第19讲-行程问题【三】
小学数学中的行程问题公式及解析
小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
小学数学六年级上册-《行程问题》说题幻灯片课件
临床上凡见跳动、亢进、明亮等表现的表证、热 证、实证,以及症状表现于外的、向上的、容易发 现的,或病邪性质为阳邪致病,病情变化较快的, 都可归属为阳证。
(二)阴证
临床上凡见抑制、沉静、衰退、晦暗等表现的里证、
虚证、以及症状表现于内的、向下的、不易发现的,
或病邪性质为阴邪 致病、病情变化较慢的都可归
属为阴证。
1、外感病中,发热恶寒同时并见的属表证,但发热不 恶寒或但寒不热属里证;寒热往来的属半表半里证。
2、表证以头身疼痛,鼻塞或喷嚏等为常见症状,内脏 证候不明显;里证以以内脏证候如咳喘、心悸等为 主症。
3、里证舌苔多有变化,表证多见浮脉,里证多见沉脉 或其他多种脉象。
4、起病急、病情轻、病程短多是表证,反之为里证。
反思拓展 行对应转化分析,求出相应的关 系量,由此可顺利解决这类题。
什么是“说题” “说题”的意义
“说题”的内容
范 例 11谢 谢! Nhomakorabea什么是“说题” “说题”的意义
“说题”的内容和形式 范 例 12
中医八纲辨证概说
主讲人:XXX
二○一七年七月二十五日
13
中医辨 证说
对四诊取得的病史、症状、 体征,用中医学理论进行综合分 析,辨清疾病原因、部位、性质 以及邪正盛衰之间的关系,从而 概括和判断为某种性质的证,称 为辨证。
[临床表现]:实证表现较多,一般是新起暴 病多实证,病情急剧者多实证,体质着实 者多实证。
[机理]:一是外感六淫、疫气虫毒等邪气, 正气奋起抗邪,下邪剧争,二是脏腑机能 失调,气化障碍,形成痰饮瘀血等病理产 物,停积体内。
27
[虚证与实证的鉴别表]
症状 病 体 证 程质 虚证 久病 虚弱
数学行程问题
行程问题(一)专题简析:行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题1:两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)48甲行完全程的时间:165÷30(小时)60解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
例题2:两辆汽车同时从东、西两站相向开出。
第一次在离东站60千米的地方相遇。
之后,两车继续以原来的速度前进。
各自到达对方车站后都立即返回,又在距中点西侧30千米处相遇。
两站相距多少千米?从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。
两辆汽车行一个全程时,从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。
高斯小学奥数四年级上册含答案第19讲_火车行程进阶
第十九讲火车行程进阶上一讲中我们已经学习了火车行程中的火车过桥、火车过人、火车过车这三种基本类型.解决火车行程问题,最重要的是要学会画图,将火车行程过程转化为最后对齐的两个位置的相遇或追及过程.接下来,我们来介绍较复杂的火车行程问题.我们已经学过了火车与火车的相遇与追及,追及问题一般是指两列火车从开始追上到完全超过所经历的过程.接下来看两类特殊的火车与火车的追及问题,齐头行进或齐尾行进.始末乙车乙车始甲车甲车①齐头并进始末乙车乙车甲车甲车始②齐尾并进与之前分析过程一样,首先找到最后对齐的部位,并找到其初始位置,将火车行程过程转化为甲车尾与乙车头的追及过程,可以总结如下:齐头并进:从出发到离开(即超过)时刻,两车路程差为快车车长.齐尾并进:从出发到离开(即超过)时刻,两车路程差为慢车车长.例题1(1)现有D字头动车和T字头特快同时同向齐头行进,动车每秒行60米,特快每秒行40米,经过8秒后动车超过特快.请问:D字头动车车长多少米?(2)现有D字头动车和T字头特快车尾对齐,同时同向行进,动车每秒行60米,特快每秒行40米,经过10秒后动车超过特快.请问:T字头特快车车长多少米?「分析」题(1)中,火车从齐头开始出发,到超过为止,快车车长(D字头动车车长)即为路程差,所以求路程差即可.练习1(1)现有两列火车,如果这两列火车同时同向齐头行进,快车每秒行20米,慢车每秒行9米,行10秒后快车超过慢车.请问:快车车长多少米?(2)现有两列火车,快车每秒行20米,慢车每秒行9米,如果这两列火车车尾对齐,同时同向行进,则15秒后快车超过慢车.请问:慢车车长是多少米?.在现实生活中,有很多行程问题都会涉及到运动对象本身的长度,比如队列、队伍等等.下面我们看一下另外一类比较特殊的火车行程——队列行程问题.这类问题主要包含两种基本类型(队伍是匀速前进的):“人从队头走到队尾”与“人从队尾走到队头”① 人从队头走到队尾:始始行人队伍末从图中可以看出,这类问题其实就是队列与行人的相遇过程,队列与行人的路程和即为队列长度.② 人从队尾跑到队头:行人始末末队伍从图中可以看出,这类问题其实就是队列与行人的追及过程,只不过,这里的行人要比“火车”还要快,行人与队列的路程差即为队列长度.例题 2某解放军队伍长 450 米,以每秒 2 米的速度行进.一名战士以每秒 3 米的速度从排尾跑到排头需要多长时间?然后从排头返回排尾,又需要多少时间?「分析」从排尾到排头,即为战士与队伍的追及过程,要计算时间,就需要找到路程差与速 度差.练习 2某学校组织学生去春游,队伍长 540 米,并以每秒 2 米的速度前进,一名学生以每秒 4米的速度从队尾跑到队头,再回到队尾,共用多少分钟?在之前学习的盈亏、和差倍等应用题中,我们用到了比较的方法.在行程问题中,往往也会应用到比较的思想.例题3一列火车完全通过460米长的隧道用30秒,以同样的速度完全通过410米的隧道用28秒.请问:这列火车的速度是每秒多少米?「分析」本题包含两个“火车通过桥”的过程,一一分析,可以计算出什么吗?不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度.练习3一列客车完全通过530米长的桥用了50秒,以同样速度完全通过380米长的山洞用了40秒.请问:这列客车的速度是每秒多少米?火车行驶的过程中,火车行驶的距离只需要看火车上的某一个点即可,可以是火车头或者火车尾,当然,也可以是火车的某一个窗户.对于坐在火车某个窗户旁边的人来说,他的速度其实就是火车前进的速度.接下来,我们分析一下火车中的人观察其他火车经过的过程:③相遇始乙车始甲车乙车甲车末④追及乙车始末乙车甲车甲车始从图中可以看出,这类型的行程过程,其实就是人与另外一辆火车的相遇或追及过程,对应的路程和或路程差其实都是另外一辆火车的车长,与人所乘坐的火车长度没有关系.例题4甲、乙两列火车同向而行,甲车在前,乙车在后.甲车长320米,每秒行20米;乙车长480米.坐在甲车上的小王老师从乙车车头经过她的车窗时开始计时,到车尾经过她的车窗为止共用96秒.那么乙车的速度是多少?「分析」题目所叙述的过程,其实是乙车与王老师的追及过程,请画图分析一下,路程差是什么呢?跟甲车车长、乙车车长有什么关系呢?练习4动车和直达列车相向而行.动车长600米,每秒行60米;直达列车长900米,每秒行30米.坐在动车上的小王老师记录了从直达列车车头经过她车窗,到车尾经过她车窗所用的时间.那么这个时间是多少?例题5一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.请问:火车车长多少?「分析」本题涉及到两个过程:一个是火车通过桥,一个是火车完全在桥上.一一分析,两个过程都无法计算.不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度与车长.从前面的分析中,我们已经知道,火车中的人与另外一辆火车的相遇与追及过程,其实就是人与另外一辆火车的相遇与追及,和人所乘坐的车长是没有关系的.而解决这类题目,关键的一步就是要找到人的速度.如果人在车上静止,那么人的速度就是车的速度.如果人在车上行走呢?我们看一个简单例子:一列火车以每秒20米的速度行驶,乘务员以每秒1米的速度在车厢内沿着火车前进的方向向前走,那么在地面上静止的人来看,乘务员的前进速度是多少呢?如果乘务员以每秒1米的速度在车厢内沿着火车前进的反方向向前走,那么对于地面上静止的人,乘务员的前进速度又是多少呢?我们可以这么想:火车1秒钟前进了20米,如果乘务员行走方向跟火车一样,那么在火车带着他前进了20米的基础上他又往前走了1米,所以对于地面来说,乘务员其实是走了21米,所以他的速度就是每秒钟21米,即车与人的速度和;同样的道理,如果乘务员的行走方向与火车相反,那么他对于地面的速度就是车与人的速度差.例题6货车和客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小高在客车内沿着客车前进的方向向前走,发现货车用140秒就超过了他.已知小高在客车内行走的速度为每秒1米,客车的速度为每秒20米,客车长350米,货车长280米.求:(1)货车的行驶速度;(2)货车从追上客车到完全超过客车所需要的时间.「分析」小高在客车内行走,那么他的实际速度是多少呢?货车与小高的追及过程,路程差是什么呢?画图好好分析一下吧!课堂内外白(黄)色安全线火车站台或者地铁的站台边都会有一条白色或者黄色的安全线,当列车进站的时候,车站的工作人员都会提醒人们注意站在安全线的后面,不过那并不是怕乘客拥挤掉下去,到底是为什么呢?据铁路史志记载,这条安全线来源于近百年前的一场惨案.1905年冬天,在俄国一个名鄂洛多克的小车站上,站长率全站38名员工身着盛装、手持鲜花,列队站在铁路线两旁恭候沙皇尼古拉二世派来视察的钦差大臣.然而,遗憾的是,列车没有缓缓进站,而是狂风般冲进了“人巷”,刹那间“人巷”倒塌了,数十名员工仿佛背后被人猛推了一掌,不由自主向前倒去.结果造成34人丧生,4人终生残疾.由于当时科技水平有限,人们对此无法解释.后来人们才弄明白惨案真相.在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔•伯努利1738年发现的“伯努利定律”.在行驶的汽车或者火车窗外,紧挨着车身的空气由于车身的带动而流速较快,从而产生比正常的大气压更小的气压,并且速度越快,这个气压就会越小,这样周围的空气就会把旁边的物体推向火车.所以,火车高速行驶时,人站立太近的话就有可能被吸过去,那个后果可真得会惨不忍睹啊.而在站台上,即使在列车进站的时候车速减慢了很多,但在完全停稳之前,这个吸力还是会存在.这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了这一定律.飞机机翼的上表面是流畅的曲面,下表面则是平面.这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了.工程学上会用一个“伯努利公式”来计算,这个力到底有多大.所以,即使运行在站台的列车速度并不是很快,也不要挑战自己,去试那个吸引力有多大.当我们在站台上等候火车或地铁时,一定要站在白色安全线外.作业1.蛇妈妈和蛇宝宝比赛跑步,齐头并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了10秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇妈妈的长度多少米?2.蛇妈妈和蛇宝宝比赛跑步,齐尾并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了5秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇宝宝的长度多少米?3.麦兜参加学校军训,所在班队伍长20米,以每秒1米的速度前进.麦兜以每秒3米的速度从队尾跑到队头需要多长时间?4.一列火车通过220米长的大桥需要20秒,以同样的速度通过300米长的隧道需要24秒.这列火车长多少米?5.一列快车和一列慢车相向行驶,坐在快车上面的小王老师,从慢车经过她的窗口开始计时,到完全经过她的窗口结束,共计10秒钟.已知快车长200米,速度是每秒20米;慢车长380米,那么慢车的速度是每秒多少米?( , ” , ” ( (第十九讲 火车行程进阶1.例题 1答案:160 米;200 米详解: 1)齐头并进,路程差即快车车长,(60 - 40)⨯ 8 = 160 米;(2)齐尾并进,路程差即慢车 车长, (60 - 40 )⨯ 10 = 200 米.2. 例题 2答案:450 秒;90 秒详解:(1)从排尾跑到排头,路程差为队伍长度,所以时间是 450 ÷ (3 - 2) = 450 秒;(2)从排 头跑到排尾,路程和为队伍长度,所以时间是 450 ÷ (3 + 2) = 90 秒.3. 例题 3答案:25 米/秒详解:火车 30 秒的路程是“ 460米 + 车长 ” 28 秒的路程是“ 410米 + 车长 ,时间差为 30 - 28 = 2 秒,路程差为 460 - 410 = 50 米,所以速度为 50 ÷ 2 = 25 米/秒.4. 例题 4答案:25 米/秒详解:乙车与小王老师的追及过程,路程差为乙车车长 480 米,时间为 96 秒,所以速度差为 480 ÷ 96 = 5 米/秒,小王老师速度即为甲车速度 20 米/秒,所以乙车速度为 20 + 5 = 25 米/秒.5. 例题 5 答案:200 米详解:火车 120 秒的路程为“1000米 + 车长 ” 80 秒的路程为“1000米 - 车长 ,比较可得火车40 秒的路程为“2 个车长”,即 20 秒的路程为“车长”,而 12 秒的路程为“1000米 + 车长 ”,所 以火车 100 秒的路程为 1000 米,速度为 1000 ÷100 = 10 米/秒,车长为 120 ⨯10 - 1000 = 200 米.6. 例题 6答案:23 米/秒;210 秒详解: 1)小高的实际速度为 20 + 1 = 21 米/秒,货车与小高的追及过程,时间为140 秒,路程差 为货车车长 280,所以速度差为 280 ÷140 = 2 米/秒,所以货车速度为 21+ 2 = 23 米/秒; 2)货车 与 客 车 的 追 及 时 间 , 路 程 差 为 两 车 车 长 之 和 即 350 + 280 = 630 米 , 所 以 时 间 为630 ÷ (23 - 20) = 210 秒.7.练习 1答案:110 米;165 米详解:(1)齐头并进,路程差为快车车长, (20 - 9)⨯10 = 110 米;(2)齐尾并进,路程差为慢车, ” , ”车长, (20 - 9)⨯15 = 165 米.8. 练习 2 答案:6 分钟详解:从队尾跑到队头,路程差为队伍长度,所以时间是 540 ÷ (4 - 2) = 270 秒;从队头跑回队 尾,路程和为队伍长度,所以时间是 540 ÷ (4 + 2) = 90 秒,一共用了 270 + 90 = 360 秒即 6 分钟.9. 练习 3答案:15 米/秒简答:50 秒的路程是“ 530米 + 车长 ” 40 秒的路程是“ 380米 + 车长 ,时间差为 50 - 40 = 10 秒,路程差为 530 - 380 = 150 米,所以速度为 150 ÷10 = 15 米/秒.10. 练习 4答案:10 秒简答:直达列车与小王老师的相遇过程,路程和即直达列车车长 900 米,速度和为 60 + 30 = 90 米 /秒,所以时间为 900 ÷ 90 = 10 秒.11. 作业 1答案:10 米简答:齐头并进,路程差为快车车长,即蛇妈妈的长度,为 (5 - 4)⨯10 = 10 米.12. 作业 2答案:5 米简答:齐尾并进,路程差为慢车车长,即蛇宝宝的长度,为 (5 - 4)⨯ 5 = 5 米.13. 作业 3答案:10 秒简答:从队尾跑到队头,速度差为队伍长度 20 米,所以时间为 20 ÷ (3 - 1) = 10 秒.14. 作业 4答案:180 米简答:20 秒的路程是“ 220米 + 车长 ” 24 秒的路程是“ 300米 + 车长 ,时间差为 24 - 20 = 4 秒,路程差为 300 - 220 = 80 米,所以速度为 80 ÷ 4 = 20 米/秒,所以火车车长为 20 ⨯ 20 - 220 = 180 米.15. 作业 5答案:18 米/秒简答:慢车与小王老师的相遇过程,路程和为慢车车长 380 米,时间为 10 秒,所以速度和为380 ÷10 = 38 米/秒,小王老师速度即为快车速度 20 米/秒,所以慢车速度为 38 - 20 = 18 米/秒.。
人教版四年级下册数学奥数——追及问题(课件)
【例题5】A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需 要10小时。如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
【思路导航】 虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同。根据题意,
甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时 (20-8)÷2=6千米。又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中 每小时行80÷5=16千米。所以,乙船在静水中每小时行16-6=10千米。
【例5】B地的兔子和A地的狗相距56米,兔子发现A处的狗后立即从B地逃跑,狗同时从A地追捕 兔子,狗跳一次前进2米,狗跳3次的时间与兔子跳4次的时间相同,兔子前进112米到达C地,此 时狗追捕到鱼子。兔子跳一次前进多少米?
【分析与解答】 狗追到兔子的距离为112+56=168 米,狗跳一次前进2米,狗追到兔子共跳了168÷2=84次。已知狗 跳3次的时间与兔子跳4次的时间相同,狗跳84次,兔子要跳4×(84÷3)=112次,兔子共跳了112 米,从而可以轻松求出兔子每次跳的距离。
【分析与解答】 平平行了6千米后,兵兵才出发,这6千米就是平平和兵兵相距的路程。由于兵兵每小时比 平平多行17-14=3千米,要求兵兵几小时可以追上平平,也就是求6千米里包含几个3千米, 则需要用6÷3=2小时。因为甲地和乙地相距40千米,兵兵每小时行17千米,2小时行了 17×2=34千米,所以兵兵追上平平时距乙地还有40-34=6千米。
【例4】甲、乙两人在周长为600米的跑道上跑步,各自的速度保持不变, 甲每分钟跑160米,两人如果同时从同一地点同向而行,那么经过30分钟, 甲又追上乙一次,和乙相遇。那么乙每分钟跑多少米?
行程问题精讲
基本慨念:行程问题是研究物体运动的,它研究的是物体运动的速度、时间、行程三者的关系。
一、基本公式:路程用字母s表示;速度用字母v表示;时间用字母t表示。
有如下公式:关键问题,确定行程过程中路程、速度、时间。
(一)相遇问题基本公式相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长(二)相离问题两个运动物体由于背向运动而相离,就是相离问题。
解答相离问题的关键是求出两个运动物体共同结果的距离(速度和时间)基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间(三)追及问题基本公式追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差×追及时间追及问题(环形)快的路程-慢的路程=曲线的周长(四)流水问题基本公式顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2例题应用详解:1. 电子游戏--龟兔对跑:屏幕上有一直线,直线上有A、B、C、D四点。
AD=31厘米,BC=3.2厘米。
兔子和乌龟分别从A、D两点同时出发,相向而行。
兔子每秒跑7.5厘米,乌龟每秒爬1.5厘米。
当兔子跑到C点时,乌龟恰好爬到B点。
AB相距多少厘米?CD相距多少厘米?本题解法有几种,可设未知数,也可不设未知数。
解法一:设AB=X,CD=Y联立方程式:x+y+3.2=31(x+3.2)÷7.5=(y+3.2)÷1.5最后x=25.3 y=2.5解法二:当兔子到达C点时,龟兔共走路程为:AC+BD=AD+BC=31+3.2=34.2龟兔速度和为:7.5+1.5=9则:兔子到达C点是用时t=34.2÷9=3.8秒所以AC距离是:3.8×7.5=28.5厘米AB=AC-BC=28.5-3.2=25.3厘米CD=AD-AC=31-28.5=2.5厘米思考:解法二似乎比解法一复杂,其实对于没学过二元一次方程组的小学阶段学生来说,解法二更适用,而且从不同角度思考数学问题的解法,正是数学的魅力所在。
必备小升初数学知识点之行程问题
必备小升初数学知识点之行程问题在历年小升初数学测试中,行程效果是很多孩子失分的中央,很多同窗对行程效果都模糊不清甚至坚持,下面为大家分享小升初数学知识点之行程效果,希望对大家有协助!综合行程知识点:基本概念:行程效果是研讨物体运动的,它研讨的是物体速度、时间、路程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键效果:确定运动进程中的位置和方向。
相遇效果:速度和×相遇时间=相遇路程(请写出其他公式) 追及效果:追及时间=路程差÷速度差(写出其他公式)流水效果:顺水行程=(船速+水速)×顺水时间顺水行程=(船速-水速)×顺水时间顺水速度=船速+水速顺水速度=船速-水速静水速度=(顺水速度+顺水速度)÷2水速=(顺水速度-顺水速度)÷2流水效果:关键是确定物体所运动的速度,参照以上公式。
过桥效果:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法基此题型:路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中恣意两个量,求第三个量。
经典例题:1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,如今羊已跑出30米,马末尾追它。
问:羊再跑多远,马可以追上它?解:依据〝马跑4步的距离羊跑7步〞,可以设马每步长为7x 米,那么羊每步长为4x米。
依据〝羊跑5步的时间马跑3步〞,可知同一时间马跑3*7x 米=21x米,那么羊跑5*4x=20米。
可以得出马与羊的速度比是21x:20x=21:20依据〝如今羊已跑出30米〞,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,如今求马的21份是多少路程,就是30÷(21-20)×21=630米2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?答案720千米。
小学奥林匹克数学 竞赛数学 第19讲-行程问题【三】
一、分段计算的行程问题1,行程问题中的三个基本倍数关系①当运动的速度相同时,时间的倍数关系等于路程的倍数关系②当运动的时间相同时,速度的倍数关系等于路程的倍数关系③当运动的路程相同时,时间的倍数关系等于速度的反倍数关系2,按时间流程画线段图的方法画线段图的方法在求解行程问题中是至关重要的,画好线段图,能使题目条件一目了然,有助于解题。
3,分段与比较的想法①同一个人的不同过程之间,速度相同,可以得到路程与时间之间的关系;②两个时刻之间所经过的时间相同,可以得到不同对象之间路程与速度的关系;③长度相同的线段,路程相同,可以得到速度和时间之间的关系。
二、多次往返相遇和追及1、甲,乙两车从A、B两地出发相向而行,并在两地之间不断往返,记两地距离为1个全长,则①甲车和乙车的路程和为1个全长时,两次第一次迎面相遇;•在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.②如果甲车的速度大于乙车速度,则:•当甲车与乙车的路程差为1个全长时,甲车第一次追上乙车;在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。
2,甲,乙两车从A地同时出发同向而行,在A、B两地之间不断往返,记两地距离为1个全长,则①当甲车和乙车的路程和为2个全长时,两次第一次迎面相遇;在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.②如果甲车的速度大于乙车速度,则:当甲车与乙车的路程差为2个全长时,甲车第一次追上乙车;在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。
【1】甲、乙两人从同一个地点出发同向而行,甲比乙先出发.甲出发6分钟到达A地.此时乙距离起点150米.又过了3分钟乙到达A地,此时甲距离起点900米.问:乙比甲晚出发多长时间?自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队.然后通信员立即返回出发点;到达出发点后通信员又马上掉头去追自行车队,再次追上时恰好离出发点18千米.自行车队每分钟行多少千米?摩托车每分钟行多少千米?乌龟与兔子迚行10000米赛跑,兔子的速度是乌龟的速度的5倍.当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉.兔子醒来时发现乌龟已经领先它5000米,于是奋起直追.当乌龟到达终点时,兔子仍落后100米.请问:兔子睡觉期间,乌龟跑了多少米?一天,萱萱到离自己家4000米的表哥家去玩.早晨7:20时,萱萱从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到萱萱家后才发现萱萱已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上萱萱后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?甲、乙两车分别从A、B两地同时出发,相向而行,12小时后在C地相遇.相遇后,两车并不停顿,继续前迚.甲车在相遇后继续行驶4小时到达B地,然后立即掉头以相同的速度返回A地.请问:(1)当甲车再次到达C地的时候,乙车还要再开几小时才能到达A地?(2)如果甲车从B地返回的时候不是原速返回,而是变慢了.而且当它经过C地的时候,乙车正好到达A地.甲车返回的速度是原来速度的多少倍?某科研单位每天派汽车早8点准时到工程师家接他上班.但今天早晨,工程师临时决定提前到单位,于是他没有等汽车来接,就自己步行去单位.步行途中遇到了前来接他的汽车,他马上上车赶到单位,结果发现比平时早到了30分钟,问:工程师上车时是几点几分?【7】快车和慢车分别从甲、乙两地同时开出,相向而行,经过4小时在途中相遇.相遇后两车继续向前行驶.慢车到达甲地后停留1小时再返回乙地.快车到达乙地后停留2.5小时再返回甲地.已知慢车从乙地到甲地用了12小时,那么两车从第一次相遇到第二次相遇需要多长时间?【8】甲、乙两车分别从相距900千米的A,B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲、乙两车第二次迎面相遇是在出发后多长时间?(2)第二次迎面相遇后又经过多长时间甲、乙两车第三次相遇?(3)甲车第一次从后面追上乙车是在出发后多长时间?【9】甲、乙两车同时从A地出发,在相距900千米的A、B两地之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲车第一次从后面追上乙车是在出发后多长时间?(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?(3)甲、乙两车第二次迎面相遇是在出发后多长时间?【10】A、B两辆汽车分别从甲、乙两地同时出发,并在两地间不断往返行驶.两车在距离甲地40公里处第一次迎面相遇,在距离甲地10公里处第二次迎面相遇.求甲、乙两地之问的距离.【11】甲、乙两人分别从A、B两地出发,在A、B两地之间不断往返行走.当甲走了3个来回的时候,乙恰好走了5个来回.在甲、乙两人行迚的过程中,两人一共相遇了多少次?(迎面碰到和追上都算相遇)【12】小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B两站同时出发,相向而行,第一次相遇后两人继续前迚,分别到达B、A后返回并在途中第二次相遇.第二次相遇地点距离A、B 两站的中点450米.从两人同时出发到第二次相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次相遇是几点几分?【13】甲、乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点即称为相遇)的地点与第四次相遇的地点恰好相距100千米.请问:两地之间的距离是多少千米?【14】某人从甲地走往乙地.甲、乙两地之间有定时的公共汽车往返,而且两地发车的间隔都相等.他发现每隔6分钟开过来一辆去甲地的公共汽车,每隔12分钟开过去一辆去乙地的公共汽车.问:公共汽车每隔多少分钟从各自的始发站发车?下节课见!。
第19讲 行程问题三-完整版
第19讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑。
在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律。
典型例题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校,如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:每分钟159米解析:注意到莉莉与莎莎两人同时从家出发,同时到达学校,而且两人在途中都没有停留,因此两人用去的时间相同.当运动时间相同时,速度的倍数关系等于路程的倍数关系.如图,莉莉步行从家到学校,走的路程是家与学校的距离.在相同的时间内,莎莎骑车到学校,又马上从学校返回家,再回到学校,经过的路程是家与学校距离的3倍,因此莎莎骑车的速度是莉莉步行速度的3倍,由于莉莉每分钟走53米,所以莎莎骑车的速度是每分钟53×3=159米.2.小燕上学时骑车?回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟,求小燕往返都骑车所需的时间.答案:30分钟解析:如图,因为小燕往返都步行需要70分钟,所以她步行从学校回到家需要70÷2=35分钟.由于小燕上学时骑车,回家时步行需要50分钟,所以她骑车从家到学校需要50-35=15分钟,那么她往返都骑车需要15×2=30分钟.3.萱萱和卡莉娅从距离32千米的两地同时出发相向而行,萱萱每小时走4千米,卡莉娅乘坐“飞天扫帚”,每小时飞12千米,她俩迎面相遇后,卡莉姬发现自己忘记带东西了,立刻返回出发点,再掉头向萱萱前进.请问:她们第二次相遇的地点距离卡莉娅的出发点多少千米?答案:12千米解析:第一次相遇时卡莉娅走了32÷(4+12)×12=24(千米).从第一次相遇到第二次相遇,两人又合走了24×2=48(千米).这期间萱萱又往前走了48÷(4+12)×4=12(千米).因此第二次相遇点离卡莉娅的出发点24-12=12(千米).4.培英学校和电视机厂之间有一条公路,原计划下午2点整培英学校派车去电视机厂接劳模来校作报告,往返需用1小时.实际上这位劳模在下午1点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达.问:汽车行驶速度是劳模步行速度的几倍?答案:8倍解析:如图,汽车下午2时从工厂出发,途中遇到迎面走来的劳模后立即返回,于2时40分回到工厂,汽车的速度不变,因此汽车遇到劳模的时间是2时20分,另一方面,汽车往返学校与工厂需要1小时,因此从学校到工厂单程行驶需要30分钟,也即如果汽车2时从学校出发,按计划将于2时30分到达工厂.所以汽车途中遇到劳模提前了10分钟返回,而少行驶的10分钟路程正是劳模步行了60+20=80分钟的路程。
高斯小学奥数四年级上册含答案第19讲_火车行程进阶
第十九讲火车行程进阶上一讲中我们已经学习了火车行程中的火车过桥、火车过人、火车过车这三种基本类型.解决火车行程问题,最重要的是要学会画图,将火车行程过程转化为最后对齐的两个位置的相遇或追及过程.接下来,我们来介绍较复杂的火车行程问题.我们已经学过了火车与火车的相遇与追及,追及问题一般是指两列火车从开始追上到完全超过所经历的过程.接下来看两类特殊的火车与火车的追及问题,齐头行进或齐尾行进.与之前分析过程一样,首先找到最后对齐的部位,并找到其初始位置,将火车行程过程转化为甲车尾与乙车头的追及过程,可以总结如下:齐头并进:从出发到离开(即超过)时刻,两车路程差为快车车长. 齐尾并进:从出发到离开(即超过)时刻,两车路程差为慢车车长.例题1(1)现有D 字头动车和T 字头特快同时同向齐头行进,动车每秒行60米,特快每秒行40米,经过8秒后动车超过特快.请问:D 字头动车车长多少米?(2)现有D 字头动车和T 字头特快车尾对齐,同时同向行进,动车每秒行60米,特快每秒行40米,经过10秒后动车超过特快.请问:T 字头特快车车长多少米?「分析」题(1)中,火车从齐头开始出发,到超过为止,快车车长(D 字头动车车长)即为路程差,所以求路程差即可. 练习1(1) 现有两列火车,如果这两列火车同时同向齐头行进,快车每秒行20米,慢车每秒行9米,行10秒后快车超过慢车.请问:快车车长多少米?(2) 现有两列火车,快车每秒行20米,慢车每秒行9米,如果这两列火车车尾对齐,同时同向行进,则15秒后快车超过慢车.请问:慢车车长是多少米?①齐头并进 始② 齐尾并进在现实生活中,有很多行程问题都会涉及到运动对象本身的长度,比如队列、队伍等等.下面我们看一下另外一类比较特殊的火车行程——队列行程问题.这类问题主要包含两种基本类型(队伍是匀速前进的):“人从队头走到队尾”与“人从队尾走到队头”.① 人从队头走到队尾:从图中可以看出,这类问题其实就是队列与行人的相遇过程,队列与行人的路程和即为队列长度.② 人从队尾跑到队头:从图中可以看出,这类问题其实就是队列与行人的追及过程,只不过,这里的行人要比“火车”还要快,行人与队列的路程差即为队列长度.例题2某解放军队伍长450米,以每秒2米的速度行进.一名战士以每秒3米的速度从排尾跑到排头需要多长时间?然后从排头返回排尾,又需要多少时间?「分析」从排尾到排头,即为战士与队伍的追及过程,要计算时间,就需要找到路程差与速度差. 练习2某学校组织学生去春游,队伍长540米,并以每秒2米的速度前进,一名学生以每秒4米的速度从队尾跑到队头,再回到队尾,共用多少分钟?末队伍队伍始行人在之前学习的盈亏、和差倍等应用题中,我们用到了比较的方法.在行程问题中,往往也会应用到比较的思想.例题3一列火车完全通过460米长的隧道用30秒,以同样的速度完全通过410米的隧道用28秒.请问:这列火车的速度是每秒多少米?「分析」本题包含两个“火车通过桥”的过程,一一分析,可以计算出什么吗?不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度. 练习3一列客车完全通过530米长的桥用了50秒,以同样速度完全通过380米长的山洞用了40秒.请问:这列客车的速度是每秒多少米?火车行驶的过程中,火车行驶的距离只需要看火车上的某一个点即可,可以是火车头或者火车尾,当然,也可以是火车的某一个窗户.对于坐在火车某个窗户旁边的人来说,他的速度其实就是火车前进的速度. 接下来,我们分析一下火车中的人观察其他火车经过的过程:从图中可以看出,这类型的行程过程,其实就是人与另外一辆火车的相遇或追及过程,对应的路程和或路程差其实都是另外一辆火车的车长,与人所乘坐的火车长度没有关系.③ 相遇始④追及末例题4甲、乙两列火车同向而行,甲车在前,乙车在后.甲车长320米,每秒行20米;乙车长480米.坐在甲车上的小王老师从乙车车头经过她的车窗时开始计时,到车尾经过她的车窗为止共用96秒.那么乙车的速度是多少?「分析」题目所叙述的过程,其实是乙车与王老师的追及过程,请画图分析一下,路程差是什么呢?跟甲车车长、乙车车长有什么关系呢?练习4动车和直达列车相向而行.动车长600米,每秒行60米;直达列车长900米,每秒行30米.坐在动车上的小王老师记录了从直达列车车头经过她车窗,到车尾经过她车窗所用的时间.那么这个时间是多少?例题5一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.请问:火车车长多少?「分析」本题涉及到两个过程:一个是火车通过桥,一个是火车完全在桥上.一一分析,两个过程都无法计算.不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度与车长.从前面的分析中,我们已经知道,火车中的人与另外一辆火车的相遇与追及过程,其实就是人与另外一辆火车的相遇与追及,和人所乘坐的车长是没有关系的.而解决这类题目,关键的一步就是要找到人的速度.如果人在车上静止,那么人的速度就是车的速度.如果人在车上行走呢?我们看一个简单例子:一列火车以每秒20米的速度行驶,乘务员以每秒1米的速度在车厢内沿着火车前进的方向向前走,那么在地面上静止的人来看,乘务员的前进速度是多少呢?如果乘务员以每秒1米的速度在车厢内沿着火车前进的反方向向前走,那么对于地面上静止的人,乘务员的前进速度又是多少呢?我们可以这么想:火车1秒钟前进了20米,如果乘务员行走方向跟火车一样,那么在火车带着他前进了20米的基础上他又往前走了1米,所以对于地面来说,乘务员其实是走了21米,所以他的速度就是每秒钟21米,即车与人的速度和;同样的道理,如果乘务员的行走方向与火车相反,那么他对于地面的速度就是车与人的速度差.例题6货车和客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小高在客车内沿着客车前进的方向向前走,发现货车用140秒就超过了他.已知小高在客车内行走的速度为每秒1米,客车的速度为每秒20米,客车长350米,货车长280米.求:(1)货车的行驶速度;(2)货车从追上客车到完全超过客车所需要的时间.「分析」小高在客车内行走,那么他的实际速度是多少呢?货车与小高的追及过程,路程差是什么呢?画图好好分析一下吧!课堂内外白(黄)色安全线火车站台或者地铁的站台边都会有一条白色或者黄色的安全线,当列车进站的时候,车站的工作人员都会提醒人们注意站在安全线的后面,不过那并不是怕乘客拥挤掉下去,到底是为什么呢?据铁路史志记载,这条安全线来源于近百年前的一场惨案.1905年冬天,在俄国一个名鄂洛多克的小车站上,站长率全站38名员工身着盛装、手持鲜花,列队站在铁路线两旁恭候沙皇尼古拉二世派来视察的钦差大臣.然而,遗憾的是,列车没有缓缓进站,而是狂风般冲进了“人巷”,刹那间“人巷”倒塌了,数十名员工仿佛背后被人猛推了一掌,不由自主向前倒去.结果造成34人丧生,4人终生残疾.由于当时科技水平有限,人们对此无法解释.后来人们才弄明白惨案真相.在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔•伯努利1738年发现的“伯努利定律”.在行驶的汽车或者火车窗外,紧挨着车身的空气由于车身的带动而流速较快,从而产生比正常的大气压更小的气压,并且速度越快,这个气压就会越小,这样周围的空气就会把旁边的物体推向火车.所以,火车高速行驶时,人站立太近的话就有可能被吸过去,那个后果可真得会惨不忍睹啊.而在站台上,即使在列车进站的时候车速减慢了很多,但在完全停稳之前,这个吸力还是会存在.这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了这一定律.飞机机翼的上表面是流畅的曲面,下表面则是平面.这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了.工程学上会用一个“伯努利公式”来计算,这个力到底有多大.所以,即使运行在站台的列车速度并不是很快,也不要挑战自己,去试那个吸引力有多大.当我们在站台上等候火车或地铁时,一定要站在白色安全线外.作业1.蛇妈妈和蛇宝宝比赛跑步,齐头并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了10秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇妈妈的长度多少米?2.蛇妈妈和蛇宝宝比赛跑步,齐尾并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了5秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇宝宝的长度多少米?3.麦兜参加学校军训,所在班队伍长20米,以每秒1米的速度前进.麦兜以每秒3米的速度从队尾跑到队头需要多长时间?4.一列火车通过220米长的大桥需要20秒,以同样的速度通过300米长的隧道需要24秒.这列火车长多少米?5.一列快车和一列慢车相向行驶,坐在快车上面的小王老师,从慢车经过她的窗口开始计时,到完全经过她的窗口结束,共计10秒钟.已知快车长200米,速度是每秒20米;慢车长380米,那么慢车的速度是每秒多少米?第十九讲火车行程进阶1.例题1答案:160米;200米详解:(1)齐头并进,路程差即快车车长,()-⨯=米;(2)齐尾并进,路程差即慢车60408160车长,()604010200-⨯=米.2.例题2答案:450秒;90秒详解:(1)从排尾跑到排头,路程差为队伍长度,所以时间是()÷-=秒;(2)从排45032450头跑到排尾,路程和为队伍长度,所以时间是()÷+=秒.45032903.例题3答案:25米/秒详解:火车30秒的路程是“460米车长-=+”,时间差为30282+”,28秒的路程是“410米车长秒,路程差为46041050÷=米/秒.-=米,所以速度为502254.例题4答案:25米/秒详解:乙车与小王老师的追及过程,路程差为乙车车长480米,时间为96秒,所以速度差为+=米/秒.480965÷=米/秒,小王老师速度即为甲车速度20米/秒,所以乙车速度为205255.例题5答案:200米详解:火车120秒的路程为“1000米车长-”,比较可得火车+”,80秒的路程为“1000米车长40秒的路程为“2个车长”,即20秒的路程为“车长”,而12秒的路程为“1000米车长+”,所以火车100秒的路程为1000米,速度为100010010⨯-=米.÷=米/秒,车长为1201010002006.例题6答案:23米/秒;210秒详解:(1)小高的实际速度为20121+=米/秒,货车与小高的追及过程,时间为140秒,路程差为货车车长280,所以速度差为2801402+=米/秒;(2)货车÷=米/秒,所以货车速度为21223与客车的追及时间,路程差为两车车长之和即350280630+=米,所以时间为()6302320210÷-=秒.7.练习1答案:110米;165米详解:(1)齐头并进,路程差为快车车长,()-⨯=米;(2)齐尾并进,路程差为慢车20910110车长,()20915165-⨯=米. 8.练习2 答案:6分钟详解:从队尾跑到队头,路程差为队伍长度,所以时间是()54042270÷-=秒;从队头跑回队尾,路程和为队伍长度,所以时间是()5404290÷+=秒,一共用了27090360+=秒即6分钟. 9.练习3 答案:15米/秒简答:50秒的路程是“530米车长+”,40秒的路程是“380米车长+”,时间差为504010-=秒,路程差为530380150-=米,所以速度为1501015÷=米/秒. 10. 练习4答案:10秒简答:直达列车与小王老师的相遇过程,路程和即直达列车车长900米,速度和为603090+=米/秒,所以时间为9009010÷=秒. 11. 作业1答案:10米简答:齐头并进,路程差为快车车长,即蛇妈妈的长度,为()541010-⨯=米. 12. 作业2答案:5米简答:齐尾并进,路程差为慢车车长,即蛇宝宝的长度,为()5455-⨯=米. 13. 作业3答案:10秒简答:从队尾跑到队头,速度差为队伍长度20米,所以时间为()203110÷-=秒. 14. 作业4答案:180米简答:20秒的路程是“220米车长+”,24秒的路程是“300米车长+”,时间差为24204-=秒,路程差为30022080-=米,所以速度为80420÷=米/秒,所以火车车长为2020220180⨯-=米.15. 作业5答案:18米/秒简答:慢车与小王老师的相遇过程,路程和为慢车车长380米,时间为10秒,所以速度和为3801038÷=米/秒,小王老师速度即为快车速度20米/秒,所以慢车速度为382018-=米/秒.。
【详解】5年级下册第19讲_行程问题中的变速
第十九讲 行程问题中的变速例题:例1. 答案:(1)3.6千米/时;(2)4.5千米/时;(3)4千米/时详解:(1)去的时候,上坡路走了1234÷=小时,下坡路走了661÷=小时.根据平均速度的定义,平均速度为(126)(41) 3.6+÷+=千米/时.(2)返回的时候,上坡路走了632÷=小时,下坡路走了1262÷=小时.根据平均速度的定义,平均速度为(126)(22) 4.5+÷+=千米/时.(3)往返的平均速度为(126)2(54)4+⨯÷+=千米/时.例2. 答案: 30厘米/分;133117厘米/分 详解:设等边三角形边长为60厘米,则平均速度为603(60606020+6030)30⨯÷÷+÷÷=厘米/分.如果顺时针爬行了一周半,平均速度为13180 1.5(6+6060+3020)3117⨯÷÷÷=厘米/分.例3. 答案:96米;3517米详解: 如图所示,男运动员到达B 点的时候用了24秒,这时女运动员走了72米距离B 点48米.然后两人做一个相遇运动,会在()48338÷+=秒后相遇,这时两人距离A 点是96米.男运动员跑到A点,又用了32秒,而女运动员跑到B 点需要8秒,可知当男运动员走到A 点的时候,女运动员又向上走了24秒,走了48米,距离A 点还有72米.然后两人又做一个相遇运动,会在7272(52)7÷+=秒后相遇,可计算出这时两人相距A 点3517米.例4. 答案:0.96千米详解:如图所示,甲每分钟可以走150米,乙每分钟可以走100米.每过5分钟,甲都向南走750米,乙只向南走100米,那么每5分钟,两人的距离都拉近650米,48006507250÷=,所以在5735⨯=分钟以后,两人相距250米.此时,甲继续向南,乙向南走3分钟,这3分钟两人的距离拉近了()1501003150-⨯=米,这时两人相距100米.甲继续向南,而乙则返回往北走,两人在()1001501000.4÷+=分钟后相遇,那么甲总共走了3530.438.4++=分钟,共走了38.41505760⨯=米,所以相遇地点距离B 地57604800960-=米,即0.96千米.例5. 答案:420种详解:首先可以计算出乌龟用时111.040.6115÷=小时,合104分钟.兔子跑的时间为1.0440.26÷=小时,合15.6分钟.1234515++++=,可知兔子休息了5次,休息了51575⨯=分钟,共用时A15.67590.6+=分钟,兔子比乌龟先到达10490.613.4-=分钟.例6.答案:65分钟 详解:甲若追上乙至少要多走一个边长,至少用时120012010060÷-=()分钟.甲每走120012010÷=分钟,休息一分钟,60分钟内至少休息5次,共用时65分钟.乙每走120010012÷=分钟,休息一分钟,60分钟内至少休息4次,共用时64分钟,第65分钟恰好也在休息,因此甲恰好可以看见乙. 练习:1. 答案:3米/秒简答:()12004005800 2.53÷÷+÷=米/秒.2. 答案:12931厘米/分 简答:仍设等边三角形边长为60厘米,逆时针爬行两周用时12分钟,逆时针爬行半周用时60303020 3.5÷+÷=分钟,平均速度为1180 2.5(12 3.5)2931⨯÷+=厘米/分.3. 答案:2250万公里简答:做法同例3,分段计算.4. 答案:1200米简答:做法同例4,以3分钟为周期. 作业1. 答案:40;54013简答:设边长为120厘米,()36024340÷++=厘米/分;()5405402432213÷++++=厘米/分.2. 答案:4.8简答:设全长为24米,平均速度为()÷+=米/秒.2432 4.83.答案:560÷=,一共要休息16次,即160秒.一共需要简答:小老虎走路的时间是400秒.20001201680560秒.4.答案:2小时30分简答:出发2小时后,甲到达中点处,乙距离中点还有2千米.再过0.5小时两人相遇,所以一共2小时30分钟.5.答案:21.6;11.2简答:分段计算即可.。
六年级数学行程问题四种类型专讲完整版讲解
六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。
数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。
已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。
货车以平均每小时50千米的速度从乙地开往甲地。
要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
第19讲 追及问题
6.小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立刻骑自行车以每分钟280米的速度去追小明,那么爸爸出发后几分钟追上小明?
例2、红红和明明分别从西村和东村同时向西而行,明明骑自行车每小时行16千米,红红步行每小时行5千米,2小时后明明追上红红。求东、西两村相距多少千米?
分析与解答:根据题意画出线段图:
从线段图上容易看出,东村与西村相距的距离等于甲2小时走的路程减去乙2小时行的路程,即甲追上乙时行了16×2=32(千米),乙2小时走了5×2=10(千米),所以东村与西村相距32-10=22(千米);这道题也可以这样思考,明明1小时比红红多行16-5=11(千米),2小时追上红红时,明明多行了11×2=22(千米),即东、西两村相距22千米。
11.小红以每分钟80米的速度从学校步行回家,12分钟后小丽从学校出发骑自行车去追小红,结果在离学校1360米处追上小红。求小丽骑自行车的速度是多少?
【搏击奥数】
小明、小红两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20分钟小明第一次追上小红。求两人跑步的速度各是多少?
9.甲每分钟行70米,乙每分钟行50米,在下午2:00时,两人在同地背向而行了6分钟后,甲又米的地方同时出发,出发时白马在前黑马在后,如果黑马每秒跑10米,白马每秒跑12米,几秒钟后两马相距70米?
(2)两匹马在相距60米的地方同时出发,出发时黑马在前白马在后,如果黑马每秒跑10米,白马每秒跑12米,几秒钟后两马相距70米?
小学数学中的行程问题
小学数学中的行程问题【基本公式】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、分段计算的行程问题
1,行程问题中的三个基本倍数关系
①当运动的速度相同时,时间的倍数关系等于路程的倍数关系
②当运动的时间相同时,速度的倍数关系等于路程的倍数关系
③当运动的路程相同时,时间的倍数关系等于速度的反倍数关系
2,按时间流程画线段图的方法
画线段图的方法在求解行程问题中是至关重要的,
画好线段图,能使题目条件一目了然,有助于解题。
3,分段与比较的想法
①同一个人的不同过程之间,速度相同,可以得到路程与时间之
间的关系;
②两个时刻之间所经过的时间相同,可以得到不同对象之间路程
与速度的关系;
③长度相同的线段,路程相同,可以得到速度和时间之间的关系。
二、多次往返相遇和追及
1、甲,乙两车从A、B两地出发相向而行,并在两地之间不断往返,
记两地距离为1个全长,则
①甲车和乙车的路程和为1个全长时,两次第一次迎面相遇;
•在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.
②如果甲车的速度大于乙车速度,则:
•当甲车与乙车的路程差为1个全长时,甲车第一次追上乙车;
在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。
2,甲,乙两车从A地同时出发同向而行,在A、B两地之间不断往返,记两地距离为1个全长,则
①当甲车和乙车的路程和为2个全长时,两次第一次迎面相遇;
在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.
②如果甲车的速度大于乙车速度,则:
当甲车与乙车的路程差为2个全长时,甲车第一次追上乙车;
在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。
【1】(高思学校竞赛数学导引P116)
甲、乙两人从同一个地点出发同向而行,甲比乙先出发.甲出发6分钟到达A地.此时乙距离起点150米.又过了3分钟乙到达A地,此时甲距离起点900米.问:乙比甲晚出发多长时间?
自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队.然后通信员立即返回出发点;到达出发点后通信员又马上掉头去追自行车队,再次追上时恰好离出发点18千米.自行车队每分钟行多少千米?摩托车每分钟行多少千米?
乌龟与兔子迚行10000米赛跑,兔子的速度是乌龟的速度的5倍.当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉.兔子醒来时发现乌龟已经领先它5000米,于是奋起直追.当乌龟到达终点时,兔子仍落后100米.请问:兔子睡觉期间,乌龟跑了多少米?
一天,萱萱到离自己家4000米的表哥家去玩.早晨7:20时,萱萱从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到萱萱家后才发现萱萱已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上萱萱后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?
甲、乙两车分别从A、B两地同时出发,相向而行,12小时后在C地相遇.相遇后,两车并不停顿,继续前迚.甲车在相遇后继续行驶4小时到达B地,然后立即掉头以相同的速度返回A地.请问:
(1)当甲车再次到达C地的时候,乙车还要再开几小时才能到达A地?
(2)如果甲车从B地返回的时候不是原速返回,而是变慢了.而且当它经过C地的时候,乙车正好到达A地.甲车返回的速度是原来速度的多少倍?
某科研单位每天派汽车早8点准时到工程师家接他上班.但今天早晨,工程师临时决定提前到单位,于是他没有等汽车来接,就自己步行去单位.步行途中遇到了前来接他的汽车,他马上上车赶到单位,结果发现比平时早到了30分钟,问:工程师上车时是几点几分?
【7】(高思学校竞赛数学导引P117)
快车和慢车分别从甲、乙两地同时开出,相向而行,经过4小时在途中相遇.相遇后两车继续向前行驶.慢车到达甲地后停留1小时再返回乙地.快车到达乙地后停留2.5小时再返回甲地.已知慢车从乙地到甲地用了12小时,那么两车从第一次相遇到第二次相遇需要多长时间?
【8】(高思学校竞赛数学导引P117)
甲、乙两车分别从相距900千米的A,B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:
(1)甲、乙两车第二次迎面相遇是在出发后多长时间?
(2)第二次迎面相遇后又经过多长时间甲、乙两车第三次相遇?
(3)甲车第一次从后面追上乙车是在出发后多长时间?
【9】(高思学校竞赛数学导引P117)
甲、乙两车同时从A地出发,在相距900千米的A、B两地之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:
(1)甲车第一次从后面追上乙车是在出发后多长时间?
(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?
(3)甲、乙两车第二次迎面相遇是在出发后多长时间?
【10】(高思学校竞赛数学导引P117)
A、B两辆汽车分别从甲、乙两地同时出发,并在两地间不断往返行驶.两车在距离甲地40公里处第一次迎面相遇,在距离甲地10公里处第二
次迎面相遇.求甲、乙两地之问的距离.
【11】(高思学校竞赛数学导引P118)
甲、乙两人分别从A、B两地出发,在A、B两地之间不断往返行走.当甲走了3个来回的时候,乙恰好走了5个来回.在甲、乙两人行迚的过程中,两人一共相遇了多少次?(迎面碰到和追上都算相遇)
【12】(高思学校竞赛数学导引P118)
小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B两站同时出发,相向而行,第一次相遇后两人继续前迚,分别到达B、A后返回并在途中第二次相遇.第二次相遇地点距离A、B 两站的中点450米.从两人同时出发到第二次相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次相遇是几点几分?
【13】(高思学校竞赛数学导引P118)
甲、乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点即称为相遇)的地点与第四次相遇的地点恰好相距100千米.请问:两地之间的距离是多少千米?
【14】(高思学校竞赛数学导引P118)
某人从甲地走往乙地.甲、乙两地之间有定时的公共汽车往返,而且两地发车的间隔都相等.他发现每隔6分钟开过来一辆去甲地的公共汽车,每隔12分钟开过去一辆去乙地的公共汽车.问:公共汽车每隔多少分钟从各自的始发站发车?
下节课见!。