初中数学全部重点公式

合集下载

初中数学必背公式全集打印版

初中数学必背公式全集打印版

初中数学必背公式全集打印版1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

初中数学必背公式大全因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

初中数学解方程所有公式行程问题:(1)基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度(2)相遇问题:快路程+慢路程=原距离速度和×时间=路程(3)追及问题:快路程-慢路程=原距离(快车先跑又折返遇到慢车时候用)速度差×时间=路程(4)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水(风)路程=顺水(风)速度×顺水(风)时间逆水(风)路程=顺水(风)速度×顺水(风)时间水(风)速=(顺水(风)速度-逆风(水)速度)÷2(5)列车过桥问题:(桥长+列车长)÷速度=过桥时间工程问题中的:(1)工作效率:单位时间完成的工作量(2)工程问题的基本关系:工作量=工作效率×工作时间(3)总工作量在未知的情况下可以看作“1”(4)合作的效率:各效率之和(5)各部分工作量之和=工作总量调配问题(配套问题):(1)例如课本中:1个螺钉要配2个螺母,即螺钉/螺母=1/2 得到:1×螺母=2×螺钉(2)例如甲乙两种零件分别取3个、2个才能配成一套。

完整版)初中数学公式大全(绝对经典)

完整版)初中数学公式大全(绝对经典)

完整版)初中数学公式大全(绝对经典)1.过两点有且只有一条直线。

2.两点之间的线段是最短的。

3.同角或等角的补角相等。

4.同角或等角的余角相等。

5.过一点有且只有一条直线与已知直线垂直。

6.直线外一点与直线上各点连接的所有线段中,垂线段最短。

7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

8.如果两条直线都和第三条直线平行,这两条直线也互相平行。

9.同位角相等,则两直线平行。

10.内错角相等,则两直线平行。

11.同旁内角互补,则两直线平行。

12.两直线平行,同位角相等。

13.两直线平行,内错角相等。

14.两直线平行,同旁内角互补。

15.定理:三角形两边的和大于第三边。

16.推论:三角形两边的差小于第三边。

17.三角形内角和定理:三角形三个内角的和等于180°。

18.推论1:直角三角形的两个锐角互余。

19.推论2:三角形的一个外角等于和它不相邻的两个内角的和。

20.推论3:三角形的一个外角大于任何一个和它不相邻的内角。

21.全等三角形的对应边和对应角相等。

22.边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。

23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等。

24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等。

25.边边边公理(SSS):有三边对应相等的两个三角形全等。

26.斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。

27.定理1:在角的平分线上的点到这个角的两边的距离相等。

28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上。

29.角的平分线是到角的两边距离相等的所有点的集合。

30.等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。

31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

33.推论3:等边三角形的各角都相等,并且每一个角都等于60°。

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印一、有理数。

1. 有理数加法法则。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( - 3)+(-5)= - 8。

- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)= - 2,5+( - 3)=2。

- 一个数同0相加,仍得这个数。

例如:0 + 3=3。

2. 有理数减法法则。

- 减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

例如:5 - 3 =5+( - 3)=2。

3. 有理数乘法法则。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。

- 任何数同0相乘,都得0。

4. 有理数除法法则。

- 除以一个不等于0的数,等于乘这个数的倒数。

即a÷ b=a×(1)/(b)(b≠0)。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

5. 乘方的定义。

- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a^n中,a 叫做底数,n叫做指数。

例如:2^3=2×2×2 = 8。

二、整式的加减。

1. 单项式。

- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:3x,-5,a都是单项式。

- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如:在单项式3x^2中,系数是3,次数是2。

2. 多项式。

- 几个单项式的和叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。

- 多项式里次数最高项的次数,叫做这个多项式的次数。

初中数学经典必考公式大全

初中数学经典必考公式大全

初中数学经典必考公式大全
以下是初中数学经典必考公式大全:
1.勾股定理:直角三角形两直角边平方和等于斜边平方。

(a²+b²=c²)
2. 等腰三角形底角、顶角相等。

(∠A=∠C)
3. 一次函数解析式:y=kx+b,其中k为斜率,b为截距。

4. 两点间距离公式:d=√[(x2-x1)²+(y2-y1)²]
5. 相反数的性质:两个数的和为0,其中一个是正数另一个就是它的相反数。

6. 平方公式1:(a+b)²=a²+2ab+b²
7. 平方公式2:(a-b)²=a²-2ab+b²
8. 平面向量叉积:u(x1,y1)×v(x2,y2)=x1y2-x2y1
9. 三视图状况判定法则:当一个图形的三视图中有一个投影不正立时,这个图形就无法立体实现。

10. 面积公式:矩形面积=长×宽,三角形面积=底×高/2,圆面积=πr²。

以上就是初中数学经典必考公式大全,希望对您有所帮助。

初中数学全套公式大全

初中数学全套公式大全

初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。

初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结

初中数学必背100公式,初中一到六年级数学公式大全总结公式一:点、角、线。

公式二:平行。

公式三:三角形基本性质。

公式四:三角形全等。

公式五:等腰三角形。

公式六:等边三角形。

公式七:比例。

公式八:相似三角形。

公式九:圆初中生学习数学要掌握和熟悉基本公式。

以下是初中数学公式汇总,希望对考生学习数学有所帮助。

初中数学全部公式总结1一元二次方程解答公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。

解答一元二次方程,我们可以先做出抛物线,然后看与x轴交点。

△=b²-4ac;解答公式:x=(-b±V△)/2a;2因式分解经常会用到公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

3三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg认为有用点个赞吧初中生学习数学要掌握和熟悉基本公式。

初中数学必背公式全集

初中数学必背公式全集

初中数学必背公式全集初中数学是我们学习过程中非常重要的一门学科,其中的必背公式更是我们需要熟练掌握的知识点。

下面,我将为大家整理一份初中数学必背公式全集,希望对大家的学习有所帮助。

一、代数公式:1. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,它的根可以通过公式x=(-b±√(b^2-4ac))/(2a)来计算。

2. 平方差公式:(a+b)(a-b)=a^2-b^2,可以用于简化平方差的计算。

3. 一次方程求解公式:对于一元一次方程ax+b=0,它的解可以通过公式x=-b/a来求得。

二、几何公式:1. 三角形面积公式:对于已知三角形的底和高,可以使用面积公式S=1/2×底×高来计算三角形的面积。

2. 直角三角形勾股定理:直角三角形的两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。

3. 圆的面积公式:对于已知圆的半径r,可以用面积公式S=πr^2来计算圆的面积。

4. 圆的周长公式:对于已知圆的半径r,可以用周长公式C=2πr来计算圆的周长。

三、数列公式:1. 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中a1为首项,d为公差,可以用来计算数列中任意一项的值。

2. 等差数列前n项和公式:对于等差数列的前n项和Sn=n/2×(a1+an),可以用来计算等差数列前n项的和。

3. 等比数列通项公式:对于等比数列an=a1×q^(n-1),其中a1为首项,q为公比,可以用来计算数列中任意一项的值。

4. 等比数列前n项和公式:对于等比数列的前n项和Sn=a1×(q^n-1)/(q-1),可以用来计算等比数列前n项的和。

四、概率公式:1. 事件的概率:事件A发生的概率P(A)等于事件A发生的次数n(A)与总的可能性次数n的比值,即P(A)=n(A)/n。

2. 互斥事件的概率:对于互斥事件A和B,它们同时发生的概率为0,即P(A∩B)=0,那么事件A或事件B发生的概率为P(A∪B)=P(A)+P(B)。

完整版)初中数学公式大全(整理打印版)

完整版)初中数学公式大全(整理打印版)

完整版)初中数学公式大全(整理打印版) 与代数1.数与式1) 实数实数具有以下性质:①实数a的相反数是-a,实数a的倒数是1/a(a≠0);②实数a的绝对值:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。

③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:当a≥0,b≥0时,√(ab)=√a×√b;当a≥0,b>0时,√(a/b)=√a/√b;②二次根式的性质:当a≥0时,√(a²)=a;当a<0时,√(a²)=-a。

2) 整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即am×an=am+n (m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即am/an=am-n (a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)^n=a^n×b^n(n 为正整数);④零指数:a^0=1(a≠0);⑤负整数指数:a^-n=1/(a^n)(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a+b)(a-b)=a²-b²;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a±b)²=a²±2ab+b²;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a/a×m=b/b×m,其中m是不等于零的代数式;②分式的乘法法则:a/c×b/d=a×b/c×d(a、b、c、d≠0);③分式的除法法则:a/c÷b/d=a/c×d/b(c、d≠0);④分式的乘方法则:a/c)^n=a^n/c^n(n为正整数);⑤同分母分式加减法则:a/b±c/b=(a±c)/b;⑥异分母分式加减法则:a/b±c/d=(ad±bc)/bd(b、d≠0)。

初中数学各种公式大全

初中数学各种公式大全

初中数学各种公式大全初中数学中有很多重要的公式,下面是一份初中数学各种公式的完整版,包括代数、几何、概率统计等方面的公式。

一、代数篇1.平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$、$(a-b)^2=a^2-2ab+b^2$3. 二次方程的根与系数的关系:若$x_1$和$x_2$是方程$ax^2+bx+c=0$的两个根,则$x_1+x_2=-\frac{b}{a}$、$x_1x_2=\frac{c}{a}$4. 一元一次方程求解公式:$x=\frac{c-b}{a}$5.等差数列通项公式:$a_n=a_1+(n-1)d$6.等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}[2a_1+(n-1)d]$7.等比数列通项公式:$a_n=a_1\cdot q^{(n-1)}$8.等比数列前n项和公式(当$,q,<1$时):$S_n=\frac{a_1(1-q^n)}{1-q}$9. 二项式定理:$(a+b)^n=C_n^0a^n+C_n^1a^{(n-1)}b+C_n^2a^{(n-2)}b^2+...+C_n^kb^{(n-k)}+...+C_n^nb^n$10. 二次根式的性质:$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$二、几何篇1.相似三角形的性质:对应角相等、对应边成比例2.直角三角形勾股定理:若$a$、$b$、$c$为直角三角形的两条直角边和斜边,则$c^2=a^2+b^2$3. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$(其中$R$为三角形外接圆的半径)4. 余弦定理:$c^2=a^2+b^2-2ab\cos C$5. 面积公式:$\triangle ABC=\frac{1}{2}ab\sin C$6. 圆的面积公式:$S=\pi r^2$7. 矩形面积公式:$S=a\cdot b$8. 平行四边形面积公式:$S=bh$9. 梯形面积公式:$S=\frac{1}{2}(a+b)h$10. 扇形面积公式:$S=\frac{1}{2}r^2\theta$三、概率与统计篇1. 事件的概率:$P(A)=\frac{N(A)}{N(S)}$(其中$N(A)$为事件$A$发生的次数2. 随机事件的概率:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$3.等可能事件的概率:$P(A)=\frac{m}{n}$(其中$m$为事件$A$的可能结果数,$n$为试验的总可能结果数)4. 组合数公式:$C_n^k=\frac{n!}{k!(n-k)!}$(其中$n!$表示$n$的阶乘)5. 二项分布公式:$P(X=k)=C_n^kp^kq^{(n-k)}$(其中$X$为二项分布的随机变量,$p$为单次实验中事件$A$的概率,$q=1-p$)6. 正态分布标准化公式:$x=\frac{X-\mu}{\sigma}$(其中$X$为正态分布的随机变量,$\mu$为正态分布的均值,$\sigma$为正态分布的标准差)以上是初中数学中各种公式的完整版,供你参考。

初中数学重要公式整理

初中数学重要公式整理

1.绝对值(0);(0).a a a≥⎧=⎨<⎩2.非负数:“”、“2()”、“”为非负数,若、a b 为非负数,且0+a b=,则=a ,b = .3.幂的运算法则:(、m n 为整数)(1)mn aa = ; (2)m n a a ÷= ; (3)()m na= ; (4)()n ab = ;(5)()na b= .4.乘法公式:(1)()()a b a b +-= ;(2)2()a b ±= .5.分解因式的方法:(1)提取公因式:ab + ac = ; (2)应用乘法公式(逆向):22a b -= ;222a ab b ±+= .(3)十字相乘法(二次项系数为1):2()x a b x ab +++= .6.分式: (1),()()A A M A A MB B ÷==,(其中0,0,、B M B M ≠≠为整式)(2)a b c c ±= ,a c b d ±= ,a c b d = ,a c b d÷= . (3) ()nn n a ab b=7.二次根式的性质: (1=(,);a b (2= (,);a b(3)2= ();a(4(0);(0);a a a ≥⎧==⎨<⎩(5的有理化因式是 .8.指数(m 为整数)(1)a 的正整指数幂ma = ;(2)零指数0a = ();a(3)负整数指数m a -= ();a1()m a-= ().a()()m m a bb a-= (a ≠ 0,且 b ≠ 0).1.关于x 的方程0ax b +=的解的情况: 当0a≠时,方程的解为 ;当0,0a b ==时,方程解的情况为 ; 当0,0ab =≠时,方程解的情况为 .2.一元二次方程20(0)ax bx c a ++=≠的两根为12、x x(1)求根公式x = 2(4)b ac-(2)根的判别式240b ac ∆=->⇔方程 实根; 240b ac ∆=-=⇔方程 实根;240b ac ∆=-<⇔方程 实根;240b ac ∆=-≥⇔方程 实根;1.一元一次不等式0,a ax b >>的解集是 ;ax b <的解集是 ; 0,a ax b <>的解集是 ;ax b <的解集是 .2.一元一次不等式组(a b <),x a x b>⎧⎨>⎩的解集是 ;,x a x b<⎧⎨<⎩的解集是 ;,x a x b <⎧⎨>⎩的解集是 ;,x a x b >⎧⎨<⎩的解集是 ;1.第一象限内的点的坐标符号为( , );第二象限内的点的坐标符号为( , ); 第三象限内的点的坐标符号为( , );第四象限内的点的坐标符号为( , ); 如图1,坐标平面内任意点(,)P x y ,PQ x ⊥轴,则_____,_____,_____;QP OQ OP === 图1如图2,x 轴上任一点A 的坐标为 ,OA= ,Y 轴上任一点B 坐标为 ,OB= ,AB= .2.在X 轴上的两点A (,0)A x 和B (,0)B x 之间的距离为 AB= ; 在y 轴上两点A (0,)A y ,B (0,)B y 之间的距离AB= ;3. (a,b)关于x 轴对称点的坐标 ; 图2(a,b) 关于y 轴对称点的坐标 ; (a,b) 关于原点对称点的坐标 .4.函数自变量的取值范围:(1) y =关于x 的整式, x 取 ; (2) y =关于x 的分式,分式的分母 ; (3) y =关于x 的二次根式,二次根式的被开方式 ;(4) x 、y 是与实际相关的两个变量,y 是x 的函数,除上述要求外,x 的取值还必须使实际问题 ,几何图形 .5.四种简单函数(1)正比例函数 ; (2)反比例函数 ; (3)一次函数 ;(4)二次函数的一般式: ,顶点坐标( , ),对称轴方程: . 二次函数顶点式: ,顶点坐标( , ),对称轴方程 . 二次函数双根式: ,与x 轴的交点坐标为( , ),( , ). 6.看抛物线与 x 轴的相对位置定判别式:抛物线与 x 轴有两个交点,△ ;抛物线与 x 轴有一个交点,△ ;抛物线与 x 轴无交点, △ .1、 在统计里, 我们所要考察对象的全体叫做 , 总体中的每一个考察对象叫做 , 样本从总体中所抽取的一部分个体叫做总体的一个 , 样本容量样本中个体的数目叫做 。

数学初中全部重要公式

数学初中全部重要公式

数学初中全部重要公式数学是一门挑战人类智慧的学科,重要公式则是这门学科必不可少的工具。

本文将为您介绍初中数学的全部重要公式。

1. 代数基础一元一次方程:ax + b = c二元一次方程组:ax + by = cdx + ey = f平方差公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2立方差公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^32. 几何基础勾股定理:a^2 + b^2 = c^2正弦定理:a/sin A = b/sin B = c/sin C余弦定理:a^2 = b^2 + c^2 - 2bc cos A面积公式:三角形面积 S = 1/2 ab sin C,矩形面积 S = ab,圆形面积S = πr^23. 函数与图像函数定义:y = f(x)一次函数:y = kx + b二次函数:y = ax^2 + bx + c正比例函数:y = kx反比例函数:y = k/x指数函数:y = a^x对数函数:y = loga x平移、翻折和缩放:y = a f(bx - c) + d 4. 三角函数正弦函数:y = sin x余弦函数:y = cos x正切函数:y = tan x余切函数:y = cot x反正弦函数:y = arcsin x反余弦函数:y = arccos x反正切函数:y = arctan x旋转公式:sin (A + B) = sin A cos B + cos A sin B,cos (A + B) = cos A cos B - sin A sin B5. 统计学样本均值:x̄= (x1 + x2 + … + xn) / n样本方差:S^2 = [(x1 - x̄)^2 + (x2 - x̄)^2 + … + (xn - x̄)^2] / (n - 1)标准差:S = √S^2频数分布表:将数据按大小排列,计算每个数据在样本中出现的次数,并列出频数分布表以上是初中数学全部重要公式的介绍。

数学背熟48个公式初中

数学背熟48个公式初中

数学背熟48个公式初中在初中数学学习过程中,公式是非常重要的一部分。

背熟一些基础的数学公式可以帮助同学们更好地理解和应用知识,提高解题效率。

下面我整理了初中数学中比较常用的48个公式,供同学们参考。

一、代数部分: 1. 二次方程的求根公式:x =−b±√b 2−4ac 2a 2. 同底数幂的乘法:a m ×a n =a m+n 3. 同底数幂的除法:a m a n =a m−n 4. 指数函数的性质:a 0=1 5. 平方差公式:(a +b )(a −b )=a 2−b 2 6. 一元二次方程的判别式:Δ=b 2−4ac 7. 一元二次方程根的关系:x 1+x 2=−b a ,x 1×x 2=c a 8. 因式分解:(a ±b )2=a 2±2ab +b 2 9. 两点间距离的公式:√(x2−x1)2+(y2−y1)2 10. 两点间中点坐标:(x1+x22,y1+y22)二、几何部分: 11. 三角形内角和:A +B +C =180∘ 12. 三角形面积公式:S =12×a ×b ×sinC 13. 直角三角形勾股定理:c 2=a 2+b 2 14. 圆的面积公式:S =πr 2 15. 圆的周长公式:C =2πr 16. 等腰三角形的高:ℎ=√a 2−(b 2)217. 应用三角函数解题:sin 2θ+cos 2θ=1 18. 余弦定理:c 2=a 2+b 2−2abcosC 19. 正弦定理:a sinA =b sinB =c sinC20. 两角和公式:sin (A ±B )=sinAcosB ±cosAsinB三、统计部分: 21. 平均数的计算公式:x ‾=∑x in i=1n 22. 中位数的计算:中位数是将数据按大小顺序排列后位于中间的数值 23. 众数的定义:出现次数最多的数值 24. 极差的计算:R =max (x i )−min (x i ) 25. 方差的计算公式:S 2=∑(x i −x‾)2n i=1n 26. 标准差的计算公式:S =√S 2 27. 相对频率的计算:相对频率 = 某一数值出现的次数 / 总次数 28. 联合概率的计算:P (A ∩B )=P (A )×P (B ) 29. 条件概率的计算:P (A|B )=P (A∩B )P (B ) 30. 事件的互斥概率:P (A ∪B )=P (A )+P (B ) when A ∩B =∅四、数列部分: 31. 等差数列通项公式:a n =a 1+(n −1)d 32. 等比数列通项公式:a n =a 1×q n−1 33. 等差数列前n 项和公式:S n =n (a 1+a n )2 34. 等比数列前n 项和公式:S n =a 1(1−q n )1−q 35. 斐波那契数列:F n =F n−1+F n−2,其中F 1=F 2=1五、函数部分: 36. 一次函数一般式:y=kx+b 37. 二次函数顶点坐标:(ℎ,k) 38. 二次函数开口方向判断:当a>0时开口向上,当a<0时开口向下 39. 二次函数与x轴交40. 绝对值函数图像:y轴是对称轴点计算:x=−b±√b2−4ac2a六、概率部分: 41. 事件发生的概率公式:P(A)=n(A)42. 事件的互斥概率:n(S)P(A∪B)=P(A)+P(B) when A∩B=∅ 43. 事件的对立事件概率:P(A)=1−P(A) 44. 独立事件的计算:P(A∩B)=P(A)×P(B) 45. 条件概率的计算:P(A|B)=P(A∩B)46. 贝P(B)叶斯定理:P(A|B)=P(B|A)×P(A)47. 频率与概率的关系:频率是统计结果,而概率是理论P(B)值 48. 大数定律:随着试验的次数增加,事件发生的频率会逐渐趋近于该事件的概率值以上是初中数学中常见的48个重要公式,希望同学们能够通过反复背诵和应用,加深对数学知识的理解和掌握,提升数学学习的效果。

初中数学必背公式大全(拿去不用谢)

初中数学必背公式大全(拿去不用谢)

初中数学必背公式大全(拿去不用谢)1. 一次函数的公式:y = kx + b ,其中k为斜率,b为y轴截距。

2.二次函数的顶点坐标公式:(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

3.二次函数的轴对称线公式:x=h,其中h为顶点的横坐标。

4. 二次函数的判别式:Δ = b^2 - 4ac ,其中a、b、c为二次函数的系数。

5.二次函数的解的公式:x=(-b±√Δ)/(2a),其中a、b、c为二次函数的系数。

6. 三角函数的正弦定理:a / sinA = b / sinB = c / sinC ,其中a、b、c为三角形的边长,A、B、C为对应角的度数。

7. 三角函数的余弦定理:c^2 = a^2 + b^2 - 2abcosC ,其中a、b、c为三角形的边长,C为夹角的余弦。

8. 三角函数的正切公式:tanA = sinA / cosA ,其中A为角度。

9.平方差公式:(a+b)(a-b)=a^2-b^2,其中a、b为变量。

10. 平方和公式:(a + b)^2 = a^2 + 2ab + b^2 ,其中a、b为变量。

11. 立方差公式:(a + b)(a^2 - ab + b^2) = a^3 + b^3 ,其中a、b为变量。

12.代数因式分解公式:x^2-y^2=(x+y)(x-y),其中x、y为变量。

13. 余弦的和差公式:cos(A ± B) = cosAcosB - sinAsinB ,其中A、B为角度。

14. 正弦的和差公式:sin(A ± B) = sinAcosB ± cosAsinB ,其中A、B为角度。

15. 余切的和差公式:tan(A ± B) = (tanA ± tanB) / (1 ∓tanAtanB) ,其中A、B为角度。

16.相反数的和等于零:a+(-a)=0,其中a为实数。

17.加减相同数等于零:a+(-a)=0,其中a为实数。

初中数学必背公式大全

初中数学必背公式大全

初中数学必背公式大全初中数学是学生在中学阶段必须学习的一门基础学科,而数学公式则是学习数学的重要工具。

下面将为大家详细介绍初中数学必背的公式,帮助大家更好地理解和掌握这些重要的数学知识。

一、代数公式1. 平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$3. 一次方程的解:对于方程$ax+b=0$,有$x=-\frac{b}{a}$4. 二次方程的解:对于方程$ax^2+bx+c=0$,有$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$5. 负负得正:两个负数相乘的结果是正数。

6. 负数平方等于正数:$(-a)^2=a^2$7. 数轴上的加减法:在数轴上,两个数的和等于它们在数轴上的距离的长度,两个数的差等于它们在数轴上的距离的长度。

8. 分配律:$a(b+c)=ab+ac$9. 结合律:$(a+b)+c=a+(b+c)$10. 交换律:$a+b=b+a$11. 分数的乘法:$\frac{a}{b}\times\frac{c}{d}=\frac{ac}{bd}$12. 分数的除法:$\frac{a}{b}\div\frac{c}{d}=\frac{a}{b}\times\frac{d}{c}=\frac{ad}{bc}$二、几何公式1. 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即$a^2+b^2=c^2$2. 圆的面积公式:圆的面积等于半径的平方乘以π,即$S=\pi r^2$3. 三角形的面积公式:设三角形的底为b,高为h,则三角形的面积等于底乘以高的一半,即$S=\frac{1}{2}bh$4. 等腰三角形的面积公式:设等腰三角形的底为b,高为h,则等腰三角形的面积等于底乘以高的一半,即$S=\frac{1}{2}bh$5. 平行四边形的面积公式:设平行四边形的底为b,高为h,则平行四边形的面积等于底乘以高,即$S=bh$6. 立方体的体积公式:立方体的体积等于边长的立方,即$V=a^3$7. 直角三角形的正弦定理:直角三角形中,较长直角边的长度与斜边的比等于较短直角边的长度与斜边的比,即$\frac{a}{c}=\frac{b}{a}$8. 任意三角形的正弦定理:对于任意三角形ABC,有$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形的外接圆半径。

初中数学重点公式大全

初中数学重点公式大全

初中数学重点公式大全1 过两点有且只有一条直线5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^250多边形内角和定理n边形的内角的和等于(n-2)×180°55 平行四边形的对角线互相平分65 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷283 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值109定理不在同一直线上的三点确定一个圆。

初中数学重要公式整理

初中数学重要公式整理

初中数学重要公式整理一、整式的乘积公式:1.两个单项式的乘积是它们各自的系数相乘,并将它们的字母部分相乘。

例如:3x * 5y = 15xy2.两个多项式相乘,将每一个单项式在另一个多项式中每一个单项式上都进行乘法运算,然后再将结果相加。

例如:(2x + 3y)(4x - 5y) = 8x^2 - 10xy + 12xy - 15y^2 = 8x^2 + 2xy - 15y^23.平方差公式:(a+b)(a-b)=a^2-b^2例如:(2x+3y)(2x-3y)=4x^2-9y^2二、因式分解公式:1. a^2 + 2ab + b^2 = (a + b)^2例如:x^2 + 2xy + y^2 = (x + y)^22. a^2 - 2ab + b^2 = (a - b)^2例如:x^2 - 2xy + y^2 = (x - y)^23.a^2-b^2=(a+b)(a-b)例如:x^2-4=(x+2)(x-2)4. a^3 + b^3 = (a + b)(a^2 - ab + b^2)例如:x^3 + y^3 = (x + y)(x^2 - xy + y^2)5. a^3 - b^3 = (a - b)(a^2 + ab + b^2)例如:x^3 - y^3 = (x - y)(x^2 + xy + y^2)三、关于平方根的公式:1.平方根的性质:若a>0,则√a^2=a例如:√9^2=92.平方根的乘积与商:√(ab) = √a * √b例如:√(5*4)=√5*√4=2√5√(a/b)=√a/√b例如:√(25/4)=√25/√4=5/2四、勾股定理:勾股定理是一个关于直角三角形的定理,它表明,直角三角形的两条直角边的平方和等于斜边的平方。

即:a^2+b^2=c^2其中a,b为直角边的长度,c为斜边的长度。

五、三角函数公式:1. sin(α ± β) = sinαcosβ ± cosαsinβ2. cos(α ± β) = cosαcosβ ∓ sinαsinβ3. tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)4. sin2α = 2sinαcosα5. cos2α = cos^2 α - sin^2 α = 2cos^2 α - 1 = 1 - 2sin^2 α6. tan2α = (2tanα) / (1 - tan^2 α)7. sinα + sinβ = 2sin((α + β)/2) cos((α - β)/2)8. sinα - sinβ = 2cos((α + β)/2) sin((α - β)/2)9. cosα + cosβ = 2cos((α + β)/2) cos((α - β)/2)10. cosα - cosβ = -2sin((α + β)/2) sin((α - β)/2)以上公式仅是初中数学中的一部分重要公式,希望对你的数学学习有所帮助。

初中数学必背公式大全

初中数学必背公式大全

初中数学必背公式大全1.同角或等角的补角相等,同角或等角的余角相等。

2.两点之间只有一条直线,且线段最短。

3.一点到已知直线垂直的直线只有一条。

4.直线外一点与直线上各点连接的所有线段中,垂线段最短。

5.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

6.如果两条直线都和第三条直线平行,这两条直线也互相平行。

7.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

8.定理:三角形两边的和大于第三边;推论:三角形两边的差小于第三边。

9.三角形三个内角的和等于180°;推论1:锐角互余;推论2:一个外角等于和它不相邻的两个内角的和;推论3:一个外角大于任何一个和它不相邻的内角。

10.全等三角形的对应边、对应角相等;SAS公理:有两边和它们的夹角对应相等的两个三角形全等;ASA公理:有两角和它们的夹边对应相等的两个三角形全等;AAS公理:有两角和其中一角的对边对应相等的两个三角形全等;SSS公理:有三边对应相等的两个三角形全等;HL公理:有斜边和一条直角边对应相等的两个直角三角形全等。

11.在角的平分线上的点到这个角的两边的距离相等;到一个角的两边的距离相同的点,在这个角的平分线上。

12.等腰三角形的两个底角相等,顶角的平分线平分底边并且垂直于底边,顶角平分线、底边上的中线和底边上的高互相重合;等边三角形的各角都相等,并且每一个角都等于60°。

13.线段垂直平分线上的点和这条线段两个端点的距离相等;逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

14.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边上的一半。

75.平行线等分线段定理指出,如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

76.由平行线等分线段定理可以得到推论1,即经过梯形一腰的中点与底平行的直线,必平分另一腰。

(完整版)初中数学公式大全(绝对经典)

(完整版)初中数学公式大全(绝对经典)

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学知识点和公式大全

初中数学知识点和公式大全

初中数学知识点和公式大全1.整数及其运算:-整数概念-整数的加减法-整数的乘法-整数的除法-整数的混合运算2.分数及其运算:-分数的概念-分数的加减法-分数的乘法-分数的除法-分数的混合运算3.百分数:-百分数的概念-百分数的转化-百分数的加减法-百分数的乘法-百分数的除法4.小数:-小数的概念-小数的加减法-小数的乘法-小数的除法-小数的混合运算5.平均数与比例:-算术平均数-加权平均数-比例的概念-比例的性质-比例的计算6.代数式:-代数式的概念-同类项与合并同类项-代数式的加减法-代数式的乘法-代数式的除法7.一元一次方程:-一元一次方程的概念-一元一次方程的解的性质-一元一次方程的解法-一元一次方程的应用问题8.一元一次不等式:-一元一次不等式的概念-一元一次不等式的解的性质-一元一次不等式的解法-一元一次不等式的应用问题9.平行线与相交线:-平行线与笛卡尔坐标系-平行线之间的关系-平行线之间的夹角-相交线的概念-相交线之间的关系10.图形的性质:-点、直线、线段和角的概念-三角形的性质-四边形的性质-圆的性质-常见几何图形的性质11.几何变换:-平移-旋转-对称-放缩-切变12.数据的收集与统计:-数据的收集-数据的整理与处理-数据的统计图与分析-数据的描述与比较-数据的预测与推断1.面积与周长公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-长方形的周长公式:周长=2×(长+宽)-正方形的周长公式:周长=4×边长-三角形的周长公式:周长=边1+边2+边3-圆的周长公式:周长=2×π×半径2.二次根式运算公式:-二次根式的加减法公式:√a±√b=√a±√b(a≠b) - 二次根式的乘法公式:(√a) × (√b) = √ab-二次根式的除法公式:(√a)/(√b)=√(a/b)(b≠0)3.线性方程和一元一次方程公式:- 线性方程的一般形式:ax + b = 0-一元一次方程的解的公式:x=-b/a4.几何图形的面积和体积公式:-三角形的面积公式:面积=底×高/2-圆的面积公式:面积=π×半径²-球的体积公式:体积=(4/3)×π×半径³-长方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=π×半径²×高-圆锥体的体积公式:体积=(1/3)×π×半径²×高5.正比例和反比例公式:- 正比例公式:y = kx (k为常数) -反比例公式:y=k/x(k为常数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学全部重点公式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

相关文档
最新文档