谷轮涡旋压缩机中文样本(2005-3)
谷轮涡旋
蒸发温度 oC
0 28.73 32.26 35.50 38.16 40.53 42.68 44.68 46.59 48.49 50.44 52.51 17.32 15.64 14.13 12.79 11.59 10.50 9.52 8.60 7.75 6.93 6.12 34.71 38.68 42.25 45.06 47.56 49.86 52.12 54.46 57.01 59.91 63.30 22.23 19.85 17.79 16.00 14.45 13.09 11.88 10.78 9.75 8.75 7.73
13.79 12.46 11.26 10.19 9.20 8.29 7.43 6.61 5.79
26.62 29.63 32.10 34.21 35.95 37.59 39.28 41.14 43.31
17.57 15.76 14.18 12.79 11.55 10.42 9.35 8.31 7.25
电气代码 50 Hz
M 380 - 420 V D 380 - 420 V
60 Hz 460 V
压缩机配置说明
压缩机型号
ZB130KQ/E
ZB150KQ/E ZB190KQ/E ZB220KQ/E
电机代码 TED TWM
BOM配置代码 550 551 522 523
焊接接口 √
√
螺纹接口 √ √
视油镜 √ √ √ √
5 54.11 58.61 62.91 67.00 70.84 74.42 77.72 80.73 83.41 85.75
27.66 24.86 22.33 20.08 18.08 16.33 14.82 13.52 12.43 11.53
谷轮压缩机技术参数
谷轮压缩机参数表1、超高能效能效比比目前市场上最先进的活塞式压缩机还高12%2、杰出的可靠性运动部件少轴向及径向的谷轮专柔性设计提供了前所未有的耐液击和容忍杂质的能力3、内置电机断路装置能有效保护电机免受高温及高电流之损坏4、低噪音/低排气脉冲噪音值比活塞式压缩机低5分贝以上5、简化系统设计独特的卸载启动设计使单相压缩机启动时无需启动电容/继电器在大多数应用中无需曲轴箱加热器和气液分离器6、近100%的容积关键所在率带来超常的制热能力7、系列范围已从匹到15匹,并还将向上扩展谷轮全封压缩机谷轮压缩机技术参数表谷轮压缩机ZR系列型号含义解析Z R 12 3 4 --5 6 7 --8 9 10Z:涡旋压缩机系列;R:应用于高、中温机型;12:压缩机在60HZ,ARI工况下名义制冷量的头两位数;乘以制冷系数即可得到制冷量;3:制冷系数,K—1000,M—10000;4:型号系列,在一个压缩机系列中任选一个数字以区别不同改进型;即:K或M系列可有1型、2型、3型…如果此代码为英文字母,则表示压缩机冷媒非R22,其使用的冷冻油也相应不同;5:压缩机电源形式,P—单相,T—三相;6:压缩机电机保护,F—压缩机保护模块内置式,W—压缩机保护模块外置式;7:电器代号,J—50HZ220V/240-1,D—50HZ380V/420-3;8、9、10:表示压缩机所带的附件类型;此3位数有很多种排列方式,无法在此一一说明,COPELAND公司对此也无全面资料,所以特别提请大家注意,在开机或维修过程中,抄下压缩机型号和序号,以便统计分析,以及以后维修需要;注:后缀单号,安装口是螺纹口;后缀双号,安装口是焊接口;例:ZR108KC-TFD-521安装口是螺纹口;ZR108KC-TFD-522安装口是焊接口;。
艾默生-谷轮R410A产品手册-Veranda(2011)
R410A Scroll Compressor For Air ConditioningR410A 空 调 涡 旋 压 缩 机NEW低运行成本可靠环保宁静高效high efficiencylow noiseenvironment protectionhigh reliabilitylow operation cost目 录压缩机特性及运行范围.................................2产品型谱图................................................3技术参数...................................................4性能参数...................................................5注油量......................................................11电气参数...................................................12压缩机接线图.............................................13外形尺寸图................................................15压缩机配置................................................23应用小常识................................................24应用注意事项.............................................27命名规则 (29)ZP/VP系列柔性涡旋压缩机特性及运行范围7060ZP系列柔性涡旋(ZP57-ZP485)基于优越的谷轮涡旋技术平台,特别为高效系统优化。
谷轮ZW系列(中间补气涡旋)压缩机应用指南
AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。
谷轮涡旋机组参数性能样本
油充注量(升)
回气管接管外径
液管接管外径
重量(公斤) 额定运行电流RLA(A)(安培)
TFD 380/420-3-50Hz 启动电流LRA(A)(安培)
TFD
ZX 15 KC TFD ZX 21 KC TFD ZX 30 KC TFD ZX 38 KC TFD ZX 45 KC TFD ZX 51 KC TFD ZX 15 KCE TFD ZX 21 KCE TFD ZX 30 KCE TFD ZX 38 KCE TFD ZX 45 KCE TFD ZX 51 KCE TFD
50 Hz
-5 5.08 4.68 3.64 3.34 6.89 6.65 6.66 6.43 8.70 8.01 7.36 6.69 12.31 11.43 10.32 9.37 13.30 12.58 11.55 10.74 15.07 13.86 12.47 11.38
0 5.79 5.29 4.16 3.81 8.24 7.95 7.97 7.81 10.08 9.20 8.40 7.61 13.93 13.10 11.98 10.98 15.69 14.72 13.48 12.57 17.76 16.20 14.54 13.32
3
ZX 系列 Series
外形尺寸 Dimensions
ZX0200, 0300, 0400
ZX0500, 0600, 0750
型号说明 Model Nomenclature
相数
或 460
50Hz 60Hz
供
(L)
视
(Q)
(R)
(T)
(O)
(P)
(I)
(B)
4
GP 系列 Series
谷轮涡旋压缩机应用工程手册原文英译
涡旋压缩机应用手册AE-1303-R4ZR84KC --ZR144KC应用指南前言本手册叙述了7~12冷吨R22/R407CSUMMIT谷轮涡旋压缩机的运行特征和应用要求。
典型型号是ZR84KC-TF5 和ZR144KC-TFD。
其余知识可从谷轮公司网站 在线产品知识里查到。
谷轮涡旋压缩机的运行原理已在谷轮公司应用工程手册4-1312里叙述了。
有几个不同于那些小容量谷轮涡旋压缩机的运行特征和设计特点在下面加以叙述。
谷轮SUMMIT压缩机虽然为空调和热泵使用设计,但在对应于A/C和H/P使用要求范围的其它应用场合也能出色地工作。
为了获得更高的电机效率和最佳的制冷效果,把吸气口设置于机壳下部,引导回流气体流经马达。
由于吸气口置于机壳较下部,油可以从此接口溢出。
在安装和拆卸期间必须保持压缩机的竖立。
这个问题在随后的‘压缩机操作’中有说明。
应用问题谷轮涡旋压缩机有许多不同于传统活塞压缩机的应用特征。
具体详述如下:压缩机操作因油可能从位于机壳下部的吸气口溢出,直到压缩机放进系统中才能拔取吸气口的胶塞。
若可能,在操作中应保持压缩机立。
应先拔排气口的胶塞,再拔吸气口的胶塞,让压缩机里的干空气压力泄出。
在此过程中要防止油雾撒在吸气管表面引起焊接困难。
镀铜钢吸气管在焊接前应清洁干净。
严禁任何物体(如起子等工具)插入吸入口超过51mm(2英寸),否则有可能损伤吸气滤网和马达。
内部压力释放阀(IPR)SUMMIT谷轮涡旋压缩机没有内部压力释放阀。
为了保证运行安全,在设备中高压开关控制设定值不得超过425psig(30kg/cm2)安全控制高压控制:由于这些压缩机不具有内部压力释放阀,在系统中高压开关设定最大值应为425psig(30kg/cm2)。
在高级保护系统中高压开关应具有手动复位的特性。
低压控制:需要低压开关是为了保护系统缺氟。
建议A/C系统低压切断设定值不要低于25psig,对于热泵系统为7psig,当吸入回路不能安装25psig或更高的低压控制时,需要安装排气温度传感器。
2011版华安达谷轮R410A涡旋压缩机样本
R410A Scroll Compressor For Air ConditioningR410A 空 调 涡 旋 压 缩 机NEW低运行成本可靠环保宁静高效high efficiencylow noiseenvironment protectionhigh reliabilitylow operation cost目 录压缩机特性及运行范围.................................2产品型谱图................................................3技术参数...................................................4性能参数...................................................5注油量......................................................11电气参数...................................................12压缩机接线图.............................................13外形尺寸图................................................15压缩机配置................................................23应用小常识................................................24应用注意事项.............................................27命名规则 (29)ZP/VP系列柔性涡旋压缩机特性及运行范围7060ZP系列柔性涡旋(ZP57-ZP485)基于优越的谷轮涡旋技术平台,特别为高效系统优化。
谷轮涡旋压缩机样本
1ACopeland is the recognized leader in the developmentof advanced compressor technology.1B2APERFORMANCE NOMINALS 50 HERTZR22SINGLE PHASE220-1-50 TEST VOLTAGE CAPACITYENERGY EFFICIENCY RATING RATING MOTOR MODEL AMPERES BTUKCAL BTUH KCALHWATTS CONDITION WATTS WATTS HOUR HOUR MOTOR WATTS MOTOR WATTS MOTOR WATTSA 183004610536017308.010.6 2.7 3.1ZR22K3-PFJB 182004590533017308.010.5 2.7 3.1C 21500542063001190 5.718.1 4.6 5.3A 204005140598019209.210.6 2.7 3.1ZR24K3-PFJB 202005090592019209.210.5 2.7 3.1C 24200610070901310 6.318.5 4.7 5.4A 219005520642020109.510.9 2.7 3.2ZR26K3-PFJB 217005470636020109.510.8 2.7 3.2C 25800650075601400 6.818.4 4.6 5.4A 2380060006970219010.410.9 2.7 3.2ZR28K3-PFJB 2360059506910219010.410.8 2.7 3.2C 282007110826015107.418.7 4.7 5.5A 2540064007440233011.110.9 2.7 3.2ZR30K3-PFJB 2520063507380233011.110.8 2.7 3.2C 302007610885016307.918.5 4.7 5.4A 2670067307820243011.811.0 2.8 3.2ZR32K3-PFJB 2650066807760243011.810.9 2.7 3.2C 315007940923017008.718.5 4.7 5.4A 2830071308290254012.111.1 2.8 3.3ZR34K3-PFJB 2810070808230255012.111.0 2.8 3.2C 333008390976017308.519.2 4.8 5.6A 3040076608910271013.111.2 2.8 3.3ZR36K3-PFJB 3020076108850272013.111.1 2.8 3.3C 3600090701050018709.419.3 4.9 5.6A 3360084709840299014.711.2 2.8 3.3ZR40K3-PFJB 3330083909760300014.711.1 2.8 3.2C 39400993011500207010.819.0 4.8 5.6A 35300890010300314015.211.2 2.8 3.3ZR42K3-PFJB 35000882010300315015.211.1 2.8 3.3C 415001050012200216010.919.2 4.9 5.6A 38500970011300337016.411.4 2.9 3.4ZR45K3-PFJB 38200963011200338016.411.3 2.8 3.3C 450001130013200237012.119.0 4.8 5.6A 397001000011600345016.811.5 2.9 3.4ZR47K3-PFJB 39400993011500346016.811.4 2.9 3.3C 465001170013600242012.619.2 4.8 5.6A 408001030012000362017.611.3 2.8 3.3ZR48K3-PFJB 405001020011900363017.611.2 2.8 3.3C 478001200014000252013.519.0 4.8 5.6A 575001450016800512024.511.2 2.8 3.3ZR68KC-PFJ B 570001440016700513024.511.1 2.8 3.3C673001700019700367018.218.3 4.6 5.43BPERFORMANCE NOMINALS 50 HERTZR22THREE PHASETEST VOLTAGE CAPACITYENERGY EFFICIENCY RATING RATING MOTOR MODEL AMPERES*BTUKCAL BTUH KCALHWATTS CONDITION WATTS WATTS HOUR HOUR MOTOR WATTS MOTOR WATTS MOTOR WATTSA 18300461053601770 5.5/3.210.3 2.6 3.0ZR22K3-TF5/D B18200459053301770 5.5/3.210.3 2.6 3.0C21500542063001170 4.3/2.518.4 4.6 5.4A20400514059801920 6.0/3.510.6 2.7 3.1ZR24K3-TF5/D B20200509059201920 6.0/3.510.5 2.7 3.1C24200610070901250 4.7/2.719.4 4.9 5.7A21900552064202010 6.6/3.810.9 2.7 3.2ZR26K3-TF5/D B21700547063602010 6.6/3.810.8 2.7 3.2C25800650075601360 5.0/2.919.0 4.8 5.6A23800600069702150 6.9/4.011.1 2.8 3.2ZR28K3-TF5/D B23600595069102150 6.9/4.011.0 2.8 3.2C28200711082601450 5.4/3.119.4 4.9 5.7A254006400744022907.3/4.211.1 2.8 3.2ZR30K3-TF5/D B252006350738022907.3/4.211.0 2.8 3.2C30200761088501540 5.5/3.219.6 4.9 5.7A267006730782024307.6/4.411.0 2.8 3.2ZR32K3-TF5/D B265006680776024307.6/4.410.9 2.7 3.2C31500794092301640 5.9/3.419.2 4.8 5.6A283007130829025007.9/4.611.3 2.9 3.3ZR34K3-TF5/D B281007080823025007.9/4.611.2 2.8 3.3C33400842097901700 6.2/3.619.6 5.0 5.8A304007660891026908.3/4.811.3 2.8 3.3ZR36K3-TF5/D B302007610885027008.3/4.811.2 2.8 3.3C360009070105001810 6.4/3.719.9 5.0 5.8A336008470984029609.2/5.311.4 2.9 3.3ZR40K3-TF5/D B333008390976029709.2/5.311.2 2.8 3.3C3940099301150019907.1/4.119.8 5.0 5.8A3530089001030031009.5/5.511.4 2.9 3.3ZR42K3-TF5/DB3500088201030031109.5/5.511.3 2.8 3.3C 41500105001220020807.4/4.320.0 5.0 5.9*Ampere values shown are at 220 volts/380 volts.220-3-50 (TF5)380-3-50 (TFD)4A4BPERFORMANCE NOMINALS50 HERTZ R22THREE PHASE TEST VOLTAGECAPACITY ENERGY EFFICIENCY RATINGRATING MOTORMODEL AMPERES*BTU KCAL BTUH KCALH WATTS CONDITION WATTSWATTSHOUR HOUR MOTOR WATTS MOTOR WATTS MOTOR WATTS A38200963011200331010.5/6.111.5 2.9 3.4ZR45KC-TF5/D B37900955011100332010.5/6.111.4 2.9 3.3 C44500112001300022908.3/4.819.4 4.9 5.7A397001000011600342010.9/6.311.6 2.9 3.4ZR47KC-TF5/D B39400993011500343010.9/6.311.5 2.9 3.4 C46300117001360023408.8/5.119.8 5.0 5.8A408001030012000360011.2/6.511.3 2.9 3.3ZR48KC-TF5/D B405001020011900361011.2/6.511.2 2.8 3.3 C47800120001400024908.6/5.019.2 4.8 5.6A454001140013300397012.6/7.311.4 2.9 3.4ZR54KC-TF5/D B450001130013200398012.6/7.311.3 2.8 3.3 C530001340015500282010.0/5.818.8 4.8 5.5A479001210014000416013.5/7.811.5 2.9 3.4ZR57KC-TF5/D B475001200013900417013.5/7.811.4 2.9 3.3 C560001410016400295010.4/6.019.0 4.8 5.6A514001300015100442014.0/8.111.6 2.9 3.4ZR61KC-TF5/D B510001290014900443014.0/8.111.5 2.9 3.4 C600001510017600317011.1/6.418.9 4.8 5.6A580001460017000495014.9/8.611.7 2.9 3.4ZR68KC-TF5/D B575001450016800496014.9/8.611.6 2.9 3.4 C680001710019900343011.4/6.619.8 5.0 5.8A610001540017900517015.4/8.911.8 3.0 3.5ZR72KC-TF5/D B605001520017700518015.4/8.911.7 2.9 3.4 C715001800020900361011.6/6.719.8 5.0 5.8A685001730020100580018.1/10.511.8 3.0 3.5ZR81KC-TF5/D B680001710019900581018.1/10.511.7 2.9 3.4 C795002000023300414015.2/8.819.2 4.8 5.6*Ampere values shown are at 220 volts/380 volts.220-3-50 (TF5) 380-3-50 (TFD)5A5B6A6B7AThe bill of material includes features as shown by the X.7B8AACCESSORY INFORMATIONCrankcase Heater - 240 volt - 70 watt 018-0057-00(ZR22 to ZR81)Crankcase Heater - 480 volt - 70 watt 018-0057-01(ZR22 to ZR81)COMPRESSOR OIL CHARGESWHITE OILMMMA POE OILINITIAL REFILL INITIAL REFILL OIL OIL OIL OIL MODELCHARGE CHARGE MODELCHARGE CHARGE OUNCES/LITERSOUNCES/LITERSOUNCES/LITERSOUNCES/LITERSZR22K3ZR22K3E ZR24K33834ZR24K3E 3834ZR26K3 1.12 1.01ZR26K3E 1.12 1.01ZR28K3ZR28K3E ZR30K3ZR32K3ZR30K3E ZR34K3ZR32K3EZR36K34238ZR34K3E 4238ZR40K3 1.24 1.12ZR36K3E 1.24 1.12ZR42K3ZR40K3EZR45K3ZR45KC 4642ZR42K3E 1.36 1.24ZR47K34238ZR47K3E-PFJ 42381.24 1.12 1.24 1.12ZR47KC 4642ZR47KCE-TF5/TFD 46421.36 1.24 1.36 1.24ZR48K34238ZR48K3E-PFJ 42381.24 1.12 1.24 1.12ZR48KC 4642ZR48KCE-TF5/TFD46421.36 1.24 1.36 1.24ZR54KC 6662ZR54KCE 6662ZR57KC 1.95 1.83ZR57KCE 1.951.83ZR61KC ZR61KCE ZR68KC-PFJ 6258ZR68KCE 1.83 1.72ZR68KC-TF5/TFD6056ZR72KCE 60561.77 1.66ZR81KCE1.771.66ZR72KC 6056ZR81KC1.771.668BBILL OF MATERIAL PROVISIONSCopeland is pleased to offer the bills of material shown on the previous pages that offer a complete and versa-tile choice to your compressor selection.In addition to the marked features, each compressor will include the following:•Wiring diagram.•Internal line break protector.•Rubber grommet mounting parts with sleeves(kit 527-0116-00).•Grounding tab located in the compressor terminalbox.See outline drawing pages 9B to 11B for stub tube and rotalock connection sizes.510-0247-153/4Solder 33/4510-0080-04SUCTIONTABLE BKIT PART NUMBERSUCTION VALVEDISCHARGE VALVE ROTALOCKCONNECTION SIZE IN INCHES AND SEAL PART NUMBERTYPE ANDVALVE PART NUMBERSIZE IN INCHESSTYLETYPE ANDSIZE IN INCHESSTYLE9A9BPERFORMANCE DATA50 HERTZR2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR22K3-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)564075709900127001580019500215002360025900120 (48.9)8530111001410017500194002140023500140 (60.0)1200015200170001880020800CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)142019102490320039804910542059506530120 (48.9)2150280035504410489053905920140 (60.0)30203830428047405240CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)165022202900372046305710630069107590120 (48.9)2500325041305130568062706890140 (60.0)35204450498055106090POWER (MOTOR WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)125012401220122012101190119011801160120 (48.9)1590157015501530152015101500140 (60.0)20301990198019601940ZR22K3-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)5810778010100128001590019500215002360025900120 (48.9)8800113001420017500194002130023400140 (60.0)1200015100168001870020600CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)146019602550323040104910542059506530120 (48.9)2220285035804410489053705900140 (60.0)30203810423047105190CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)170022802960375046605710630069107590120 (48.9)2580331041605130568062406860140 (60.0)35204420492054806040POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR22K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)5630758010000129001640020400226002500027600140 (60.0)21302110209020802060ZR22K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)5840767010000130001640020400227002500027500200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR24K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)6430872011400146001840022800253002790030800140 (60.0)24002360234023102290ZR24K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)6850882011400146001840022900253002780030600200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR26K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)6720917012100155001950024200268002960032700140 (60.0)24602440243024102390ZR26K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)7140922012000154001940024200268002950032400140 (60.0)26202580256025402530Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR28K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)76601030013400171002160026800297003290036300140 (60.0)27402700267026502630ZR28K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)7560994013000168002130026500294003240035600140 (60.0)26102590258025602540Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR30K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8ZR30K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)79801080014200182002290028400314003460038100120 (48.9)11700155001980024800275003040033500140 (60.0)28502800278027602740Production compressors to meet above nominal performance values within ±5%.PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR32K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)84101140015000192002420029900330003640039900140 (60.0)29702940293029102890ZR32K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)80301090014400188002380029700330003640040100140 (60.0)30002950293029002880Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR34K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)91201220016000204002570031900354003920043200140 (60.0)32203170314031203090ZR34K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)89901180015500200002530031500349003850042400140 (60.0)30903070305030303010Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR36K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)96901320017200219002740033800374004130045600140 (60.0)33103300329032703250ZR36K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)99001320017100218002730033700374004130045500140 (60.0)32403230322032003180Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR40K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)107001440018800240003020037500416004610050800140 (60.0)37803730370036703630ZR40K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)106001390018200235002970037000410004530049800140(60.0)36003570356035303510Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR42K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)115001520019700251003140038800430004740052100140 (60.0)38903850382037903760ZR42K3E-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)115001490019500251003170039100430004720051400140 (60.0)37803750373037003670Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR407C20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR47K3E-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)131001750022500284003530043400480005300058400140 (60.0)43104290429042904300ZR47KCE-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)83201340019300262003430043600488005440060300120 (48.9)3220318031603160317031903220140 (60.0)42704210420041904200Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)PERFORMANCE DATA50 HERTZR2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)220/240-1-50 (PFJ) Rated Voltage220-1-50 (PFJ) Test VoltageZR48K3-PFJCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)134001770022800287003560043400478005240057400120 (48.9)20100255003190039100431004740052000140 (60.0)2730033900376004150045700CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)3380446057507230897010900120001320014500120 (48.9)5070643080409850109001190013100140 (60.0)6880854094801050011500CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)39305190668084101040012700140001540016800120 (48.9)58907470935011500126001390015200140 (60.0)80009930110001220013400POWER (MOTOR WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)239024202440245024602490252025502580120 (48.9)3180317031703170318032003230140 (60.0)42404210420041904190ZR48KC-TF5/TFDCAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)137001800023000289003570043500478005240057300120 (48.9)20200256003190039100430004730051800140 (60.0)2760034200378004170045800CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)3450454058007280900011000120001320014400120 (48.9)5090645080409850108001190013100140 (60.0)6960862095301050011500CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)40105270674084701050012700140001540016800120 (48.9)59207500935011500126001390015200140 (60.0)809010000111001220013400POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)233023402350237024102460249025302570120 (48.9)3120311031203150317032003230140 (60.0)41204120412041304150Production compressors to meet above nominal performance values within ±5%.200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)。
谷轮压缩机参数表
谷轮直通车经营的谷轮压缩机系列有:
美国谷轮半封闭压缩机、谷轮双极压缩机、谷轮冷冻涡旋压缩机和谷轮低温ZF系列压缩机;谷轮空调涡旋压缩机ZR24~ZR380全系列压缩机;
谷轮冷冻涡旋压缩机ZB15KQ~ZB11MC全系列压缩机;
沈阳谷轮半封闭C、L、2S、3S、4S、6S系列压缩机。
直通车以强大的库存量为客户提供产品支持、优惠的价格为客户提供成本支持。
谷轮中温ZB涡旋压缩机参数表:
谷轮空调压缩机ZR系列参数表:
谷轮ZF系列低温压缩机参数表:
谷轮半封闭压缩机C系列参数表:
谷轮柔性涡旋压缩机在多方面显示出了它独特的优越性,高能效比,低噪音,高可靠性,低的系统设计成本和运行成本。
谷轮的革命性技术已为世界各地的制造商,分销商和最终用户所采用。
到今天为止,谷轮有超过四千万台柔性涡旋压缩机服务于人类日常生活和科学研究等各个领域。
谷轮公司在开发空调柔性涡旋压缩机的同时,也在全力研发冷冻涡旋压缩机;涡旋在空调行业的成功应用,预示着冷冻的未来属于涡旋。
谷轮数码涡旋技术(艾默生)
零能力 10 秒
典型数码涡旋系统布局
高压开关 储液器 单向阀 Ø 3/8” 四通阀 干燥过 滤器 Ø 3/8”
数码涡旋 压缩机
PWM/V数码涡旋电磁阀 低压开关
室外热交换器
Ø 3/4” 吸气管
EXV(室外电子膨胀阀) 截止阀 截止阀
数码涡旋热泵系统
Ø 3/8” Ø 3/8” EXV (室内电子膨胀阀) Ø 3/8”
• • •
多联机(冷媒) 多联机(冷媒)
• • •
很高的节能性 精确的室温控制 有更多的安装灵活度
• •
头期投入较大 对安装质量要求更高
数码涡旋: 数码涡旋: 压缩机变容量调节技术
浮动密封 上涡旋盘 静盘) (静盘)
系 統 電 控
下涡旋盘 动盘) (动盘)
变容机构
涡旋间分离1 涡旋间分离1亳米
负载 (1) 全能力
卸载 (0) 零能力
全能力
例子: 20%输 例子: 20%输出
全能力
例子: 50%输 例子: 50%输出
零能力 4秒 16 秒 10 秒
维持涡旋盘端面恒定、 维持涡旋盘端面恒定、均匀 的压力 浮动密封是关键
– 优化端面负荷 – 维持压力平衡
下涡旋盘 动盘) (动盘)
• 消除泄漏 – 专利设计
数码涡旋: 数码涡旋:容量可调压缩机技术
• 全新的涡旋压缩机容量调节概念 • 基于谷轮“柔性”设计专利 基于谷轮“柔性” • 10%-100%连续可调 10%-100%连续可调 • 出色的性能 • 只 Ø 3/4”
Ø 3/8” 室内热交换器 EXV (室内电子膨胀阀)
户式中央空调的分类和特点
空调种类
风管式
• •
优点
谷轮半封闭压缩机系列产品手册
50
580 1090 1680 2340 3100 4000 5050 6200 7600 9150
30
860 1050 1230 1400 1570 1720 1850 1950 2020 2050 2040 2020
P
40
740 960 1180 1400 1620 1830 2030 2200 2350 2470 2550 2580
C 系列 Series
制冷量 Capacity R22 技术参数 Technical Data 外形尺寸 Dimensions 型号说明 Model Nomenclature 电气原理图 Electrical Wiring Diagrams
S 系列 Series
制冷量 Capacity R22 R404A R407c 型号说明 Model Nomenclature 外形尺寸 Dimensions 技术参数 Technical Data 电气原理图 Electrical Wiring Diagrams
Q
40
1080 1720 2530 3500 4700 6150 7850
50
2000 2880 3950 5250
30
1180 1420 1680 1960 2240 2520 2800 3050 3260 3440
P
40
1390 1680 2010 2350 2710 3070 3410
50
2030 2430 2860 3290
50
810 1070 1340 1610 1880 2140 2390 2620 2830 3000
筑龙网
30
900 1480 2170 3000 3950 5050
谷轮压缩机参照表
谷轮涡旋™空调压缩机产品手册我们的愿景:采用先进的技术致力于为客户提供世界级的产品艾默生环境优化技术在家用、商用和工业应用方面,是世界领先的供热、通风、空调和冷冻解决方案提供商,我们为客户提供先进的技术解决方案、完善的技术支持和培训服务。
从20世纪40年代的第一台半封闭式压缩机和20世纪50年代的全封闭式压缩机,从20世纪80年代的高效Dicus 半封闭压缩机和20世纪90年代的空调和制热用涡旋压缩机,到今天最新的Stream 半封闭压缩机以及数码涡旋压缩机,在过去的80多年里,我们向市场引入了众多的创新科技。
不仅如此,我们还为空调和冷冻市场提供非同一般的解决方案。
艾默生环境优化技术是空调和冷冻业界主要的解决方案提供商,旗下的谷轮品牌产品提供了多种多样的解决方案:从主要冷媒都适用的涡旋和半封闭压缩机,到可变能力输出调节的压缩机以及装备了智能电子控制元器件的压缩机,艾默生环境优化技术引领压缩机科技发展至新的高度。
我们是理想的业务伙伴我们是技术领域的领袖我们能够创造最卓越的价值我们能够提供综合性解决方案我们能够创建一个安全可靠、让人们安居乐业的美好环境家用空调应用热泵热水应用可变能力输出应用商用空调应用产品线R22,R407C 和R134a 冷媒适用的谷轮涡旋TM 压缩机被广泛的应用于空调,工业冷却和精密空调领域。
今天,涡旋压缩机在空调行业已经得到了广泛的应用:从分体空调,屋顶机,单元机到冷水系统,涡旋压缩机由于其不可置疑的优越性已经广泛地代替活塞压缩机,并开始部分的代替螺杆压缩机。
多压缩机组合(双机并联和三机并联)能够应用于更大容量的系统中,在为用户带来良好的舒适性的同时,以较高的季节能效比为用户降低运行费用(多压缩机组合需经过谷轮TM 验证或确认)单压缩机的容量范围是5kW (ZR18)到90kW (ZR380),双机并联和三机并联后容量范围更可拓展至180kW 和270kW 。
谷轮涡旋TM压缩机 ZR/VR 系列R22,R407C 和R134a 冷媒适用R22/R407C50 Hz4080120160200280360240320400220300380260340420206010014018060 Hz040801201602002803602403204002203003802603404202060100140180R134a50 Hz04080120160200280360240320400220300380260340420206010014018060 Hz40801201602002803602403204002203003802603404202060100140180可靠性能效较低的生命周期成本•••••••产品特征谷轮涡旋TM 轴向和径向柔性技术保障了压缩机具有优异的可靠性和高效率宽泛的产品容量范围较低的油循环率优越的抗液击能力较低的噪音和振动水平较低的LCCP(Life Cycle Climate Performance)双机并联和三机并联,具有优异的季节能效比(需经过谷轮TM 验证或确认)运行范围备注:更多关于R407C ,R134a 产品的运行范围信息请咨询应用工程师冷凝温度°C蒸发温度°C-30-35-25-20-15-105101520253035404550556065707505-510152025-40备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C220V; 50Hz, 1 Phase备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C380-420V; 50Hz, 3 Phase208-230V; 60Hz, 1 Phase备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C技术参数R407C380V; 50Hz, 3 Phase技术参数R407C备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C208-230V; 60Hz, 1 Phase技术参数R134a380-420V; 50Hz, 3 Phase备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°CR134a多机并联备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C 双机/三机并联在系统上的应用,更多信息请与应用工程师联系备注:测试标准AHRI :蒸发温度7.2°C ,冷凝温度54.4°C ,过冷度8.3K ,过热度11.1K ,环境温度35°C谷轮涡旋TM 压缩机在业界被完美的应用于分体机,屋顶机,单元机和冷水机组系统中。
谷轮ZR全封闭涡旋压缩机技术参数精编手册
PERFORMANCE NOMINALS50 HERTZR22SINGLE PHASE220-1-50 TEST VOLTAGECAPACITYENERGY EFFICIENCY RATINGRATING MOTOR MODELAMPERESBTU KCAL BTUH KCALH WATTS CONDITIONWATTSWATTSHOURHOURMOTOR WATTS MOTOR WATTSMOTOR WATTSA 183004610536017308.010.6 2.7 3.1ZR22K3-PFJB 182004590533017308.010.5 2.7 3.1C 21500542063001190 5.718.1 4.6 5.3A 204005140598019209.210.6 2.7 3.1ZR24K3-PFJ B 202005090592019209.210.5 2.7 3.1C 24200610070901310 6.318.5 4.7 5.4A 219005520642020109.510.9 2.7 3.2ZR26K3-PFJ B 217005470636020109.510.8 2.7 3.2C 25800650075601400 6.818.4 4.6 5.4A 2380060006970219010.410.9 2.7 3.2ZR28K3-PFJ B 2360059506910219010.410.8 2.7 3.2C 282007110826015107.418.7 4.7 5.5A 2540064007440233011.110.9 2.7 3.2ZR30K3-PFJ B 2520063507380233011.110.8 2.7 3.2C 302007610885016307.918.5 4.7 5.4A 2670067307820243011.811.0 2.8 3.2ZR32K3-PFJ B 2650066807760243011.810.9 2.7 3.2C 315007940923017008.718.5 4.7 5.4A 2830071308290254012.111.1 2.8 3.3ZR34K3-PFJ B 2810070808230255012.111.0 2.8 3.2C 333008390976017308.519.2 4.8 5.6A 3040076608910271013.111.2 2.8 3.3ZR36K3-PFJ B 3020076108850272013.111.1 2.8 3.3C 3600090701050018709.419.3 4.9 5.6A 3360084709840299014.711.2 2.8 3.3ZR40K3-PFJ B 3330083909760300014.711.1 2.8 3.2C 39400993011500207010.819.0 4.8 5.6A 35300890010300314015.211.2 2.8 3.3ZR42K3-PFJ B 35000882010300315015.211.1 2.8 3.3C 415001050012200216010.919.2 4.9 5.6A 38500970011300337016.411.4 2.9 3.4ZR45K3-PFJ B 38200963011200338016.411.3 2.8 3.3C 450001130013200237012.119.0 4.8 5.6A 397001000011600345016.811.5 2.9 3.4ZR47K3-PFJ B 39400993011500346016.811.4 2.9 3.3C 465001170013600242012.619.2 4.8 5.6A 408001030012000362017.611.3 2.8 3.3ZR48K3-PFJ B 405001020011900363017.611.2 2.8 3.3C 478001200014000252013.519.0 4.8 5.6A 575001450016800512024.511.2 2.8 3.3ZR68KC-PFJB 570001440016700513024.511.1 2.8 3.3C 673001700019700367018.218.3 4.6 5.4广州豪美 http://www.gz-haomei.comPERFORMANCE NOMINALS50 HERTZR22THREE PHASETEST VOLTAGECAPACITYENERGY EFFICIENCY RATINGRATING MOTOR MODELAMPERES*BTU KCAL BTUH KCALH WATTS CONDITIONWATTSWATTSHOURHOURMOTOR WATTS MOTOR WATTSMOTOR WATTSA 18300461053601770 5.5/3.210.3 2.6 3.0ZR22K3-TF5/DB 18200459053301770 5.5/3.210.3 2.6 3.0C 21500542063001170 4.3/2.518.4 4.6 5.4A 204005140598019206.0/3.510.6 2.7 3.1ZR24K3-TF5/DB 20200509059201920 6.0/3.510.5 2.7 3.1C 24200610070901250 4.7/2.719.4 4.9 5.7A 21900552064202010 6.6/3.810.9 2.7 3.2ZR26K3-TF5/DB 21700547063602010 6.6/3.810.8 2.7 3.2C 25800650075601360 5.0/2.919.0 4.8 5.6A 23800600069702150 6.9/4.011.1 2.8 3.2ZR28K3-TF5/DB 23600595069102150 6.9/4.011.0 2.8 3.2C 28200711082601450 5.4/3.119.4 4.9 5.7A 254006400744022907.3/4.211.1 2.8 3.2ZR30K3-TF5/DB 252006350738022907.3/4.211.0 2.8 3.2C 30200761088501540 5.5/3.219.6 4.9 5.7A 267006730782024307.6/4.411.0 2.8 3.2ZR32K3-TF5/DB 265006680776024307.6/4.410.9 2.7 3.2C 31500794092301640 5.9/3.419.2 4.8 5.6A 283007130829025007.9/4.611.3 2.9 3.3ZR34K3-TF5/DB 281007080823025007.9/4.611.2 2.8 3.3C 33400842097901700 6.2/3.619.6 5.0 5.8A 304007660891026908.3/4.811.3 2.8 3.3ZR36K3-TF5/DB 302007610885027008.3/4.811.2 2.8 3.3C 360009070105001810 6.4/3.719.9 5.0 5.8A 336008470984029609.2/5.311.4 2.9 3.3ZR40K3-TF5/DB 333008390976029709.2/5.311.2 2.8 3.3C 3940099301150019907.1/4.119.8 5.0 5.8A 3530089001030031009.5/5.511.4 2.9 3.3ZR42K3-TF5/DB 3500088201030031109.5/5.511.3 2.8 3.3C41500105001220020807.4/4.320.05.05.9*Ampere values shown are at 220 volts/380 volts.220-3-50 (TF5)380-3-50 (TFD)广州豪美 http://www.gz-haomei.comPERFORMANCE NOMINALS50 HERTZR22THREE PHASETEST VOLTAGECAPACITYENERGY EFFICIENCY RATINGRATING MOTOR MODELAMPERES*BTU KCAL BTUH KCALH WATTS CONDITIONWATTSWATTSHOURHOURMOTOR WATTS MOTOR WATTSMOTOR WATTSA 38200963011200331010.5/6.111.5 2.9 3.4ZR45KC-TF5/DB 37900955011100332010.5/6.111.4 2.9 3.3C 44500112001300022908.3/4.819.4 4.9 5.7A 397001000011600342010.9/6.311.6 2.9 3.4ZR47KC-TF5/DB 39400993011500343010.9/6.311.5 2.9 3.4C 46300117001360023408.8/5.119.8 5.0 5.8A 408001030012000360011.2/6.511.3 2.9 3.3ZR48KC-TF5/DB 405001020011900361011.2/6.511.2 2.8 3.3C 47800120001400024908.6/5.019.2 4.8 5.6A 454001140013300397012.6/7.311.4 2.9 3.4ZR54KC-TF5/DB 450001130013200398012.6/7.311.3 2.8 3.3C 530001340015500282010.0/5.818.8 4.8 5.5A 479001210014000416013.5/7.811.5 2.9 3.4ZR57KC-TF5/DB 475001200013900417013.5/7.811.4 2.9 3.3C 560001410016400295010.4/6.019.0 4.8 5.6A 514001300015100442014.0/8.111.6 2.9 3.4ZR61KC-TF5/DB 510001290014900443014.0/8.111.5 2.9 3.4C 600001510017600317011.1/6.418.9 4.8 5.6A 580001460017000495014.9/8.611.7 2.9 3.4ZR68KC-TF5/DB 575001450016800496014.9/8.611.6 2.9 3.4C 680001710019900343011.4/6.619.8 5.0 5.8A 610001540017900517015.4/8.911.8 3.0 3.5ZR72KC-TF5/DB 605001520017700518015.4/8.911.7 2.9 3.4C 715001800020900361011.6/6.719.8 5.0 5.8A 685001730020100580018.1/10.511.8 3.0 3.5ZR81KC-TF5/DB 680001710019900581018.1/10.511.7 2.9 3.4C795002000023300414015.2/8.819.24.85.6*Ampere values shown are at 220 volts/380 volts.220-3-50 (TF5)380-3-50 (TFD)广州豪美 http://www.gz-haomei.comAPPLICATION NOTES•The Copeland Scroll Compressor has been under developmentat Copeland since 1979 and is the most efficient and durable compressor we have ever developed for residential air condi-tioning and heat pump applications.Copeland Scroll compres-sors have fewer moving parts and no dynamic suction or dis-charge valves.In addition, they offer very low vibration and sound levels and are very tolerant to stresses caused by liquid slugging, flooded starts, and debris commonly found in resi-dential split air conditioning and heat pump systems.•These Copeland Scrolls include a higher range of capacities and more electrical options than the earlier ZR1 models.Inaddition, there are several operating characteristics and design features which are different from the ZR1 models.•The Copeland Scroll is a new type of compressor and there are a number of application characteristics which are different from the traditional reciprocating compressor.These are fully detailed in the Application Bulletin AE4-1312.•The motor protector used in these ZR compressors is mounted internally and its proven design is the result of extensive labo-ratory research and field testing.It protects the motor from maximum operating overload, both high and low voltage, and loss of refrigerant charge.It is both current and heat sensing.The single phase protector protects both the run and start windings.The three phase protector is wired at the connection point of the motor's three legs.Therefore, the protector protects all three legs and if a problem occurs with one or more of them,the protector breaks all three phases.•The rotational speed of the compressor is:•50 Hertz 2900 RPM•No crankcase heater is required for single phase compressors.•A crankcase heater is required for three phase compressors when the system charge exceeds the compressor refrigerant charge limit shown below, and no accumulator is used, or when the charge exceeds this limit and an accumulator cannot be piped to provide free liquid drainage into the accumulator dur-ing the off cycle.•ZR22 to ZR488 pounds (3.6 Kg)••Since Copeland Scroll Compressors have very high volumetricefficiency, their displacements are lower than for comparable capacity reciprocating compressors.As a result, Copeland mends that the capacity rating on reversing valves be no more than 1.5 to 2 times the nominal capacity of the compres-sor with which it will be used in order to ensure proper opera-tion of the reversing valve under all operating conditions.•The compressor has the approval to operate as a heat pump within the operating range.Its increased bearing surfaces and improved lubrication system provide excellent reliability even when operated at the heat pump's higher compression ratios.•Low ambient cut-outs are not required to limit heat pump operation.•These Scroll Compressors have internal pressure relief valves which open at a discharge to suction differential pressure of 375 to 450 psi.•No start assist devices are required.Due to the inherent design of the Scroll, the internal compression components always start unloaded even if system pressures are not balanced.•Rated load amps is the value used for contactor and other elec-trical component selection.It is calculated by dividing the max-imum continuous current that the compressor draws under the condition of maximum load operation and the lowest operating voltage by 1.4.See Application Bulletin AE 9-1154 for a detailed explanation.•Complete 50 Hertz performance curves are available in the units as follows for all models:•CapacityBTU/Hr •Power Input Watts •CurrentAmps •EfficiencyBTUH/Watt •Copeland has compiled a book of compressor Application Bulletins.Please see the following bulletins, from the book, for more ZR compressor application information as entitled below:Mounting Parts ............................AE 4-1111Application Guidelines ....................AE 4-1312Nameplate Amperage Rating ..............AE 9-1154Approved range is based on 20F°(11.1C°) of superheat.广州豪美 http://www.gz-haomei.com广州豪美 http://www.gz-haomei.comPERFORMANCE NOMINALS50 HERTZR22THREE PHASETEST VOLTAGECAPACITYENERGY EFFICIENCY RATINGRATING MOTOR MODELAMPERES*BTU KCAL BTUH KCALH WATTS CONDITIONWATTSWATTSHOURHOURMOTOR WATTS MOTOR WATTS MOTOR WATTSA 700001760020500613020.5/11.911.4 2.9 3.3ZR84KC-TF5/DB 694001750020300614020.5/11.911.3 2.9 3.3C 814002050023900444017.0/9.818.3 4.6 5.4A 804002030023600687021.4/12.411.7 3.0 3.4ZR94KC-TF5/DB 798002010023400688021.4/12.411.6 2.9 3.4C 941002370027600491016.8/9.719.2 4.8 5.6A 917002310026900781025.3/13.711.7 3.0 3.4ZR108KC-TF5/DB 910002290026700783025.3/13.711.6 2.9 3.4C 1070002700031400573020.8/11.018.7 4.7 5.5A 1054002660030900911027.5/15.911.6 2.9 3.4ZR125KC-TF5/DB 1046002640030600913027.5/15.911.5 2.9 3.4C 1222003080035800663021.6/12.518.4 4.6 5.4A 11980030200351001018034.7/20.111.8 3.0 3.4ZR144KC-TF5/DB 11880029900348001020034.7/20.111.6 2.9 3.4C1407003550041200750027.3/15.818.84.75.5*Ampere values shown are at 220 volts/380 volts.220-3-50 (TF5)380-3-50 (TFD)广州豪美 http://www.gz-haomei.comPERFORMANCE DATA50 HERTZ R2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)ZR84KC-TF5/TFD R22CAPACITY(BTU/HOUR)CONDENSING TEMPERATURE EVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)208002930038600489006060074000814008930097800 120 (48.9)31700424005400066800737008110089000 140 (60.0)4510057900647007180079200 CAPACITY(KCAL/HOUR)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)524073809730123001530018600205002250024600 120 (48.9)7990107001360016800186002040022400 140 (60.0)1140014600163001810020000 CAPACITY(WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)6090858011300143001780021700239002620028700 120 (48.9)9290124001580019600216002380026100 140 (60.0)1320017000190002100023200 POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)437043604360437043804420444044704510 120 (48.9)5570552054905490549055105530 140 (60.0)70006930690068906880 ZR94KC-TF5/TFD R22CAPACITY(BTU/HOUR)CONDENSING TEMPERATURE EVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)24700342004470056600701008560094100103200112900 120 (48.9)380004950062400770008500093600102700 140 (60.0)5260066400740008200090600 CAPACITY(KCAL/HOUR)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)6220862011300143001770021600237002600028500 120 (48.9)9580125001570019400214002360025900 140 (60.0)1330016700186002070022800 CAPACITY(WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)72401000013100166002050025100276003020033100 120 (48.9)11100145001830022600249002740030100 140 (60.0)1540019500217002400026500 POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8广州豪美 http://www.gz-haomei.comPERFORMANCE DATA50 HERTZR2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)200/220-3-50 (TF5)Rated Voltage220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)ZR108KC-TF5/TFDR22CAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)303003990051300644007970097300107000117300128300120 (48.9)4500057300714008770096700106200116400140 (60.0)61800768008500093800103200CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)76401010012900162002010024500270002960032300120 (48.9)11300144001800022100244002680029300140 (60.0)1560019400214002360026000CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)88801170015000189002340028500314003440037600120 (48.9)13200168002090025700283003110034100140 (60.0)1810022500249002750030200POWER (MOTOR WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)527053705450550055705670573058105900120 (48.9)6860689069306980702070707130140 (60.0)88008790879088008830ZR125KC-TF5/TFDR22CAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)3670046900595007450091900111500122200133500145300120 (48.9)529006650082500100800110800121300132400140 (60.0)715008840097700107500117900CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)92501180015000188002320028100308003360036600120 (48.9)13300168002080025400279003060033400140 (60.0)1800022300246002710029700CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)108001370017400218002690032700358003910042600120 (48.9)15500195002420029500325003550038800140 (60.0)2090025900286003150034500POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8广州豪美 http://www.gz-haomei.comPERFORMANCE DATA50 HERTZ R22/407C 20°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)200/220-3-50 (TF5)Rated Voltage 220-3-50 (TF5)Test Voltage380/420-3-50 (TFD)380-3-50 (TFD)ZR144KC-TF5/TFD R22CAPACITY(BTU/HOUR)CONDENSING TEMPERATURE EVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)42100539006870086200106200128600140700153200166300 120 (48.9)597007550094200115300126800138800151400 140 (60.0)8010099500110200121400133300 CAPACITY(KCAL/HOUR)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)106001360017300217002680032400355003860041900 120 (48.9)15000190002370029100320003500038200 140 (60.0)2020025100278003060033600 CAPACITY(WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)123001580020100253003110037700412004490048700 120 (48.9)17500221002760033800372004070044400 140 (60.0)2350029200323003560039100 POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)680070107120719072707400750076307800 120 (48.9)8900899090409110916092409340 140 (60.0)1135011380114001143011480 ZR84KCE-TF5/TFD R407C CAPACITY(BTU/HOUR)CONDENSING TEMPERATURE EVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8 100 (37.8)2130030100397005040062500761008360091500100000广州豪美 http://www.gz-haomei.comPERFORMANCE NOMINALS50 HERTZR22THREE PHASETEST VOLTAGECAPACITYENERGY EFFICIENCY RATINGRATING MOTOR MODELAMPERES*BTU KCAL BTUH KCALH WATTS CONDITIONWATTSWATTSHOURHOURMOTOR WATTS MOTOR WATTS MOTOR WATTSA 741001870021700661025.0/22.7/13.1/10.011.2 2.8 3.3ZR90K3-TWC/R/D/EB 735001850021500662025.0/22.7/13.1/10.011.1 2.8 3.2C 860002170025200474021.0/19.1/11.1/8.418.1 4.6 5.3A 903002280026500792028.6/26.0/15.1/11.411.4 2.9 3.3ZR11M3-TWC/R/D/EB 896002260026300794028.6/26.0/15.1/11.411.3 2.8 3.3C 1060002670031100559023.2/21.1/12.2/9.319.0 4.8 5.6A 1047002640030700909033.0/30.0/17.4/13.211.5 2.9 3.4ZR12M3-TWC/R/D/EB 1039002620030400911033.0/30.0/17.4/13.211.4 2.9 3.3C 1227003090036000642026.8/24.4/14.1/10.719.1 4.8 5.6A 12870032400377001118038.2/34.7/20.1/15.311.5 2.9 3.4ZR16M3-TWC/R/D/EB 12770032200374001120038.2/34.7/20.1/15.311.4 2.9 3.3C 1500003780044000810030.4/27.6/16.0/12.218.5 4.7 5.4A 15800039800463001355047.4/43.1/25.0/19.011.7 2.9 3.4ZR19M3-TWC/R/D/EB 15670039500459001358047.4/43.1/25.0/19.011.5 2.9 3.4C1827004600053500956037.2/33.8/19.6/14.919.14.85.6* Ampere values shown are at 200 volts/220 volts/380 volts/500 volts.200-3-50 (TWC)220-3-50 (TWR)380-3-50 (TWD)500-3-50 (TWE)广州豪美 http://www.gz-haomei.comMECHANICAL SPECIFICATIONSZR90K3/K3E 7.57.319737.0889.52055.6119.920.8625.1893.0ZR11M3/M3E 98.790885.11068.22056.7144.025.0630.2493.0ZR12M3/M3E 1010.101016.51226.82057.5165.528.7834.7393.0ZR16M3/M3E 1312.471255.61515.32279.7204.335.5542.90103.0ZR19M3/M3E1514.761486.21793.824711.2241.942.0750.78112.0COMPRESSOR NET WEIGHT POUNDS KILOGRAMSELECTRICAL SPECIFICATIONSVOLTAGE CODE TWR TWC TW7TWD TWE NOMINAL VOLTAGE-220/240-3-50200-3-50380/420-3-50500-3-50PHASE-HERTZ 208/230-3-60380-3-60460-3-60575-3-60VOLTAGE RANGE50 HERTZ 198-264180-220342-462450-55060 HERTZ187-253342-418414-506518-633TWR TWC TW7TWD TWE RATED LOCKED RATED LOCKED RATED LOCKED RATED LOCKED RATED LOCKED MODELLOAD ROTOR LOAD ROTOR LOAD ROTOR LOAD ROTOR LOAD ROTOR AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMPS RLALRARLALRARLALRARLALRARLALRAREFRIGERANT R22R407C R134a ALL R22R407C R134a ALL R22R407C R134a ALL R22R407CR134a ALL R22R407C R134a ZR90K3/K3E 23.626.026.017427.230.230.218917.117.117.111214.314.614.69910.411.811.8ZR11M3/M3E 30.530.530.522134.334.334.323221.321.321.314417.517.517.512513.213.213.2 ZR12M3/M3E 35.035.035.023538.637.537.527826.126.126.115118.918.918.912715.715.715.7ZR16M3/M3E 44.244.244.229347.150.450.435028.728.728.719525282816719.919.919.9ZR19M3/M3E52.252.552.534555.256.756.742537.538.338.323927.233.133.119824.324.324.3MODELNOMINAL HP KWIN 3CM 3CUBIC INCHES PER REVOLUTION CUBIC CENTIMETERS PER REVOLUTIONCFH M 3/HRCUBIC FEET PER HOUR CUBIC METERS PER HOUR 50 HERTZ 60 HERTZ 2900 RPM3500 RPMALL 74100 100 125148广州豪美 http://www.gz-haomei.comPERFORMANCE DATA50 HERTZR2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)200-3-50(TWC)380/420-3-50(TWD)Rated Voltage200-3-50 (TWC)380-3-50 (TWD)Test Voltage220/240-3-50(TWR)500-3-50(TWE)220-3-50 (TWR)500-3-50 (TWE)ZR12M3-TWC/TWR/TWD/TWER22CAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)3340045300586007380091200111000123000135000148000120 (48.9)516006570081700100000110000121000133000140 (60.0)715008800097200107000118000CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)84201140014800186002300028100309003400037300120 (48.9)13000165002060025200278003060033600140 (60.0)1800022200245002700029700CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)98001330017200216002670032600359003950043300120 (48.9)15100192002390029300323003560039000140 (60.0)2090025800285003140034500POWER (MOTOR WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)628064006450646064506430642064206430120 (48.9)8060812081408130811081008090140 (60.0)1020010200102001020010200ZR16M3-TWC/TWR/TWD/TWER22CAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)40200554007190090500112000136000150000165000181000120 (48.9)6250080500101000123000136000149000163000140 (60.0)86600108000119000132000145000CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)101001400018100228002820034400378004160045600120 (48.9)15700203002530031000342003760041200140 (60.0)2180027200301003310036400CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)118001620021100265003270040000440004840053100120 (48.9)18300236002940036100397004370047900140 (60.0)2540031600349003850042400POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)768078607950800080308070810081508210120 (48.9)986099701000010000100001000010000广州豪美 http://www.gz-haomei.comPERFORMANCE DATA50 HERTZR2220°F (11.1°C) Superheat15°F (8.3°C) Subcooling95°F (35°C) Ambient (Air Over)200-3-50(TWC)380/420-3-50(TWD)Rated Voltage200-3-50 (TWC)380-3-50 (TWD)Test Voltage220/240-3-50(TWR)500-3-50(TWE)220-3-50 (TWR)500-3-50 (TWE)ZR19M3-TWC/TWR/TWD/TWER22CAPACITY (BTU/HOUR)CONDENSING TEMPERATUREEVAPORATING TEMPERATURE °F/°C°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)523006920088500110700136400166100182700200500219600120 (48.9)7760099000123200150600165800181900199200140 (60.0)108300133300146900161400176700CAPACITY (KCAL/HOUR)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)132001740022300279003440041900460005050055300120 (48.9)19600249003100038000418004580050200140 (60.0)2730033600370004070044500CAPACITY (WATTS)°F/°C – 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)153002030025900324004000048700535005870064300120 (48.9)22700290003610044100486005330058400140 (60.0)3170039100430004730051800POWER (MOTOR WATTS)°F/°C– 10010203040455055– 23.3– 17.8– 12.2– 6.7– 1.1 4.47.210.012.8100 (37.8)921093909480951095109530956096009660120 (48.9)11890120101206012070120601207012080140 (60.0)1522015280152901528015270Production compressors to meet above nominal performance values within ±5%.广州豪美 http://www.gz-haomei.comApproved range is based on 20°F (11.1°C) of superheat.广州豪美 http://www.gz-haomei.com。
谷轮涡旋式压缩机简介及压缩机常见故障
缺
点
影响EER主要因素 影响EER主要因素 EER
从制冷系统上说,降低冷凝温度Tk和升高蒸发温度T0都可以使EER上升 从制冷系统上说,降低冷凝温度Tk和升高蒸发温度T0都可以使EER上升 Tk和升高蒸发温度T0都可以使EER 采用高效的压缩机 ,采用直流变频压缩机代替普通定速压缩机或交流 变频压缩机 适当加大冷凝器、加大室外机的风量, Tk下降 适当加大蒸发器、 适当加大冷凝器、加大室外机的风量,使Tk下降 ;适当加大蒸发器、 加大室内机的风量, T0上升 加大室内机的风量,使T0上升 。但加大内外机风量的同时要考虑风机 功率的增加,从整机上说,不一定是风量越大EER EER越高 功率的增加,从整机上说,不一定是风量越大EER越高 利用高效的换热器,例如用内螺纹管代替光管, 利用高效的换热器,例如用内螺纹管代替光管,采用合适的管径与流 路等 采用高效的直流电机代替交流电机 冷媒充注量尽量少 采用排量较大的变频压缩机代替排量较小的变频压缩机,以压缩机的 采用排量较大的变频压缩机代替排量较小的变频压缩机, 额定频率来做制冷的主频
确保排出压缩机的冷冻机油回到压缩机
应确保吸气管冷媒的流速(约6m/s),才能使油 应确保吸气管冷媒的流速(约6m/s),才能使油 回到压缩机,但最高流速应小于15m/s,以减小压 回到压缩机,但最高流速应小于15m/s,以减小压 降与流动噪音,对水平管还应沿冷媒流动方向有 向下的坡度,约0.8cm/m. 向下的坡度,约0.8cm/m. 防止冷冻机油滞留在蒸发器内 确保适当的气液分离器的回油孔,过大会造成湿 压缩,过小则会回油不足,滞流油在气液分离器 中 系统中不应存在使油滞留的部位 确保在长配管高落差的情况下有足够的冷冻机油 在压缩机里,通常用带油面镜的压缩机确认 压缩机频繁启动不利于回油。
谷轮涡旋压缩机内部构造
整理ppt
14
电机绕组
电机转子(主轴
与电机转子之间的
连接是采用热膨胀
法!(就是把电机
转子加热几百摄氏
度,然后趁热取出
套在电机主轴上,
冷却后就紧密连接 了)
整理ppt
15
谢 谢
整理ppt
16
可靠性,又兼顾系统的密封性。
滑环
主轴油孔
偏心的是动平衡块
整理ppt
11
十字滑环
整理ppt
12
供油槽
整理ppt
13
电机尾端轴承支架
蓝圈处是泵油的小装 置(简单实用)。
此装置保证了把 油从底部通过电机主 轴,泵送到涡旋盘处 润滑。
电机轴尾端轴承处,此孔 是从主轴内流出的油给此 处润滑。(主轴上油孔处, 铣出一个小平是面,是变 相的供油槽!)
整理ppt
7
吸气口
静涡旋盘,此处可以看到吸
气口,排气口
整理ppt
8
动涡旋盘
动
涡
旋
盘
背
面
轴
承
整理ppt
座
9
A 、滑环 B、 主轴 C、 主轴上油孔(从底部油池吸 入的油,此处泵出)
D、 主轴和滑环的间隙
整理ppt
10
动涡旋盘下面的偏心主轴,主轴上
套着一个滑环(此处是谷轮的标志性 技术!柔性涡旋技术!)主轴上套着 的滑环和主轴之间有几毫米的间隙, 做径向移动。而动涡旋盘的轴承座就 套在此滑环上,电机转动后,靠离心 力使动涡旋盘的涡旋线与静涡旋的涡 旋线紧密结合。此技术及保证液击的
电机绕组温度保护模块。(红圈处)
线圈超出温度后,里面的开关强制断开
供电!保护电机。温度降低后,自动 接通。