2020年中考数学三角形专题复习(带答案)
2020年中考数学三角形专题练习(含答案)
2020年中考数学三角形专题练习【名师精选全国真题,值得下载练习】一.选择题(每题3分,共30分)1.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边中线的交点B.三条角平分线的交点C.三边高的交点D.三边垂直平分线的交点2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AC,则∠BCD的度数等于()A.20°B.30°C.40°D.50°4.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°5.适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°,(3)a=5,b=12,c=13,(4)a=52,b=122,c=132,A.1个B.2个C.3个D.4个6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为()A.36°B.39°C.38°D.40°7.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a,最大等边三角形的边长为b,则a与b的关系为()A.b=3a B.b=5a C.b=a D.b=a8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE.分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH =45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④10.如图,在Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P 作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=P A;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共30分)11.如图,△ABC为等边三角形,D、E分別是AC、BC上的点,且AD=CE,AE与BD 相交于点P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为.12.已知等腰△ABC中,顶角∠A为36°,BD平分∠ABC交AC于D,那么AD:AC =.13.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA ⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)14.已知点O是三角形ABC的重心,DE经过点O且平行于BC,则△ADE与四边形DBCE的面积比为.15.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =5cm,AC=3cm,BC=4cm,则△DEB的周长为.16.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=.18.如图,在△ABC中,中线BD,CE相交于点O,若S△ABC=4,则S△DOE=.19.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.20.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造根.三.解答题(每题8分,共40分)21.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC 于E,点F是AE的中点.(1)线段FD与线段FC的数量关系,位置关系;(2)如图2,将△BDE绕点B逆时针旋转a(0°<a<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.24.已知,如图,∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC.求证:E是CD的中点.25.△ABC是等边三角形,BD是角平分线,过点D作DE⊥AB于E,交BC边的延长线于点F,AE=2.(1)求证:△DCF是等腰三角形;(2)求BF的长.参考答案一.选择题1.解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选:A.2.解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.解:∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B.4.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.5.解:(1)∵a=b,∠A=45°,∴∠A=∠B=45°,∴∠C=90°,∴△ABC是直角三角形;(2)∵∠A=32°,∠B=58°,∴∠C=90°,∴△ABC是直角三角形;(3)a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形;(4)a=52,b=122,c=132,∴a2+b2≠c2,∴△ABC不是直角三角形.∴是直角三角形的有(1)(2)(3).故选:C.6.解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠P=38°,∴∠C=2×38°﹣40°=36°,故选:A.7.解:设第二个小的等边三角形的边长为x,则第三个小的等边三角形的边长为:x+a,第四个小的等边三角形的边长为:x+2a,最大的个小的等边三角形的边长b=x+3a,又∵b=3x,∴3x=x+3a,∴x=a,∴b=3x=a,故选:D.8.解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.解:∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°,∵EH平分∠AEG,∴∠AEH=∠GEH∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG,∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°,∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确,∴∠AFE=∠CFG=90°,∴∠FCG=∠FGC=45°,∴CF=FG,∵∠ADC=∠GFC=90°,∠ACD=∠GCF,AC=GC,∴△ADC≌△GFC(AAS),∴AD=CF=FG,∵AE=EG,∴EF=DE,∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠ECD=∠DBG,EC=GB,∵∠DHC=∠DHB,∠HCD=∠HBD,HD=HD,∴△HDC≌△HDB(AAS),∴HC=HB,∴HE=EG,∵∠DHE=∠DHG,DH=DH,∴△HDE≌△HDG(SAS),∴∠HDG=∠HDE=45°,故①正确,∴DE=DM,EF=DE≠2DM,故③错误,作ET∥AC交CD于T.∵∠DET=∠A=45°,∠DTE=∠ACD=45°,∴DE=DT=DG,∵DA=DC,∴AE=CT,∴CG=CT+TG=AE+2DG,故④正确,故选:B.10.解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,故②正确.在△APH和△FPD中,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.二.填空题(共10小题)11.解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE,BD=AE,∴∠APD=∠ABP+∠P AB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴BP=2PF=8,∵PD=1,∴BD=BP+PD=9,∴AE=BD=9.故答案为9.12.解:假设AB=AC=1,那么在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC,∴AC:BC=BC:DC,而BC=BD=DA(等腰的性质)所以设AD=x,那么CD=1﹣x,1:x=x:(1﹣x),所以舍负根,得到:x=,∴AD:AC=.13.解:①∵AH是PC的垂直平分线,∴P A=AC=AB,∵AD平分∠P AB,∴∠P AD=∠BAD,在△P AD和△BAD中,,∴△P AD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠P AD,∴∠BAC=∠CAQ+∠BAQ=∠P AD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠P AB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.14.解:连接AO并延长交BC于F,如图,∵点O是三角形ABC的重心,∴OA=2OF,∴AO:AF=2:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△ADE与四边形DBCE的面积比为4:5.故答案为4:5.15.解:∵AD平分∠CAB交BC于D,DE⊥AB,DC⊥AC,∴DC=DE,在Rt△ADC和△ADE中,∴Rt△ADC≌△ADE(HL),∴AE=AC=3,∴BE=AB=5﹣3=2,∴△DEB的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).故答案为6cm.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.17.解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG===4,故答案为4.18.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=,∴△DOE∽△BOC,,∴S△DOE=S△BDE=S△ABD=S△ABC==,故答案为.19.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.故答案为:48;28.20.解:∵BC=AB,∴∠BCA=∠A=15°,∴∠DBC=∠BCA+∠A=30°.同理,∠CDB=∠DBC=30°,∴∠DCE=∠CDB+∠A=45°,∠DEC=∠DCE=45°,∴∠FDE=∠DEC+∠A=60°,∠DFE=∠FDE=60°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有5条.故答案是:5.三.解答题(共5小题)21.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.22.(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD,∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°,∵AB=AC,∴∠ABC=∠ACB=50°,∴∠A=180°﹣50°﹣50°=80°.23.解:(1)如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FCA,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC,故答案为:DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF≤3.24.证明:作EF⊥AB于点F,∵∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC,∴EF=ED,EF=EC,∴ED=EC,∴点E为CD的中点.25.证明:(1)∵△ABC是等边三角形,BD是中线,∴∠A=∠ACB=60°,AC=BC,AD=CD=AC,∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=4,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴△DCF是等腰三角形,(2)∵DC=CF,∴BF=BC+CF=2AD+AD=12。
2020年中考数学复习专题练:《三角形综合 》(含答案)
2020年中考数学复习专题练:《三角形综合》1.如图:在四边形ABCD中,AB∥CD,∠BCD=90°,且AB=2,DC=BC=4.(1)求sin∠ADC的值.(2)E是四边形内一点,F是四边形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF 的形状.(等腰直角三角形)(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.2.如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=°时,AB=2BM;(2)请添加一个条件:,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.3.综合与实践:操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.4.如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.5.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x 轴的正半轴,且FH⊥FG,求m+n的值.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB射线AC于点Q.设点P的运动时间为t秒(t>0).(1)线段CQ的长为(用含t的代数式表示)(2)当△APQ与△ABC的周长的比为1:4时,求t的值.(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,直接写出t的值.7.如图,在平面内给定△ABC,AB=AC,点O到△ABC的三个顶点的距离均等于c(c为常数),到点O的距离等于c的所有点组成图形G,过点A作AB的垂线交BC于点E,交图形G于点D,延长DA,在DA的延长线上存在一点F,使得∠ABF=∠ABC.(1)依题意补全图形;(2)判断直线BF与图形G交点的个数并证明;(3)若AD=4,cos∠ABF=,求DE的长.8.如图,△ABC是等边三角形,AB=8,AH⊥BC,垂足为H点,点D是射线AH上的动点,连接CD,以CD为边在CD的下方作等边△CDE,连接BE.(1)当点D在线段AH上时,设AD=x,△CDE的面积为y,求y关于x的函数解析式,并求出自变量x的取值范围;(2)当△CDE的面积等于△ABC的面积的时,判断线段CE与△ABC的边是否存在特殊的位置关系?若存在,说出是什么关系并证明;若不存在,请说明理由.9.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为圆心以AM为半径作圆弧,以B为圆心以BN为半径作圆弧,两圆弧相交于点C构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)当∠CAB是锐角时,求△ABC的最大面积?10.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,D是边AC上一点,且CD=1cm.动点P从点D出发,以1cm/s的速度沿D→A向终点A匀速运动;同时动点Q从点B出发,以1m/s的速度沿B→C向终点C匀速运动,连结PQ,设点P的运动时间为ts,△CPQ的面积为Scm2(1)当PQ=3时,求t的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围;(3)连结DQ,当直线DQ将△CPQ分成面积比为1:2两部分时,直接写出t的值,并写出此时S的值.11.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.12.如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d)(1)当a=2时,则C点的坐标为(,);(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由;(3)当a=2时,在第一象限内是否存在一点P,使△PAB与△ABC全等?若存在,直接写出P点坐标;若不存在,请说明理由13.平面直角坐标系中,若点A(a,b),且+=0,点B(m,m),其中m>1,R点在x轴正半轴上,RA⊥RB(1)求a、b的值;(2)连接AB交y轴于E,连接ER,若∠ARO=15°,求的值;(3)点D(﹣1,0)、C(0,1),射线DC分别交线段AR、AB于点S、T,若SC=n,CT =k,试用含n的式子表示k.14.在平面直角坐标系中,A(﹣3,﹣2),B(2,4).(1)如图1,求△AOB的面积;(2)如图2,求AB与两坐标轴的交点C,D坐标;(3)在坐标轴上求作点P,使△ABP的面积为6,求P点坐标,利用图3解答.15.如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(0,4),点B在x的负半轴上,△AOB的面积为8,作△AOB关于y轴的对称图形,点B的对应点为C.(1)求线段OC的长;(2)点D从A点出发,沿线段AO向终点O运动,同时点E从点C出发,沿x轴的正方向运动,且CE=AD,连接DE交AC于点G,判断DG和EG的数量关系,并说明理由.(3)在(2)的条件下,当∠CEG=∠ABD时,求点G点坐标.16.在Rt△ABC中,AC=BC,∠ACB=90°,点D是BC上一点.(1)如图1,AD平分∠BAC,求证:AB=AC+CD;(2)如图2,点E在线段AD上,且∠CED=45°,∠BED=30°,求证:BE=2AE;(3)如图3,CD=BD,过B点作BM⊥AD交AD的延长线于点M,连接CM,过C点作CN⊥CM交AD于N,求证:DN=3DM.17.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ 的值(用含n的式子表示).18.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)19.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.20.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1.解:(1)如图1,过点A作AM⊥DC于M,∵∠BCD=90°,AM⊥CD,∴AM∥BC,AB∥CD,∴四边形ABCM是平行四边形,且∠BCD=90°,∴四边形ABCM是矩形,∴AM=CB=4,AB=CM=2,∴DM=2,∴AD===2,∴sin∠ADC===;(2)△DEF是等腰直角三角形,理由如下:∵∠EDC=∠FBC,DE=BF,BC=CD,∴△CDE≌△CBF(SAS)∴∠DCE=∠BCF,CE=CF,∴∠DCE+∠ECB=∠BCF+∠BCE,∴∠DCB=∠ECF=90°,且CE=CF,∴△DEF是等腰直角三角形;(3)设BE=k,则CE=CF=2k,∴EF=2k,∵∠BEC=135°,又∠CEF=45°,∴∠BEF=90°,∴BF===3k,∴sin∠BFE=.2.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN;②成立,理由:如图2中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN.3.(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同法可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=EC=2.4.解:(1)作AH⊥BC于H,BM⊥AC于M.∵AB=AC,AH⊥BC,∴BH=CH=3,∴AH===4,=•BC•AH=•AC•BM,∵S△ABC∴BM==,∴AM===,∴cos A==.(2)设AH交CD于K.∵∠BAC=2∠ACD,∠BAH=∠CAH,∴∠CAK=∠ACK,∴CK=AK,设CK=AK=x,在Rt△CKH中,则有x2=(4﹣x)2+32,解得x=,∴AK=CK=,∵∠ADK=∠ADC,∠DAK=∠ACD,∴△ADK∽△CDA,∴====,设AD=m,DK=n,则有,解得m=,n=.∴AD=.(3)结论:AD:BE=5:6值不变.理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°,∴∠EBC=∠BAC,∵∠EDC=∠BAC,∴∠EBC=∠EDC,∴D,B,E,C四点共圆,∴∠EDB=∠ECB,∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC,∴∠EDB=∠ACD,∴∠ECB=∠ACD,∴△ACD∽△BCE,∴==.5.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.6.解:(1)在Rt△ABC中,tan A===,由题意得,AP=3t,在Rt△APQ中,tan A==,∴PQ=AP=4t,根据勾股定理得,AQ===5t.当0<t≤时,如图1所示:CQ=AC﹣AQ=6﹣5t;当<t≤时,如图2所示:CQ=AQ﹣AC=5t﹣6;故答案为:6﹣5t或5t﹣6;(2)∵PQ⊥AB,∴∠APQ=90°=∠ACB,∵∠A=∠A,∴△APQ∽△ACB,∴==,即=,解得:t=,即当△APQ与△ABC的周长的比为1:4时,t为秒.(3)分两种情况:①当0<t≤时,如图1所示:△APQ与△ABC重叠部分图形的面积为S=△APQ的面积=×3t×4t=6t2;即S=6t2(0<t≤);②当<t≤时,如图2所示:由(1)得:PQ=3t,PQ=4t,AQ=5t,同(2)得:△CDQ∽△PAQ,∴==,即==,解得:CD=(5t﹣6),∴△APQ与△ABC重叠部分图形的面积为S=△APQ的面积﹣△CDQ的面积=×3t×4t ﹣×(5t﹣6)×(5t﹣6)=﹣t2+t﹣;即S=﹣t2+t﹣(<t≤);(4)由(1)知,AQ=5t,PQ=4t,CQ=6﹣5t或CQ=5t﹣6,当CQ=PQ时,四边形BCQP是轴对称图形,则4t=6﹣5t,∴t=;当<t≤时,设PQ和BC相交于D,当AC=AP时,四边形ACDP是轴对称图形,则6=3t,∴t=2.综上所述,当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,t的值为秒或2秒.7.解:(1)如图,作AB,AC的垂直平分线交于点O,以O为圆心,OB长为半径作圆,⊙O 为图形G;(2)直线BF与图形G交点只有一个,理由如下:∵AD⊥AB,∴∠BAD=90°,∴BD是直径,∠ADB+∠ABD=90°,∵AB=AC,∴∠ACB=∠ABC,∵∠ACB=∠ADB,∠ABF=∠ABC,∴∠ABF=∠ADB,∴∠ABF+∠ABD=90°,∴∠DBF=90°,∴BD⊥BF,且OB是半径,∴BF是圆O的切线,∴直线BF与图形G交点的只有一个;(3)∵cos∠ABF=cos∠ADB==,∴BD=5,∴AB===3,∵∠ABE=∠ADB,∠BAE=∠BAD=90°,∴△ABE∽△ADB,∴,∴∴AE=,∴DE=AD﹣AE=.8.解:(1)∵△ABC是等边三角形,AB=8,AH⊥BC,∴BC=AC=AB=8,BH=HC=4,∠HAC=30°,∴AH=HC=4,∴DH=4﹣x,∴DC2=DH2+CH2=(4﹣x)2+16∵△CDE是等边三角形,=CD2=[(4﹣x)2+16]=x2﹣6x+16(0≤x≤4)∴y=S△CDE(2)∵当△CDE的面积等于△ABC的面积的,∴x2﹣6x+16=××64,∴x=或,当x=时,即AD=,如图1,∴DH=AH﹣AD=,∵tan∠DCH===,∴∠DCH=30°,∴∠ACD=∠ACB﹣∠DCH=30°,∴∠ACE=∠DCE+∠ACD=90°,∴CE⊥AC;当x=时,即AD=,如图2,∴DH=AD﹣AH=,∵tan∠DCH===,∴∠DCH=30°,∴∠BCE=∠DCH+∠DCE=90°,∴CE⊥BC.9.解:(1)∵在△ABC中,AC=1,AB=x,BC=3﹣x.,解得1<x<2;(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得x=,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得x=,满足1<x<2,综上,x=或;(3)在△ABC中,作CD⊥AB于D,设CD=h,△ABC的面积为S,则S=xh,①若点D在线段AB上,则+=x,∴(3﹣x)2﹣h2=x2﹣2x+1﹣h2,即x=3x﹣4,∴x2(1﹣h2)=9x2﹣24x+16,即x2h2=﹣8x2+24x﹣16.∴S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(≤x<2),当x=时(满足≤x<2),S2取最大值,从而S取最大值;②若点D在线段MA上,则﹣=x,同理可,得S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(1<x≤),易知此时S<,综合①②得,△ABC的最大面积为.10.解:(1)由题意PC=1+t,CQ=3﹣t,在Rt△PQC中,∵∠C=90°,PQ=3,PC=1+t,CQ=3﹣t,∴32=(1+t)2+(3﹣t)2,解得t=.∴PQ=3时,t的值为.(2)S=•PC•CQ=•(1+t)(3﹣t)=﹣t2+t+(0≤t≤3).(3)∵直线DQ将△CPQ分成面积比为1:2两部分,∴CD=2PD或PD=2CD,∴1=2t或t=2,解得t=或2,当t=时,S=﹣×++=,当t=2时,S=﹣×4+2+=,∴t=s或2s时,直线DQ将△CPQ分成面积比为1:2两部分.11.解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.12.解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:﹣2,3;(2)动点A在运动的过程中,c+d的值不变.过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变;(3)存在,使△PAB与△ABC全等,如图2中,过C作CM⊥x轴于M,过P作PE⊥x轴于E则∠CMB=∠PEB=90°,∵△CAB≌△PAB,∴∠PBA=∠CBA=45°,BC=BP,∴∠CBP=90°,∴∠MCB+∠CBM=90°,∠CBM+∠PBE=90°,∴∠MCB=∠PBE,在△CMB和△BEP中,,∴△CMB≌△BEP(AAS),∴PE=BM,CM=BE,∵C(﹣2,3),B(﹣1,0),∴PE=1,OE=BE﹣BO=3﹣1=2,即P的坐标是(2,1).13.解:(1)∵+=0,又∵≥0,≥0,∴a=﹣1,b=1.(2)如图1中,作AM⊥x轴于M,AH⊥y轴于H,在RM上取一点K,使得AK=KR,连接AK,AO.∵A(﹣1,1),∴AM=AH=1,∵AK=KR,∴∠KRA=∠KAR=15°,∴∠AKM=∠KAR+∠KRA=30°,∴AK=KR=2AM=2,MK=,∴MR=2+,∴AR===+,∵B(m,m),∴OB平分∠EOB,∵OA平分∠EOM,∴OA⊥OB,∴∠AOB=∠ARB=90°,∴A,O,R,B四点共圆,∴∠BAR=∠BOR=45°,∴△ABR是等腰直角三角形,∴AB=AR=2+2,∵AH∥MR,∴∠HAR=∠ARM=15°,∴∠EA=30°,∴AE==,∴==.(3)如图,作SH⊥AD于H.由题意四边形ADOC是正方形,∴∠ACD=45°=∠CAT+∠ATC,∵∠CAT+∠SAC=45°,∴∠SAC=∠ATC,∵∠ASC=∠TSA,∴△SAC∽△STA,∴=,∴SA2=SC•ST,∵CS=n,CT=k,CD=,∴SH=DH=(﹣n),AH=n,∴AS2=AH2+HS2=n2+(﹣n)2=n(n+k),∴k=(0<n<).14.解:(1)如图1,过A作AC∥x轴,过B作BC⊥AC于C,BC交x轴于E,AC交y轴于D,∵A (﹣3,﹣2),B (2,4),∴△AOB 的面积=S △ACB ﹣S △AOD ﹣S △BOE ﹣S 长方形ODCE ,=﹣﹣﹣2×2,=15﹣3﹣4﹣4,=4;(2)设直线AB 的解析式为:y =kx +b (k ≠0),则,解得:,∴直线AB 的解析式为:y =x +,当x =0时,y =,∴C (0,),当y =0时,x +=0,解得:x =﹣,∴D (,0);(3)①当点P 在x 轴上时,∵△ABP 的面积为6,∴=6,∴PD =2,如图3,点P 在x 轴的正半轴上,P (,0);同理得当点P在x轴的负半轴上,P(﹣,0);②当点P在y轴上时,=6,∴CP=,∴P(0,4)或(0,﹣);综上,点P的坐标是(,0)或(,0)或(0,4)或(0,).15.解:(1)如图1中,∵A(0,4),∴OA=4,=×OB×OA=8,∵S△AOB∴OB=4,∵△AOB与△AOC关于y轴对称,∴OC=OB=4.(2)如图2中,结论:DG=GE.理由:作DH∥EC交AC于H.∵OA=OC,∠AOC=90°,∴∠DAH=∠ACO=45°,∵DH∥OC,∴∠AHD=∠ACO=45°,∴∠DAH=∠AHD,∴AD=DH,∵AD=EC,∴DH=EC,∵∠DHG=∠GCE,∠DGH=∠CGE,∴△DGH≌△EGC(AAS),∴DG=EG.(3)如图3中,连接DB,DC,作DH∥EC交AC于H.设AD=DH=x,则AH=x,HC=4﹣x,∵HG=CG,∴HG=HC=2﹣x,∵OA⊥BC,OB=OC,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBO=∠DCO,∴∠ABD=∠ACD,∵∠CEG=∠ABD,∴∠ACD=∠CEG,∵DH∥CE,∴∠HDG=∠CEG=∠DCH,∵∠DHG=∠DHC,∴△DHG∽△CHD,∴=,∴=,解得x=2,∴AH=CH=2,∴H(2,2),∵GH=GC,∴G(3,1).16.证明:(1)如图1中,作DH⊥AB于H.∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,∴△ADC≌△ADH(ASA),∴AC=AH,DC=DH,∵CA=CB,∠C=90°,∴∠B=45°,∵∠DHB=90°,∴∠HDB=∠B=45°,∴HD=HB,∴BH=CD,(2)如图2中,作BM⊥AD交AD的延长线于M,连接CM.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∴∠AMC=∠ABC=45°,∵∠CEM=45°,∴∠CEM=∠CME,∴CE=CM,∴∠ECM=∠ACB=90°,∴∠ACE=∠BCM,∵CA=CB,CE=CM,∴△ACE≌△BCM(SAS),∴AE=BM,∵在Rt∠EMB中,∠MEB=30°,∵BE=2BM=2AE.(3)如图3中,作CH⊥MN于H.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∵CN⊥CM,∴∠NCM=90°∴∠CNM=∠CMN,∴CN=CM,∵CH⊥MN,∴HN=HM.∵CD=DB,∠CHD=∠BMD=90°,∠ADH=∠BDM,∴△CHD≌△BMD(AAS),∴DH=DM,∵HN=HM,∴DN=3DM.17.解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.18.(1)解:如图1中.∵△ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在△EBC和△DCA中,,∴△EBC≌△DCA(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵△EBC≌△DCA,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在△ABK和△AFC中,,∴△ABK≌△AFC(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴FP=CK,∴PK=CK,∵FP=FK+PK∴FP=AF+CF,∵CF=CP,设CP=9a,∵CF=2a,∴FP=7a,∴AF=5a,∴==.19.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.20.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∴BD=CD,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.。
2020年中考数学一轮复习基础考点题型练 《三角形》专题测试-提高 (含答案)
专题:《三角形》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.如图,在△ABC中,D为AC边上一点,以点A为圆心,AD为半径画弧,交BA的延长线于点E,连接ED.若∠C=50°,∠B=60°,则∠CDE的度数为()A.130°B.135°C.140°D.145°2.下列各组数中,不能作为直角三角形的三边长的是()A.1,,2 B.7,12,15 C.3,4,5 D.5,12,13 3.三角形的重心是()A.三角形三边的高所在直线的交点B.三角形的三条中线的交点C.三角形的三条内角平分线的交点D.三角形三边中垂线的交点4.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为()A.8.5 B.15 C.17 D.345.如图所示的钢架中,∠A=18°,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.∠P5P4B的度数是()A.80°B.85°C.90°D.100°6.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,△AEF是等边三角形,其中正确的结论的个数为()A.2 B.3 C.4 D.17.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.如图,在△ABC中高AD和BE交于点H,∠ABC=45°,BE平分∠ABC,下列结论:①∠DAC=225°;②BH=2CE;③若连结CH,则CH⊥AB;④若CD=1,则AH=2,其中正确的有()A.1个B.2个C.3个D.4个9.如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A.6 B.5 C.12 D.810.∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=40°,则∠BDE为()度.A.30°B.40°C.60°D.70°11.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,则∠DCE的度数是()A.25°B.30°C.35°D.40°12.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,且A、C、B在同一直线上,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°.其中不正确的结论是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是.14.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8cm,△ABE的周长为15cm,则AB的长是.15.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.16.如图,在四边形AB CD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.17.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)三.解答题(每题8分,共32分)18.点D为△ABC外一点,∠ACB=90°,AC=BC.(1)如图1,∠DCE=90°,CD=CE,求证:∠ADC=∠BEC;(2)如图2,若∠CDB=45°,AE∥BD,CE⊥CD,求证:AE=BD;(3)如图3,若∠ADC=15°,CD=,BD=n,请直接用含n的式子表示AD的长.19.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.20.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA =AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的21.如图所示,在平面直角坐标系中,A点坐标(m,n),且m,n满足+(n﹣2)2=0(1)如图(1)当△ABO为等腰直角三角形时;①点A坐标为;点B坐标为.②在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.(2)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A作AN⊥x 轴交MJ于点N,连结EN,求证:AN=OE+NE.参考答案一.选择题1.解:∵在△ABC中,∠C=50°,∠B=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣50°=70°,∵以点A为圆心,AD为半径画弧,交BA的延长线于点E,连接ED,∴AD=AE.∴∠ADE=∠BAC=×70°=35°.∴∠CDE=180°﹣∠ADE=180°﹣35°=145°.故选:D.2.解:A、12+()2=22,能作为直角三角形的三边长;B、72+122≠152,不能作为直角三角形的三边长;C、32+42=52,能作为直角三角形的三边长;D、52+122=132,能作为直角三角形的三边长.故选:B.3.解:∵三角形的重心是三角形三条边中线的交点,∴选项B正确.故选:B.4.解:∵点O为△ABC的两条角平分线的交点,∴点O到△ABC各边的距离相等,而OD⊥BC,OD=4,∴点O到△ABC各边的距离为4,∵S△ABC=S△AOB+S△BOC+S△AOC,∴×AB×4+×AC×4+×BC×4=34,∴AB+AC+BC=17,即△ABC的周长为17.故选:C.5.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠A=18°,∴∠P3P5P4=72°,∴∠BP5P4=90°.故选:C.6.解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AD平分∠BAC,∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴AE=AF,∴△AEF是等边三角形,④正确.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:∵在△ABC中高AD和BE交于点H,∴∠BEA=∠BEC=90°,∠ADB=∠ADC=90°,∵∠ABC=45°,BE平分∠ABC,∴∠CBE=∠ABE=22.5°,∴∠BAE=∠BCE,∴BA=BC,∵∠CBE+∠C=∠DAC+∠C=90°,∴∠DAC=∠CBE=22.5°,①正确;∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BA=BC,BE平分∠ABC,∴AE=CE,在△BDH和△ADC中,,∴△BDH≌△ADC(ASA),∴BH=AC=2CE,②正确;∵△ABC的高AD和BE交于点H,∴E是△ABC的三条高的交点,∴CH⊥AB,③正确;∵△BDH≌△ADC,∴DH=CD=1,∴CH==,∵△ABC是等腰三角形,BA=BC,BE平分∠ABC,∴直线BE是△ABC的对称轴,∴AH=CH=≠2,④不正确;故选:C.9.解:设BD=x,则CD=20﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BDE=30°,∠CDF=30°,∴BE=BD=,同理可得,CF=,∴BE+CF=+=6,故选:A.10.解:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.故选:D.11.解:∵点E是Rt△ABD的斜边AB的中点,∴ED=EB=AB,∴∠EDB=∠DBA=20°,∴∠DEA=∠EDB+∠DBA=40°,∵点E是Rt△ABC的斜边AB的中点,AC=BC,∴EC=AB,CE⊥AB,∴∠DEC=130°,ED=EC,∴∠DCE=25°,故选:A.12.解:∵△DAC和△EBC都是等边三角形,∴∠ACD=∠BCE=60°,∴∠ACE=∠DCB=120°,在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),故①正确;∴∠CAM=∠CDN,在△ACM与△DCN中,∴△ACM≌△DCN(ASA),∴CM=CN,故②正确;DN=AM,在△AMC中,AC>AM,∴AC≠DN,故③错误;如图,过C作CQ⊥DB于Q,CH⊥AE于H,∵△ACM≌△DCN,∴△ACM和△DCN的面积相等,∵DN=AM,∴由三角形面积公式得:CQ=CH,∴CP平分∠APB,∴④正确;∵△ACE≌△DCB,∴∠AEC=∠DBC,∵∠ECB=60°,∴∠EAC+∠AEC=∠ECB=60°,∴∠APD=∠EAC+∠ABP=∠EAC+∠AEC=60°,∴⑤正确;故选:A.二.填空题(共5小题)13.解:∵AB=AC,∴∠C=∠B=30°,∵∠DAE=∠B=30°,∴∠DAE=∠B=∠C,∵∠AED=∠BEA,∴△ADE∽△BAE,∴==,∴AE2=DE×BE,同理:△ADE∽△CDA,∴=,∴AD2=DE×CD,∴==()2=,设CD=9x,则BE=4x,∵=,∴AB=×BE=×4x=6x,作AM⊥BC于M,如图所示:∵AB=AC,∴BM=CM=BC,∵∠B=30°,∴AM=AB=3x,BM=AM=3x,∴BC=2BM=6x,∴DE=BE+CD﹣BC=13x﹣6x,∴==﹣1;故答案为:﹣1.14.解:∵DE是BC的垂直平分线,∴BE=CE,∴△ABE的周长=AB+AE+BE=AB+AE+CE=AB+AC,∵AC=8cm,△ABE的周长为15cm,∴AB+8=15,解得AB=7cm,故答案为:7cm.15.解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CM=×2.5=1.25,∴HN=1.25,故答案为:1.25.16.解:∵BD⊥CD,∠A=90°,∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=3.故答案为:3.17.解:①∵AH是PC的垂直平分线,∴PA=AC=AB,∵AD平分∠PAB,∴∠PAD=∠BAD,在△PAD和△BAD中,,∴△PAD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠PAD,∴∠BAC=∠CAQ+∠BAQ=∠PAD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠PAB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.三.解答题(共4小题)18.(1)证明:∵∠DCE=∠ACB=90°,∴∠ACD=∠BCE,又∵AC=BC,CE=CD,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.(2)如图1,延长DC交AE于F,连BF,∵AE∥BD,∴∠EFC=∠CDB=45°.∵EC⊥CD,∠CEF=∠CFE=45°,∴EC=CF.∵∠ACE=∠BCF,AC=BC,∴△ACE≌△BCF(SAS),∴AE=BF,∠BFC=∠AEC=45°=∠FDB,∴BF=BD,∴AE=BD;(3)如图2,过点C在CD上方作CE⊥CD,CE=CD,连BE、DE.设AD、BE交于点O,由(1)知△ACD≌△BCE(SAS),∠BEC=∠ADC=15°,∴∠DOE=∠DCE=90°.又∵∠CED=∠CDE=45°,∴=2,∴∠BED=30°,∴OD=DE=×2=1,∴=,OB==,∴AD=BE=OB+OE=+.19.解:(1)∵n2﹣12n+36+|n﹣2m|=0,∴(n﹣6)2+|n﹣2m|=0,∵(n﹣6)2≥0,|n﹣2m|≥0,∴(n﹣6)2=0,|n﹣2m|=0,∴m=3,n=6,∴点A为(3,0),点B为(0,6);(2)如图,延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=3+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°∴BG=BE=6﹣x∴6﹣x=3+x,解得:x=1.5,∴OE=1.5;(3)分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+6),∴PN=x,EN=m+2x﹣6,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣6,∴点F为(m+2x﹣6,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣6=m+x,解得:x=6,∴点P为(6,﹣6).20.解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQ=t,AP=2t,则AQ=12﹣t,∵AQ=AP,∴12﹣t=2t,∴t=4.∴t=4s时,AQ=AP.(2)当Q在线段CA上时,设CQ=t,则AQ=12﹣t,∵三角形QAB的面积等于三角形ABC面积的,∴•AB•AQ=וAB•AC,∴×16×(12﹣t)=×16×12,解得t=9.∴t=9s时,三角形QAB的面积等于三角形ABC面积的.(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,①当0<t≤8时,P在线段AB上运动,Q在线段CA上运动,设CQ=t,AP=2t,则AQ=12﹣t,BP=16﹣2t,∵AQ=BP,∴12﹣t=(16﹣2t),解得t=16(不合题意舍弃).②当8<t≤12时,Q在线段CA上运动,P在线段BC上运动,设CQ=t,则AQ=12﹣t,BP=2t﹣16,∵AQ=BP,∴12﹣t=(2t﹣16),解得t=.③当t>12时,Q在线段AB上运动,P在线段BC上运动时,∵AQ=t﹣12,BP=2t﹣16,∵AQ=BP,∴t﹣12=(2t﹣16),解得t=16,综上所述,t=s或16s时,AQ=BP.21.(1)解:①作AE⊥OB于E,如图(1)所示:∵+(n﹣2)2=0,∴m+2=0,n﹣2=0,∴m=﹣2,n=2,∴A(﹣2,2),∴OE=AE=2,∵△ABO为等腰直角三角形,∴AB=AO,BO=2OE=4,∴B(﹣4,0);故答案为:(﹣2,2),(﹣4,0);②∵△ABO为等腰直角三角形,∴AB=AO,∠BAO=90°,∠AOB=45°,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,∴∠CAO=90°+60°=150°,AC=AO,∴∠ACO=∠AOC=(180°﹣150°)=15°,∴∠COB=45°﹣15°=30°;(2)证明:在AC上取一点P,使AP=OE,连接PM,如图(2)所示:∵AM⊥y轴,AN⊥x轴,∴∠AQO=∠AMO=90°,∵∠MOQ=90°,∴四边形AMOQ是矩形,∵A(﹣2,2),∴AQ=OQ=2,∴四边形AMOQ是正方形,∴∠A=∠MOE=∠AM O=90°,AM=OM,在△APM和△OEM中,,∴△APM≌△OEM(SAS),∴MP=ME,∠AMP=∠OME,∵∠AMP+∠PMO=90°,∴∠OME+∠PMO=90°,∴∠PME=90°,∵△MKJ是等腰直角三角形,∴∠JMK=45°,∴∠PMN=45°,∴∠PMN=∠EMN,在△PMN和△EMN中,,∴△PMN≌△EMN(SAS),∴PN=EN,∵AN=AP+PN,AP=OE,∴AN=OE+NE.。
2020年中考数学三轮复习专项练习:《三角形》(含答案)
备战2020中考数学三轮复习专项练习:《三角形》1.如图,▱ABCD 中,AE ⊥BC 于点E ,F 是AE 上一点,∠FBE =45°,FC ⊥CD 于点C . (1)若AB =2,BF =2,求△ABF 的面积;(2)如图2,连接AC ,求证:AF +BC =AC .2.如图,点A 的坐标为(﹣6,6),AB ⊥x 轴,垂足为B ,AC ⊥y 轴,垂足为C ,点D ,E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,∠DAE =45°.(1)如图1,当点D 在线段BO 上时,求△DOE 的周长;(2)如图2,当点D 在线段BO 的延长线上时,设△ADE 的面积为S 1,△DOE 的面积为S 2,请猜想S 1与S 2之间的等量关系,并证明你的猜想.3.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.4.点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在Rt△ABD外侧,以BD 为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).5.在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.6.已知△ABC是等边三角形,点D为平面内一点,连接DB、DC,∠BDC=120°.(1)如图①,当点D在BC下方时,连接AD,延长DC到点E,使CE=BD,连接AE.①求证:△ABD≌△ACE;②如图②,过点A作AF⊥DE于点F,直接写出线段AF、BD、DC间的数量关系;(2)若AB=2,DC=6,直接写出点A到直线BD的距离.7.如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.8.如图,在Rt△ABC中,∠ACB=90°,点O,M分别是Rt△ABC的内心和外心,连接OA,OB,OM.(1)求∠AOB的度数;(2)延长AC至点D,使AD=AB,连接BD,求证:AO⊥BD;(3)在(2)中,延长BC至点E,使BE=AB,连接DE,找出DE与OM之间的等量关系,并证明这个结论.9.若一个三角形一边长的平方等于另两边长的乘积的2倍,我们把这个三角形叫做好玩三角形.(1)在△ABC中,AB=1,BC=,AC=3,求证:△ABC是好玩三角形.(2)一个等腰三角形的腰长为m,底边长为n,当这个等腰三角形为好玩三角形时,求的值.(3)如图1,△CDE是以DE为斜边的等腰直角三角形,点A,B都在直线DE上,连结AC,BC.若∠A+∠B=45°,求证:线段AD,DE,BE三条线段组成的三角形是好玩三角形.(4)如图2,在Rt△ABC中,点D,E,F,G都在线段AB上,以DE,EF,FG为边分别向上作正方形,H,K,M,N分别落在Rt△ABC的边上.以DE,EF,FG为三边长恰好能组成好玩三角形,直接写出的值.10.如图,△ABC是等边三角形,过AB边上点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使ED=CG,连接AE,CD.(1)求证:AE=DC;(2)过E作EF∥DC,交BC于点F,求证:∠AEF=∠ACB.11.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.12.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.13.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.14.如图,在△ABC中,∠BAC=90°,AB=AC=6,AD⊥BC于点D.点G是射线AD上一点.(1)若GE⊥GF,点E,F分别在AB,AC上,当点G与点D重合时,如图①所示,容易证明AE+AF=AD.当点G在线段AD外时,如图②所示,点E与点B重合,猜想并证明AE,AF与AG存在的数量关系.(2)当点G在线段AD上时,AG+BG+CG的值是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.15.已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE∥AB.(2)若CD=3,求四边形BEDF的周长.16.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC、∠NCB的平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的3倍,请直接写出∠A的度数.17.如图1,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)如图2,连接EF,设BE=x,求△DEF的面积S与x之间的函数关系式.18.如图,在等边△ABC中,延长AB至点D,延长AC交BD的中垂线于点E,连接BE,DE.(1)如图1,若DE=3,BC=2,求CE的长;(2)如图2,连接CD交BE于点M,在CE上取一点F,连接DF交BE于点N,且DF=CD,求证:AB=EF;(3)在(2)的条件下,若∠AED=45°,直接写出线段BD,EF,ED的等量关系.参考答案1.解:(1)∵AE⊥BC,∠FBE=45°,∴∠FEB=∠BFE=45°,∴BE=EF,∵BE2+EF2=BF2=4,∴BE=EF=,∴AE===3,∴AF=AE﹣EF=2,∴△ABF的面积=×AF×BE=2;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,∵FC⊥CD,∴∠FCD=90°,∴∠ABC+∠FCE=90°,∵AE⊥BC,∴∠ABC+∠BAE=90°,∴∠BAE=∠ECF,又∵BE=EF,∠AEB=∠CEF=90°,∴△ABE≌△CFE(AAS),∴AE=CE,∴AC=AE,∵AF+BC=AF+BE+EC=AF+EF+AE=2AE,∴AF+BC=AC.2.解:(1)∵点A的坐标为(﹣6,6),AB⊥x轴,AC⊥y轴,∴AB=AC=OC=OB=6,如图1,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠BAD+∠CAE=45°,∴∠BAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,∴△DOE的周长=DE+OD+OE=BD+CE+OD+OE=OB+OC=12;=18+,(2)猜想:S1理由如下:如图2,将△ACE绕点A顺时针旋转90°得到△ABF,∴BF=CE,AF=AE,∠BAF=∠CAE,∵∠DAE=45°,∴∠CAD+∠CAE=45°,∴∠CAD+∠BAF=45°=∠DAF=∠DAE,又∵AF=AE,AD=AD,∴△ADF≌△ADE(SAS),∴DE=DF,设BF=CE=x,OD=y,则OE=6+x,DF=6﹣x+y=DE,∵DE2=OE2+OD2,∴(6﹣x+y)2=(6+x)2+y2,∴xy=6y﹣12x,=×OD×OE=×(6+x)y=6y﹣6x,∴S2=DF×AB=×(6﹣x+y)×6=18+,∵S1=18+.∴S13.(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7,∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13,∴△ACD的周长为:5+12+13=30,故答案为:30.4.解:(1)①如图1,过点D作DF⊥AC于F,则∠DFC=90°,∵△ADC是AC为斜边作等腰Rt△ADC,∴AC=2DF,在Rt△DFB中,∠DBA=30°,∴BD=2DF,∴AC=BD;②∵△ADC是等腰直角三角形,∴∠ACD=45°,∵∠DBA=30°,∴∠CDB=∠ACD﹣∠DBA=15°,∵△BDE是等腰直角三角形,∴∠BDE=45°,∴∠CDE=∠CDB+∠BDE=60°,在Rt△ADC中,AC=DC,在Rt△BDE中,BD=BE=DE,由①知,AC=BD,∴BE=CD=ED,∴△CDE是等边三角形,∴DE=CE,∴EC=EB;(2)如图2,过点D作DG⊥BD交BE的延长线于G,连接CG,∴∠BDG=90°=∠ADC,∴∠ADB=∠CDG,∵△BED是以BD为斜边作等腰Rt△BED,∴∠BED=90°,∠DBE=45°,∴∠DGE=90°﹣∠DBE=45°=∠DBE,∴BD=GD,∵AD=CD,∴△ADB≌△CDG(ASA),∴∠DCG=∠DAB,∵∠ACD=45°,∴∠BCG=∠ACG=90°,在Rt△BDG中,DB=DG,∠BED=90°,∴EG=EB,∴BE=BE(直角三角形斜边的中线等于斜边的一半).5.解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.6.证明:(1)①∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵∠ABD+∠BDC+∠ACD+∠BAC=360°,∠BDC=120°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ACE=∠ABD,又∵AB=AC,BD=CE,∴△ABD≌△ACE(SAS);②∵△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAC+∠CAE=∠DAC+∠BAD=∠BAC=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴AD=ED,∵AF⊥DE,AD=AE,∴DF=DE=AD,∠DAF=30°,∴AF=DF=AD,∵DE=CD+CE=CD+BD,∴AF=AD=(CD+BD);(2)如图②,若点D在BC下方时,∵△ABD≌△ACE,∴点A到直线BD的距离=点A到直线CE的距离,设DF=x,则AF=x,∵AC2=AF2+CF2,∴52=3x2+(6﹣x)2,∴x1=4,x2=﹣1(舍去),∴AF=4,如图3,若点D在BC上方时,过点C作CH⊥BD交BD延长线于H,过点D作DF⊥BC于F,过点A作AN⊥BD,交BD的延长线于N,∵∠BDC=120°,∴∠CDH=60°,∵CH⊥BD,∴∠DCH=30°,CD=6,∴DH=3,CH=DH=3,∵BH===5,∴BD=BH﹣DH=2,∵S△BDC=BD×CH=×BC×DF,∴2×3=2×DF,∴DF=,∵∠BDC=120°,∴∠DBC+∠DCB=60°,又∵∠ABD+∠DBC=60°,∴∠ABD=∠DCB,∴sin∠ABD=sin∠DCB=,∴,∴AN=,综上所述:点A到直线BD的距离为4或.7.解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠FAD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.8.(1)解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点O是△ABC的内心,∴∠OAB+∠OBA=∠CAB+∠CBA=45°,∴∠AOB=180°﹣(∠OAB+∠OBA)=135°.(2)证明:如图1中,∵点O是△ABC的内心,∴OA平分∠BAD,∵AD=AB,∴AO⊥BD(等腰三角形三线合一).(3)解:结论:DE=2OM.理由:如图2中,连接OE,OD,延长OM到K,使得MK=OM,连接AK,BK.∵BE=BA,∠OBE=∠OBA,BO=BO,∴△OBE≌△OBA(SAS),∴OA=OE,∠BOE=∠BOA=135°,∴∠AOE=90°,同法可证∠DOB=90°,OD=OB,∵AM=MB,OM=MK,∴四边形AOBK是平行四边形,∴AK=OB=OD,AK∥OB,∴∠KAO+∠AOB=180°,∵∠AOB+∠EOD=180°,∴∠KAO=∠EOD,∵OA=OE,AK=OD,∴△OAK≌△EOD(SAS),∴OK=ED,∴OK=2OM,∴DE=2OM.9.(1)证明:∵AB=1,BC=,AC=3,∴BC2=()2=6,AB•AC=1×3=3,∴BC2=2AB•AC,∴△ABC是好玩三角形;(2)解:∵等腰三角形为好玩三角形,∴m2=2mn或n2=2m•n=2m2,∴=2或=;(3)证明:∵△CDE是以DE为斜边的等腰直角三角形,∴∠DCE=90°,∠CED=∠CDE=45°,∴∠A+∠ACD=45°,∵∠A+∠B=45°,∴∠ACD=∠B,∵∠CDE=∠DEC=45°,∴CD=CE,∠ADC=∠CEB=135°,∴△ADC∽△CEB,∴,在Rt△CDE中,CD=CE,∴DE2=2CD2,∴CD•CE=AD•BE,∴CD2=AD•BE,∴DE2=2AD•BE,∴线段AD,DE,BE三条线段组成的三角形是好玩三角形;(4)设DE=a,EF=b,FG=c,∵四边形DEPH是正方形,∴∠ADH=∠AEK=90°,DH=DE=a,在Rt△ADH中,AD==①,同理:AE=②,BG=c•tan A③,BF=b•tan A④,②﹣①得,AE﹣AD==a⑤,④﹣③得,BF﹣BG=(b﹣c)tan A=c⑥,⑤×⑥得,(b﹣a)(b﹣c)=ac,∴b2﹣bc﹣ab+ac=ac⑦,∵以DE,EF,FG为三边长恰好能组成好玩三角形,∴(b)2=2ac,∴b2=8ac⑧,将⑧代入⑦得,8ac﹣bc﹣ab+ac=ac,∴8ac=b(a+c)⑨,由⑧得,b=2,将b=2代入⑨中,得8ac=2(a+c),∴a2﹣6ac+c2=0,∴a==(3±2)c,∴=3±2,即=3±2.10.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠ACB=60°,∵DG∥BC,∴∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG,∠ADE=∠DGC=120°,在△ADE和△DGC中,∴△ADE≌△DGC(SAS),∴AE=CD;(2)∵△ADE≌△DGC,∵∠AED=∠DCG,∵EF∥CD,∴∠FEG=∠CDG,∵DG∥BC,∴∠CDG=∠DCB,∴∠FEG=∠DCB,∴∠AEF=∠ACB.11.解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠FAC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.12.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF≌△BDE(SAS),∴BE=AF,∠DFE=∠BED=45°,∴∠AEB=90°,∵AE:AF=3:4,∴设AE=3a,AF=BE=4a,∴AB===5a,∵AD=BD,∠ADB=90°,DN⊥AB,∴DN=BN=AN=a,=AE×BE=AB×EH,∵S△ABE∴EH==a,∴AH==a,∵∠BED=∠AED=45°,∴,∴BG=,AG=,∴GH=a,GN=a,∴EG==a,DG==a,∴==.13.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC =S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC=AB+BC+AC,又∵△ABC的周长为16,∴S△ABC=16.14.解:(1)AE+AF=AG,理由如下:如图,过点G作HG⊥AG交AB延长线于点H,∵∠BAC=90°,AB=AC=6,AD⊥BC,∴∠DAB=∠DAC=45°,∴∠AHG=∠BAD=45°,∴AG=HG,∴AH=AG,∵∠EGF=∠AGH=90°,∴∠AGF=∠EGH,又∵∠AHG=∠FAG=45°,∴△AGF≌△HGE(ASA),∴AF=BH,∴AH=AE+BH=AE+AF=AG;(2)如图,将△ABG绕点A顺时针旋转60°得到△AB'G',连接GG',B'C,过点B'作B'N ⊥AC,交CA的延长线于点N,∴AB=AB'=6,AG=A'G,∠BAB'=60°,∠GAG'=60°,BG=B'G,∴△AGG'是等边三角形,∴AG=GG',∴AG+BG+CG=GG'+B'G+CG,∴当点B',点G',点G,点C共线时,AG+BG+CG的值最小,最小值为B'C的长,∵∠B'AC=∠B'AB+∠BAC=60°+90°=150°,∴∠B'AN=30°,∴B'N=3,AN=B'N=3,∴CN=6+3,∴B'C===3+3,∴AG+BG+CG的最小值为3+3.15.解:(1)∵∠ABD=∠BDE,∴DE∥AB,∴∠EBD=∠BDE,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠ABD=∠BDE,∴DE∥AB.(2)∵∠ABD=∠BDE,∴BF∥FD,∴∠ABD=∠FDB,∵∠BD是∠ABC的角平分线,∴∠ABD=∠CBD,∴∠FDB=∠CBD,∴DF∥BC,∵DE∥AB,∴四边形BEDF是菱形,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC=∠DEC,∴CD=DE=3,∴四边形BEDF的周长为4×3=12.16.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.17.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC=AB•AC=,∴四边形AEDF的面积=;(3)解:∵BE=x,∴AE=AB﹣BE=3﹣x,∵△ADE≌△CDF,∴FC=AE=3﹣x,∴AF=AC﹣FC=x,∴△DEF的面积S=四边形AEDF的面积﹣△AEF的面积=﹣×x×(3﹣x)=x2﹣x+(0<x≤3).18.解:(1)过点E作EH⊥BD于H,∵点E在BD的中垂线上,∴EB=ED=3,∵EH⊥BD,∴BH=HD,∵等边△ABC中,BC=2,∴∠A=60°,AB=BC=AC=2,∴∠AEH=30°,∴EH=AH=(2+BH)=6+BH,AE=2AH=2(2+BH),∵BE2=EH2+BH2,∴90=36+3BH2+12BH+BH2,∴BH=(负值舍去),∴CE=AE﹣AC=2+2BH=9﹣;(2)延长CA到H,使∠AHD=∠DEF,∴DH=DE=BE,∴∠DFC=∠DCF,∴∠DFE=∠DCH,∴△DFE≌△DCH(AAS),∴EF=CH,∵∠CAB=∠ABC=60°=∠ACB,∴∠CBD=∠AED+∠ADE=120°=∠EBD+∠CBE,∵EB=ED,∴∠EBD=∠EDB,∴∠CBE=∠AED=∠AHD,又∵∠BCE=∠HAD=120°,DH=BE,∴△HAD≌△BCE(AAS),∴BC=AH,∵EF=CH=AH+AC,∴AB=EF;(3)如图3,过点D作DP⊥AE于P,∵CD=DF,DP⊥AE,∴CP=PF,∵∠A=60°,DP⊥AE,∴∠ADP=30°,∴AD=2AP,DP=AP,∵∠AED=45°,DP⊥AE,∴∠AED=∠EDP=45°,∴DE=DP,∵AD=2AP,DP=PE=AP,∴AP=(AB+BD)=EF+BD,DP=AP=EF+BD,∴DE=DP=EF+BD.。
中考数学专卷2020届中考数学总复习(20)三角形-精练精析(1)及答案解析
图形的——三角形1一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣83.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.1558.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为_________ (只需填一个整数)11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________ 度.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________ 度.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________ °.14.如图是一副三角板叠放的示意图,则∠α= _________ .15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_________ .16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件_________ ,使△ABC≌△DEF.17.如图,已知△ABC中, AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是_________ .(只填一个即可)三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,在△ABC和△AB D中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图形的——三角形参考答案与试题解析一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B. C.D.考点:三角形三边关系.分析:根据勾股定理可知x的平方取值范围在2与3的平方和与平方差之间.解答:解:因为32﹣22=5,32+22=13,所以5<x2<13,即.故选B.点评:本题考查了锐角三角形的三边关系定理,有一定的难度.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣8考点:三角形的面积.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:阴影部分的面积=π×22÷2+π×12÷2﹣4×2÷2=;故选A.点评:此题考查了三角形的面积;解题的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.3.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.专题:常规题型.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.155考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3 B.4 C.6 D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥A C于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB 的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为 4 (只需填一个整数)考点:三角形三边关系.专题:开放型.分析:根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得x的取值范围.解答:解:根据三角形的三边关系可得:3﹣2<x<3+2,即:1<x<5,所以x可取整数4.故答案为:4.点评:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75 度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 70 度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.(2014•佛山)如图是一副三角板叠放的示意图,则∠α= 75°.考点:三角形的外角性质.分析:首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.解答:解:∵∠ACB=90°,∠1=45°,∴∠2=90°﹣45°=45°,∴∠α=45°+30°=75°,故答案为:75°.点评:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF 或AB∥DE),使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.17.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.考点:全等三角形的判定.专题:证明题.分析:根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.解答:证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).点评:本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)考点:全等三角形的判定.专题:开放型.分析:先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.解答:AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图,在R t△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.专题:几何综合题.分析:(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.2点评:本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.3。
(精品人教版)2020年中考数学专题复习卷 三角形(含解析)
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
2020年数学中考复习专题:《三角形综合》(后附解析)
中考复习冲刺:《三角形综合》1.如图,在三角形ABC 中,AB =8,BC =16,AC =12.点P 从点A 出发以2个单位长度/秒的速度沿A →>B →C →A 的方向运动,点Q 从点B 沿B →C →A 的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t = 秒时,P 是AB 的中点.(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得BP =2BQ . (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.2.如图,在△ABC 中,BC =7cm ,AC =24cm ,AB =25cm ,P 点在BC 上,从B 点到C 点运动(不包括C 点),点P 运动的速度为2cm /s ;Q 点在AC 上从C 点运动到A 点(不包括A 点),速度为5cm /s .若点P 、Q 分别从B 、C 同时运动,请解答下面的问题,并写出探索主要过程:(1)经过多少时间后,P 、Q 两点的距离为5cm ?(2)经过多少时间后,S △PCQ 的面积为15cm 2?(3)用含t 的代数式表示△PCQ 的面积,并用配方法说明t 为何值时△PCQ 的面积最大,最大面积是多少?3.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=4 2 ,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.4.如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB 平移至线段CD,使点A的对应点C在y轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD 之间的一个等量关系,并说明理由.5.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD =S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.6.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.7.定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“和美三角形”,这条边称为“和美边”,这条中线称为“和美中线”.理解:(1)请你在图①中画一个以AB为和美边的和美三角形,使第三个顶点C落在格点上;(2)如图②,在Rt△ABC中,∠C=90°,tan A=.求证:△ABC是“和美三角形”.运用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底边BC的长(画图解答).8.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC =α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC =7,AD=2.请直接写出线段BE的长为.9.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.10.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM =EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.11.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.12.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;=30,∠CAF=∠ABD,求线段BP的长.(ⅱ)如图2,若AB=10,S△ABC13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,过点C作CG⊥AD于点G,过点B作FB⊥CB于点B,交CG的延长线于点F,连接DF交AB于点E.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF;(3)连接AF,试判断△ACF的形状,并说明理由.15.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC =90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.16.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.17.已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.18.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为.②∠APC的度数为.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为.19.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C 重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②∠DCE=120°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:①∠DCE的度数;②线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE,若BE=10,BC=6,直接写出AE的长.20.思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE 绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.参考答案1.解:(1)∵AB=8,点P的运动速度为2个单位长度/秒,∴当P为AB中点时,即4÷2=2(秒);故答案为:2.(2)由题意可得:当BP=2BQ时,P,Q分别在AB,BC上,∵点Q的运动速度为个单位长度/秒,∴点Q只能在BC上运动,∴BP=8﹣2t,BQ=t,则8﹣2t=2×t,解得t=,当点P运动到BC和AC上时,不存在BP=2BQ;(3)当点P为靠近点A的三等分点时,如图1,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+CQ=16+4=20,∴a=20÷16=,当点P为靠近点C的三等分点时,如图2,AB +BC +CP =8+16+4=28,此时t =28÷2=14,∵BC +CQ =16+8=24,∴a =24÷14=.综上可得:a 的值为或.2.解:(1)连接PQ ,设经过ts 后,P 、Q 两点的距离为5cm ,ts 后,PC =7﹣2tcm ,CQ =5tcm ,根据勾股定理可知PC 2+CQ 2=PQ 2,代入数据(7﹣2t )2+(5t )2=(5)2; 解得t =1或t =﹣(不合题意舍去);(2)设经过ts 后,S △PCQ 的面积为15cm 2 ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =15解得t 1=2,t 2=1.5,经过2或1.5s 后,S △PCQ 的面积为15cm 2.(3)设经过ts 后,△PCQ 的面积最大,ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =×(﹣2t 2+7t ).=﹣5.∴当t=s时,△PCQ的面积最大,最大值为cm2.3.(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴∠A=2∠C,即△ABC是倍角三角形,(2)解:∵∠A>∠B>∠C,∠B=30°,①当∠B=2∠C,得∠C=15°,过C作CH⊥直线AB,垂足为H,可得∠CAH=45°,∴AH=CH=AC=4.∴BH=,∴AB=BH﹣AH=﹣4,∴S=.②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在.综上所述,△ABC面积为.(3)△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴∠ADE=∠ADB,BD=DE.又∵AB +AC =BD ,∴AE +AC =BD ,即CE =BD .∴CE =DE .∴∠C =∠BDE =2∠ADC .∴△ADC 是倍角三角形.∵△ABD ≌△AED ,∴∠E =∠ABD ,∴∠E =180°﹣∠ABC ,∵∠E =180°﹣2∠C ,∴∠ABC =2∠C .∴△ABC 是倍角三角形.4.解:(1)∵点A (﹣4,﹣1)、B (﹣2,1),C (k ,0),将线段AB 平移至线段CD , ∴点B 向上平移一个单位,向右平移(k +4)个单位到点D ,∴D (k +2,2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∵A (﹣4,﹣1)、B (﹣2,1),C (k ,0),D (k +2,2),∴BE =1,CE =k +2,DF =2,EF =k +4,CF =2,∵S 四边形BEFD =S △BEC +S △DCF +S △BCD , ∴=+,解得:k =2.(3)∠BPD =∠BCD +∠A ;理由如下:过点P 作PE ∥AB ,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.5.证明:(1)过B作BM⊥DA于M,过C作CN⊥EA交EA的延长线于N,如图,∵∠BAC=∠DAE=90°,∴∠BAD+∠CAE=180°,∵∠CAN+∠CAE=180°,∴∠BAD=∠CAN∵sin∠BAD=,sin∠CAN=,又∵AB=AC,∴BM=CN,∵DA=AE,S△ABD =DN×BM,S△ACE=AE×CN,∴S△ADB =S△ACE.(2)延长AM到Q使AM=QM,连接CQ、EQ,如图,∵AM是△ACE中线,∴CM=EM,∴四边形ACQE是平行四边形,∴AC=EQ=AB,AE=CQ=AD,AC∥EQ,∴∠CAE+∠AEQ=180°,∵∠BAD+∠CAE=180°,∴∠BAD=∠AEQ,∵在△BAD和△QEA中∴△BAD≌△QEA,∴∠BDA=∠EAM,∵∠DAE=90°,∴∠NAD+∠QAE=90°,∴∠BDA+∠NAD=90°,∴∠DNA=180°﹣90°=90°,∴MN⊥BD.6.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC =∠AEH ,∵AD =AE ,∴△ACD ≌△EHA ,∴CD =AH ,EH =AC =BC ,∵CB =CA ,∴BD =CH ,∵∠EHF =∠BCF =90°,∠EFH =∠BFC ,EH =BC ,∴△EHF ≌△BCF ,∴FH =CF ,∴BD =CH =2CF .(3)如图3中,同法可证BD =2CM .∵AC =3CM ,设CM =a ,则AC =CB =3a ,BD =2a , ∴==.7.解:(1)如图①中,△ABC 1,△ABC 2即为所求.(2)证明:如图②,根据定义Rt △ABC 中,和美中线一定是较长直角边上的中线. 理由:取AC 的中点D ,连结BD ,设AC =2x ,则CD =AD =x ,∵,∴,∴,在Rt△BCD中,∴BD=AC,∴△ABC是“和美三角形:.(3)分两种情况:如图③,当腰上的中线BD=AC时,则AB=BD,过B作BE⊥AD于E,∵AB=AC=20,∴BD=20,,∴CE=10+5=15,∴Rt△BDE中,BE2=BD2﹣DE2=375,∴Rt△BCE中,;如图④,当底边上的中线AD=BC时,则AD⊥BC,且AD=2BD,设BD=x,则x2+(2x)2=202,∴x2=80,又∵x>0,∴,∴.综上所述,底边BC的长为或.8.解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.9.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).10.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.11.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.12.(1)证明:∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,=BC•AF=×10×AF=30,则S△ABC∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,=AC•BD=×2×BD=30,∵S△ABC∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD===,∴BP=BD﹣PD=3﹣=;当点F在点C的右侧时,则∠CAF=∠ACF',∵BD⊥AC,∴∠APD=∠AP'D,∴AP=AP',PD=P'D=,∴BP=+2×=;综上所述,线段BP的长为或.13.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形14.证明:(1)∵CG⊥AD,∴∠AGC=90°,∴∠GCA+∠CAD=90°,∵∠GCA+∠FCB=90°,∴∠CAD=∠FCB,∵FB⊥BC,∴∠CBF=90°,∵Rt△ABC是等腰三角形,∠ACB=90°,∴AC=BC,∠CBF=∠ACB,在△ACD和△CBF中,∴△ACD≌△CBF(ASA);(2)∵△ACD≌△CBF,∴CD=BF,∵D为BC的中点,∴CD=BD,∴BD=BF,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠DBE=45°,∵∠CBF=90°,∴∠DBE=∠FBE=45°,在△DBE和△FBE中,∴△DBE≌△FBE(SAS),∴DE=FE,∠DEB=∠FEB=90°,∴AB垂直平分DF;(3)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,由(2)知:AB垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.16.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.17.解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△END≌△ABD(SAS),∴DB=DN,∠NDE=∠BDA,∴∠NDE+∠BDE=90°,∴∠NDB=90°,∴DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,在(2)的条件下,CM=ME,DM⊥BM,∴BE=BC=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.18.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.19.证明:(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;(2)∠DCE=90°,BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE===8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE===,∵△ADE是等腰直角三角形,∴.20.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,过点D作DF⊥BC于F,连接CD,过点C作CN⊥BD于N,如图④所示:则四边形ACFD是矩形,∴CF=AD=AE=2,DF=AC=4,∴CD===2,BF=BC﹣CF=4﹣2=2,∴BD===2,∵DF•BC=CN•BD,∴CN===,BN===,∴PN=BD﹣BN=×2﹣=,∴PC===.。
2020年中考数学复习《三角形综合》练习(含解析)
2020年中考数学复习《三角形综合》练习1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.5.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.答案与解析一.解答题(共20小题)1.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.2.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.【分析】(1)根据等腰三角形的性质得到∠ECB=∠DBC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠DCB=∠EBC根据等腰三角形的判定定理即可得到OB=OC【解答】(1)证明:∵AB=AC,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB(SAS);(2)证明:由(1)知△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.4.如图,已知等边△ABC,CD⊥AB于D,AF⊥AC,E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于G,连接DG.(1)求证:BE=BF;(2)试说明DG与AF的位置关系和数量关系.【分析】(1)由等边三角形的性质可得AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,BD=AD,∠BCD=30°,由“SAS”可证△ABF≌△CBE,可得BF=BE;(2)通过证明△BEF是等边三角形,可得BG=GF,由三角形中位线定理可得AF=2GD,AF∥DG.【解答】证明:(1)∵△ABC是等边三角形∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°∵CD⊥AB,AC=BC∴BD=AD,∠BCD=30°,∵AF⊥AC∴∠F AC=90°∴∠F AB=∠F AC﹣∠BAC=30°∴∠F AB=∠ECB,且AB=BC,AF=CE∴△ABF≌△CBE(SAS)∴BF=BE(2)AF=2GD,AF∥DG理由如下:连接EF,∵△ABF≌△CBE∴∠ABF=∠CBE,∵∠ABE+∠EBC=60°∴∠ABE+∠ABF=60°,且BE=BF∴△BEF是等边三角形,且GE⊥BF∴BG=FG,且BD=AD∴AF=2GD,AF∥DG5.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程.结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为6.【分析】教材呈现:如图①,连结ED.根据三角形中位线定理可得DE∥AC,DE=AC,那么△DEG∽△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图②.先证明△BEF∽△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF=OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF =;(2)如图③,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出▱ABCD的面积=4×=6.【解答】教材呈现:证明:如图①,连结ED.∵在△ABC中,D,E分别是边BC,AB的中点,∴DE∥AC,DE=AC,∴△DEG∽△ACG,∴===2,∴==;结论应用:(1)解:如图②.∵四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,∴AD∥BC,BE=BC=AD,BO=BD,∴△BEF∽△DAF,∴==,∴BF=DF,∴BF=BD,∵BO=BD,∴OF=OB﹣BF=BD﹣BD=BD,∵正方形ABCD中,AB=6,∴BD=6,∴OF=.故答案为;(2)解:如图③,连接OE.由(1)知,BF=BD,OF=BD,∴=2.∵△BEF与△OEF的高相同,∴△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,∴△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,∴▱ABCD的面积=4×=6.故答案为6.6.如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.【分析】(1)根据三角形中大角对大边,即可得到结论;(2)画出图形,写出已知,求证;过点A作直线MN∥BC,根据平行线性质得出∠MAB =∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案;(3)化简等式即可得到a2+c2=b2,根据勾股定理的逆定理即可得到结论.【解答】解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点B作MN∥AC,∵MN∥AC,∴∠MBA=∠A,∠NBC=∠C(两直线平行,内错角相等),∵∠MBA+∠ABC+∠NBC=180°(平角的定义),∴∠A+∠ABC+∠C=180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac=(a+b+c)(a﹣b+c)=[(a2+2ac+c2)﹣b2],∴2ac=a2+2ac+c2﹣b2,∴a2+c2=b2,∴△ABC是直角三角形.7.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.8.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD 为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由.【分析】(1)①根据同角的余角相等证明;②作FH⊥BC交BC的延长线于H,证明△ACD≌△DHF,根据全等三角形的性质得到DH=AC,结合图形证明即可;(2)作FG⊥BC交BC的延长线于G,证明△ACD∽△DGF,根据相似三角形的性质得到DG=2AC,证明结论.【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.9.如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC 交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.10.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN =AM.【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【解答】(1)解:∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=BD=DC,∠ABC=∠ACB=45°,∠BAD=∠CAD=45°,∵AB=2,∴AD=BD=DC=,∵∠AMN=30°,∴∠BMD=180°﹣90°﹣30°=60°,∴∠MBD=30°,∴BM=2DM,由勾股定理得,BM2﹣DM2=BD2,即(2DM)2﹣DM2=()2,解得,DM=,∴AM=AD﹣DM=﹣;(2)证明:∵AD⊥BC,∠EDF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(ASA)∴BE=AF;(3)证明:过点M作ME∥BC交AB的延长线于E,∴∠AME=90°,则AE=AM,∠E=45°,∴ME=MA,∵∠AME=90°,∠BMN=90°,∴∠BME=∠AMN,在△BME和△NMA中,,∴△BME≌△NMA(ASA),∴BE=AN,∴AB+AN=AB+BE=AE=AM.11.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD=CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.【分析】(1)①根据四边形的内角和得到∠DAC+∠DBC=180°,推出∠DBC=∠EAC,根据全等三角形的性质得到CD=CE,∠BCD=∠ACE,求得∠DCE=90°,根据垂直的定义得到结论;②由已知条件得到△CDE是等腰直角三角形,求得DE=CD,根据线段的和差即可得到结论;(2)如图2,在AD上截取AE=BD,连接CE,根据等腰直角三角形的性质得到∠BAC =∠ABC=45°,求得∠CBD=∠CAE,根据全等三角形的性质得到CD=CE,∠BCD =∠ACE,求得∠DCE=90°,根据线段的和差即可得到结论.【解答】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE=CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD=CD;(2)解:AD﹣BD=CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°﹣∠BAD﹣∠ABC=90°﹣∠BAD﹣45°=45°﹣∠BAD,∵∠CAE=∠BAC﹣∠BAD=45°﹣∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE===CD,∵DE=AD﹣AE=AD﹣BD,∴AD﹣BD=CD.12.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B 重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.13.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣14.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.【分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE =,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.15.如图,△ABC中,AB=AC,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且∠GEF+∠BAC=180°.(1)如图1,当∠B=45°时,线段AG和CF的数量关系是AG=CF.(2)如图2,当∠B=30°时,猜想线段AG和CF的数量关系,并加以证明.(3)若AB=6,DG=1,cos B=,请直接写出CF的长.【分析】(1)如图1,连接AE,根据线段垂直平分线的性质得到AE=BE,根据等腰直角三角形的性质得到∠BAE=∠B=45°,BE=EC=AE,∠BAE=∠EAC=∠C=45°,根据全等三角形的性质即可得到结论;(2)如图2,连接AE,根据等腰三角形的性质和三角形的内角和得到∠BAC=120°,根据线段垂直平分线的性质得到AE=BE,求得∠BAE=∠B=30°,根据相似三角形的性质得到,解直角三角形即可得到AG=CF;(3)①当G在DA上时,如图3,连接AE,根据线段垂直平分线的性质得到AD=BD =3,AE=BE,由三角函数的定义得到BE===4,根据相似三角形的性质得到=,过A作AH⊥BC于点H由三角函数的定义即可得到结论.②当点G在BD 上,如图4,方法同(1).【解答】解:(1)相等,理由:如图1,连接AE,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=45°,∴AE⊥BC,∵AB=AC,∴BE=EC=AE,∠BAE=∠EAC=∠C=45°,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠AGE=∠CFE,∵∠GAE=∠C=45°,∴△AEG≌△CEF(AAS),∴AG=CF;故答案为:AG=CF;(2)AG=CF,理由:如图2,连接AE,∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B=30°,∴∠CAE=90°,∠BAE=∠C,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=180°,∵∠CFE+∠AFE=180°,∴∠AGE=∠CFE,∴△AGE∽△CFE,∴,在Rt△ACE中,∵∠C=30°,∴=sin C=,∴=,∴AG=CF;(3)①当G在DA上时,如图3,连接AE,∵DE垂直平分AB,∴AD=BD=3,AE=BE,∵cos B=,∴BE===4,∴AE=BE=4,∴∠BAE=∠B,∵AB=AC,∴∠B=∠C,∴∠C=∠BAE,∵∠GEF+∠BAC=180°,∴∠AGE+∠AFE=360°﹣180°=180°,∵∠AFE+∠CFE=180°,∴∠CFE=∠AGE,∴△CFE∽△AGE,∴=,过A作AH⊥BC于点H,∵cos B=,cos45°=,∵>,∴∠B<45°,∴E在H的左侧,∵cos B=,∴BH=AB=×6=,∵AB=AC,∴BC=2BH=9,∵BE=4,∴CE=9﹣4=5,∵AG=AD﹣DG=3﹣1=2,∴=,∴CF=2.5;②当点G在BD上,如图4,同(1)可得,△CFE∽△AGE,∴=,∵AG=AD+DG=3+1=4,∴=,∴CF=5,综上所述,CF的长为2.5或5.16.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cos A的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【分析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题;(3)分两种情形:①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;【解答】解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=,在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵P A=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2,∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或.∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=,综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.17.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD =1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.18.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相交于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE相交于点H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG,∴△MGN是等腰直角三角形.19.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)20.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD =CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【分析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,记AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,记AE与CF的交点为M,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.。
2020年九年级中考数学复习专题训练:《三角形》综合(含答案)
2020年九年级中考数学复习专题训练:《三角形》综合1.在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F(1)如图1,若∠DAF=∠CBF,求证:AD=BC;(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.2.如图,已知CD是△ABC的高,AD=1,BD=4,CD=2.直角∠AEF的顶点E是射线CB上一动点,AE交直线CD于点G,EF所在直线交直线AB于点F.(1)判断△ABC的形状,并说明理由;(2)若G为AE的中点,求tan∠EAF的值;(3)在点E的运动过程中,若,求的值.3.如图,在平面直角坐标中,点O为坐标原点,△ABC的三个顶点坐标分别为A(0,m),B(﹣m,0),C(n,0),AC=5且∠OBA=∠OAB,其中m,n满足.(1)求点A,C的坐标;(2)点P从点A出发,以每秒1个单位长度的速度沿y轴负方向运动,设点P的运动时间为t秒.连接BP、CP,用含有t的式子表示△BPC的面积为S(直接写出t的取值范围);(3)在(2)的条件下,是否存在t的值,使得S△PAB =S△POC,若存在,请求出t的值,并直接写出BP中点Q的坐标;若不存在,请说明理由.4.一副三角板直角顶点重合于点B ,∠A =∠C =45°,∠D =60°,∠E =30°. (1)如图(1),若∠AFE =75°,求证:AB ∥DE ;(2)如图(2),若∠AFE =α,∠BGD =β,则α+β= 度.(3)如图(3),在(1)的条件下,DE 与AC 相交于点H ,连接CE ,BH ,若DG =2CG =2GH ,BC =10,S △CEH =S △BEH ,求△BDH 的面积.5.在△ABC中,∠BAC=120°,AB=AC,PC=PA,设∠APB=α,∠BPC=β.(1)如图1,当点P在△ABC内,①若β=153°,求α的度数;小明同学通过分析已知条件发现:△ABC是顶角为120°的等腰三角形,且PC=PA,从而容易联想到构造一个顶角为120°的等腰三角形.于是,他过点A作∠DAP=120°,且AD=AP,连接DP,DB,发现两个不同的三角形全等:≌再利用全等三角形及等腰三角形的相关知识可求出α的度数.请利用小王同学分析的思路,通过计算求得α的度数为;②小王在①的基础上进一步进行探索,发现α、β之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.(2)如图2,点P在△ABC外,那么a、β之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.6.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上7.如图1,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,AC>CD,∠ACB=∠DCE=α,且点A、D、E在同一直线上,连结BE(1)求证:AD=BE.(2)如图2,若α=90°,CM⊥AE于E.若CM=7,BE=10,试求AB的长.(3)如图3,若α=120°,CM⊥AE于E,BN⊥AE于N,BN=a,CM=b,直接写出AE的值(用a,b的代数式表示).8.已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x 轴正半轴上的点,连接AB,AC,BC.(1)如图1,若OB=1,OC=,且A,B,C在同一条直线上,求t的值;(2)如图2,当t=1,∠ACO+∠ACB=180°时,求BC+OC﹣OB的值;(3)如图3,点H(m,n)是AB上一点,∠A=∠OHA=90°,若OB=OC,求m+n的值.9.在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接PA,PB,若PA=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)10.如图,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,点D、E分别为边AB、BC中点,点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向点B运动,到点B停止.当点P不与点A重合时,过点P作PQ∥AC,且点Q在直线AB左侧,AP=PQ,过点Q作QM ⊥AB交射线AB于点M.设点P运动的时间为t(秒)(1)用含t的代数式表示线段DM的长度;(2)求当点Q落在BC边上时t的值;(3)设△PQM与△DEB重叠部分图形的面积为S(平方单位),当△PQM与△DEB有重叠且重叠部分图形是三角形时,求S与t的函数关系式;(4)当经过点C和△PQM中一个顶点的直线平分△PQM的内角时,直接写出此时t的值.11.如图,平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,点B在x轴的正半轴上,以AB为斜边向上作等腰直角△ABC,BC交y轴于点D,C(﹣2,4).(1)如图1,求点B的坐标;(2)如图2,动点E从点O出发以每秒1个单位长度的速度沿y轴的正半轴运动,设运动时间为t秒,连接CE,设△ECD的面积为S,请用含t的式子来表示S;(3)如图3,在(2)的条件下,当点E在OD的延长线上时,点F在直线CE的下方,且CF⊥CE,CF=CE.连接AD,取AD的中点M,连接FM并延长交AO于点N,连接FO,当S△NFO =10S△AMN时,求S的值.12.如图,在平面直角坐标系中,O为坐标原点,△ABC的顶点A(﹣2,0),点B,C分别在x轴和y轴的正半轴上,∠ACB=90°,∠BAC=60°(1)求点B的坐标;(2)点P为AC延长线上一点,过P作PQ∥x轴交BC的延长线于点Q,若点P的横坐标为t,线段PQ的长为d,请用含t的式子表示d;(3)在(2)的条件下,点E是线段CQ上一点,连接OE、BP,若OE=PB,∠APB﹣∠OEB =30°,求PQ的长.13.在平面直角坐标系中,点A(0,m),C(n,0).(1)若m,n满足.①直接写出m=,n=;②如图1,D为点A上方一点,连接CD,在y轴右侧作等腰Rt△BDC,∠BDC=90°,连接BA并延长交x轴于点E,当点A上方运动时,求△ACE的面积;(2)如图2,若m=n,点D在边OA上,且AD=11,G为OC上一点,且OG=8,连接CD,过点G作CD的垂线交CD于点F,交AC于点FH.连接DH,当∠ADH=∠ODC,求点D的坐标.14.如图,平面直角坐标系中,A(a,0),B(0,b)分别为x、y轴正半轴上一点,其中a、b满足:b﹣8=+,C为AB的中点.(1)求A、B两点坐标;(2)E为OB上一点,连CE交x轴于D,若BE=AD,如图1,求D点坐标;(3)F为x轴上的点,连FC,在(2)的条件下,若∠ACF=45°,求F点坐标.15.如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB=6cm,DM=3cm,DC=3﹣cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.(1)当点P在线段AM上运动时,PM=.(用t的代数式表示)(2)求BC的长度;(3)当点P在MB上运动时,求S与t之间的函数关系式.16.如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.17.阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE与CD 的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD =BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系,并加以证明.18.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.19.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.20.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.参考答案1.(1)证明:∵∠DFA=∠CFB,∠DAF=∠CBF,∴∠D=∠C,在△DAB和△CBA中,,∴△DAB≌△CBA(AAS),∴AD=BC;(2)解:在FC上取一点E,使得∠FBE=∠DAF,如图2所示:由(1)知,△DAB≌△EBA(AAS),∴BE=AD=2,DB=EA,∠BDA=∠AEB=135°,∴∠BEC=45°,∵∠C=45°,∴∠BEC=∠C,∴BC=BE=2,∠EBC=90°,∴EC=BE=2,∵AC=4,∴AE=AC﹣EC=4﹣2,∴BD=AE=4﹣2.(3)解:在FC上取一点E,使得∠FBE=∠DAF,如图3所示:由(1)知△DAB≌△EBA(AAS),∴BE=AD=1,DB=AE,∠BEA=∠BDA=108°,∠DBA=∠EAB=18°,∴∠BEC=72°=∠C,∠EFB=∠DBA+∠EAB=36°,∴BC=BE=1,∠EBC=36°,∴∠C=∠BEA﹣∠EBC=72°,∴∠FBC=72°,∴∠C=∠FBC,∠EFB=∠EBF=36°,∴EF=EB=1,FB=FC,∵∠DBA=∠CAB,∴AF=FB=FC=1+EC,∵∠EBC=∠EFB,∠∠C=∠C,∴△CBE~△CFB,∴,∴BC2=CE•CF,∴CE•CF=1,∴CE(CE+1)=1,即CE2+CE﹣1=0,解得:(负值已舍去),∴,∴,∴.2.解:(1)结论:△ABC是直角三角形.理由:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵AD=1,CD=2,BD=4,∴CD2=AD•BD,∴=,∴△ADC∽△CDB,∴∠ACD=∠B,∵∠B+∠DCB=90°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形.(2)如图1中,作EH⊥AB于H.∵AD⊥AB,EH⊥AB,∴DG∥HE,∵AG=GE,∵AD=DH=1,∵DB=4,∴BH=DB﹣DH=3,∵EH∥CD,∴=,∴=,∴EH=,∴tan∠EAF===.(3)如图2中,作EH⊥AB于H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∴===,∵CD=2,BD=4,∴EH=,BH=,∴AH=AB﹣BH=5﹣=,DH=AH﹣AD=,在Rt△AEH中,AE===,∵DG∥EH,∴=,∴=,∴EG=,∵AE⊥EF,EH⊥AF,∴△AEH∽△EFH,∴=,∴=,∴EF=∴==.3.解:(1)由,解得,∴A(0,4),C(3,0).(2)如图1中,当0<t<4时,S=•BC•OP=×5×(4﹣t)=﹣t+10.如图2中,当t>4时,S=•BC•OP=×5×(t﹣4)=t﹣10.综上所述,S=.(3)当0<t<4时,由题意,×t×4=××(4﹣t)×3,解得t=.此时,OP=4﹣=,∴P(0,),∵B(﹣4,0),∴BQ的中点Q的坐标为(﹣2,)当t>4时,由题意,×t×4=××(t﹣4)×3,解得t=36,此时OP=36﹣4=32,∴P(0,﹣32),∵B(﹣4,0),∴BP的中点Q的坐标为(﹣2,﹣16).综上所述,满足条件的t的值为或36.点Q的坐标为(﹣2,)或(﹣2,﹣16).4.(1)证明:如图(1),∵∠AFE=75°,∠A=45°,∴∠ABE=75°﹣45°=30°,∵∠E=30°,∴∠E=∠ABE,∴AB∥DE;(2)解:如图(2),△ABF中,∠AFE=∠A+∠ABE=α①,△BGE中,∠BGD=∠E+∠CBF=β②,①+②得:α+β=∠A+∠E+∠CBF+∠ABE=45°+30°+90°=165°;故答案为:165;(3)解:∵DE∥AB,∴∠CGH=∠ABC=90°,∵S△CEH =S△BEH,∴,∴CG=BG,∵BC=10,∴CG=2,BG=8,∵DG=2CG=2GH,∴DG=4,GH=2,∴△BDH的面积===24.5.解:(1)①如图1,过点A作AH⊥DP于H,∵∠DAP=∠BAC=120°,∴∠DAB=∠PAC,且AD=AP,AB=AC,∴△ADB≌△APC(SAS)∴BD=PC=PA,∠ADB=∠APC,∵∠DAP=120°,AD=AP,AH⊥DP,∴∠ADP=∠APD=30°,DH=PH,∴AP=2AH,HP=AH,∴DP=AP,∴DB=DP,∴∠DBP=∠DPB=∠APB﹣∠APD=α﹣30°,∴∠BDP=180°﹣2(α﹣30°)=240°﹣2α,∴∠ADB=∠BDP+∠ADP=270°﹣2α=∠APC,∵∠APB+∠APC+∠BPC=360°,∴270°﹣2α+α+β=360°,∴β﹣α=90°,当β=153°时,α=63°,故答案为:△ADB,△APC,63°;②β﹣α=90°,理由如上;(2)α+β=90°,理由如下:如图2,作∠PAN=120°,且PA=NA,连接PN,BN,∵∠PAN=∠BAC=120°,∴∠BAN=∠PAC,且AB=AC,AP=AN,∴△ABN≌△ACP(SAS)∴∠BNA=∠APC,PC=BN=AP,∵∠PAN=120°,PA=NA,∴∠APN=∠ANP=30°,∴PN=AP=BN,∴∠BPN=∠PBN=α+30°,∵∠BPN+∠PBN+∠BNP=180°,∴2(α+30°)+β﹣α+30°=180°,∴α+β=90°.6.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.7.(1)证明:∵∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)解:设AE交BC于点H,如图2所示:由(1)得:△ACD≌△BCE,∴∠CAD=∠CBE,AD=BE=10,∵∠AHC=∠BHE,∴∠AEB=∠ACH=90°,∵∠ACB=∠DCE=α=90°,CD=CE,∴△CDE是等腰直角三角形,∵CM⊥DE,∴CM=DM=ME=7,∴DE=2CM=14,∵AE=AD+DE=10+14=24,∠AEB=90°,∴AB===26;(3)解:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2×=2b.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE===a.∵AD=BE,AE=AD+DE,∴AE=BE+DE=a+2b.8.解:(1)过点A作AD⊥x轴于D,如图1所示:∵点A(t,1),∴AD=1,OD=t,∵A,B,C在同一条直线上,∴∠OCB=∠DCA,∵tan∠OCB===,∴tan∠OCB=tan∠DCA==,即=,解得:CD=,∴t=OD=OC+CD=+=3;(2)作AD⊥y轴于D,AM⊥x轴于M,AN⊥BC于N,如图2所示:则∠ADB=∠ANB=90°,∵t=1,∴点A(1,1),∴AD=AM=OM=1,∵∠ACO+∠ACB=180°,∠ACN+∠ACB=180°,∴∠ACO=∠ACN,∵AM⊥x轴于M,AN⊥BC于N,∴AN=AM=AD=1,在Rt△ABD和Rt△ABN中,,∴Rt△ABD≌Rt△ABN(HL),∴BN=BD=OB+1,同理:Rt△ACM≌Rt△ACN(HL),∴CM=CN,∵BC=BN﹣CN,OC=OM+CM=1+CM,∴BC+OC﹣OB=BN﹣CN+1+CM﹣OB=OB+1﹣CN+1+CM﹣OB=2;(3)作HG⊥OC于G,如图3所示:∵OB=OC,∠BOC=90°,∴△BOC是等腰直角三角形,∠OCB=45°,∵∠OHA=90°,∴OH⊥AB,∴△OCH是等腰直角三角形,∵HG⊥OC,∴△OGH是等腰直角三角形,∴OG=GH,即m=﹣n,∴m+n=0.9.解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH.由(2)可知∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵OC⊥OH,∴OH⊥NG,∵∠OHC=30°=∠AGO,∴点G在以G为圆心GO为半径的⊙G上,∴GO=GA,∴NH垂直平分线段OH,∴O,H关于GN对称,∴ON+NC=NH+NC≥CH,∵CH=2OC=2t,∴ON+NC≥2t,∴ON+CN的最小值为2t.10.解:(1)如图1中,在RtABC中,∵AC=16,BC=12,∠C=90°,∴AB===20,∵PQ∥AC,∴∠A=∠QPM,∵∠C=∠PMQ=90°,∴△ACB∽△PMQ,∴==,∴==,∴PM=4t,MQ=3t,当0<t≤时,DM=AD﹣AM=10﹣5t﹣4t=﹣9t+10.当<t≤4时,DM=AM﹣AD=9t﹣10.(2)如图2中,当点Q落在BC上时,∵PQ∥AC,∴=,∴=,解得t=,∴当点Q落在BC边上时t的值为s.(3)如图3﹣1中,当<t≤时,重叠部分是△DMK,S=×DM×MK=×(9t﹣10)×(9t﹣10)=t2﹣t+.如图3﹣2中,当≤t≤4时,重叠部分是△PBK,S=•PK•BK=×(20﹣5t)•(20﹣5t)=6t2﹣48t+96.(4)如图4﹣1中,当直线CQ平分∠PQM时,设直线CQ交AB于G,作GK⊥PQ于K.∵∠QKG=∠QMG=90°,∠GQK=∠GQM,QG=QG,∴△QGK≌△QGM(AAS),∴QK=QM=3t,PK=PQ﹣QK=5t﹣3t=2t,∴PG=PK=t,∵PQ∥AC,∴=,∴=,∴t=.如图4﹣2中,当CM平分∠QMP时,作CG⊥AB于G.∵•AC•BC=•AB•CG,∴CG===,AG===,∵∠CMG=∠GCM=45°,∴CG=GM=,∴AM=9t=+,解得t=,综上所述,满足条件的t的值为s或s.11.解:(1)如图1中,作CH⊥AB于H.∵C(﹣2,4),∴CH=4,OH=2,∵AC﹣BC,∠ACB=90°,∴AH=CH=BH=4,∴OB=OH=2,∵OD∥CH,∴CD=DB,∴OD=CH=2,∴D(0,2),B(2,0).(2)由(1)可知D(0,2),所以当0≤t<2时,当t>2时,,综上所述,S=.(3)如图3中,延长AC交y轴于H,连接FD,AF.FO.∵C(﹣2,4),△ABC是等腰直角三角形,∴AB=8,由(1)知B(2,0),∴OB=2,OA=6,∵△ABC是等腰直角三角形,∴∠ACB=90°,∴∠CAB=45°,∵∠AOH=90°,∴∠CHE=∠CAB=45°,∴OH=OA=6,∵∠ACB=90°,∴∠DCH=90°,∵∠CHE=45°,∴∠CDH=∠CHE=45°,∴CH=CD,∵CF⊥CE,∴∠DCF+∠ECD=90°,∵∠ACB=90°,∴∠HCE+∠ECD=90°,∴∠HCE=∠DCF,又∵CF=CE,∴△HCE≌△DCF(SAS),∴HE=FD=6﹣t,∠CDF=∠CHE=45°,∵∠CBA=45°,∴∠CDF=∠CBA,∴FD∥AB,∴∠FDM=∠NAM,∵M是AD中点,∴DM=AM,又∵∠FMD=∠NMA,∴△DMF≌AMN(ASA),∴AN=FD=6﹣t,∵DM=AM,∴S△DMF =S△AMF∵△DMF≌△AMN,∴S△DMF =S△AMN,∴S△NFA =2S△AMN∵S△NFO =10S△AMN∴S△NFO =5S△NFA,∴5AN=ON,∵OA=6,∴AN=1,∴AN=6﹣t=1,∴t=5,∴S=t﹣2=5﹣2=3.12.解:(1)在Rt△AOC中,A(﹣2,0),∠A=60°,∴OA=2,∠ACO=∠ABC=30°∴AC=2OA=4,在Rt△ABC中,∠ABC=30°,∴AB=2AC=8,即OB=AB﹣OA=8﹣2=6,则B(6,0);(2)如图1所示,在Rt△MCP中,MP=t,∠MCP=30°,∴CP=2MP=2t,在Rt△CQP中,∠CQP=30°,CP=2t,∴PQ=4t,即d=4t;(3)如图2所示,过P作PM∥y轴,交BC于M,∴∠APM=∠DCP=∠ACO=30°,∵∠APB﹣∠OEB=30°,∴∠APB﹣30°=∠OEB=∠BPM,∵∠BMP=180°﹣60°=120°=∠OCE,∵OE=PB,∴△OCE≌△BMP(AAS),∴OC=BM=2,∵BC=4,∴CM=4﹣2=2,Rt△PCM中,∠CPM=30°,CP=2t,∴PM=4,∴PC2+CM2=PM2,∴,4t2+12=48,t=3或﹣3(舍),∴PQ=4t=12.13.解:(1)①由,解得,故答案为4,4.②如图1中,∵A(0,4),C(4,0),∴OA=OC=4,∴△AOC是等腰直角三角形,∴AC=OC,∠ACO=45°,∵△DCB是等腰直角三角形,∴BC=CD,∠DCB=45°,∴∠OCD=∠ACB,==,∴∠OCD∽△ACB,∴∠BAC=∠DOC=90°,∴∠AEC=∠ACE=45°,∴AE=AC,∵AO⊥EC,∴EO=OC=AO=4,=•EC•AO=×8×4=16.∴S△ACE(2)如图2中,作CP∥OA交DH的延长线于P,作DK⊥CP于K.∵PC∥OA,∴∠P=∠ADH,∠DCP=∠ODC,∵∠ADH=∠ODC,∴∠P=∠PCD,∴DP=DC,∴△DPC是等腰三角形,∵∠DKC=∠KCO=∠DOC=90°,∴四边形ODKC是矩形,∴OD=CK,∵DK⊥PC,∴PK=CK=OD,设OD=x,则PK=CK=x,PC=2x,∵OA=OC,AD=11,OG=8,∴CG=OC﹣OG=x+3,∵GH⊥DC,∴∠CFG=∠COD=90°,∴∠ODC+∠OCD=90°,∠CGF+∠FCG=90°,∴∠ODC=∠CGF,∴∠CGH=∠P,∵CH=CH,∠HCG=∠HCP=45°,∴△HCG≌△HCP(AAS),∴CG=CP,∴x+3=2x,∴x=3,∴D(0,3)14.解:(1)根据题意得:,解得:a=4,∴b=8,∴A(4,0),B(0,8);(2)∵C为AB的中点,∴C(2,4),设OE=b,∵BE=AD,∴AD=8﹣b,∵OA=4,∴OD=4﹣b,设直线CD的解析式为:y=kx+b,把C(2,4)代入得:2k+b=4,∴k=,∴直线CD的解析式为:y=x+b,∵D(b﹣4,0),则﹣+b=0,解得:b=2或8(舍),∴D(﹣2,0);(3)由(2)知:直线CD的解析式为:y=x+2分两种情况:①当F在点A的左侧时,如图2,过F作FG⊥AB于G,∵∠BAO=∠FAG,∴tan∠BAO=tan∠FAG===2,设AG=x,则FG=2x,∵∠ACF=45°,∠CGF=90°,∴CG=FG=2x,∵AC=AB==2,∴AG=2﹣2x=x,x=,∴AF=x=,∴OF=4﹣=,∴F(,0);②当点F在点A的右侧时,如图3,过C作CP⊥CF,交x轴于点P,CH⊥x轴于H,过A 作AG⊥CF于G,∵∠ACF=45°,∴△ACG是等腰直角三角形,∵AC=2,∴CG=AG=,由(2)知:AP=,∵AH=2,∴PH=﹣2=,∵CH=OB=4,∴PC==,∵AG∥PC,∴,即=,∴AF=10,∴F(14,0),综上,点F的坐标为(,0)或(14,0).15.解:(1)如图1中,PM=3﹣t.故答案为3﹣t.(2)过点C作CE⊥AB,垂足为E,如图2,∵DA=DB,AM=BM,∴DM⊥AB.∵CE⊥AB,∴∠CEB=∠DMB=90°.∴CE∥DM.∵DC∥ME,CE∥DM,∠DME=90°,∴四边形DCEM是矩形.∴CE=DM=3,ME=DC=.∵AM=BM,AB=6,∴AM=BM=3.∴BE=BM﹣ME=.∵∠CEB=90°,CE=3,BE=,∴CB===2.(3)①当3<t≤时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,∵QF⊥AB,CE⊥AB,∴∠QFB=∠CEB=90°.∴QF∥CE.∵BQ=t,∴QF=∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)•=;②当<t≤时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,此时QF=DM=3.∵PM=AP﹣AM=t﹣3,∴S=PM•QF=(t﹣3)×3=.综上所述:当3<t≤时,S=;当<t≤时,S=.16.解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,∴CD=4t.∴AD===5t,当点C在点B右侧时,CB=3t﹣5,∴CF=CB.∴DF=4t﹣(3t﹣5)=t+5.(2)当0<t<时,S=•(5﹣3t)•4t=﹣6t2+10t.当t>时,S=•(3t﹣5)•4t=6t2﹣10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5﹣3t﹣4t=5t,解得t=,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.综上所述,满足条件的t的值为或或.17.(1)证明:∵△ABC,△DEB都是等边三角形,∴∠ABC=∠EBD=60°,∴∠ABE+∠EBC=∠EBC+∠CBD,∴∠ABE=∠CBD.(2)证明:∵△ABC,△DEB都是等边三角形,∴BA=BC,BE=BD,∠BAC=∠ACB=60°,∵∠ABE=∠CBD,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠ACB=∠BCD=60°,∴CB平分∠ACD.(3)解:结论:EC+BE=BC.理由:∵DA=DF,∴可以将△DBF绕点D顺时针旋转,使得DF与DA重合,得到△DMA,连接AM.∵DA=DF,BD=BF,∴∠DAF=∠F=∠BDF,∵∠BCD=∠ABC=60°,∴CD∥AB,∴∠CDF=∠DAF,∵∠MDA=∠BDF=∠F=∠DAB,∴∠MDA=∠CDA,∴D,C,M共线,∵∠AMD=∠DBF=∠CDB,∠ACM=∠BCD=60°,AM=DM=BD=BF,∴△AMC≌△BDC(AAS),∴CM=DC=BD=BE,∵△ABE≌△CBD,∴AE=CD,∴BC=AC=EC+AE=CE+CD=CE+BE,∴EC+BE=BC.18.(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC和△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CED中,,∴△BFD≌△CED(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB=∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠FAB=∠CAB=30°,∴∠EAF=∠EFA=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.19.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,。
四川省渠县崇德实验学校2020年中考九年级数学:直角三角形专题复习测试试题(含答案)
四川省渠县崇德实验学校2020年中考九年级数学:直角三角形专题复习测试题一、选择题(每小题3分,共30分) 1.如图,图中直角三角形有(C)A.1个B.2个C.3个D.4个2.如图,点E 在正方形ABCD 的边AB 上.若EB =1,EC =2,则正方形ABCD 的面积为(B)A. 3B.3C. 5D.5 3.满足下列条件时,△ABC 不是直角三角形的为(C)A.AB =41,BC =4,AC =5B.AB∶BC∶AC=3∶4∶5C.∠A∶∠B∶∠C=3∶4∶5D.|cosA -12|+(tanB -33)2=04.已知M ,N 是线段AB 上两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.如图,点D 在BC 的延长线上,DE⊥AB 于点E ,交AC 于点F.若∠A=35°,∠D=15°,则∠ACB 的度数为(B)A.65°B.70°C.75°D.85°6.如图,数轴上点A 表示的数是-1,原点O 是线段AB 的中点,∠BAC =30°,∠ABC=90°,以点A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数是(D)A.233-1 B.233 C.433 D.433-1 7.如图,在△ABC 中,AC =8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为(C)A.433 B.2 2 C.832 D.3 28.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC 的角平分线上时,则点B′到BC的距离为(A)A.1或2B.2或3C.3或4D.4或59.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab =8,大正方形的面积为25,则小正方形的边长为(D)A.9B.6C.4D.310.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(C)A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题3分,共30分)11.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点.若EF=1,则AB =4.12.如图,在△ABC中,CD⊥AB于点D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.13.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.14.若实数m,n满足|m-3|+n-4=0,且m,n恰好是直角三角形的两条边的长,则该直角三角形的斜边长为5或4.15.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1∶13,则直角三角形较短的直角边a与较长的直角边b的比值为2∶3.16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若AB =2,则CD =6- 2.17.如图所示的网格是正方形网格,则∠PAB +∠PBA=45°(点A ,B ,P 是网格线交点).18.如图,在扇形OAB 中,∠AOB=90°.P 为AB ︵上的一点,过点P 作PC⊥OA,垂足为C ,PC 与AB 交于点D.若PD =2,CD =1,则该扇形的半径长为5.19.如图,在△ABC 中,AC =3,BC =4,若AC ,BC 边上的中线BE ,AD 垂直相交于点O ,则AB = 5.20.如图,已知线段AB =4,O 是AB 的中点,直线l 经过点O ,∠1=60°,P 点是直线l 上一点,当△APB 为直角三角形时,则BP =2或23或27.三、解答题(共60分)21.如图,在△ABC 中,内角∠A,∠B,∠C 所对的边分别为a ,b ,c.若aa -b +c =12(a +b +c )c ,求证:△ABC 是直角三角形.证明:∵aa -b +c =12(a +b +c )c , ∴ac=12(a +b +c)(a -b +c).∴2ac=(a +c)2-b 2. ∴b 2=a 2+c 2.∴△ABC 是直角三角形.22.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D 为1.5米,求小巷有多宽?解:在Rt△ACB 中,∵∠ACB=90°,BC =0.7米,AC =2.4米, ∴AB 2=0.72+2.42=6.25. 在Rt△A′BD 中,∵∠A′DB=90°,A′D=1.5米, BD 2+A′D 2=A′B′2, ∴BD 2+1.52=6.25. ∴BD 2=4.∵BD>0,∴BD=2米.∴CD=BC +BD =0.7+2=2.7(米). 答:小巷的宽度CD 为2.7米.23.如图,等腰直角三角板如图放置,直角顶点C 在直线m 上,分别过点A ,B 作AE⊥m 于点E ,BD⊥m 于点D. (1)求证:EC =BD ;(2)若设△AEC 三边长分别为a ,b ,c ,利用此图证明勾股定理.证明:(1)∵∠ACB=90°,∴∠ACE+∠BCD=90°. ∵BD⊥m,AE⊥m,∴∠CDB=90°,∠AEC=90°. ∴∠ACE+∠CAE=90°.∴∠CAE=∠BCD. 在△AEC 和△CDB 中,⎩⎪⎨⎪⎧∠AEC=∠CDB,∠CAE=∠BCD ,AC =CB ,∴△AEC≌△CDB(AAS).∴EC=BD.(2)由(1)知BD =CE =a ,CD =AE =b ,∴S 梯形ABDE =12(a +b)(a +b)=12a 2+ab +12b 2.又∵S 梯形ABDE =S △AEC +S △BCD +S △ABC =12ab +12ab +12c 2=ab +12c 2,∴12a 2+ab +12b 2=ab +12c 2.∴a 2+b 2=c 2. ∴直角三角形两条直角边的平方和等于斜边的平方.24.如图,在△ABC 中,AB =5,AC =13,BC 上的中线AD =6,求BC 的长.解:延长AD 至点E ,使DE =AD ,连接BE. 在△ADC 和△EDB 中, ⎩⎪⎨⎪⎧AD =ED ,∠ADC=∠EDB,CD =BD ,∴△ADC≌△EDB(SAS).∴AC=BE =13. ∵在△ABE 中,AB =5,AE =12,BE =13, ∴AB 2+AE 2=BE 2. ∴∠BAE=90°.∵在△ABD 中,∠BAD=90°,AB =5,AD =6, ∴BD=AB 2+AD 2=61. ∴BC=261.25.如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10 km 至C 港. (1)求A ,C 两港之间的距离(结果精确到0.1 km ,参考数据:2≈1.414,3≈1.732); (2)确定C 港在A 港的什么方向?解:(1)由题意可得,∠PBC=30°,∠MAB=60°, ∴∠CBQ=60°,∠BAN=30°. ∴∠ABQ=30°.∴∠ABC=90°.∵AB=BC=10 km,∴AC=AB2+BC2=102≈14.1(km).答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=15°.∴C港在A港北偏东15°的方向上.。
2020年中考数学必考考点专题18解直角三角形问题含解析
专题18 解直角三角形问题一、勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.定理:经过证明被确认正确的命题叫做定理。
4.我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)5. 直角三角形的性质:(1)直角三角形的两锐角互余;(2)直角三角形的两条直角边的平方和等于斜边的平方;(3)直角三角形中30°角所对直角边等于斜边的一半;(4)直角三角形斜边上的中线等于斜边的一半。
6.直角三角形的判定:(1)有一个角等于90°的三角形是直角三角形(2) 两锐角互余的三角形是直角三角形(3)两条边的平方和等于另一边的平方的三角形是直角三角形(4)有一边上的中线等于这边的一半的三角形是直角三角形二、锐角三角函数1.各种锐角三角函数的定义(1)正弦:在△ABC中,∠C=90°把锐角A的对边与斜边的比值叫做∠A的正弦,记作sinA=∠A的对边斜边(2)余弦:在△ABC中,∠C=90°,把锐角A的邻边与斜边比值的叫做∠A的余弦,记作cosA=∠A的邻边斜边(3)正切:在△ABC中,∠C=90°,把锐角A的对边与邻边的比值叫做∠A的正切,记作tanA=∠A的对边∠A的邻边2.特殊值的三角函数:专题知识回顾三、仰角、俯角、坡度概念 1.仰角:视线在水平线上方的角; 2.俯角:视线在水平线下方的角。
3.坡度(坡比):坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
四、各锐角三角函数之间的关系 (1)互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA •tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin专题典型题考法及解析【例题1】(2019•湖北省鄂州市)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P 点是直线l上一点,当△APB为直角三角形时,则BP=.【答案】2或2或2.【解析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.【例题2】(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【答案】D【解析】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.【例题3】(2019•江苏连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)【答案】(1)观察哨所A与走私船所在的位置C的距离为15海里;(2)当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.【解析】(1)先根据三角形内角和定理求出∠ACB=90°,再解Rt△ABC,利用正弦函数定义得出AC即可;在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sinB=,∴AC=AB•sin37°=25×=15(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,易知,D.C.M在一条直线上.解Rt△AMC,求出CM、AM.解Rt△AMD中,求出DM、AD,得出C D.设缉私艇的速度为x海里/小时,根据走私船行驶CD所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.过点C作CM⊥AB于点M,由题意易知,D.C.M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=15×=12,AM=AC•cos∠CAM=15×=9.在Rt△AMD中,tan∠DAM=,∴DM=AM•tan76°=9×4=36,∴AD===9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.专题典型训练题一、选择题1.(2019•渝北区)如果下列各组数是三角形的三边,则能组成直角三角形的是()A.1,,2 B.1,3,4 C.2,3,6 D.4,5,6【答案】A.【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.A.12+()2=22,故是直角三角形,故此选项正确;B.12+32≠42,故不是直角三角形,故此选项错误;C.22+32≠62,故不是直角三角形,故此选项错误;D.42+52≠62,故不是直角三角形,故此选项错误.2.(2019•巴南区)下列各组数据中,能够成为直角三角形三条边长的一组数据是()A .,,B.32,42,52C .D.0.3,0.4,0.5【答案】D.【解析】先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.A.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;B.(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;C.()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;D.0.032+0.042=0.052,即三角形是直角三角形,故本选项符合题意。
2020年全国中考数学试题精选分类(8)——三角形(含解析)
2020年全国中考数学试题精选分类(8)——三角形一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x23.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28 5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3 7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6 9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm218.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6 21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4 22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1 24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4 25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1 27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3 31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a 33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于.(用含有正整数n的式子表示)38.(2020•丹东)如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.39.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.40.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.三.解答题(共10小题)41.(2020•西藏)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.42.(2020•大连)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.43.(2020•鞍山)如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD 上,AE=AF,CE=CF,求证:CB=CD.44.(2020•山西)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).45.(2020•沈阳)如图,在平面直角坐标系中,△AOB的顶点O是坐标原点,点A的坐标为(4,4),点B的坐标为(6,0),动点P从O开始以每秒1个单位长度的速度沿y轴正方向运动,设运动的时间为t秒(0<t<4),过点P作PN∥x轴,分别交AO,AB于点M,N.(1)填空:AO的长为,AB的长为;(2)当t=1时,求点N的坐标;(3)请直接写出MN的长为(用含t的代数式表示);(4)点E是线段MN上一动点(点E不与点M,N重合),△AOE和△ABE的面积分别表示为S1和S2,当t=时,请直接写出S1•S2(即S1与S2的积)的最大值为.46.(2020•毕节市)如图(1),大正方形的面积可以表示为(a+b)2,同时大正方形的面积也可以表示成两个小正方形面积与两个长方形的面积之和,即a2+2ab+b2.同一图形(大正方形)的面积,用两种不同的方法求得的结果应该相等,从而验证了完全平方公式:(a+b)2=a2+2ab+b2.把这种“同一图形的面积,用两种不同的方法求出的结果相等,从而构建等式,根据等式解决相关问题”的方法称为“面积法”.(1)用上述“面积法”,通过如图(2)中图形的面积关系,直接写出一个多项式进行因式分解的等式:.(2)如图(3),Rt△ABC中,∠C=90°,CA=3,CB=4,CH是斜边AB边上的高.用上述“面积法”求CH的长;(3)如图(4),等腰△ABC中,AB=AC,点O为底边BC上任意一点,OM⊥AB,ON ⊥AC,CH⊥AB,垂足分别为点M,N,H,连接AO,用上述“面积法”求证:OM+ON =CH.47.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.48.(2020•吉林)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s 的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.49.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.50.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC 上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.2020年全国中考数学试题精选分类(8)——三角形参考答案与试题解析一.选择题(共35小题)1.(2020•朝阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在BC边上,且CE=2BE,连接AE交BD于点G,过点B作BF⊥AE于点F,连接OF并延长,交BC于点M,过点O作OP⊥OF交DC于点N,S四边形MONC=,现给出下列结论:①;②sin∠BOF=;③OF=;④OG=BG;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④【答案】D【解答】解:如图,过点O作OH∥BC交AE于点H,过点O作OQ⊥BC交BC于点Q,过点B作BK⊥OM交OM的延长线于点K,∵四边形ABCD是正方形,∴,∴OB=OC,∠BOC=90°,∴∠BOM+∠MOC=90°.∵OP⊥OF,∴∠MON=90°,∴∠CON+∠MOC=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴,∴,∴.∵CE=2BE,∴,∴.∵BF⊥AE,∴,∴,∴,∴,∴,∴,∴.∵AD∥BC,∴,故①正确;∵OH∥BC,∴,∴.∵∠HGO=∠EGB,∴△HOG≌△EBG(AAS),∴OG=BG,故④正确;∵OQ2+MQ2=OM2,∴,∴,故③正确;∵,即,∴,∴,故②错误;∴正确的有①③④.故选:D.2.(2020•盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x+1)2D.(x﹣1)2+102=x2【答案】B【解答】解:设芦苇长x尺,由题意得:(x﹣1)2+52=x2,故选:B.3.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【答案】D【解答】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.4.(2020•呼伦贝尔)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE 于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A.14B.20C.22D.28【答案】B【解答】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE∥BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=BC,MN∥BC,OM=OB=4,ON=OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴BC==10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.5.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【答案】D【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.6.(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【答案】A【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.【答案】B【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.8.(2020•宿迁)在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.6【答案】A【解答】解:∵在△ABC中,AB=1,BC=,∴﹣1<AC<+1,∵﹣1<2<+1,4>+1,5>+1,6>+1,∴AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A.9.(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,作AM⊥BD于M,AN⊥EC于N,设AD交EF于O.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,由题意知,AB不一定等于AD,所以AF不一定平分∠CAD,故③错误,故选:C.10.(2020•吉林)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【答案】B【解答】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.11.(2020•绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【答案】C【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.12.(2020•毕节市)如图,在一个宽度为AB长的小巷内,一个梯子的长为a,梯子的底端位于AB上的点P,将该梯子的顶端放于巷子一侧墙上的点C处,点C到AB的距离BC 为b,梯子的倾斜角∠BPC为45°;将该梯子的顶端放于另一侧墙上的点D处,点D到AB的距离AD为c,且此时梯子的倾斜角∠APD为75°,则AB的长等于()A.a B.b C.D.c 【答案】D【解答】解:过点C作CE⊥AD于E,如图所示:则四边形ABCE是矩形,∴AB=CE,∠CED=∠DAP=90°,∵∠BPC=45°,∠APD=75°,∴∠CPD=180°﹣45°﹣75°=60°,∵CP=DP=a,∴△CPD是等边三角形,∴CD=DP,∠PDC=60°,∵∠ADP=90°﹣75°=15°,∴∠EDC=15°+60°=75°,∴∠EDC=∠APD,在△EDC和△APD中,,∴△EDC≌△APD(AAS),∴CE=AD,∴AB=AD=c,故选:D.13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解答】解:如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2020•包头)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°【解答】解:∵∠ACB=75°,∠ECD=50°,∴∠ACE=180°﹣∠ACB﹣∠ECD=55°,∵AB∥CE,∴∠A=∠ACE=55°,故选:B.16.(2020•淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AE=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,x2+4y2=b2,②在Rt△BFD中,4x2+y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.17.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.cm2C.50cm2D.75cm2【答案】C【解答】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,EH=2x,由题意EH=20cm,∴20=2x,∴x=5,∴阴影部分的面积=(5)2=50(cm2)故选:C.18.(2020•宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【答案】A【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D.∵l为直线,EH不能平分直线l,∴EH不是l的垂直平分线,故此选项错误;故选:A.19.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°【答案】D【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,底角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.20.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.21.(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF==1.7,故选:A.22.(2020•湘潭)如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A =()A.40°B.50°C.55°D.60°【答案】D【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B,∵∠ACD=110°,∠B=50°,∴∠A=60°,故选:D.23.(2020•烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()n B.()n﹣1C.()n D.()n﹣1【答案】B【解答】解:∵△OA1A2为等腰直角三角形,OA1=1,∴OA2=;∵△OA2A3为等腰直角三角形,∴OA3=2=;∵△OA3A4为等腰直角三角形,∴OA4=2=.∵△OA4A5为等腰直角三角形,∴OA5=4=,……∴OA n的长度为()n﹣1.故选:B.24.(2020•河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【答案】B【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.25.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【答案】D【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.26.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【答案】B【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.27.(2020•河北)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l【答案】A【解答】解:如图,由题意可得△P AB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△P AB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.28.(2020•福建)如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.29.(2020•聊城)如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【答案】B【解答】解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.30.(2020•河南)如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9C.6D.3【答案】D【解答】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.31.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【答案】D【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.32.(2020•南充)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC =a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【答案】C【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.33.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【答案】B【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.34.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【答案】A【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.35.(2020•新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC 的长为()A.2B.5C.4D.10【答案】A【解答】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题(共5小题)36.(2020•阜新)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是.【答案】.【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,∴AC∥A1C1,∴△ABC∽△A1BD,∵S△A1BD:S四边形ACDA1=4:5,∴S:S△ABC=4:9,∴A1B:AB=2:3,∵AB=4,∴A1B=,∴AA1=4﹣=.故答案为:.37.(2020•葫芦岛)如图,∠MON=45°,正方形ABB1C,正方形A1B1B2C1,正方形A2B2B3C2,正方形A3B3B4C3,…,的顶点A,A1,A2,A3,…,在射线OM上,顶点B,B1,B2,B3,B4,…,在射线ON上,连接AB2交A1B1于点D,连接A1B3交A2B2于点D1,连接A2B4交A3B3于点D2,…,连接B1D1交AB2于点E,连接B2D2交A1B3于点E1,…,按照这个规律进行下去,设△ACD与△B1DE的面积之和为S1,△A1C1D1与△B2D1E1的面积之和为S2,△A2C2D2与△B3D2E2的面积之和为S3,…,若AB=2,则S n等于×4n﹣1.(用含有正整数n的式子表示)【答案】.【解答】解:设△ADC的面积为S,。
中考数学 相似三角形专题训练(含答案)
2020中考数学相似三角形专题训练(含答案)一、选择题:1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是( )A.B.C.D.﹣答案:D.2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )A.=B.=C.=D.=答案:C3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④ B.①④ C.②③④D.①②③答案D.4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有( )A.1个B.2个C.3个D.4个答案C.二、填空题:5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .答案:4.6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.答案:或.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.故答案为113°或92°.8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是.答案:1.9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .答案:.10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.故答案为3:4.三、解答题:11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13. 如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.∵△ADF∽△DEC,14. 在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.15. (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE 上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).。
2020年中考数学 临考大专题复习练习:三角形(解析版)
2020中考数学临考大专题复习:三角形一、选择题(本大题共8道小题)1. 在△ABC中,若一个内角等于另两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°2. 如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°3. 已知:如图,在△ABC中,AB=AC,∠C=72°,BC=√5,以点B为圆心,BC 为半径画弧,交AC于点D,则线段AD的长为()A.2√2B.2√3C.√5D.√64. 如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()5. 满足下列条件时,△ABC不是直角三角形的为()A.AB=√41,BC=4,AC=5B.AB∶BC∶AC=3∶4∶5C.∠A∶∠B∶∠C=3∶4∶5D.cos A-12+tan B-√332=06. 将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°7. 如图,平面直角坐标系中,☉P经过三点A(8,0),O(0,0),B(0,6),点D 是☉P上的一动点,当点D到弦OB的距离最大时,tan∠BOD的值是()A.2B.3C.4D.58. 如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N.若△AMN的周长为18,BC=6,则△ABC的周长为()A.21B.22C.24D.26二、填空题(本大题共5道小题)9. 如图,已知Rt△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.10. 无盖圆柱形杯子的展开图如图K20-7所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.11. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是.13. 在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=.三、解答题(本大题共4道小题)14. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.15. 如图,Rt△ABC中,∠ACB=90°,以AC为直径的☉O交AB于点D.过点D 作☉O的切线交BC于点E,连接OE.(1)求证:△DBE是等腰三角形;(2)求证:△COE∽△CAB.16. 如图,在△ABC中,AB=AC,∠BAC=90°,点D是射线BC上一动点,连接AD,以AD为直角边,在AD的上方作等腰直角三角形ADF.(1)如图①,当点D在线段BC上时(不与点B重合),求证:△ACF≌△ABD;(2)如图②,当点D在线段BC的延长线上时,猜想CF与BD的数量关系和位置关系,并说明理由.17. 如图①,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC 上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图①中,线段PM与PN的数量关系是________,位置关系是________;(2)探究证明把△ADE绕点A逆时针方向旋转到图②的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.2020中考数学临考大专题复习:三角形-答案一、选择题(本大题共8道小题)1. 【答案】D[解析]不妨设∠A=∠C-∠B,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选D.2. 【答案】B3. 【答案】C[解析]在△ABC中,AB=AC,∠C=72°,所以∠ABC=72°,∠A=36°,因为BC=BD,所以∠BDC=72°,所以∠ABD=36°,所以AD=BD=BC=√5,故选C.4. 【答案】B[解析]根据勾股定理分别表示出已知三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两个三角形相似可得结果,△A1B1C1各边长分别为1,√2,√5,选项A中阴影三角形三边长分别为:√2,√5,3,三边不与已知三角形各边对应成比例,故两三角形不相似;选项B 中阴影三角形三边长分别为:√2,2,√10,三边与已知三角形的各边对应成比例,故两三角形相似;选项C 中阴影三角形三边长分别为:1,√5,2√2,三边不与已知三角形各边对应成比例,故两三角形不相似;选项D 中阴影三角形三边长分别为:2,√5,√13,三边不与已知三角形各边对应成比例,故两三角形不相似,故选B .5. 【答案】C[解析]A .∵52+42=25+16=41=(√41)2,∴△ABC 是直角三角形;B .设AB=3x ,则BC=4x ,AC=5x.∵(3x )2+(4x )2=9x 2+16x 2=25x 2=(5x )2,∴△ABC 是直角三角形;C .∵∠A ∶∠B ∶∠C=3∶4∶5,∴∠C=53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形;D .∵cos A -12+tan B -√332=0,∴cos A=12,tan B=√33,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC 是直角三角形. 故选C.6. 【答案】C[解析]如图,在直角三角形中,可得∠1+∠A=90°,∵∠A=45°,∴∠1=45°,∴∠2=45°. ∵∠B=30°,∴∠α=∠2+∠B=75°, 故选C .7. 【答案】B[解析]如图所示,当点D 到弦OB 的距离最大时,DE ⊥OB 于E 点,且D ,E ,P 三点共线.连接AB ,由题意可知AB 为☉P 的直径,∵A (8,0),∴OA=8,∵B (0,6),∴OB=6,∴OE=BE=12OB=3,在Rt △AOB 中,AB=√OA 2+OB 2=10,∴BP=12AB=12×10=5,在Rt △PEB 中,PE=√BP 2-BE 2=4,∴DE=EP +DP=4+5=9,∴tan ∠DOB=DE OE =93=3,故选B .8. 【答案】C [解析]∵MN ∥BC ,∴∠MEB=∠EBC.∵BE 平分∠ABC ,∴∠MBE=∠EBC , ∴∠MEB=∠MBE ,∴△MBE 是等腰三角形, ∴ME=MB.同理,EN=CN ,∵AM +AN +MN=18,MN=ME +EN=BM +CN ,∴AM +AN +BM +CN=18,∴AB +AC=18,∴AB +AC +BC=24.即△ABC 的周长为24. 二、填空题(本大题共5道小题)9. 【答案】165[解析]在Rt △ABC 中,AB=√AC 2+BC 2=5,由等面积法得12AC ·BC=12CD ·AB ,CD=CA ·BC AB =3×45=125,∴AD=√AC 2-CD 2=√42-(125) 2=165.10. 【答案】5[解析]由题意可得:杯子内的木筷最大长度为:√122+92=15,∴木筷露在杯子外面的部分最少为:20-15=5(cm).11. 【答案】解:(1)由勾股定理得,a 2+b 2=c 2.(2)∵正方形EFMN 的面积为64,∴c 2=64,即c=8. ∵Rt △ABC 的周长为18,∴a +b +c=18, ∴a +b=10,∴Rt △ABC 的面积=12ab=14[(a +b )2-(a 2+b 2)]=9.12. 【答案】8+4√3[解析]如图,连接AD ,设AC 与BD 交于点O ,由题意得CA=CD ,∠ACD=60°,∴△ACD 为等边三角形,∴AD=CD ,∠DAC=∠DCA=∠ADC=60°. ∵∠ABC=90°,AB=BC=2, ∴AC=CD=2√2.∵AB=BC ,CD=AD ,∴BD 垂直平分AC , ∴BO=12AC=√2,OD=CD ·sin60°=√6, ∴BD=√2+√6,∴BD 2=(√2+√6)2=8+4√3.13. 【答案】2√3 [解析]如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形, ∴∠B=60°, ∴AG=√32AB=2√3,连接AD ,则S △ABD +S △ACD =S △ABC , ∴12AB ·DE +12AC ·DF=12BC ·AG , ∵AB=AC=BC=4,∴DE +DF=AG=2√3.三、解答题(本大题共4道小题)14. 【答案】证明:(1)如图,连接DE.∵CD 是AB 边上的高,∴CD ⊥AB. ∴∠ADC=90°. ∵AE=CE , ∴DE=12AC=CE=AE. ∵BD=CE , ∴DE=BD.∴点D 在线段BE 的垂直平分线上. (2)∵BD=DE ,∴∠ADE=2∠ABE. ∵DE=AE ,∴∠A=∠ADE=2∠ABE. ∴∠BEC=∠ABE +∠A=3∠ABE.15. 【答案】证明:(1)连接OD.∵DE是☉O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°.又∵∠ACB=90°,∴∠A+∠B=90°,∵OA=OD,∴∠A=∠ADO,∴∠BDE=∠B,∴EB=ED,∴△DBE是等腰三角形.(2)∵∠ACB=90°,AC是☉O的直径,∴CB是☉O的切线,又∵DE是☉O的切线,∴DE=EC.∵DE=EB,∴EC=EB.∵OA=OC,∴OE∥AB.∴△COE∽△CAB.16. 【答案】解:(1)证明:∵∠BAC=90°,△ADF是等腰直角三角形,∴∠BAD+∠CAD=90°,∠CAF+∠CAD=90°,∴∠CAF=∠BAD.在△ACF和△ABD中,{AC=AB,∠CAF=∠BAD,AF=AD,∴△ACF≌△ABD(SAS).(2)CF=BD且CF⊥BD,理由如下: ∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD.在△ACF和△ABD中,{AC=AB,∠CAF=∠BAD,AF=AD,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD.∵AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=∠ABD+∠ACB=45°+45°=90°,∴CF⊥BD.17. 【答案】(1)PM=PN,PM⊥PN;【解法提示】∵AB=AC,AD=AE,∴BD=CE,∵M,P,N分别为DE,DC,BC的中点,∴PM//CE且PM=12CE,PN∥BD且PN=12BD,∴PM=PN,∠DPM=∠DCE,∠CNP=∠B,∴∠DPN=∠PNC+∠PCN=∠B+∠PCN,∵∠A=90°,∴∠B+∠ACB=90°,∴∠MPN=∠MPD+∠DPN=∠ACD+∠PCN+∠B=∠ACB+∠B=90°,∴PM⊥PN;(2)△PMN为等腰直角三角形.理由如下:由题可知△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,BD=CE,又∵M,P,N分别是DE,CD,BC的中点,∴PM是△CDE的中位线,∴PM∥CE且PM=12 CE,同理PN∥BD且PN=12 BD,∴PM=PN,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,∴△PMN为等腰直角三角形;(3)49 2.【解法提示】∵△PMN为等腰直角三角形,∴S△PMN =12PM2,要使△PMN的面积最大,即PM最大,由(2)得,PM=12CE,即当CE最大时,PM最大.如解图,当点C、E在点A异侧,且在同一条直线上时,CE最大,此时CE=AE+AC=AD+AB=14,解图∴PM=12CE=12×14=7,故△PMN的最大面积为S△PMN =12×7×7=492.。
2020年数学中考复习专题:解直角三角形的应用(常考类型)(附答案)
2020年数学中考复习专题:解直角三角形的应用(常考类型)一、解直角三角形的应用:坡度坡角问题1.某商场为了方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式扶梯AB长为10m,坡角∠ABD=30°;改造后斜坡式自动扶梯的坡角∠ACB=9°,请计算改造后的斜坡AC的长度,(结果精确到0.01)【sin9°≈0.156,cos9°≈0.988,tan9°≈0.158】2.为了增强体质,小明计划晚间骑自行车调练,他在自行车上安装了夜行灯.如图,夜行灯A射出的光线AB、AC与地面MN的夹角分别为10°和14°,该夜行灯照亮地面的宽度BC长为米,求该夜行灯距离地面的高度AN的长.(参考数据:)3.太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光与玻璃吸热管垂直).已知:支架CF=100cm,CD=20cm,FE⊥AD于E,若θ=37°,求EF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)4.公园内一凉亭,凉亭顶部是一圆锥形的顶盖,立柱垂直于地面,在凉亭内中央位置有一圆形石桌,某数学研究性学习小组,将此凉亭作为研究对象,并绘制截面示意图,其中顶盖母线AB与AC的夹角为124°,凉亭顶盖边缘B、C到地面的距离为2.4米,石桌的高度DE为0.6米,经观测发现:当太阳光线与地面的夹角为42°时,恰好能够照到石桌的中央E处(A、E、D三点在一条直线上),请你求出圆锥形顶盖母线AB的长度.(结果精确到0.1m)(参考数据:sin62°≈0.88,tan42°≈0.90)5.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)6.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)7.如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角∠CAB=45°,在距A点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除?(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)二、解直角三角形的应用:仰角俯角问题8.如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:≈1.41,≈1.73,精确到0.1m.)9.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)10.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼项M的仰角为45°,已知测角仪的高AD为1.5米.请根据他们的测量数据求此楼MF的高.(结果精到0.1m,参考数据:≈1.414,≈1.732,≈2.449)11.国庆期间,小明和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣.小明进行了以下的测量:他到与西塔距离26米的一栋大楼处,在楼底A处测得塔顶B的仰角为60°,再到楼顶C处测得塔顶B的仰角为30°.那么你能帮小明计算西塔BD和大楼AC的高度吗?12.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)13.某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).14.我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)三、解直角三角形的应用:方向角问题15.如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60°方向上,位于B市北偏西45°方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明.(参考数据:≈1.73)16.如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.(1)求景点B与C的距离;(2)求景点A与C的距离.(结果保留根号)17.如图,轮船在A处观测灯塔C位于北偏东70°方向上,轮船从A处以每小时30海里的速度沿南偏东50°方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25°方向上,求灯塔C与码头B之间的距离(结果保留根号).18.如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile 的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)19.如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A 与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截,求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,tan76°≈4)20.某海域有A,B,C三艘船正在捕鱼作业,A船突然出现故障,向B,C两船发出紧急求救信号,此时C船位于B船的北偏西81°方向,距B船36海里的海域,A船位于B船的北偏东24°方向,同时又位于C船的北偏东69°方向.(1)求∠ACB的度数;(2)B船以每小时30海里的速度前去救援,问多长时间能到出事地点(结果精确到0.01小时.参考数据:≈1.414,≈1.732).21.如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A、B、C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB(结果用含非特殊角的三角函数和根式表示即可).参考答案一、解直角三角形的应用:坡度坡角问题1.【解答】解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=AB sin∠ABD=10×sin30°=5(m),在Rt△ACD中,∠ACD=9°,sin9°=,∴AC==≈32.05(m),答:改造后的斜坡AC的长度为32.05米.2.【解答】解:解:过点A作AD⊥MN于点D,在Rt△ADB与Rt△ACD中,由锐角三角函数的定义可知:tan10°===,tan14°==,故4AD=DC,则=,解得:AD=1,答:该夜行灯距离地面的高度AN的长为1m.3.【解答】解:地面水平线与吸热管夹角∠1与θ互余,延长ED交BC的延长线于点H,则∠H=θ=37°,在Rt△CDH中,HC=,∴HF=HC+CF=+CF,在Rt△EFM中,EF=(+CF)•sin37°≈=76答:EF的长为76cm.4.【解答】解:如图,连接BC、AE,交于点O,则AE⊥BC.由题意,可知OE=2.4﹣0.6=1.8,∠OBE=42°,∠BAO=∠BAC=62°.在Rt△OBD中,∵tan∠OBE=,∴OB=≈=2.在Rt△OAB中,∵sin∠OAB=,∴AB=≈≈2.3(m).答:圆锥形顶盖母线AB的长度约为2.3米.5.【解答】解:∵∠AEB=90°,AB=200,坡度为1:,∴tan∠ABE=,∴∠ABE=30°,∴AE=AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD的坡度为1:4,∴,即,解得,ED=320,∴CD==米,答:斜坡CD的长是米.6.【解答】解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=900(9﹣5)立方米.7.【解答】解:由题意知,AH=10米,BC=10米,在Rt△ABC中,∵∠CAB=45°,∴AB=BC=10米在Rt△DBC中,∵∠CDB=30°,∴DB==10(米)∵DH=AH﹣DA=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米)∴建筑物需要拆除.二、解直角三角形的应用:仰角俯角问题8.【解答】解:如图,过点E作EF⊥AC于F,则四边形CDEF为矩形,∴EF=CD,CF=DE=10,设AC=xm,则CD=EF=xm,BF=(x﹣16)m,在Rt△BEF中,∠EBF=60°,tan∠EBF=,∴=,∴x=24+8≈37.8m答:乙楼的高度AC的长约为37.8m.9.【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.10.【解答】解:设MC=x,∵∠MAC=30°,∴在Rt△MAC中,AC===x.∵∠MBC=45°,∴在Rt△MCB中,MC=BC=x,又∵AB=DE=40,∴AC﹣BC=AB=40,即x﹣x=40,解得:x=20+20≈54.6,∴MF=MC+CF=54.6+1.5=56.1(米),答:楼MF的高56.1米.11.【解答】解:作CE⊥BD于E,则四边形ACED为矩形,∴CE=AD=26,AC=DE,在Rt△BAD中,tan∠BAD=,则BD=AD•tan∠BAD=26,在Rt△BCE中,tan∠BCE=,则BE=CE•tan∠BCE=,∴AC=DE=BD﹣BE=,答:西塔BD的高度为26米,大楼AC的高度为米.12.【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.13.【解答】解:作DE⊥BC于E,则四边形DECF为矩形,∴FC=DE,DF=EC,在Rt△DBE中,∠DBC=30°,∴DE=BD=84,∴FC=DE=84,∴AF=AC﹣FC=154﹣84=70,在Rt△ADF中,∠ADF=45°,∴AD=AF=70(米),答:电动扶梯DA的长为70米.14.【解答】解:如图所示:连接MN,由题意可得:∠AMN=90°,∠ANM=30°,∠BNM =45°,AN=8km,在直角△AMN中,MN=AN•cos30°=8×=4(km).在直角△BMN中,BM=MN•tan45°=4km≈6.9km.答:此时火箭所在点B处与发射站点M处的距离约为6.9km.三、解直角三角形的应用:方向角问题15.【解答】解:高速公路AB不穿过风景区.过点C作CH⊥AB于点H,如图所示.根据题意,得:∠CAB=30°,∠CBA=45°,在Rt△CHB中,∵tan∠CBH==1,∴CH=BH.设BH=tkm,则CH=tkm,在Rt△CAH中,∵tan∠CAH==,∴AH=tkm.∵AB=150km,∴t+t=150,∴t=75﹣75≈75×1.73﹣75=54.75.∵54.75>50,∴高速公路AB不穿过风景区.16.【解答】解:(1)过点C作CD⊥直线l,垂足为D,如图所示.根据题意,得:∠CAD=30°,∠CBD=60°.设CD=xkm.在Rt△ACD中,cot∠CAD==,∴AD=xkm;在Rt△BCD中,cot∠CBD==,sin∠CBD==,∴BD=xkm,BC=xkm.∴AB=AD﹣BD=x=10,∴x=5,∴BC=x=10km.(2)在Rt△ACD中,sin∠CAD==,∴AC=2CD=10km.17.【解答】解:过点B作BD⊥AC,交AC于点D由题意知,AB=30海里,∠DAB=60°,∠ABC=50°+25°=75°,∴∠C=45°在Rt△ABD中,∵sin∠DAB=,∴sin60°=∴BD=海里在Rt△BCD中,∵sin∠C=,∴sin45°=∴BC=海里答:灯塔C与码头B之间的距离为海里.18.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,如图所示.则DE∥CF,∠DEA=∠CF A=90°.∵DC∥EF,∴四边形CDEF为平行四边形.又∵∠CFE=90°,∴▱CDEF为矩形,∴CF=DE.根据题意,得:∠DAB=45°,∠DBE=60°,∠CBF=45°.设DE=x(nmile),在Rt△DEA中,∵tan∠DAB=,∴AE==x(nmile).在Rt△DEB中,∵tan∠DBE=,∴BE==x(nmile).∵AB=20×0.3=6(nmile),AE﹣BE=AB,∴x﹣x=6,解得:x=9+3,∴CF=DE=(9+3)nmile.在Rt△CBF中,sin∠CBF=,∴BC===9+3≈20(nmile).答:此时快艇与岛屿C的距离约为20nmile.19.【解答】解:(1)在△ABC中,∠ACB=180°﹣∠B﹣∠BAC=180°﹣37°﹣53°=90°.在Rt△ABC中,sin B=,∴AC=AB•sin37°=25×=15(海里).答:观察哨所A与走私船所在的位置C的距离为15海里;(2)过点C作CM⊥AB于点M,由题意易知,D、C、M在一条直线上.在Rt△AMC中,CM=AC•sin∠CAM=15×=12,AM=AC•cos∠CAM=15×=9.在Rt△AMD中,tan∠DAM=,∴DM=AM•tan76°=9×4=36,∴AD===9,CD=DM﹣CM=36﹣12=24.设缉私艇的速度为x海里/小时,则有=,解得x=6.经检验,x=6是原方程的解.答:当缉私艇的速度为6海里/小时时,恰好在D处成功拦截.20.【解答】解:(1)∵BD∥CE,∴∠DBC+∠ECB=180°,∴∠ECB=180°﹣81°=99°,∴∠ACB=99°﹣69°=30°;(2)如图,作BH⊥AC,垂足为H.在△ABC中,∠CAB=180°﹣81°﹣24°﹣30°=45°.∵∠ACB=30°,∴在Rt△BCH中,BH=BC=18,∵在Rt△ABH中,sin∠CAB=,∴AB===18.则B船到A船出事地点的时间是:≈≈0.85(小时).答:B船约0.85小时能到达A船出事地点.21.【解答】解:过点C作CD⊥AB于点D,∵丙地位于甲地北偏西30°方向,距离甲地460km,.在Rt△ACD中,∠ACD=30°,∴AD=AC=230km.CD=AC=230km.∵丙地位于乙地北偏东66°方向,在Rt△BDC中,∠CBD=24°,∴BD==(km).∴AB=BD+AD=230+(km).答:公路AB的长为(230+)km.。
2020年中考数学复习:《三角形》压轴专题训练(解析版)
《三角形》压轴专题训练1.某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE 是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.【特例探究】(1)如图1,当∠PAB=45°,AB=6时,AC=,BC=;如图2,当sin∠PAB=,AB=4时,AC=,BC=;【归纳证明】(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.2.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.3.如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=°时,AB=2BM;(2)请添加一个条件:,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.4.如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.(3)当△AFD是轴对称图形时,直接写出t的值.5.阅读下面材料,完成(1)﹣(3)题.数学课上,老师出示了这样一道题:如图1,点E是正△ABC边AC上一点以BE为边做正△BDE,连接CD.探究线段AE与CD 的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠ABE与∠DBC相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段BC平分∠ACD.”…老师:“保留原题条件,连接AD,F是AB的延长线上一点,AD=DF(如图2),如果BD =BF,可以求出CE、CB、EB三条线段之间的数量关系.”(1)求证:∠ABE=∠DBC;(2)求证:线段BC平分∠ACD;(3)探究CE、CB、EB三条线段之间的数量关系,并加以证明.6.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.7.在Rt△ABC中,AC=BC,∠ACB=90°,点D是BC上一点.(1)如图1,AD平分∠BAC,求证:AB=AC+CD;(2)如图2,点E在线段AD上,且∠CED=45°,∠BED=30°,求证:BE=2AE;(3)如图3,CD=BD,过B点作BM⊥AD交AD的延长线于点M,连接CM,过C点作CN⊥CM交AD于N,求证:DN=3DM.8.已知△ABC中,∠ACB=90°,AC=BC,过顶点A作射线AP.(1)当射线AP在∠BAC外部时,如图①,点D在射线AP上,连结CD、BD,已知AD=n2﹣1,AB=n2+1,BD=2n(n>1).①试证明△ABD是直角三角形;②求线段CD的长.(用含n的代数式表示)(2)当射线AP在∠BAC内部时,如图②,过点B作BD⊥AP于点D,连结CD,请写出线段AD、BD、CD的数量关系,并说明理由.9.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.10.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)11.△ABC中,AB=AC,∠BAC=120°,AD,BE分别为△ABC的高与中线.(1)如图1,求证:AE=AD;(2)如图2,点F在AD的延长线上,连接BF,CF,若BE=CF,求证:∠AEB=∠AFB;(3)在(2)的条件下,如图3,过点A作BF的平行线交CF于点G,若FG=6,求BE 的长.12.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.13.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.14.如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为.15.如图,在Rt△ABC中,=nM为BC上的一点,连接BM.(1)如图1,若n=1,①当M为AC的中点,当BM⊥CD于H,连接AH,求∠AHD的度数;②如图2,当H为CD的中点,∠AHD=45°,求的值和∠CAH的度数;(2)如图3,CH⊥AM于H,连接CH并延长交AC于Q,M为AC中点,直接写出tan∠BHQ 的值(用含n的式子表示).参考答案1.(1)解:如图1,∵AF⊥BE,∴∠APB=∠APE=∠BPF=90°,∵∠PAB=45°,AB=6,∴AP=PB=6,如图1,连接EF,∵AF,BE是△ABC的中线,∴EF是△ABC的中位线,∴EF∥AB.且EF=AB,∴,∴PE=PF=3,由勾股定理得:AE=BF===3,∴AC=BC=2AE=6,如图2,∵sin∠PAB=,AB=4,AF⊥BE,∴∠PAB=30°,∴BP=AB=2,AP=2,∵AF、BE是△ABC的中线,∴PE=PB=1,PF=AP=,由勾股定理得:AE===,BF===,∴AC=2AE=2,BC=2BF=2,故答案为:6,6,2,2;(2)解:猜想:AB2、BC2、AC2三者之间的关系是:AC2+BC2=5AB2,证明:如图3,设PF=m,PE=n则AP=2m,PB=2n,在Rt△APB中,(2m)2+(2n)2=AB2①,在Rt△APE中,(2m)2+n2=()2②,在Rt△BPF中,m2+(2n)2=()2③,由①得:m2+n2=,由②+③得:5(m2+n2)=,∴AC2+BC2=5AB2;(3)解:如图4,连接CG,EF,过点F作FN∥BG交CG于点N,FG与AC交于点Q,∵FN∥BG,BG⊥AC,∴FN⊥AC,∵F是BC的中点,∴N是CG的中点,∵D、E分别是AB、AC的中点,∴DE=FC,DE∥FC,∵ED=EG,∴EG=FC,EG∥FC,∴四边形EFCG是平行四边形,∴Q是FG的中点,∴△FCG是中垂三角形,∵AB=4,BC=2,∴CG=EF=BD=2,FC=,由(2)中结论可知:5FC2=CG2+FG2,即5×5=(2)2+FG2,∴GF=.2.(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC≌△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CDE中,,∴△BFD≌△CDE(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB+∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠FAB=∠CAB=30°,∴∠EAF=∠EFA=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.3.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;①如图1中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN;②成立,理由:如图2中,∵△ABC与△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,在△BAM与△CAN中,,∴△BAM≌△CAN(SAS),∴BM=CN.4.解:(1)在Rt△ACD中,AC=3t,tan∠MAN=,∴CD=4t.∴AD===5t,当点C在点B右侧时,CB=3t﹣5,∴CF=CB.∴DF=4t﹣(3t﹣5)=t+5.(2)当0<t<时,S=•(5﹣3t)•4t=﹣6t2+10t.当t>时,S=•(3t﹣5)•4t=6t2﹣10t.(3)①如图1中,当DF=AD时,△ADF是轴对称图形.则有5﹣3t﹣4t=5t,解得t=,②如图2中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.③如图3中,当AF=DF时,△ADF是轴对称图形.作FH⊥AD.∵FA=DF,∴AH=DH=t,由cos∠FDH=,可得=,解得t=.综上所述,满足条件的t的值为或或.5.(1)证明:∵△ABC,△DEB都是等边三角形,∴∠ABC=∠EBD=60°,∴∠ABE+∠EBC=∠EBC+∠CBD,∴∠ABE=∠CBD.(2)证明:∵△ABC,△DEB都是等边三角形,∴BA=BC,BE=BD,∠BAC=∠ACB=60°,∵∠ABE=∠CBD,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠ACB=∠BCD=60°,∴CB平分∠ACD.(3)解:结论:EC+BE=BC.理由:∵DA=DF,∴可以将△DBF绕点D顺时针旋转,使得DF与DA重合,得到△DMA,连接AM.∵DA=DF,BD=BF,∴∠DAF=∠F=∠BDF,∵∠BCD=∠ABC=60°,∴CD∥AB,∴∠CDF=∠DAF,∵∠MDA=∠BDF=∠F=∠DAB,∴∠MDA=∠CDA,∴D,C,M共线,∵∠AMD=∠DBF=∠CDB,∠ACM=∠BCD=60°,AM=DM=BD=BF,∴△AMC≌△BDC(AAS),∴CM=DC=BD=BE,∵△ABE≌△CBD,∴AE=CD,∴BC=AC=EC+AE=CE+CD=CE+BE,∴EC+BE=BC.6.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.7.证明:(1)如图1中,作DH⊥AB于H.∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,∴△ADC≌△ADH(ASA),∴AC=AH,DC=DH,∵CA=CB,∠C=90°,∴∠B=45°,∵∠DHB=90°,∴∠HDB=∠B=45°,∴HD=HB,∴BH=CD,∴AB=AH+BH=AC+CD.(2)如图2中,作BM⊥AD交AD的延长线于M,连接CM.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∴∠AMC=∠ABC=45°,∵∠CEM=45°,∴∠CEM=∠CME,∴CE=CM,∴∠ECM=∠ACB=90°,∴∠ACE=∠BCM,∵CA=CB,CE=CM,∴△ACE≌△BCM(SAS),∴AE=BM,∵在Rt∠EMB中,∠MEB=30°,∵BE=2BM=2AE.(3)如图3中,作CH⊥MN于H.∵∠ACB=∠AMB=90°,∴C,A,B,M四点共圆,∴∠AMC=∠ABC=45°,∵CN⊥CM,∴∠NCM=90°∴∠CNM=∠CMN,∴CN=CM,∵CH⊥MN,∴HN=HM.∵CD=DB,∠CHD=∠BMD=90°,∠ADH=∠BDM,∴△CHD≌△BMD(AAS),∴DH=DM,∵HN=HM,∴DN=3DM.8.(1)①证明:∵AD2+BD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,AB2=(n2+1)2,∴AD2+BD2=AB2,∴∠ADB=90°,∴△ADB是直角三角形.②解:如图①中,作CE⊥AD于E,CF⊥DB交DB的延长线于F.∵∠CED=∠EDF=∠DFC=90°,∴四边形DECF是矩形,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,∵∠AEC=∠CFB=90°,CA=CB,∴△CEA≌△CFB(AAS),∴CE=CF,AE=BF,∴四边形DECF是正方形,∴DE=DF=CE=CF,∵AD+DB=DE+AE+DF﹣BF=2DE,∴2DE=n2﹣1+2n,∴DE=,∴CD=DE=n2﹣n﹣.(2)解:如图②中,结论:AD﹣BD=CD.理由:作CE⊥CD交AD于E.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠ADB=∠ACB=90°,∴四边形A,B,D,C四点共圆,∴∠BDC=180°﹣∠CAB=135°,∠CDA=∠BDC﹣∠ADB=45°,∵∠ECD=90°,∴∠CED=∠CDE=45°,∴CE=CD,DE=CD∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵CA=CB,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD,∴AD﹣BD=DE=CD,∴AD﹣BD=CD.9.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.10.(1)解:如图1中.∵△ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在△EBC和△DCA中,,∴△EBC≌△DCA(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵△EBC≌△DCA,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在△ABK和△AFC中,,∴△ABK≌△AFC(SAS),∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴FP=CK,∴PK=CK,∵FP=FK+PK∴FP=AF+CF,∵CF=CP,设CP=9a,∵CF=2a,∴FP=7a,∴AF=5a,∴==.11.(1)证明:如图1中,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BD=CD,∴AD⊥BC,∴AD=AC,∵BE是△ABC的中线,∴AE=EC=AC,∴AD=AE.(2)证明:如图2中,作BP⊥CA交CA的延长线于P.∵∠P=90°,∠BCP=30°,∴BP=BC=CD,∵∠FDC=∠P=90°,BE=CF,BP=CD,∴Rt△BPE≌Rt△CDF(HL),∴∠BEP=∠CFD,∵DF⊥BC,CD=DB,∴FB=FC,∴∠BFD=∠CFD,∴∠AEB=∠AFB.(3)解:如图3中,设AG交BE于H,交BC于M,作CN∥AD交AM的延长线于G.∵AG∥BF,∴∠GAF=∠AFB,∵∠FAB=∠AFC,∴∠GAF=∠AFG,∴GA=GF=6,∵CN∥AF,∴∠N=∠FAG,∠GCN=∠AFG,∴∠N=∠GCN,∴CG=GN,∴CF=AN=BE,∵∠ACB=30°,∠DCN=90°,∴∠BAE=∠ACN=120°,∵∠AEB=∠AFC=∠N,∴△BAE≌△ACN(AAS),∴AE=CN=AD,∵∠ADM=∠MCN=90°,AMD=∠CMN,∴△ADM≌△NCM(AAS),∴AM=MN,∵∠N+∠NMG=90∠NCG+∠MCG=90°,∴∠GMC=∠GCM,∴CG=GM=GN,∴AG=3GN=6,∴CG=GN=2,∴BE=CF=FG+CG=6+2=8.12.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∴BD=CD,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠PBC=∠DPB+∠DPK=60°.故答案为60°.13.(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC=,∠EFA=∠AFC=90°,∴EF===2,CF===,∴EC=BD=3,∴BE===.(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM=m,BM==m,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴△ACD≌△MCB(SAS),∴AD=BM=m,∴==.14.(1)证明:如图1中,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵AD=DC=CF,∴∠DBC=∠ABC=30°,∠F=∠CDF,∵∠ACB=∠F+∠CDF=60°,∴∠F=30°,∴∠DBC=∠F,∴BD=DF.(2)①证明:如图2中,作EH∥BC交AB于H,连接BE.∵EH∥BC,∴∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∵∠A=60°,∴△AEH是等边三角形,∴AE=EH=AH,∵AB=AC,∴BH=CE,∵AE=CF,∴EH=CF,∵∠BHE=∠ECF=120°,∴△BEH≌△EFC(SAS),∴∠EBH=∠CEF,∵AB=BC,∠A=∠BCD,AE=CD,∴△ABE≌△CBD(SAS),∴∠ABE=∠CBD,∴∠CBD=∠DEG,∵∠CDB=∠GDE,∴∠EGD=∠DCB=60°,即∠BGE=60°.②解:如图3中,由题意:∠ABE=∠EBD=∠CBD=30°,∵∠BCE=∠∠BGE=60°,∴B,C,G,E四点共圆,∴∠ECG=∠EBG=30°,∴∠BCG=90°,∴CG=BG=2,BC=CG=2,∴S=•BC•CG=×2×2=2.△BCG故答案为2.15.解:(1)①如图1中,作AK⊥CD交CD的延长线于K.∵CD⊥BM,AK⊥CK,∠ACB=90°,∴∠CHB=∠K=90°,∠CBH+∠BCH=90°,∠BCH+∠ACK=90°,∴∠CBH=∠ACK,∵CB=CA,∴△CHB≌△AKC(AAS),∴AK=CH,∵∠CHM=∠K=90°,∴MH∥AK,∵AM=BM,∴CH=KH,∴AK=KH,∵∠K=90°,∴∠AHD=45°.②如图2中,作AK⊥CD交CD的延长线于K,作CM⊥AB于M.设DH=CH=a.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵∠AHD=45°,∠AHD=∠ACH+∠CAH,∴∠ACH+∠CAH=∠CAH+∠DAH,∴∠DAH=∠ACD,∵∠ADH=∠CAD,∴△ADH∽△CDA,∴=,∴=,∴AD=a,∵CA=CB,∠ACB=90°,CM⊥AB,∴AM=BM,∴CM=AM=BM,设AM=CM=BM=x,在Rt△CMD中,∵CM2=DM2+CD2,∴x2+(x﹣a)2=4a2,解得x=a(负根已经舍弃).∴BD=AB﹣AD=(+)a﹣a=a,∴==.∵△ADH∽△CDA,∴==,设AH=m,则AC=m,AK=KH=m,∴tan∠ACK==,∴∠ACH=30°,∴∠CAH=∠AHD﹣∠ACH=45°﹣30°=15°.(2)作AJ⊥BM交BM的延长线于J.设AM=CM=y,则BC=2yn.∵CH⊥BM,BM===•y,∴CH===•y,∴HM==•y,∵AJ⊥BJ,CH⊥BJ,∴∠J=∠CHM=90°,∵∠AMJ=∠CMH,AM=CM,∴△AMJ≌△CMH(AAS),∴AJ=CH=•y,HM=JM=•y,∵∠BHQ=∠AHJ,∴tan∠BHQ=tan∠AHJ===n.。
2020届初三数学中考复习 等边三角形 专题练习和答案
等边三角形1. 如图,在△ABC中,AB=AC,△ABC的角平分线BD和CE相交于点O,则图中的全等三角形共有( )A.4对 B.3对 C.2对 D.1对2. 下列说法:①等边三角形的每一个内角都等于60°;②等边三角形三条边上的高都相等;③等腰三角形两底角的平分线相等;④等边三角形任意一边上的高与这条边上的中线互相重合;⑤等腰三角形一腰上的高与这条腰上的中线互相重合.其中说法正确的有( )A.1个 B.2个 C.3个 D.4个3. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于( )A.20° B.25° C.30° D.35°4. 如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC =10,BD=8,则△ADE的周长为( )A.25 B.20 C.18 D.155. 在下列三角形中:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角都相等;④一边上的高也是这边上的中线;⑤一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的是( )A.①②③ B.①②③⑤ C.①②④ D.①②④⑤6. 在△ABC中,∠A=60°,若要判定△ABC是等边三角形,还需添加一个条件,下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB,BC上的高相等”,那么△ABC是等边三角形.正确的说法有( ) A.3个 B.2个 C.1个 D.0个7. 如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD等于( )A.3 B.2 C.1 D.58. 如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是( )A.3.5 B.4.2 C.5.8 D.79. 若等腰三角形两腰上的高相交所成的钝角为100°,则顶角的度数为10. 如图,△ABC为等边三角形,AD平分∠BAC,△ADE是等边三角形,下列结论中:①AD⊥BC;②EF=FD;③BE=BD;④∠ABE=60°.其中正确的有个11. 如图,已知四边形ABCD是正方形,△FAD是等边三角形,则∠BFC的度数是12. 如图,△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=____度.13. 如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D 恰好落在BC上,AP的长是14. 在下列三角形中:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角都相等;④一边上的高也是这边上的中线;⑤一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的是(填序号)15. 如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.16. 如图是屋架设计图的一部分,其中BC⊥AC,DE⊥AC,点D是AB的中点,∠A=30°,AB=7.4m,则BC=____ m,DE=____ m.17. 如图,AC=BC=10 cm,∠B=15°,AD⊥BC于点D,则△ABC的面积为____cm218. 如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边△CDE,使点E,A在直线DC同侧.连接AE,求证:AE∥BC.19. 如图,在等边△ABC中,D是BC上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O.求∠E的度数.20. 如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB,MN⊥BC,PN ⊥AC.(1) 求证:△PMN是等边三角形;(2) 若AB=9 cm,求CM的长度.21. 如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1,求AD的长.22. 在四边形ABCD中,AB=BC=CD=DA,∠B=∠D=60°,连接AC. (1)如图①,点E,F分别在边BC,CD上,BE=CF.求证:①△ABE≌ACF;②△AEF是等边三角形;(2)如图②,若点E在BC的延长线上,在直线CD上是否存在点F,使△AEF 是等边三角形?证明你的结论.答案:1---8 BDACB ABD9. 50°10. 411. 30°12. 1513. 614. ① ② ③ ⑤15. 等边三角形16. 3.7 1.8517. 2518. 证明:∵△ABC ,△CDE 是等边三角形,∴∠BCD +∠ACD =∠ACE +∠ACD =60°,∴∠BCD =∠ACE.在△BCD 和△ACE 中,BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△BCD ≌△ACE(SAS),∴∠B =∠CAE.∵∠B =∠ACB ,∴∠CAE =∠ACB , ∴AE ∥BC19. 解:∵△ABC 是等边三角形,BF 是高,∴∠ABO =12∠ABC=30°, 根据SAS 证明△AOE≌△AOB,得∠E=∠ABO=30°20. 解:(1)∵△ABC 是等边三角形,∴∠A =60°,∵PN ⊥AC ,∴∠APN =30°,又∵MP⊥AB,∴∠MPN =60°,同理可得∠PMN=∠MNP=∠MPN=60°,∴△PMN 是等边三角形(2)MC =3 cm 点拨:可证△APN≌△BMP≌△CNM,∴AN =BP =CM ,∵在Rt △APN 中,∠APN =30°,∴AN =12AP ,则BP =12AP , ∵AB =9cm ,∴CM =BP =3cm21. 解:根据SAS 可证△ABE≌△CAD,∴BE =AD ,∠ABE =∠CAD.∵∠BPQ=∠ABE+∠BAD,∠BAC =∠CAD+∠BAD,∴∠BPQ =∠BAC=60°,又∵BQ⊥AD,∴∠BQP =90°,∴∠PBQ =90°-∠BPQ=30°,∴PQ =12BP ,∴BP =2PQ =2×3=6,∴BE =BP +PE =7, ∴AD =BE =722. 解:(1)①∵AB =BC ,∠B =60°,∴△ABC 是等边三角形.同理可得△ACD 是等边三角形.∵AB =AC ,∠B =∠ACF =60°,BE =CF ,∴△ABE ≌△ACF(SAS) ②由△ABE ≌△ACF 得AE =AF ,∠BAE =∠CAF ,∵∠BAE +∠CAE =60°,∴∠CAF +∠CAE =60°,即∠EAF =60°,∴△AEF 是等边三角形 (2)存在.证明:当BE =CF 时,与(1)同理证△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF ,∴∠CAF -∠CAE =∠BAE -∠CAE ,∴∠EAF =∠BAC =60°,∴△AEF 是等边三角形。
2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)
解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=52,∴ BD=225BC CD-=,∴ sin∠AEB=sin∠DCB=525552BDBC==.(3)在Rt△BDC中,BD=5,又∠1=∠2=∠3,∠ADE=∠BDA,∴△AED∽△BAD.∴AD DEDB AD=,∴2AD DE DB=g.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭g,∴354BE=.在Rt△ABE中,AB=BE.sin∠AEB=32355452⨯=.举一反三:如图,在△ABC中,AC=12cm,AB=16cm,sinA=13.(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为1:3i=(i=1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。
2020年中考数学二轮复习压轴专题:三角形(解析版)
2020年中考数学二轮复习压轴专题:《三角形》1.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①(1)求证:∠ACN=∠AMC(2)记△ANC得面积为5,记△ABC得面积为5.求证:(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)解:(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM,∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS)∴NE=CD,CE=DM;∵S1=AC•NE,S2=AB•CD,∴=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM,∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM∴AE=BD+BP=DP,∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS)∴AN=PC.2.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.3.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为AE=BD.②∠APC的度数为60°.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为AE=BD,AE⊥BD.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠DPE,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.4.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.解:(1)结论BM+CN=BD成立,理由如下:如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.5.△ABC是等边三角形,P为平面内的一个动点,BP=BA,0°<∠PBC<180°,DB平分∠PBC,且DB=DA.(1)当BP与BA重合时(如图1),求∠BPD的度数;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数.解:(1)∵△ABC是等边三角形,BD平分∠PBC,∴∠PBD=∠CBD=30°,∵DB=DA,∴∠PBD=∠BPD=30°;(2)如图2,连接CD,∵点D在∠PBC的平分线上,∴∠PBD=∠CBD,∵△ABC是等边三角形,∴BA=BC=AC,∠ACB=60°,∵BP=BA,∴BP=BC,∵BD=BD,∴△PBD≌△CBD(SAS),∴∠BPD=∠BCD,∵DB=DA,BC=AC,CD=CD,∴△BCD≌△ACD(SSS),∴∠BCD=∠ACD=∠ACB=30°,∴∠BPD=30°;(3)如图3,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD=30°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=30°,如图4,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD=30°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=30°,如图5,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD==150°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=150°,6.在△ABC中,AC=BC,∠ACB=90°,D为AB边的中点,以D为直角顶点的Rt△DEF的另两个顶点E,F分别落在边AC,CB(或它们的延长线)上.(1)如图1,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC互相垂直,则S△DEF +S△CEF=S△ABC,求当S△DEF=S△CEF=2时,AC边的长;(2)如图2,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,S△DEF +S△CEF=S△ABC,是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系;(3)如图3,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,且点E在AC的延长线上,点F在CB的延长线上,S△DEF +S△CEF=S△ABC是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF ,S△CEF,S△ABC之间的数量关系.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形DECF是矩形,∵∠ACB=90°,∴BC⊥AC,∵DE ⊥AC ,∴DE ∥BC ,∵D 为AB 边的中点,∴DE 是△ABC 的中位线,∴DE =BC ,AC =2CE ,同理:DF =AC ,∵AC =BC ,∴DE =DF ,∴四边形DECF 是正方形,∴CE =DF =CF =DE ,∵S △DEF =S △CEF =2=DE •DF =DF 2,∴DF =2,∴CE =2,∴AC =2CE =4;(2)S △DEF +S △CEF =S △ABC 成立,理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°,S △ABC =2S △BCD ,∵∠EDF =90°,∴∠CDE =∠BDF ,在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ),∴DE =DF .S △CDE =S △BDF .∴S △DEF +S △CEF =S △CDE +S △CDF =S △BCD =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD,如图3所示:同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°,∴S△DEF =S五边形DBFEC,=S△CFE +S△DBC,=S△CFE +S△ABC,∴S△DEF ﹣S△CFE=S△ABC.∴S△DEF 、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.7.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°, AC=15,则DE的长为 5 .解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.8.如图,在△ABC中,AB=AC,以BC为直角边作等腰Rt△BCD,∠CBD=90°,斜边CD交AB于点E.(1)如图1,若∠ABC=60°,BE=4,作EH⊥BC于H,求线段BC的长;(2)如图2,作CF⊥AC,且CF=AC,连接BF,且E为AB中点,求证:CD=2BF.解:(1)∵∠ABC=60°,EH⊥BC,∴∠BEH=30°,∴BE=2BH=4,EH=BH,∴BH=2,EH=2,∵∠CBD=90°,BD=BC,∴∠BCD=45°,且EH⊥BC,∴∠BCD=∠BEC=45°,∴EH=CH=2,∴BC=BH+HC=2+2;(2)如图,过点A作AM⊥BC,∵AB=AC,AM⊥BC,∴BM=MC=BC=DB,∵∠DCB=45°,AM⊥BC,∴∠DCB=∠MNC=45°,∴MN=MC=BD,∵AM∥DB,∴△CNM∽△CBD∴,∴CD=2CN,AN=BD,∵CF⊥AC,∠BCD=45°,∴∠ACD+∠BCF=45°,且∠ACD+∠MAC=45°,∴∠BCF=∠MAC,且AC=CF,BC=AN,∴△ACN≌△CFB(SAS)∴BF=CN,∴CD=2BF9.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.【探究发现】证明:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DP=DB;【数学思考】证明:(2)∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,在△CDP和△GDB中,,∴△CDP≌△GDB(ASA)∴DP=DB.10.已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m﹣n)2+|m﹣5|=0.C 为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为AB=2PE(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由!(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.解:(1)∵(m﹣n)2+|m﹣5|=0,∴m﹣n=0,m﹣5=0,∴m=n=5,∴A(5,0)、B(0,5),∴AC=BC=5,∴△AOB为等腰直角三角形,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是x轴正半轴上一点,∴点P在BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∵C为AB的中点,∴AB=2OC,∴AB=2PE.故答案为:AB=2PE.(2)成立,理由如下:∵点C为AB中点,∴∠AO C=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵∠POD=45°﹣∠POC,∠PDO=45°﹣∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,又∠AOC=∠BAO=45°∴OC=AC=AB∴AB=2PE;(3)∵AB=5,∴OA=OB=5,∵OP=PD,∴∠POD=∠PDO==67.5°,∴∠APD=∠PDO﹣∠A=22.5°,∠BOP=90°﹣∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,,∴△POB≌△DPA(SAS),∴PA=OB=5,DA=PB,∴DA=PB=5﹣5,∴OD=OA﹣DA=5﹣(5﹣5)=10﹣5,∴点D的坐标为(10﹣5,0).11.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.解:(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).12.在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)若点D在线段AM上时(如图1),则AD=BE(填“>”、“<”或“=”),∠CAM =30 度;(2)设直线BE与直线AM的交点为O.①当动点D在线段AM的延长线上时(如图2),试判断AD与BE的数量关系,并说明理由;②当动点D在直线AM上时,试判断∠AOB是否为定值?若是,请直接写出∠AOB的度数;若不是,请说明理由.解:(1))∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS),∴AD=BE;∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:=,30;(2)①AD=BE,理由如下:∵△ABC和△CDE都是等边三角形∴AB=BC,DC=EC,∠ACB=∠DCE=60°,∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS)∴AD=BE.②∠AOB是定值,∠AOB=60°,理由如下:当点D在线段AM上时,如图1,由①知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即,∴∠BOA=90°﹣30°=60°.当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.13.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30°角所对的直角边等于斜边的一半.小明同学对以上结论作了进一步探究.如图1,在Rt△ABC中,∠ACB=90°,AC=AB,则:∠ABC=30°.探究结论:(1)如图1,CE是AB边上的中线,易得结论:△ACE为等边三角形.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=AB,CP是AB边上的中线,点D是边CB上任意一点,连接AD,在AB边上方作等边△ADE,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想加以证明.拓展应用:如图3,在平面直角坐标系中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当点C在第一象内,且B(2,0)时,求点C 的坐标.解:探究结论(1)∵CE是AB边上的中线,∴CE=AE=AB,∵AC=AB,∴AC=CE=AE,∴△ACE是等边三角形.故答案为:等边;(2)如图2中,结论:ED=EB.理由:取AB的中点P,连接CP、PE.∵△ACP,△ADE都是等边三角形,∴AC=AP=PC,AD=AE=DE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE(SAS),∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).14.如图,等边△ABC外有一点D,连接DA,DB,DC.(1)如图1,若∠DAB+∠DCB=180°,求证:BD平分∠ADC;(2)如图2,若∠BDC=60°,求证:BD﹣CD=AD;(3)如图3,延长AD交BC的延长线于点F,以BF为边向下作等边△BEF,若点D,C,E 在同一直线上,且∠ABD=α,直接写出∠CEF的度数为60°﹣α(结果用含α的式子表示).(1)证明:过点B作BM⊥CD于点M,BN⊥AD于点N,∴∠ANB=∠CMB=90°,∵△ABC为等边三角形,∴AB=BC,∵∠DAB+∠DCB=180°,∠DCB+∠BCM=180°,∴∠OAB=∠BCM,∴△ABN≌△CBM(AAS),∴BM=BN,∴BD平分∠ADC;(2)证明:在BD上取点E,使DE=CD,∵∠BD C=60°∴△CDE为等边三角形,∴∠DCE=∠ACB=60°,∴∠ACD=∠BCE,∵AC=BC,∴△ADC≌△BEC(SAS),∴AD=BE,∴BD﹣CD=AD;(3)解:∵△ABC,△BEF为等边三角形,∴AB=CB,BF=BE,∠ABF=∠CBE∴△ABF≌CBE(SAS),∴∠DFB=∠CEB,∵∠CEB+∠CEF=60°,∠EFB=60°∴∠FDE=180°﹣∠DFB﹣∠EFB﹣∠CEF=60°∴∠ADC=120°,∴∠ADC+∠ABC=180°,由(1)得BD平分∠ADC∴∠BDE=60°,∴∠FDB=120°,∴∠FDB+∠FEB=180°,∴F,E,B,D四点共圆,∴∠CEF=∠DBF∵∠DBF=60°﹣α.∴∠CEF=60°﹣α.故答案为:60°﹣α.15.已知,在平面直角坐标系中,点A(0,2),B(﹣2,m),过B点作直线a与x轴互相垂直,C为x轴上的一个动点,且∠BAC=90°.(1)如图1,若点B是第二象限内的一个点,且m>2时,求点C的坐标;(用m的代数式表示)(2)如图2,若点B是第三象限内的一个点,设C点的坐标(x,0),求x的取值范围:(3)如图3,连接BC,作∠ABC的平分线BD,点E、F分别是射线BD与边BC上的两个动点,连接CE、EF,当m=3时,试求CE+EF的最小值.解:(1)如图1,过B点作BH⊥y轴于点H,∴∠BHA=90°,∠ABH+∠BAH=90°,∴∠BHA=∠AOC=90°,∵∠BAC=90°,∴∠BAH+∠CAO=90°,∴∠ABH=∠CAO,∵点A(0,2),B(﹣2,m),∴AO=BH=2,OH=m,∵AO=BH,∠ABH=∠CAO,∠BHA=∠AOC=90°,∴△BHA≌△AOC(ASA)∴CO=AH=OH﹣AO=m﹣2,∵m>2,点C在x轴负半轴,∴点C(2﹣m,0);(2)如图2,过B点作BK⊥y轴于点K,则∠AKB=90°,∵∠BAC=90°,∴∠BAK+∠CAK=90°,且∠BAK+∠ABK=90°,∴∠CAK=∠ABK,∵点A(0,2),B(﹣2,m),∴AO=BK=2,OH=m,∵AO=BK,∠CAK=∠ABK,∠AOC=∠AKB=90°,∴△ABK≌△CAO(AAS)∴CO=AK=2﹣m,∵C点的坐标(x,0),∴CO=x=2﹣m,∵点B是第三象限内的一个点,∴m<0,∴2﹣m>2,∴x>2;(3)如图3,在AB上截取BN=BF,∵BD是∠ABC的平分线,∴∠ABE=∠CBE,且BE=BE,BF=BN,∴△BEF≌△BEN(SAS)∴EF=EN,∴CE+EF=CE+EN,∴当C,E,F三点共线,且N与点A重合时,CE+EF有最小值,此时最小值为AC,由(1)可知:点C(2﹣m,0);且m=3,∴点C(﹣1,0),∴CO=1,∴AC===,∴CE+EF的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学三角形专题复习(名师精选全国真题,值得下载练习)一、选择题1.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A. 2B. 3C. 4D. 2或42.如图,在ΔABC中,AC=BC , ∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A. 40°B. 45°C. 50°D. 60°3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 84.“三等分角”大约是在公元前五世纪由古希腊人提出来的。
借助如图所示的“三等分角仪”能三等分任一角。
这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=75°,则∠CDE的度数是()A. 60°B. 65°C. 75°D. 80°5.如图,在ΔABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40∘,则∠GAD的度数为()A. 40∘B. 45∘C. 55∘D. 70∘6.一个等腰三角形的底边长是6,腰长是一元二次方程x2−8x+15=0的一根,则此三角形的周长是()A. 16B. 12C. 14D. 12或167.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A. ∠CEO=∠DEOB. CM=MDC. ∠OCD=∠ECDD. S四边形OCED=12CD⋅OE8.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A. AE +AF =ACB. ∠BEO +∠OFC =180°C. OE +OF =√22BC D. S 四边形AEOF =12S ΔABC 10.如图,在 Rt △ABC 中, ∠BAC =90° , ∠B =36° ,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )A. 120°B. 108°C. 72°D. 36°11.如图,在 Rt △ABC 中, ∠ACB =90° ,分别以点 B 和点 C 为圆心,大于 12BC 的长为半径作弧,两弧相交于 D,E 两点,作直线 DE 交 AB 于点 F ,交 BC 于点 G ,连结 CF .若 AC =3,CG =2 ,则 CF 的长为( )A. 52B. 3C. 2D. 72 12.如图,在直角三角形 ABC 中, ∠C =90°,AC =BC , E 是 AB 的中点,过点 E 作 AC 和 BC 的垂线,垂足分别为点 D 和点 F ,四边形 CDEF 沿着 CA 方向匀速运动,点 C 与点 A 重合时停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与 ΔABC 的重叠部分面积为 S .则 S 关于 t 的函数图象大致为( )A. B. C. D.13.如图,在ΔABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A. 1:2B. 1:3C. 1:4D. 2:314.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则ΔABC的重心是()A. 点DB. 点EC. 点FD. 点G15.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B 重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A. B. C. D.二、填空题16.若实数m、n满足|m﹣3|+√n−4=0,且m、n恰好是直角三角形的两条边,则该直角三角形的斜边长为________.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是________.18.如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为________.19.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.AB2,则tanC=________。
20.如图,在△ABC中,若∠A=45°,AC2-BC2= √5521.如图,把三角形纸片折叠,使点A、点C都与点B重合,折痕分别为EF,DG,得到∠BDE=60°,∠BED=90°,若DE=2,则FG的长为________.22.如图,ΔABC和ΔCDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是________(写出所有正确结论的序号).①AM=BN;②ΔABF≌ΔDNF;③∠FMC+∠FNC=180°;④1MN =1AC+1CE23.如图,在ΔABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD 于点E,将ΔACE沿直线AC翻折到ΔACE′的位置.若CE′//AB,则CE′=________.24.如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC=7cm,AC=6cm,则△AED的周长等于________cm.25.如图,ΔABC中,∠ABC=90°,BA=BC=2,将ΔABC绕点C逆时针旋转60°得到ΔDEC,连接BD,则BD2的值是________.26.如图,在等腰RtΔABC中,∠C=90∘,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD长为________.27.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=________.28.如图,在ΔABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则ΔABC的面积是________.29.已知等腰三角形的底角是30°,腰长为2√3,则它的周长是________.30.如图,在Rt△ABC中,∠ACB=90∘,AB=10,BC=6, CD∥AB, ∠ABC的平分线BD交AC 于E, DE= ________.三、解答题31.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.32.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.33.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.34.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.35.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、B、c,利用此图证明勾股定理.36.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE 和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由. 37.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD 为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CE的值.AB38.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD= √2CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.39.已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出ED的值EF及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB =90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出ED的值,并用含α的代数EF式直接表示∠DEF的度数.40.如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长。