过程中实现于存储结构。

(4) 采用不同的存储结构,其数据处理的效率往往是不同的。

数据结构?有限个同构数据元素的集合,存在着一定的结构关系,可进行一定的运算。

算法--是对特定问题求解步骤的一种描述,是指令的有限序列。

算法有5个基本特性:有穷性、确定性、可行性、输入和输出第二章1. 数据的逻辑结构是指数据元素之间的逻辑关系,是用户按使用需要建立的。

对2. 线性表的逻辑结构定义是唯一的,不依赖于计算机。

对3. 线性结构反映结点间的逻辑关系是一对一的。

对4. 一维向量是线性表,但二维或N维数组不是。

错5. “同一数据逻辑结构中的所有数据元素都具有相同的 特性”是指数据元素所包含的数据项的个数都相等。

错 插入概率p(i)=1/(n+1) ,删除概率q(i)=1/n插入操作时间效率(平均移动次数)2)1(11)1(1111ni n n i n p E n i n i i is =+-+=+-=∑∑+=+=删除操作时间效率(平均移动次数)21)(1)(11-=-=-=∑∑==n i n n i n q E ni n i i dl 线性表顺序存储结构特点:逻辑关系上相邻的两个元素在物理存储位置上也相邻; 优点:可以随机存取表中任一元素;无需为表示表中元素 之间的逻辑关系而增加额外的存储空间;缺点:在插入、删除某一元素时,需要移动大量元素;表的容量难以确定,表的容量难以扩充。

算法与设计的知识点

算法与设计的知识点

算法与设计的知识点在计算机科学的领域中,算法和设计是两个核心的知识点。

算法是解决问题的步骤和指令的集合,而设计则是将这些算法应用于实际的软件开发中。

本文将介绍一些与算法和设计相关的知识点。

一、算法分析与评估1. 时间复杂度:衡量算法执行时间的度量,用大O符号表示。

2. 空间复杂度:衡量算法所需内存空间的度量,也用大O符号表示。

3. 最优算法:指在特定问题下执行时间或空间复杂度最低的算法。

4. 近似算法:指在可接受范围内近似解决问题的算法。

二、常见算法1. 排序算法:- 冒泡排序:重复比较相邻的两个元素,较大的元素向后移动。

- 快速排序:选择一个中心点元素,将小于它的元素放在左边,大于它的元素放在右边,递归执行。

- 归并排序:将数组分成两个子数组,分别排序后再合并。

2. 查找算法:- 顺序查找:逐个比较元素,直到找到目标元素。

- 二分查找:对有序数组进行折半查找,提高查找效率。

3. 图算法:- 广度优先搜索:从起始顶点开始,逐层遍历邻接顶点。

- 深度优先搜索:从起始顶点开始,沿着一条路径遍历直到无法继续为止,在回溯到上一个顶点。

三、常见数据结构1. 数组:一组连续的内存空间存储相同类型的数据。

2. 链表:由一系列节点组成,每个节点包含元素和指向下一节点的指针。

3. 栈:后进先出的数据结构,只能在栈顶进行插入和删除操作。

4. 队列:先进先出的数据结构,头部进行删除操作,尾部进行插入操作。

5. 树:由节点和边组成的非线性数据结构,每个节点可以有多个子节点。

四、设计原则与模式1. SOLID原则:指设计原则的五个基本原则,包括单一职责原则、开放封闭原则、里式替换原则、接口隔离原则和依赖倒置原则。

2. MVC模式:将应用程序分为模型、视图和控制器,实现解耦和可维护性。

3. 单例模式:确保一个类只有一个实例,并提供全局访问点,常用于创建日志类、线程池等对象。

五、性能优化与调试技巧1. 代码复用:通过函数或类的封装实现代码的复用,减少冗余代码。

计算机科学优质课数据结构与算法设计

计算机科学优质课数据结构与算法设计

计算机科学优质课数据结构与算法设计计算机科学优质课:数据结构与算法设计数据结构与算法是计算机科学中的核心学科,深入理解和掌握数据结构与算法的设计原理与实践应用,对于计算机科学学习和软件开发具有重要意义。

本文将介绍数据结构与算法设计的基本概念和原则,并探讨其在计算机科学优质课上的重要性。

一、数据结构的基本概念与原则数据结构是计算机中用于存储和组织数据的方式。

常见的数据结构包括线性表、树、图等。

数据结构的设计需要考虑以下几个基本概念和原则:1.1 概念:1.1.1 数据的逻辑结构:数据之间的关系和连接方式。

1.1.2 数据的物理结构:数据在计算机内存中的存储方式。

1.1.3 数据的操作:对数据进行的增、删、改、查等操作。

1.2 原则:1.2.1 抽象性:将数据抽象成逻辑上的单元,而不考虑具体的物理存储方式。

1.2.2 清晰性:数据结构的定义和操作应该清晰明确,方便理解和使用。

1.2.3 高效性:数据结构的设计应该追求高效的存储和操作方式。

二、算法设计的基本原则与技巧算法是解决问题的具体步骤和方法。

好的算法设计可以提高程序的运行效率和执行速度。

在算法设计中,需要遵循以下几个基本原则与技巧:2.1 基本原则:2.1.1 正确性:算法设计应该满足问题的要求,得到正确的结果。

2.1.2 清晰性:算法的设计和实现应该清晰明确,易于理解和调试。

2.1.3 高效性:算法的执行效率应该尽可能高,节约计算资源。

2.2 技巧:2.2.1 分而治之:将大问题分解成若干个小问题,然后分别解决。

2.2.2 动态规划:将大问题分解成一系列的子问题,利用已经解决过的子问题的解来求解更大的问题。

2.2.3 贪心算法:每一步选择当前最优解,最终得到全局最优解。

2.2.4 回溯算法:通过尝试不同的可能解决方案来求解问题。

三、数据结构与算法在计算机科学优质课中的重要性数据结构与算法是计算机科学优质课中的重要内容,具有以下几个方面的重要性:3.1 提高程序效率:合理选择和使用数据结构与算法可以提高程序的执行效率和运行速度,减少资源的消耗。

数据结构基本知识点

数据结构基本知识点

第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。

②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。

2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。

3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。

第二章0、线性表的基本概念。

1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。

3、线性表的链式存储的特点:地址不保证连续,顺序查找。

(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。

数据结构知识点总结

数据结构知识点总结

第一章概述一、概念:1.学科:数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等等。

2.概念:由某一数据对象及该对象中所有数据成员之间的关系组成。

具体来说,数据结构包含三个方面的内容,即数据的逻辑结构,数据的存储结构和对数据所施加的运算。

3.这三个方面的关系为:1)数据的逻辑结构独立于计算机,是数据本身所固有的。

2)存储结构也称为物理结构,是逻辑结构在计算机存储器中的映像,必须依赖于计算机。

3)运算是指所施加的一组操作总称。

运算的定义直接依赖于逻辑结构,但运算的实现必依赖于存贮结构。

4.数据(data):信息的载体,指能够输入到计算机中,并被计算机识别和处理的符号的集合。

例如:数字、字母、汉字、图形、图像、声音都称为数据。

5.数据元素(data element):数据元素是组成数据的基本单位。

数据元素是一个数据整体中相对独立的单位。

但它还可以分割成若干个具有不同1属性的项(字段),故不是组成数据的最小单位。

6.逻辑结构:从解决问题的需要出发,为实现必要的功能所建立的数据结构,它属于用户的视图,是面向对象的。

7.物理结构:指数据该如何在计算机中存放,是数据逻辑结构的物理存储方式,是属于具体实现的视图,是面向计算机的。

8.逻辑结构与存储结构二者关系:物理结构是逻辑结构的存储映象。

任何一个算法的设计取决于选定的数据(逻辑)结构,而算法的实现依赖于采用的存储结构。

9.从逻辑结构划分数据结构:线性结构和非线性结构(树、图)10.线性结构:1)元素之间为一对一的线性关系2)第一个元素无直接前驱3)最后一个元素无直接后继11.非线性结构231) 元素之间为一对多或多对多的非线性关系2) 每个元素有多个直接前驱或多个直接后继12.顺序存储:数据元素存储方法:所有元素存放在一片连续的存贮单元中。

数据元素之间关系表示:逻辑上有相邻关系的元素存放到计算机内存仍然相邻,即存储位置体现了数据元素之间的关系。

第10章-数据结构与算法ppt课件(全)

第10章-数据结构与算法ppt课件(全)

考点3 数据结构的定义
数据对象:是性质相同的数据元素的集合,是数据的一 个子集。
1. 数据的逻辑结构
数据的逻辑结构:是对数据元素之间的逻辑关系的描述, 它可以用一个数据元素的集合和定义在此集合中的若干关系 来表示。
数据的逻辑结构与它们在计算机中的存储位置无关。 数据的逻辑结构有两个要素: 一是数据元素的集合,通常记为D; 二是D上的关系,它反映了数据元素之间的前后件关系, 通常记为R。
进行软件开发的能力。 6. 掌握数据库的基本知识,了解关系数据库的设计。
公共基础知识考试大纲
数据结构与算法考试内容: 1. 算法的基本概念;算法复杂度的概念和意义。 2. 数据结构的定义;数据的逻辑结构与存储结构;
数据结构的图形表示;线性结构与非线性结构的 概念。 3. 线性表的定义;线性表的顺序存储结构及其插入 与删除运算。 4. 栈和队列的定义;栈和队列的个数据结构可以表示成 B=(D,R)
其中 B 表示数据结构。为了反映 D 中各数据元素之间的前后 件关系,一般用二元组来表示。
例 一年四季的数据结构可以表示成 B =(D,R) D = {春,夏,秋,冬} R = {(春,夏),(夏,秋),(秋,冬)}
例 家庭成员数据结构可以表示成 B =(D, R) D = {父亲,儿子,女儿} R = {(父亲,儿子),(父亲,女儿)}
则称为非线性结构。 如 家庭成员之间辈分关系的数据结构是非线性
结构。
考点5 线性表的基本概念
10.3 线性表及其顺序存储结构
线性表(Linear List),由一组数据元素构成, 数据元素的位置只取决于自己的序号,元素之间的 相对位置是线性的。
线性表是由 n(n≥0) 个数据元素组成的一个有限 序列,表中的每一个数据元素,除了第一个外,有 且只有一个前件,除了最后一个外,有且只有一个 后件。

(完整版)数据结构知识点总结

(完整版)数据结构知识点总结

数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·线性结构:多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。

时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。

渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。

算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

算法与程序设计知识点

算法与程序设计知识点

算法与程序设计知识点1.数据结构1.1 数组数组是一种线性数据结构,用于存储固定大小的相同类型的数据元素。

1.2 链表链表是一种线性数据结构,由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

1.3 栈栈是一种先进后出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。

1.4 队列队列是一种先进先出(FIFO)的数据结构,只能在队首进行删除操作,在队尾进行插入操作。

1.5 树树是一种非线性的数据结构,由一组以层次关系存储的节点组成。

1.6 图图是一种非线性的数据结构,由一组节点和边组成,用于表示事物之间的关系。

2.排序算法2.1 冒泡排序冒泡排序是一种简单的排序算法,重复地比较相邻的两个元素,若顺序错误则交换位置。

2.2 插入排序插入排序是一种简单直观的排序算法,将未排序序列中的元素依次插入到已排序序列的适当位置。

2.3 选择排序选择排序是一种简单的排序算法,每次从未排序序列中选择最小(或最大)的元素放到已排序序列的末尾。

2.4 快速排序快速排序是一种常用的排序算法,通过递归地分解问题,然后组合结果得到有序序列。

2.5 归并排序归并排序是一种分治法排序算法,将序列分成两个子序列,分别排序,然后再合并结果。

3.编程基础3.1 变量和表达式变量是用于存储数据的占位符,表达式是由操作符和操作数组成的计算式。

3.2 控制结构控制结构用于控制程序的执行流程,包括条件语句(if-else)、循环语句(for、while)、跳转语句(break、continue)等。

3.3 函数和过程函数是一段封装了特定功能的代码,过程是一段没有返回值的函数。

3.4 异常处理异常处理用于捕获和处理程序中出现的异常情况,以保证程序的正常执行。

4.算法设计4.1 递归和迭代递归是一种通过调用自身解决问题的方法,迭代是通过循环解决问题。

4.2 动态规划动态规划是一种通过将问题分解为子问题的方法来解决复杂问题。

4.3 贪心算法贪心算法是一种通过每一步选择最优解来求解整体最优解的方法。

数据结构与算法设计期末考试复习题

数据结构与算法设计期末考试复习题

数据结构与算法设计期末考试复习题1. 数据结构1.1 线性数据结构1. 什么是线性数据结构?请举例说明。

- 线性数据结构是一种数据元素之间存在一对一关系的数据结构,其中数据元素之间是有顺序的。

- 例子:数组、链表、栈、队列。

2. 数组和链表的区别是什么?- 数组是一段连续的存储空间,可以通过索引直接访问任意元素,但插入和删除元素的开销较大。

- 链表是由节点组成的链式存储结构,每个节点存储数据和指向下一个节点的指针,插入和删除元素的开销较小,但访问元素需要遍历链表。

1.2 非线性数据结构1. 什么是非线性数据结构?请举例说明。

- 非线性数据结构是一种数据元素之间存在一对多或多对多关系的数据结构,其中数据元素之间没有固定的顺序。

- 例子:树、图。

2. 二叉树和平衡二叉树有什么区别?- 二叉树是一种每个节点最多有两个子节点的树结构,没有任何平衡性要求。

- 平衡二叉树是一种二叉树,它的左子树和右子树的高度差不超过1,以保持树的平衡性。

2. 算法设计2.1 排序算法1. 冒泡排序是如何工作的?请给出示例。

- 冒泡排序通过不断比较相邻元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到末尾。

- 示例:初始数组:[5, 3, 8, 2, 1]第一轮冒泡:[3, 5, 2, 1, 8]第二轮冒泡:[3, 2, 1, 5, 8]第三轮冒泡:[2, 1, 3, 5, 8]第四轮冒泡:[1, 2, 3, 5, 8]2. 快速排序是如何工作的?请给出示例。

- 快速排序通过选择一个基准元素,将数组分割为两个子数组,其中一个子数组的元素都小于基准元素,另一个子数组的元素都大于基准元素,然后递归地对子数组进行排序。

- 示例:初始数组:[5, 3, 8, 2, 1]选择基准元素:5子数组划分:[3, 2, 1] 5 [8]对左侧子数组递归排序:[1, 2, 3]对右侧子数组递归排序:[8]排序结果:[1, 2, 3, 5, 8]2.2 查找算法1. 二分查找是如何工作的?请给出示例。

数据结构基础知识总结详细带图

数据结构基础知识总结详细带图

数据结构【基础知识点总结】一、数据数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。

它是计算机程序加工的原料,应用程序处理各种各样的数据。

计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。

数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。

二、数据元素复制代码数据元素(Data Element)是数据的基本单位。

在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。

例如,学生信息检索系统中学生信息表中的一个记录、八皇后问题中状态树的一个状态、教学计划编排问题中的一个顶点等,都被称为一个数据元素。

有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。

它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。

这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。

通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。

复制代码三、数据对象数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。

在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。

例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A 和顶点B 各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A 和B。

四、数据结构复制代码数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。

数据结构知识点归纳

数据结构知识点归纳

一、数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。

对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。

数据结构的章节比重大致为:1.概论:概念,时间复杂度。

2.线性表:基础章节,必考内容之一。

概念,算法设计题。

3.栈和队列:基本概念。

4.串:基本概念。

5.多维数组及广义表: 基本概念。

6.树和二叉树:重点难点章节,各校必考章节。

概念,问答,算法设计题。

7.图:重点难点章节,各校必考章节。

概念,问答,算法设计题。

8.查找:重点难点章节,概念,问答。

9.排序:重点难点章节,问答各种排序算法的排序过程二、各章节的主要内容:第一章概述主要内容:本章主要起到总领作用,为读者进行数据结构的学习进行了一些先期铺垫。

大家主要注意以下几点: (1)数据结构的基本概念。

(数据;数据元素;数据项;数据结构;数据的逻辑结构:线性和非线性,具体分为集合、线性结构、树形结构和图状结构;数据的存储结构:顺序存储和链式存储;运算)(2)算法的度量:时间效率和空间效率,分别用时间复杂度和空间复杂度度量,掌握时间复杂度的度量方法量方法。

(大O表示法)参考题目:填空题:1、数据结构是相互之间存在一种或多种特定关系的数据元素的集合,它包括三方面的内容,分别是数据的逻辑结构、()和()。

2、数据结构按逻辑结构可分为两大类,它们分别是()和()3. 数据的物理结构主要包括()和()两种情况。

4.线性表,栈,队列和二叉树四种数据结构中()是非线性结构,()是线性结构。

5、线性结构中元素之间存在()关系,树形结构中元素之间存在()关系,图形结构中元素之间存在()关系。

6、程序段的时间复杂度是_______。

for(i=1;i<=n;i++){ k++;for(j=1;j<=n;j++)x=x+k;}7.下列算法的时间复杂度是_____。

计算机二级公共基础知识(数据结构与算法)

计算机二级公共基础知识(数据结构与算法)
序、中序和后序遍历。 7. 顺序查找与二分法查找算法;基本排序算法(交换类排序,
插入类排序,选择类排序)。
1.1 算法
1.1.1 算法(algorithm)基本概念
算法 对解题方案准确而完整的描述称为算法。
它是指令的有限序列,其中每一条指令表示一个或多个操作。 计算机解题的过程实际上是在实施某种算法,这种算法称为计 算机算法。
数据的逻辑结构简称数据结构。
数据结构可描述为 Group=(D,R)
有限个数据元素的集合
有限个数据元素间关系的集合
数据元素(Data Element)
数据元素是数据的基本单位,即数据 集合中的个体。
有时一个数据元素可由若干数据项 (Data Item)组成。数据项是数据的最小 单位。
数据元素亦称结点记录。
2、链式存储 例:线性表(zhao,qian,sun,li,zhou,wu,zheng,wang)
链式存储结构:
存储地址
1
7
头指针 13
31
19
25
31
37
43
数据
li qian sun wang wu zhao zheng zhou
指针
43 13 1
null
37 7 19 25
每个节点都由两部分组成: 数据域和指针域。
数据元素在 计算机中的表示
对数据结构中的节点进行 操作处理
(插入、删除、修改、查找、排序)
数据结构是一门研究数据组织、 存储和运算的一般方法的学科。
如何将0,1,2,3,4,5,6,7,8,9这10个数存放在 计算机中能最快地达到你所需要的目的? 目的不同,最佳的存储方方法就不同。
从大到小排列:9,8,7,6,5,4,3,2,1,0 输出偶数:0,2,4,6,8,1,3,5,7,9

数据结构与算法知识点必备

数据结构与算法知识点必备

数据结构与算法知识点必备一、数据结构知识点1. 数组(Array)数组是一种线性数据结构,它由相同类型的元素组成,通过索引访问。

数组的特点是随机访问速度快,但插入和删除操作较慢。

常见的数组操作包括创建、访问、插入、删除和遍历。

2. 链表(Linked List)链表是一种动态数据结构,它由节点组成,每一个节点包含数据和指向下一个节点的指针。

链表的特点是插入和删除操作快,但访问速度较慢。

常见的链表类型包括单向链表、双向链表和循环链表。

3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。

常见的栈操作包括入栈(push)和出栈(pop)。

4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,只能在队尾插入元素,在队头删除元素。

常见的队列操作包括入队(enqueue)和出队(dequeue)。

5. 树(Tree)树是一种非线性数据结构,由节点和边组成。

树的特点是层次结构、惟一根节点、每一个节点最多有一个父节点和多个子节点。

常见的树类型包括二叉树、二叉搜索树、平衡二叉树和堆。

6. 图(Graph)图是一种非线性数据结构,由节点和边组成。

图的特点是节点之间的关系可以是任意的,可以有环。

常见的图类型包括有向图、无向图、加权图和连通图。

7. 哈希表(Hash Table)哈希表是一种根据键(key)直接访问值(value)的数据结构,通过哈希函数将键映射到数组中的一个位置。

哈希表的特点是查找速度快,但内存消耗较大。

常见的哈希表操作包括插入、删除和查找。

二、算法知识点1. 排序算法(Sorting Algorithms)排序算法是将一组元素按照特定顺序罗列的算法。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序。

2. 查找算法(Search Algorithms)查找算法是在一组元素中寻觅特定元素的算法。

常见的查找算法包括线性查找、二分查找和哈希查找。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与算法设计知识点试题类型:本课程为考试科目(闭卷笔试),试题类型包括:概念填空题(10 %),是非判断题(10 %),单项选择题(40 %),算法填空题(10%),算法应用题(20 %),算法设计题(10 %)。

第一章绪论重点内容及要求:1、了解与数据结构相关的概念(集合、数据、数据元素、数据项、关键字、元素之间的关系等)。

数据:所有能被输入到计算机中,且能被计算机处理的符号的集合。

是计算机操作的对象的总称。

是计算机处理的信息的某种特定的符号表示形式。

数据元素:是数据(集合)中的一个“个体”,数据结构中的基本单位,在计算机程序中通常作为一个整体来考虑和处理。

数据项:是数据结构中讨论的最小单位,数据元素可以是一个或多个数据项的组合关键码:也叫关键字(Key),是数据元素中能起标识作用的数据项。

其中能起到唯一标识作用的关键码称为主关键码(简称主码);否则称为次关键码。

通常,一个数据元素只有一个主码,但可以有多个次码。

关系:指一个数据集合中数据元素之间的某种相关性。

数据结构:带“结构”的数据元素的集合。

这里的结构指元素之间存在的关系。

数据类型:是一个值的集合和定义在此集合上的一组操作的总称。

2、掌握数据结构的基本概念、数据的逻辑结构(四种)和物理结构(数据元素的表示与关系的表示、两类存储结构:顺序存储结构和链式存储结构)。

数据结构包括逻辑结构和物理结构两个层次。

数据的逻辑结构:是对数据元素之间存在的逻辑关系的一种抽象的描述,可以用一个数据元素的集合和定义在此集合上的若干关系来表示逻辑结构有四种:线性结构、树形结构、图状结构、集合结构数据的物理结构:是其逻辑结构在计算机中的表示或实现,因此又称其为存储结构。

存储结构:顺序存储结构和链式存储结构顺序存储结构:利用数据元素在存储器中相对位置之间的某种特定的关系来表示数据元素之间的逻辑关系;链式存储结构:除数据元素本身外,采用附加的“指针”表示数据元素之间的逻辑关系。

3、了解算法分析的基本方法,掌握算法时间复杂度相关的概念。

算法:是为了解决某类问题而规定的一个有限长的操作序列或处理问题的策略一个算法必须满足以下五个重要特性:1.有穷性2.确定性3.可行性4.有输入 5.有输出设计算法时,通常还应考虑满足以下目标:1.正确性,2.可读性,3.健壮性4.高效率与低存储量需求如何估算算法的时间复杂度?算法 = 控制结构 + 原操作(固有数据类型的操作)∑算法的执行时间 = 原操作(i)的执行次数×原操作(i)的执行时间算法的执行时间与原操作执行次数之和成正比算法的空间复杂度定义为:S(n) = O(g(n))表示随着问题规模n的增大,算法运行所需存储量的增长率与g(n)的增长率相同。

算法的存储量包括:1.输入数据所占空间2.程序本身所占空间3.辅助变量所占空间第二章线性表重点内容及要求:1、掌握线性表的顺序存储结构,了解顺序表的存储特点(数据元素在内存中依次顺序存储),优点:可随机存取访问;缺点:结点的插入/删除操作不方便。

线性表:是一种最简单的数据结构,也是构造其它各类复杂数据结构的基础。

一个数据元素的有序(次序)集。

它有顺序和链式两种存储表示方法。

线性表必有:1.集合中必存在唯一的一个“第一元素”2.集合中必存在唯一的一个“最后元素”3.除最后元素在外,均有唯一的后继;4.除第一元素之外,均有唯一的前驱定义如下:typedef int ElemType;typedef struct{ElemType*elem; //存储数据元素的一维数组;int length; //线性表当前长度;int listsize; //当前分配数组容量;}SqList;Void InitSqList(SqList A,int maxsize)//初始化线性表{A.elem = (ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!A.elem){exit(0);}A.length = 0;A.listsize = LIST_INIT_SIZE;return ;}2、了解线性表的链式存储结构,重点掌握带头结点的单链表的基本操作(结点的插入与删除运算),了解单向循环链表和双向链表存储表示方法。

单链表:用一组地址任意的存储单元存放线性表中的数据元素。

以元素(数据元素的映象) + 指针(指示后继元素存储位置) = 结点(表示数据元素或数据元素的映象)单链表是一种顺序存取的结构,求以此为存储表示的线性表长度,可设置一个计数器3、了解有序线性表的特点(顺序有序表、有序链表)。

有序线性表:线性表中的数据元素相互之间可以比较,并且数据元素在线性表中依值非递减或非递增有序排列,即 a i≥a i-1或 a i≤a i-1(i = 2,3,…, n),则称该线性表为有序表(Ordered List)4、学会对线性表设计相关的算法进行相应的处理。

第三章排序重点内容及要求:1、掌握对顺序表数据记录进行排序的基本思路和常规操作(比较、移动),了解排序算法的稳定性问题。

2、掌握简单选择排序、直接插入排序、冒泡排序算法,了解各种排序算法的特点及时间复杂度。

排序:将一组“无序”的记录序列按某一关键字调整为“有序”的记录序列。

若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序;反之则为外部排序。

选择排序:从记录的无序子序列中“选择”关键字最小或最大的记录,并将它加入到有序子序列中,以此方法增加记录的有序子序列的长度基本代码如下for(i=0;i<n-1;i++)/*外循环控制趟数,n个数选n-1趟*/{k=i;/*假设当前趟的第一个数为最值,记在k中 */for(j=i+1;j<n;j++)/*从下一个数到最后一个数之间找最值*/if(a[k]<a[j])/*若其后有比最值更大的*/k=j;/*则将其下标记在k中*/if(k!=i)/*若k不为最初的i值,说明在其后找到比其更大的数*/{t=a[k];a[k]=a[i];a[i]=t;}/*则交换最值和当前序列的第一个数*/}插入排序:插入排序是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。

代码如下:void InsertSort ( SqList &L) // 对顺序表L作插入排序{for ( i=2; i<=L.length; ++i )if ( L.r[i].key < L.r[i-1].key ){L.r[0] = L.r[i]; // 复制为哨兵for ( j=i-1; L.r[0].key < L.r[j].key; --j )L.r[j+1] = L.r[j]; // 记录后移L.r[j+1] = L.r[0]; // 插入到正确位置}}冒泡排序:泡排序是一种最直观的排序方法,在排序过程中,将相邻的记录的关键字进行比较,若前面记录的关键字大于后面记录的关键字,则将它们交换,否则不交换。

或者反过来,使较大关键字的记录后移,像水中的气泡一样,较小的记录向前冒出,较大的记录像石头沉入后部。

故称此方法为冒泡排序法代码如下:void BubbleSort( SqList &L ){ RcdType W;i = L.length;while (i >1) { // i>1 表明上一趟曾进行过记录的交换lastExchangeIndex = 1;for (j = 1; j < i; j++){if (L.r[j+1].key < L.r[j].key) {W=L.r[j];L.r[j] =L.r[j+1];L.r[j+1] = W; // 互换记录lastExchangeIndex = j;}}i = lastExchangeIndex; // 一趟排序中无序序列中最后一个记录的位置}}3、了解什么是堆?堆是满足下列性质的数列{r1, r2, …,r n}:(小顶堆) (大顶堆)第四章 栈和队列重点内容及要求:1、掌握栈和队列的结构特点及基本操作(入栈、出栈/入队、出队)。

栈(后进先出),队列(先进先出)构造空栈:void InitStack_Sq (SqStack &S){ // 构造一个空栈SS.elem = new SElemType[maxsize];S.top =-1;S.stacksize = maxsize;S.incrementsize=incresize;}栈:(入栈)void Push_Sq (SqStack &S, SElemType e) {if (S.top == S.stacksize-1)incrementStacksize (S);// 如果顺序栈的空间已满,应为栈扩容S.elem[++S. top] = e;// 在栈顶插入数据元素}栈:(入栈)bool Pop_Sq (SqStack &S, SElemType &e) {// 若栈不空,则删除S 的栈顶元素,// 用e 返回其值,并返回TRUE ;// 否则返回FALSE 。

if (S.top == -1) return FALSE;e = S.elem[S.top - -];return TRUE;}⎩⎨⎧≤≤+122i i i i r r r r ⎩⎨⎧≥≥+122i i i i r r r r2、对于顺序栈,熟悉栈空和栈满的条件;对于链栈,掌握其栈空的条件。

#include <iostream>using namespace std;#define INITSIZE 100#define RESIZE 20typedef struct {int *base;int *top;int stacksize;}Sqstack;int Initstack(Sqstack S){S.base=(int *)malloc(INITSIZE*sizeof(int));if(!S.base) return false;S.top=S.base;S.stacksize=INITSIZE;return true;}int Clearstack(Sqstack &S){free(S.base);S.base=(int *)malloc(INITSIZE*sizeof(int));S.top=S.base;return true;}int Stackempty(Sqstack S){if(S.base==S.top) return true;else return false;}int Push(Sqstack &S,int e){if(S.top-S.base>=S.stacksize){S.base=(int *)realloc(S.base,(RESIZE+INITSIZE)*sizeof(int));if(!S.base) return false;S.top=S.base+S.stacksize;S.stacksize+=RESIZE;}*S.top++=e;return true;}int Pop(Sqstack &S,int &e){if(S.base==S.top) return false;e=*--S.top;return true;}int main()Sqstack S;int t,e;Initstack(S);cin>>t; //需要输入元素的个数while(t--){cin>>e;Push(S,e);} //进栈while(S.top!=S.base){Pop(S,e);cout<<e<<" ";}// 出栈}链栈栈空的判断判断链栈是否为空很简单,还记得结构体定义时的那个count 吗?如果那个count 为0,就说明链栈为空。

相关文档
最新文档