《14.1整式的乘法》教案2

合集下载

14.1 整式的乘法【教案】八年级上册数学

14.1  整式的乘法【教案】八年级上册数学

14.1.1同底数幂的乘法课时目标1.理解同底数幂的乘法法则并运用法则解决一些实际问题,培养学生运算、推理能力,发展应用意识.2.会用数学的思维推导“同底数幂的乘法法则”,使学生初步理解从特殊到一般、从一般到特殊的认知规律,发展学生观察、归纳、类比等能力.3.在小组合作交流中,培养协作精神、探究精神,增强学习信心.学习重点理解并掌握同底数幂的乘法法则.学习难点运用同底数幂的乘法法则进行相关计算.课时活动设计情境引入教师简述我国超级计算机的发展历程,引出课本问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?解:103×1015=1018设计意图:通过探究问题激发学生的民族自豪感,也让学生体会生活中存在着大量的较大的数据,激发学生的学习兴趣.探究新知问题1:对于上一教学活动中提出的问题,应如何列式?学生动笔列式,大部分学生可以列出.追问:其中1015中“10”“15”“1015”分别叫做什么?“1015”表示的意义是什么?问题2:1015×103等于多少?学生小组讨论,展示计算过程.1015×103=(10× (10)⏟15个10×(10×10×10)=10×10×…×10⏟18个10=1018.追问1:根据乘方的意义计算23×22.学生快速计算,展示结果.解:23×22=2×2×2×2×2=25追问2:请同学们观察上面各算式的左右两边底数、指数的关系,猜一猜:a m·a n 的结果(m,n都是正整数)师生根据乘方的意义共同验证结论的正确性.教师把结论板书在黑板上:a m·a n=a m+n(m,n都是正整数).师生活动:教师引导学生试着用文字概括这个性质.同底数幂相乘,底数不变,指数相加.追问3:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?小组合作,验证结论,并点名展示.a m·a n·a p=a m+n+p(m,n,p都是正整数)设计意图:让学生根据幂的意义,通过计算得到结果.再观察、比较得到等号左右两边底数、指数的关系.通过猜想、验证,抽象概括出同底数幂的乘法运算的本质特征,发展学生观察、归纳、类比能力,体现了从特殊到一般的认知规律.让学生在计算过程中明白算法和算理.适当拓展,为发展学生思维助力.典例精讲例1计算:(1)x2·x5;(2)a·a6.解:(1)x2·x5=x2+5=x7.(2)a·a6=a1+6=a7.教师总结点拨:不要忽略指数是“1”的因式,如a·a6≠a0+6.例2计算:(1)(b+2)3(b+2)4(b+2);(2)-x6·(-x)10.解:(1)原式=(b+2)3+4+1=(b+2)8.(2)原式=-x6+10=-x16.小组合作完成,并选小组代表上台板演.教师讲解,并让学生理解:底数是单项式,也可以是多项式,通常把底数看成一个整体来运算.把不同底数幂转化为同底数幂时要注意符号的变化.例3已知:a m=4,a m+n=20,求a n的值.解:a m+n=a m·a n(逆运算)=4×a n=20,所以a n=5.师生共同解答,并总结:当幂的指数是和的形式时,可以逆运用同底数幂乘法法则,将幂指数和转化为同底数幂相乘,然后把幂作为一个整体,带入变形后的幂的运算式中求解.设计意图:师生共同完成,教师板书过程并着重让学生说明是不是同底数幂相乘,底数是多少,指数是多少,引导学生用运算法则进行计算.通过计算,让学生积累解题经验的同时,体会从一般到特殊的认知规律,将同底数幂的乘法转化为指数相加运算的思想.巩固训练1.x3·x2的运算结果是(C)A.x2B.x3C.x5D.x62.若a n-2·a n+1=a11,则n=6.3.计算:(1)x n·x n+1;(2)(x+y)3·(x+y)4.解:(1)原式=x n+n+1=x2n+1.(2)原式=(x+y)3+4=(x+y)7.设计意图:通过巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结今天我们学了哪些内容:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m·a n=a m+n(m,n都是正整数).设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(1)(2)和第2题(1).2.作业.教学反思14.1.2幂的乘方课时目标1.理解幂的乘方法则并运用法则解决一些实际问题,发展运算、推理能力和应用意识.2.类比同底数幂的乘法法则学习幂的乘方的法则,发展学生观察、归纳、类比等能力,体验数学的化归思想.3.培养学生合作交流意识和探索精神,让学生体会数学的应用价值.学习重点理解幂的乘方性质.学习难点幂的乘方运算法则及灵活应用.课时活动设计回顾引入问题1:叙述同底数幂的乘法法则,并用字母表示.问题2:请口答下列各题:(1)33×35;(2)y2·y;(3)a m·a2.设计意图:通过点名学生回答,复习同底数幂的乘法法则,加深对所学知识的巩固和理解.通过口算,既检验了上节课的学习效果,也为学习本节课知识打下基础.探究新知问题3:请根据乘方的意义及同底数幂的乘法填空.(1)(32)3=32×32×32=3(6).(2)(a2)3=a2·a2·a2=a(6).(3)(a m)3=a m·a m·a m=a(3m)(m是正整数).追问1:(a m)3底数是a,底数是什么形式?追问2:观察计算的结果,你能发现什么规律?根据规律猜想幂的乘法法则.学生口述规律,教师引导学生得到(a m)n=a mn(m,n都是正整数).即幂的乘方,底数不变,指数相乘.教师讲述:规律的正确性需要严谨的证明,如何把特殊一般化,常用的方法是用字母去表示数.追问3:试着证明你的猜想.设计意图:问题3引导学生根据幂的意义,将幂的乘方转化为同底数幂的乘法.追问1、2让通过观察底数、指数的变化,猜想幂的乘方法则.追问3让学生类比问题3计算,并小组内交流.通过问题推进探索规律,让学生自主构建获得新知,培养学生的语言表达能力和符号意识.典例精讲例1计算:(1)(103)5;(2)(a2)4;(3)(a m)2;(4)-(x4)3.解:(1)原式=103×5=1015.(2)原式=a2×4=a8.(3)原式=a m·2=a2m.(4)原式=-x4×3=-x12.例2计算:(1)[(x+y)2]2;(2)[(-x)4]3.解:(1)原式=(x+y)2×3=(x+y)6.(2)原式=(-x)4×3=(-x)12.设计意图:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.在幂的乘方中,底数可以是单项式,也可以是多项式.在运算时,注意把底数看成一个整体,同时注意“负号”.将底数由单项式变式为多项式,在思考过程中实现了知识的迁移,训练了学生的思维,进一步感悟整体思想.巩固训练1.计算:(1)(x4)3·x6;(2)(y4)2+(y2)3·y2.解:(1)原式=x4×3·x6=x12·x6=x18.(2)原式=y4×2+y2×3+2=y8+y8=2y8.教师点拨:与幂的乘方有关的混合运算中,一般先算幂的乘方,再算乘除,最后算加减.2.已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)原式=(10m)3=33=27.(2)原式=(10n)2=22=4.(3)原式=103m×102n=27×4=108.3.已知2x+5y-3=0,求4x·32y的值.解:∵2x+5y-3=0,∴2x+5y=3.∴4x·32y=(22)x·(25)y=22x·25y=22x+5y=23=8.教师点拨:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求值的式子正确变形,然后代入已知条件求值即可.4.比较3500,4400,5300的大小.解:3500=35×100=(35)100=2431004400=44×100=(44)100=2561005300=53×100=(53)100=125100∵256100>243100>125100,∴4400>3500>5300.教师点拨:比较底数大于1的幂的大小的方法有两种:1.底数相同,指数越大,幂就越大;2.指数相同,底数越大,幂就越大.设计意图:使帮助学生巩固刚刚学习的新知识,在此基础上加深知识的应用,培养学生的逆向思维,增强学生思维的灵活性.课堂小结设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(3)(4)(6)第2题(4).2.作业.教学反思14.1.3积的乘方课时目标1.利用几何图形,探索积的乘方运算性质,进一步体会幂的意义,发展学生的空间观念、推理能力和有条理语言、符号表达能力,掌握转化的数学思想.2.能用积的乘方的运算法则解决问题,提高学生的应用意识.3.通过探究学习过程,激发学习数学的兴趣,培养学习数学的信心,感受数学的内在美.学习重点积的乘方运算法则的理解及其应用.学习难点积的乘方推导过程的理解和灵活运用.课时活动设计回顾引入在前面的学习中,我们知道了同底数幂的乘法和幂的乘方运算法则,你能分别用字母表示出来吗?教师总结,课件展示.设计意图:学生口答同底数幂的乘法和幂的乘方运算法则,为学习本节课的内容做好知识储备,要注意语言的准确性.探究新知问题1:如图,正方形的边长为2a,求该正方形的面积.学生展示结果.教师记录:有学生列式(2a)2,有学生列式2a×2a.追问1:根据正方形面积的意义,判断(2a)2与2a×2a的数量关系.学生回答:(2a)2=2a×2a.问题2:2a×2a=2×2×a×a依据(乘法交换律)=22×a2依据(乘法结合律)=4a2.所以(2a)2=4a2.师生共同探索,用几何图形验证上面等式.(2a)2=4a2.猜想:(3×4)2和32×42相等吗?学生通过计算,发现(3×4)2=32×42.追问2:观察(2a)2和(3×4)2,它们底数分别是什么?学生口答:2a和3×4.追问3:接着观察(2a)2=4a2,(3×4)2=32×42,你发现什么规律?学生小组讨论,每个小组派代表口述规律.追问4:你能用符号表示你发现的规律吗?师生活动:学生独立思考并书写,教师板书在黑板上:(ab)n=a n b n(n是正整数).追问5:你能将上述发现的规律推导出来吗?师生活动:学生独立证明,并小组交流,教师板书证明过程.(ab)n=(ab)·(ab)…(ab)=a·a…a·b·b…b=a n b n.设计意图:学生计算正方形的面积,预设得到两种不同的形式.通过设置问题,让学生判断每一步的依据,使学生明白算理.通过两个例子,学生初步获得结论,用符号概括出所发现的规律.通过学生自己观察、概括总结,既培养了学生的参与意识,也为学生探索类似知识提供了研究方法.典例精讲例1计算:(1)(3x)2;(2)(-2b)5;(3)(-2xy)4;(4)(3a2)n.解:(1)原式=32x2=9x2.(2)原式=(-2)5b5=-32b5.(3)原式=(-2)4x4y4=16x4y4.(4)原式=3n(a2)n=3n a2n.例2用简便方法计算:(1)23×53;(2)(0.125)2 023×82 024.解:(1)原式=(2×5)3=103=1 000.(2)原式=(0.125)2 023×82 023×8=(0.125×8)2 023×8=8.教师点拨:逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.设计意图:师生共同解答,通过针对性练习,让学生直观地理解各知识点,实现陈述性知识向程序性知识的转化.用学生熟悉的数之间的关系引导学生感受简便方法,使学生初步感知积的乘方的逆运算,形成简便运算意识,有效培养思维的灵活性.巩固训练1.计算(-x2y)2的结果是(A)A.x4y2B.-x4y2C.x2y2D.-x2y22.下列运算正确的是(C)A.x·x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)2(x3)2·x3-(3x3)3+(-5x)2·x7;(2)(3xy2)2+(-4xy3)·(-xy).解:(1)原式=2x6·x3-27x9+25x2·x7=2x9-27x9+25x9=0.(2)原式=9x2y4+4x2y4=13x2y4.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?积的乘方法则:(ab)n=a n·b n(n是正整数).注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(5)第2题(2)(3).2.作业.教学反思14.1.4整式的乘法第1课时单项式与单项式相乘课时目标1.理解单项式乘以单项式的算理,会进行简单的运算.2.经历探索单项式乘以单项式的过程,体会从特殊到一般、从具体到抽象的认识过程和转化思想.3.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.学习重点单项式与单项式相乘的运算法则及其应用.学习难点灵活地进行单项式与单项式相乘的运算.课时活动设计回顾引入教师讲述:同学们,在七年级我们学习了整式加减的运算方法,今天我们继续学习整式的乘法.整式包含单项式和多项式,什么是单项式?出示课件展示:回答问题-2xy的系数是-2,次数是2.设计意图:通过回顾单项式的概念,指出单项式的系数和次数,为学习单项式乘以单项式做好知识储备.探究新知问题1:光的速度约为每秒3×105千米,太阳光照射到地球上需要的时间约是5×102秒,求地球与太阳的距离约是多少千米?如何列式?学生独立思考列出算式:(3×105)×(5×102)km.追问1:怎样计算(3×105)×(5×102)呢?计算过程中运用哪些运算律和运算性质?师生活动:学生计算结束后,教师黑板书写计算过程:(3×105)×(5×102)=(3×5)×105+2=15×107=1.5×108 km教师引导学生发现计算过程中运用了乘法交换律、结合律及同底数幂的运算性质.追问2:将上式中的数字改为字母ac5·bc2,类比上面的运算方法计算这个式子.学生独立计算,选一名学生在黑板上书写计算过程:ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7.追问3:这是什么运算?如何进行运算?教师引导学生试着用文字概括这个性质:这是单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:教师引导学生观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式.在此基础上,教师引导归纳,最后得出单项式乘单项式法则.让学生在自主探究中掌握解决这类问题的一般方法,体会了从特殊到一般的认识规律.通过小组交流讨论归纳法则,培养学生的归纳总结能力.典例精讲例1 计算:(1)(-5a 2b )(-3a ); (2)(2x )3(-5xy 2).解:(1)原式=[(-5)×(-3)](a 2·a )b =15a 3b.(2)原式=8x 3·(-5xy 2)=[8×(-5)](x 3·x )y 2=-40x 4y 2.例2 计算:(1)-2a 3bc ·(-ab 2)·(-ab 2)2;(2) -9x 2y ·(a -b )3·13xy 2·(b -a )2. 解:(1)原式=-2a 3bc ·(-ab 2)·a 2b 4=2a 6b 7c.(2)原式=-9x 2y ·13xy 2·(a -b )3·(a -b )2=-3x 3y 3(a -b )5. 设计意图:本着循序渐进原则逐步增加运算类型,由单一到综合.通过练习使学生在实际应用中掌握法则及三点注意.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.计算3a 2·2a 3的结果是( B )A.5a 5B.6a 5C.5a 6D.6a 62.若(a m b n )·(a 2b )=a 5b 3,则m +n =( D )A.8B.7C.6D.53.已知-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解:∵-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,∴{2n -3-m =1,3m +1+n -6=4.解得{n =3,m =2.∴m 2+n =7.设计意图:进一步巩固所学新知,同时检测学习效果,及时查漏补缺.课堂小结今天我们学了哪些内容?单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:通过课堂小结,对本节课内容进行梳理,加深学生对本节课所学内容的理解和掌握,为接下来的学习打好基础.课堂8分钟.1.教材第104页习题14.1第3题.2.作业.教学反思第2课时单项式与多项式相乘课时目标1.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.2.经历探索单项式与多项式相乘的运算过程,体会分配律的作用和转化思想,感受运算法则和相应的几何模型之间的联系,发展数形结合的思想.3.让学生逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的能力.学习重点单项式与多项式相乘的法则.学习难点整式乘法法则的推导与应用.课时活动设计复习回顾计算.(1)(-2ac)2(-3ab2c);(2)(-12)×(12-23+16).解:(1)-12a3b2c3.(2)0.设计意图:学生独立完成两个计算题.第一题复习了单项式乘以单项式,第二题复习了乘法分配律.这两个知识点是研究单项式乘多项式的基础,为这节课的学习做了知识准备.探究新知问题:为了扩大绿地的面积,要把街心花园的一块长p米,宽b米的长方形绿地,向两边分别加宽a米和c米,你能用几种方法表示扩大后的绿地的面积?分四人小组,与同伴交流,寻求不同的表示方法.教师根据学生讨论情况适时点拨启发.在同学讨论的基础上,分小组展示不同方法.教师记录并总结:1.把它看成三个小长方形,扩大后绿地的面积为pa+pb+pc.2.把它看成一个大长方形,则面积为p(a+b+c).追问1:p (a +b +c )和pa +pb +pc 之间有着怎样的关系?为什么?学生观察可知p (a +b +c )=pa +pb +pc ,因为它们都表示的是同一个量:扩大后长方形绿地的面积.追问2:你能用乘法分配律证明这个等式吗?学生回答:由乘法分配律的公式推出结论p (a +b +c )=pa +pb +pc.追问3:观察等式左边是什么与什么相乘?学生回答:单项式和多项式.追问4:你能总结单项式与多项式相乘的法则吗?教师引导学生在不同代数式的呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.教师鼓励学生用自己的语言概括单项式乘以多项式的法则.设计意图:用几何图形的面积验证了两个整式相等,发展了学生的几何直观.类比前面的知识,还可以通过代数方法验证,即乘法分配律来验证.两种方法是学习本章知识的主要方法,体现了数形结合思想.在解决问题过程中,学生观察、总结规律,探究法则,总结出单项式乘以多项式的法则,培养学生的概括能力和语言的严谨性.典例精讲例1 计算:(1)(-4x 2)(3x +1); (2)(23ab 2-2ab)·12ab. 解:(1)原式=(-4x 2)·(3x )+(-4x 2)×1=(-4×3)(x 2·x )+(-4x 2)=-12x 3-4x 2.(2)原式=23ab 2·12ab +(-2ab )·12ab =13a 2b 3-a 2b 2. 教师点拨:在计算过程中要注意符号,多项式的每一项都包含前面的符号.用单项式去乘多项式的每一项,结果是一个多项式,项数与因式中多项式的项数相同.例2先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×(-2)2+9×(-2)=-20×4-9×2=-98.教师点拨:在整式乘法的混合运算中,要注意运算顺序.按运算法则进行化简,然后代入求值,特别注意的是代入“负数”要用括号括起来.例3如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.解:(-3x)2(x2-2nx+2)=9x2(x2-2nx+2)=9x4-18nx3+18x2∵展开式中不含x3项,∴n=0.教师总结点拨:注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.设计意图:通过例题的讲解,巩固单项式乘以多项式的运算法则.适当增加题目类型,拓展学生思维,培养学生对所学知识的综合应用能力.巩固训练1.如果(x+a)x-2(x+a)的结果中不含x项,那么a的值为(A)A.2B.-2C.0.5D.-0.52.计算:(1)4(a-b+1)=4a-4b+4;(2)3x(2x-y2)=6x2-3xy2;(3)(2x-5y+6z)(-3x)=-6x2+15xy-18xz;(4)(-2a2)2(-a-2b+c)=-4a5-8a4b+4a4c.设计意图:进一步巩固所学新知,同时检测学生的学习成果.课堂小结1.单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,实质上是转化为单项式与单项式相乘.3.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点,进一步巩固强化.课堂8分钟.1.教材第105页习题14.1第4题.2.作业.教学反思第3课时多项式与多项式相乘课时目标1.理解多项式乘以多项式的运算法则,能够按多项式乘法法则进行简单的计算,发展运算、推理能力和应用意识.2.经历探索多项式乘法法则的过程,用数学的思维体会乘法分配律的作用与转化思想,体会数形结合思想.3.应用多项式与多项式相乘的法则解决实际问题,发展应用意识.学习重点多项式乘法法则的理解及运用.学习难点探索多项式乘法的法则,注意多项式的乘法运算中“漏项”“符号”的问题.课时活动设计回顾引入请口算下列练习中的(1)、(2):(1)3x(x+y)=3x2+3xy.(2)(a+c)c=ac+bc.(3)(a+n)(m+b)=am+nm+ab+nb.比较(3)与(1)、(2)在形式上有何不同?设计意图:学生口算(1)、(2),复习了单项式乘多项式.通过与(3)式比较发现式子形式不同,引导学生从对单项式乘多项式的认识过渡到对多项式乘多项式的认识,从而激发学生对学习新知识的欲望.探究新知拿出准备好的硬纸板,画出如图所示的图形,并标上字母.要求学生根据图中的数据,求一下这个长方形的面积.与同伴交流,表示出它的面积为(m+b)(n+a).问题1:请同学们将纸板上的长方形沿中间的竖线剪开,分成两部分,如图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.学生分成小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).组织学生继续沿着横的线段剪开,将图形分成四部分,如图,求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.追问:依据上面的操作求得的图形面积,那么(m+b)(n+a)应该等于什么?解:(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.学生分成小组讨论交流自己的看法.学生能够发现,因为以上三次计算是按照不同的方法对同一个长方形的面积进行的计算,那么,每次的计算结果应该是相同的,所以(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.问题2:你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?师生共同归纳:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.字母呈现:.设计意图:让学生用几何图形探究代数公式,体现数形结合思想;利用环环相扣的问题,为学生设置了思考与探索空间;通过归纳多项式乘多项式的法则,培养了学生归纳、概括的能力,让学生体会转化、类比和整体的数学思想.典例精讲例1计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).解:(1)原式=3x·x+2·3x+1·x+1×2=3x2+6x+x+2=3x2+7x+2.(2)原式=x·x-xy-8xy+8y2=x2-9xy+8y2.(3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.例2已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a,b的值.解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2=3ax3+(-2a+3b)x2+(-2b+3)x-2.∵积不含x2的项,也不含x的项,∴{-2a +3b =0,-2b +3=0.∴{a =94,b =32.设计意图:通过例题的讲解,巩固多项式乘以多项式的运算法则,使教材呈现的知识慢慢内化为学生的认知结构,加深对知识的理解和掌握.巩固训练1.计算(x -1)(x -2)的结果为( D )A.x 2+3x -2B.x 2-3x -2C.x 2+3x +2D.x 2-3x +2 2.计算:(1)(x -3y )(x +7y ); (2)(2x +5y )(3x -2y ). 解:(1)原式=x 2-3xy +7xy -21y 2=x 2+4xy -21y 2. (2)原式=6x 2+15xy -4xy -10y 2=6x 2+11xy -10y 2.3.化简求值:(4x +3y )(4x -3y )+(2x +y )(3x -5y ),其中x =1,y =-2. 解:原式=16x 2-12xy +12xy -9y 2+6x 2-10xy +3xy -5y 2=22x 2-7xy -14y 2. 把x =1,y =-2代入,得22×12-7×1×(-2)-14×(-2)2=-20.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?1.多项式与多项式相乘法则:多项式与多项式相乘,先用 一个多项式的每一项乘另一个多项式的每一项 ,再把所得的 积相加 .2.(a +b )(m +n )= am +an +bm +bn .3.多项式与多项式相乘,实际上是转化为 单项式与多项式相乘 的运算. 设计意图:以填空的形式回顾本节课所学知识,加深学生对本节课所学知识的理解和掌握.课堂8分钟.1.教材第105页习题14.1第5题.2.作业.教学反思第4课时同底数幂的除法课时目标1.经历探索同底数幂除法公式的推导过程,发展学生的推理能力和表达能力.2.进一步体会幂的意义,理解零指数幂.3.理解同底数幂的除法运算性质,能解决实际问题,培养学生的应用意识.学习重点同底数幂的除法运算法则及其应用.学习难点探索同底数幂的除法法则的过程.课时活动设计回顾引入回顾同底数幂的乘法、幂的乘方、积的乘方公式内容及推导套路,引出课题,并让学生小组合作探究结果,教师适时适当点拨.如何解决两个整式相除的问题?方法一:除法意义或除法与分数的关系;方法二:乘除互逆.设计意图:让学生有迹可寻,运用套路,体会数学公式学习的一般方法步骤.一个问题既可自然引出课题,又可继续探索公式推导的方法.探究新知问题1:我们如何计算a m÷a n(a≠0,m,n都是正整数,并且m>n)?学生小组讨论,教师引导学生运用乘法的逆运算解决问题.根据除法是乘法的逆运算,计算被除数除以除数所得的商,也就是求一个数,使它与除数的积等于被除数.学生完成后,教师在黑板上写出解题过程:∵a m-n·a n=a(m-n)+n=a m,∴a m÷a n=a m-n.师生活动:教师引导学生试着用文字概括这个性质.同底数幂相除,底数不变,指数相减.问题2:底数a可以是什么样的数,不能是什么样的数?根据多位学生的回答,教师总结得出结论:同底数幂相除的运算中,相同底数可以是不为0的数字或字母,也可以是单项式、多项式.问题3:根据除法的意义和问题1的内容,探讨a0=?师生共同解答,并总结:同底数幂相除,如果被除式的指数等于除式的指数,例如a m÷a m,根据除法的意义可知所得的商为1.另一方面,如果按照同底数幂的除法来计算,又有a m÷a m=a m-m=a0.于是规定a0=1(a≠0).任何不等于0的数的0次幂都等于1.设计意图:从学生已有的知识和经验出发,引导学生探索发现同底数幂的除法的运算规律,遵循循序渐进的认知规律.通过学生小组讨论,根据以往学习的经验,自主学习新知识,培养探究能力.典例精讲 例 计算:(1)x 8÷x 2; (2)(ab )5÷(ab )2. 解:(1)原式=x 8-2=x 6. (2)原式=(ab )5-2=(ab )3=a 3b 3.设计意图:通过练习使学生掌握同底数幂相除的运算法则.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.下列运算正确的是( D )A.(-a )6÷a 2=a 3B.(-a )3÷(-a )2=aC.a 8÷a 2=a 4D.(-a )2÷a 2=1 2.计算:(1)(mn )7÷(mn )5; (2)(12)3÷(12). 解:(1)原式=(mn )7-5=(mn )2. (2)原式=(12)3−1=(12)2=14.设计意图:通过设置巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结通过这节课的学习,你有哪些收获? 1.同底数幂相除,底数不变,指数相减. 2.任何不等于0的数的0次幂都等于1.设计意图:小结新课内容,及时梳理,使学生对前后的知识有所串联,让新知识与旧知识得到同化,并且内化成自身的数学体系,提高学生的数学素质.课堂8分钟.。

14.1.4 整式的乘法(第2课时)说课稿2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)说课稿2022-2023学年人教版八年级数学上册

14.1.4 整式的乘法(第2课时)说课稿一、教材分析本节课是《2022-2023学年人教版八年级数学上册》中第14章第1节的第4个课时,主要讲解整式的乘法。

本节课的教学内容包括整式的基本概念、整式的乘法法则、多项式的乘法等。

通过本节课的学习,学生将进一步巩固整式的概念和性质,掌握整式的乘法法则,培养学生解决实际问题的能力。

二、教学目标1.知识与技能:•掌握整式的基本概念及其表示方法;•理解整式的乘法法则;•掌握多项式的乘法运算。

2.过程与方法:•运用归纳法整理策略,提高整理信息的能力;•运用数学语言表达数学概念和数学推理,培养数学思维能力。

3.情感态度价值观:•培养学生对数学知识的兴趣和探究欲望;•培养学生的合作意识和共享精神。

三、教学重点•整式的乘法法则;•多项式的乘法运算。

四、教学难点•多项式的乘法运算。

五、教学过程本节课的教学过程分为四个环节:导入新课、讲解新知、练习巩固、课堂小结。

环节一:导入新课通过提问的方式引导学生回顾上节课所学内容,复习整式的基本概念和性质。

例如,让学生回答以下问题:1.什么是整式?它有哪些基本组成部分?2.你能用自己的话解释一下整式的加法和减法运算法则吗?环节二:讲解新知在导入环节复习之后,引入本节课的新知:整式的乘法法则。

首先,提供一个具体的例子让学生观察和思考,例如:已知:(3x + 4)(2x - 5)请你计算乘积(3x + 4)(2x - 5)的结果。

通过学生的思考,引导他们观察并总结出整式的乘法法则,例如:整式的乘法法则:将每个被乘数的每一项依次与乘数的每一项相乘,然后将各项的乘积相加即可。

接下来,通过几个具体的例子向学生展示整式的乘法运算步骤,并注重解释每一步的原理和获得结果的意义。

同时,可以引导学生发现和讨论与整数有关的乘法特殊法则,例如相同项乘积的规律等。

环节三:练习巩固在讲解新知环节结束后,安排一些练习题,以巩固学生对整式的乘法法则的理解和运用能力。

《整式的乘法》教案

《整式的乘法》教案

14.1整式的乘法(第4课时)14.1.4 整式的乘法(第2课时)一、教案目标(一)学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.2.理解多项式与多项式相乘的法则,并会用法则进行简单的计算;经历探索多项式与多项式相乘的法则的过程,培养学生观察、归纳、有条理的思考及语言表达等的能力,渗透转化、整体、数形结合等数学思想.3.灵活运用多项式乘多项式的运算法则进行计算.(二)学习重点多项式与多项式相乘的法则的理解及其运用.(三)学习难点探索多项式与多项式相乘的法则,灵活地进行整式的乘法运算.二、教案设计(一)课前设计1.预习任务多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.预习自测(1)计算:(2)(3)x x ++【知识点】多项式与多项式相乘的法则.【数学思想】【解题过程】解:(2)(3)x x ++2322356x x x x x x =+++⨯=++【思路点拨】利用多项式与多项式相乘的法则计算.【答案】 652++x x .(2)计算:2)1(-a【知识点】多项式与多项式相乘的法则.【数学思想】转化思想【解题过程】解:2)1(-a22(1)(1)121a a a a a a a =--=--+=-+【思路点拨】先将乘方运算转化为多项式与多项式相乘的运算,再利用多项式与多项式相乘的法则计算.【答案】 122+-a a .(二)课堂设计1.知识回顾(1)单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.问题探究探究一:回顾旧知,创设情境,引入新课●活动① 回顾旧知,回忆乘法交换律,乘法结合律,乘法分配律乘法交换律:a b b a =乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,引出课题问题1:“人人参与,全民健身”,为了适应锻炼人群的需求,市政府决定把原来长为a M,宽为p M 的长方形运动场增长b M,加宽q M.你能用几种方法求出扩大后的运动场面积?学生先独立思考,再小组讨论,可以得出以下四种方法:方法一:(合成一个整体看)()()a b p q ++.方法二:(看作两个长方形之和)()()a p q b p q +++或()()p a b q a b +++.方法三:(分成四个部分看)ap aq bp bq +++.所以,就可以得到:()()()()a b p q a p q b p q ap aq bp bq ++=+++=+++或者()()()()a b p q p a b q a b ap bp aq bq ++=+++=+++.问题2:观察方法一,这是一个多项式与多项式相乘的式子,怎样进行多项式与多项式的乘法运算呢?多项式与多项式的乘法运算能否转化成前面学习的单项式与多项式的乘法运算呢?带着这些问题来学习今天的新课!【设计意图】用熟悉的话题引入课题,调动学生学习积极性.多种方法求面积培养学生的发散思维,也从形的角度让学生感知多项式与多项式相乘的运算.●活动① 大胆猜想,探究多项式与多项式相乘的法则.问题1:你能试着说说()()()()a b p q a p q b p q ++=+++是怎么计算来的吗?问题2:你能说说()()a p q b p q ap aq bp bq +++=+++计算的依据吗?学生小组讨论师生共同得出:()()a b p q ++可以把p q +看成一个整体,利用乘法分配律把多项式与多项式相乘的问题转化成了单项式与多项式相乘的的问题,再利用单项式与多项式的相乘法则得到()()()()a b p q a p q b p q ++=+++,进而继续用单项式与多项式相乘法则得到()()a p q b p q ap aq bp bq +++=+++.师:最后就可以得到:()()a b p q ap aq bp bq ++=+++.学生在回答了两个问题后,也可以让学生根据前面获得的经验继续说说)()())((b a q b a p q p b a +++=++和bp ap bq aq b a q b a p +++=+++)()(是怎么计算得到的.【设计意图】从数的角度引导学生对()()a b p q ap aq bp bq ++=+++的理解,培养了学生的观察、有条理的思考和语言表达能力,也渗透了转化、整体、数形结合的思想.●活动② 集思广益,归纳多项式与多项式相乘的法则.问题1:观察式子()()a b p q ap aq bp bq ++=+++,左边是多项式与多项式的乘法,怎么得到右边的几个单项式之和呢?问题2:你能用语言叙述多项式与多项式相乘的法则吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,师完善,得出结论:多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.追问:你能用字母表示这个法则吗?学生能很快回答:()()a b p q ap aq bp bq ++=+++.【设计意图】由前面形和数两个角度的理解,再让学生用文字语言叙述多项式与多项式相乘的法则,及字母表示法则,培养学生的观察,独立思考,归纳能力和小组合作意识.探究三 运用新知,典例精析●活动① 基础性例题例1计算:(1)(31)(2)x x ++; (2)(8)()x y x y --;(3)22()()x y x xy y +-+.【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(1)(31)(2)x x ++22362372x x x x x =+++=++(2)(8)()x y x y --22228898x xy xy y x xy y =--+=-+(3)22()()x y x xy y +-+ 32222333x x y xy x y xy y x y =-++-+=+【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:(1)不要漏项,两个多项式相乘,在没有合并之前的项数应该是两个多项式项数的积,最后才合并同类项;(2)每项符号的确定.【答案】(1)2372x x ++;(2)2298x xy y -+;(3)33x y +练习:(1)(21)(3)x x ++;(2)(2)(3)m n n m +-;(3)22()()a b a ab b -++.【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(1)(21)(3)x x ++22263273x x x x x =+++=++(2)(2)(3)m n n m +-22223626mn m n mnn m mn =-+-=-+(3)22()()a b a ab b -++32222333a a b ab a b ab b a b =++---=-【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:不要漏项和每项符号的确定.【答案】(1)2273x x ++;(2)226n m mn -+;(3)33a b -.【设计意图】巩固多项式与多项式相乘的法则,特别是第3题的类型是两项与三项相乘,要注意每一项都要和每一项相乘,不要漏项,也要注意每项的符号确定.●活动2 提升型例题例2化简求值:(2)(23)(1)x x x x +-+-,其中12x =- 【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(2)(23)(1)x x x x +-+-222222(2233)222333x x x x x x x x x x x x =+--+-=+-+-+=-++ 当12x =-时,221193()3224x x -++=---+= 【思路点拨】先利用多项式与多项式相乘的法则化简,再将12x =-代入式子求解. 【答案】94练习: 化简求值:222(2)(32)(25)3()a a a a a b a ab +-+-+-,其中1a =-,12b =-. 【知识点】多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则.【数学思想】【解题过程】解:222(2)(32)(25)3.()a a a a a b a ab +-+-+-22323232643225362a a a a a b a b a a b =-+-+-+=--当1a =-,12b =-时,3232115626(1)2(1)()22a ab --=-----= 【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则计算,再将1a =-,12b =-代入式子求解,注意计算过程中各项符号的确定,及不要漏项.【答案】152例3 解下列不等式:2(32)(24)9(1)(3)3x x x x x +-≥-+-【知识点】多项式与多项式相乘的法则,解不等式的方法【数学思想】【解题过程】解:2(32)(24)9(1)(3)3x x x x x +-≥-+-22222222612489(33)36889182736886182726191926x x x x x x x x x x x x x x x x x x -+-≥+-----≥+----≥+--≥-≤【思路点拨】利用多项式与多项式相乘的法则左右两边化简,再利用解不等式的方法求不等式的解集,化简求解过程中注意:不要漏项和每项符号的确定,及移项变号. 【答案】1926x ≤ 练习 解下列方程:2(2)(3)2(5)(6)3(715)x x x x x x -+++-=-+【知识点】多项式与多项式相乘,单项式与多项式相乘的法则,解方程的方法.【数学思想】【解题过程】解:2(2)(3)2(5)(6)3(715)x x x x x x -+++-=-+222222222223262(6530)3214562(30)321456226032145366321452011111120x x x x x x x x x x x x x x x x x x x x x x x x x x +--+-+-=-++-+--=-++-+--=-+--=-+==【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘的法则计算,再利用解方程的方法求方程的解,计算过程中注意:不要漏项,每项符号的确定,解方程过程中移项要变号. 【答案】11120x = 【设计意图】在化简求值和解方程及解不等式的计算中,巩固多项式与多项式相乘的法则.●活动3(探究型例题)例4 某零件如图所示(上、下宽度相同,左、右宽度相同),(1)求图中空白部分面积;(2)求图中阴影部分的面积.【知识点】多项式与多项式相乘的法则【数学思想】数形结合思想【解题过程】解:(1)(22)(22)22b a a b a b +-+- 22(2)(2)()()2a b b a b a a b a b a ab b =+-+-=++=++ (2)22(2)(2)(2)a b a b a ab b ++-++22222224223a ab ab b a ab b a ab b =+++---=++【思路点拨】根据图形提示,表示出各边的长,再求各部分面积.【答案】(1)222a ab b ++;(2)223a ab b ++练习 一块长x M ,宽y M 的玻璃,长宽各裁掉m M 后恰好能覆盖一张办公桌的台面(玻璃与台面一样大小),求台面面积是多少?【知识点】多项式与多项式相乘的法则【数学思想】数形结合思想【解题过程】2()()x m y m xy mx my m --=--+【思路点拨】将长和宽分别减去m M ,得到的图形仍然是长方形,利用多项式与多项式相乘的法则计算求得面积.【答案】2xy mx my m --+【设计意图】通过求面积的计算来巩固多项式与多项式相乘的法则,同时渗透数形结合思想.3. 课堂总结知识梳理(1)多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)计算时要注意:(1)不要漏项;(2)注意每一项的符号的确定.重难点归纳(1)多项式与多项式相乘的法则的理解,三个法则的灵活运用;(2)学习和运用法则过程中,渗透了转化、整体、数形结合等数学思想.(三)课后作业基础型 自主突破1.计算(2)(3)x x +-的结果是( )A .26x -B .26x -C .26x x --D .26x x +-【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(2)(3)3266x x x x x x x +-=-+-=--【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项符号的确定【答案】C .2.下列各式中,计算正确的是( )A .2(2)(2)44x x x x -+=--B .22(3)69x x x -=-+C .2(23)(3)29x x x +-=-D .2(32)(31)932x x x x --=+-【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】222(3)(3)(3)33969x x x x x x x x -=--=--+=-+【思路点拨】利用多项式与多项式相乘的法则计算每个选项,注意不要漏项和各项符号的确定【答案】B .3.下列计算结果为223x x --( )A .(21)(3)x x -+B .(23)(1)x x +-C .(23)(1)x x -+D .(21)(3)x x --【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(23)(1)223323x x x x x x x -+=+--=--【思路点拨】利用多项式与多项式相乘的法则计算每个选项,最后确定【答案】C .4.关于x 的一次二项式的积(7)()x x m +-中常数项为21,则m 的值为( )A .3-B .7-C .3D .7【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(7)()77(7)77213x x m x mx x m x m x mm m +-=-+-=----==-【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定【答案】A .5.若4a b +=,3ab =,则代数式(1)(1)a b --的值为( )A .1B .7-C .0D .7【知识点】多项式与多项式相乘的法则【数学思想】整体代换思想【解题过程】(1)(1)1()13410a b ab a b ab a b --=--+=-++=-+=【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定,把4a b +=,3ab =分别当作整体代入原式,从而求解.【答案】C .6.一个长方形的长为m ,宽为n ,把长减少1,宽增加2,则面积增加( )A .2mn m n +-B .22m n --C .22m n -+D .22m n +-【知识点】多项式与多项式相乘的法则,合并同类项法则【数学思想】数形结合思想【解题过程】(1)(2)2222m n mnmn m n mn m n -+-=+---=--【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定【答案】B .能力型 师生共研7.化简求值:22(2)(23)(1)y y y y y y -++---,其中1y =-【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】【解题过程】22(2)(23)(1)y y y y y y -++---322322232466y y y y y y y yy =++----++=-当1y =-时,26165y -=-=- 【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.【答案】5-.8.解方程:2(23)(1)(2)(3)6x x x x x +--+-=+.【知识点】多项式与多项式相乘的法则,合并同类项法则,解方程的方法.【数学思想】【解题过程】2(23)(1)(2)(3)6x x x x x +--+-=+2222222222233(326)623(6)62366023032x x x x x x x x x x x x x x x x x x x -+---+-=++----=++--++--=-==【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定,注意移项变号. 【答案】32x =.探究型 多维突破9.如果22(2)(3)x bx x x c ++-+的乘积中不含2x 和3x 的项,求b 和c 的值.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】方程思想【解题过程】22(2)(3)x bx x x c ++-+43232243233262(3)(32)(6)2x x cx bx bx bcx x x cx b x c b x bc x c =-++-++-+=+-++-++-+因为乘积中不含2x 和3x 的项,所以30320b c b -+=⎧⎨-+=⎩,解得:37b c =⎧⎨=⎩ 【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.【答案】37b c =⎧⎨=⎩. 10.有一种打印纸长为xcm ,宽为ycm ,在打印(纵向)某文档设置边距时,上,下均设置为2.5cm ,左右均设置为2.6cm ,那么一张这样的打印纸的实际打印面积是多少?【知识点】多项式与多项式相乘的法则,合并同类项法则【数学思想】数形结合思想【解题过程】根据题意得:【思路点拨】弄清题意,利用多项式与多项式相乘的法则计算,从而求出面积.【答案】自助餐1.若2(2)(3)x x x mx n +-=++,则m n +的值为( )2(2 2.5)(2 2.6)(5)( 5.2)5.252626526()5x y x y xy x y xy x y cm -⨯-⨯=--=--+=--+226526()5xy x y cm --+A .5B .7-C .1-D .7【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】对应思想【解题过程】22(2)(3)3266x x x x x x x +-=-+-=--又因为2(2)(3)x x x mx n +-=++,所以226x mx n x x ++=--即1m =-,6n =-,所以7m n +=-【思路点拨】利用多项式与多项式相乘的法则计算【答案】B .2.下列结算个结果正确的是( )A .2(2)(3)6x x x x -+=+-B .2(3)(2)5x x x x -+=+-C .2(3)(2)66x x x x ++=++D .2(2)(3)56x x x x --=--【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】【解题过程】22(2)(3)3266x x x x x x x -+=+--=+-.【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.【答案】A .3.用如图所示的A 类、B 类、C 类卡片若干张,拼成一个长为32a b +,宽为4a b +的矩形,则分别需要A 类卡片_______张,B 类卡片_________张,C 类卡片_______张.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】数形结合思想,对应思想【解题过程】2222(32)(4)312283148a b a b a ab ab b a ab b ++=+++=++又因为2A S a =,B S ab =,2C S c =所以2231483148A B C a ab b S S S ++=++,即需要A 类卡片3张, B 类卡片14张,C 类卡片8张.【思路点拨】利用多项式与多项式相乘的法则计算,根据各类卡片的面积确定各类卡片的张数.【答案】A 类卡片3张,B 类卡片14张,C 类卡片8张.4.若232(1)()61116x x mx n x x x -++=--+,则_____m =,_____n =.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】对应思想,方程思想.【解题过程】232232(1)()(1)()x x mx n x mx nx x mx n x m x n m x n-++=++---=+-+--又因为232(1)()61116x x mx n x x x -++=--+, 所以3232(1)()61116x m x n m x n x x x +-+--=--+ 即1616m n -=-⎧⎨-=⎩,得516m n =-⎧⎨=-⎩【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.【答案】5m =,16n =-.5.已知223m m -=,将下式化简,再求值.2(1)(3)(3)(3)(1)m m m m m -++-+--【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】整体代换思想【解题过程】22222(1)(3)(3)(3)(1)21943365m m m m m m m m m m m m -++-+--=-++-+-+=-- 又因为223m m -=,所以223653(2)53354m m m m --=--=⨯-= 【思路点拨】利用多项式与多项式相乘的法则计算,把22m m -看作一个整体,再用整体代换思想代入从而求解.【答案】4.6.甲、乙二人共同计算一道整式乘法:()(2)x m x n +-,由于甲抄错了第一个多项式中的m 的符号,得到的结果为22918x x +-。

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案

人教版八年级数学上册14.1整式的乘法(多项式乘以多项式)教案
3.培养学生的空间想象与抽象能力:引导学生将实际问题抽象为多项式乘法模型,并能运用所学知识解决实际问题,提高学生的数学建模能力。
4.培养学生的合作交流能力:在小组讨论与合作学习中,培养学生与人沟通、协作解决问题的能力,增强团队意识。
本章节核心素养目标紧密围绕新教材要求,注重培养学生的逻辑思维、运算能力、空间想象与抽象能力以及合作交流能力,为学生未来的数学学习和全面发展奠定基础。
(2)强调分配律的重要性,如(a+b) * c = a*c + b*c,确保学生能够将这个原理应用到多项式乘法中。
(3)通过实际例题,如计算(x^2 + 3x + 2) * (x + 1),让学生掌握如何从简单的乘法步骤过渡到复杂的整式乘法运算。
2.教学难点
-核心难点:多项式乘法中的项与项之间的正确配对与合并。
-难点内容:
-理解和掌握如何将一个多项式的每一项分别与另一个多项式的每一项相乘。
-在多项式乘法过程中,避免漏乘或重复计算。
-处理含有多项式的乘法中的符号问题。
举例解释:
(1)难点在于如何指导学生将多项式(a+b+c)与(d+e)相乘时,正确配对每一项,即a*d, a*e, b*d, b*e, c*d, c*e,并确保所有可能的组合都被考虑到。
首先,同学们在理解多项式乘法法则时,普遍存在对分配律掌握不够熟练的现象。在讲解例题时,我尽量通过生动的语言和实际操作,让学生明白每一项是如何相乘的,但仍有部分同学在具体操作时出现错误。针对这一点,我考虑在下一节课开始前,增加一些关于分配律的小练习,帮助同学们巩固这一概念。
其次,在教学难点部分,如何正确配对和合并多项式的项,对同学们来说是一个挑战。在小组讨论和实验操作中,我发现有的同学在处理具体问题时,容易漏掉某些项或者重复计算。为了帮助同学们克服这一困难,我尝试通过举例和对比分析,引导他们找出规律。在今后的教学中,我会继续关注这部分内容,采用更多形式的教学方法,让同学们更好地掌握这个难点。

八年级数学上册 14.1 整式的乘法 14.1.3 积的乘方教学设计 (新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.3 积的乘方教学设计 (新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.3 积的乘方教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第14.1节讲述了整式的乘法,其中14.1.3节着重介绍了积的乘方。

这一节的内容是学生在学习了整式的乘法、幂的乘方和积的乘方的基础上进行的,是进一步深化学生对乘法运算规则的理解和应用。

通过这一节的学习,学生应该能够熟练掌握积的乘方的运算规则,并能将其应用于解决实际问题。

二. 学情分析学生在八年级时已经学习了整式的乘法和幂的乘方,对于乘法运算规则有一定的理解。

但是,对于积的乘方的运算规则,可能还存在一些理解和应用上的困难。

因此,在教学过程中,需要针对学生的实际情况进行讲解,通过例题和练习,帮助学生理解和掌握积的乘方的运算规则。

三. 教学目标1.理解积的乘方的运算规则。

2.能够运用积的乘方的运算规则解决实际问题。

3.提高学生的运算能力和逻辑思维能力。

四. 教学重难点1.积的乘方的运算规则。

2.如何将积的乘方的运算规则应用于解决实际问题。

五. 教学方法采用讲解法、例题法和练习法进行教学。

通过讲解,让学生理解积的乘方的运算规则;通过例题,让学生掌握积的乘方的运算规则的应用;通过练习,让学生巩固和提高积的乘方的运算能力。

六. 教学准备1.教材和教学参考书。

2.投影仪和幻灯片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过复习整式的乘法和幂的乘方,引出积的乘方的运算规则。

2.呈现(15分钟)讲解积的乘方的运算规则,并通过幻灯片展示相关的例子。

3.操练(10分钟)让学生通过练习题,运用积的乘方的运算规则进行计算。

4.巩固(10分钟)通过练习题,巩固学生对积的乘方的运算规则的理解和应用。

5.拓展(10分钟)让学生尝试解决一些实际问题,运用积的乘方的运算规则进行计算。

6.小结(5分钟)对本节课的内容进行小结,强调积的乘方的运算规则的重要性和应用。

7.家庭作业(5分钟)布置相关的练习题,让学生在家里进行复习和巩固。

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《14.1.4整式的乘法》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《整式的乘法》教学设计方案(第一课时)一、教学目标本课教学目标为:使学生理解整式乘法的概念及运算规则,能正确进行同类项合并及多项式乘法计算,通过实践操作掌握整式乘法的具体应用。

培养学生分析问题和解决问题的能力,激发学生对数学学习的兴趣和热情。

二、教学重难点教学重点:掌握整式乘法的基本法则,包括单项式乘单项式、单项式乘多项式等。

教学难点:理解整式乘法中同类项的合并过程,以及多项式乘法中如何灵活运用乘法分配律和乘法结合律。

三、教学准备课前准备:准备教材、教具(如白板、多媒体设备)、练习题以及课后作业。

教师需提前熟悉教材内容,准备好讲解用的示例和练习题,确保学生能够通过练习巩固所学知识。

同时,需确保教学环境安静舒适,为学生提供一个良好的学习氛围。

在上述教学准备基础上,教师应根据实际情况调整教学方法和策略,以适应不同学生的学习需求,提高教学效果。

四、教学过程:一、导课启思本环节将通过实际生活中的问题,引出整式乘法的概念和必要性。

教师可以利用具体的例子,如面积计算、速度与距离的关系等,让学生感受到整式乘法在现实生活中的广泛应用。

二、知识铺垫1. 复习旧知:回顾之前学过的单项式、多项式等概念,为整式的概念打下基础。

2. 引入新课:通过具体问题引出整式的概念,强调整式中各个项的乘积和相加关系。

三、新课讲解(一)整式的定义与分类1. 定义讲解:清晰、准确地阐述整式的定义,包括单项式和多项式等类型。

2. 实例展示:通过具体的数学表达式,让学生明确整式的形式。

3. 互动讨论:鼓励学生提出疑问,通过师生互动加深对整式定义的理解。

(二)整式的乘法法则1. 同类项的乘法:讲解同类项相乘的规则,强调乘法运算的顺序。

2. 分配律的应用:通过具体例子展示分配律在整式乘法中的应用,如(a+b)×c=a×c+b×c等。

3. 乘法的交换律和结合律:强调在整式乘法中交换律和结合律的重要性,并通过实例加以说明。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 整式的乘法第2课教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 整式的乘法第2课教案

第十四章整式的乘法与因式分解14.1.4整式的乘法第2课时一、教学目标【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】多项式与多项式相乘的法则的概括与运用.【教学难点】灵活运用法则进行计算和化简.五、课前准备教师:课件、直尺等。

学生:练习本、钢笔或圆珠笔。

六、教学过程(一)导入新课为了把校园建设成为花园式的学校,经研究决定将原有的长为a米,宽为b米的足球场向宿舍楼方向加长m米,向厕所方向加宽n米,扩建成为美化校园绿草地.你是学校的小主人,你能帮助学校计算出扩展后绿地的面积吗?(出示课件2)(二)探索新知1.师生互动,探究多项式乘以多项式的法则教师问1:请同学们完成下面的题目:计算:(1)-2x2·3xy2;(2)-2x(1-x);学生回答:(1)-2x2·3xy2=-6x3y2;(2)-2x(1-x)=-2x+2x2;教师问2:结合上题回忆单项式乘以单项式是什么?学生回答:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.教师问3:如何进行单项式与多项式乘法的运算?(出示课件4)学生回答:(1)将单项式分别乘以多项式的各项.(2)再把所得的积相加.教师问4:进行单项式与多项式乘法运算时,要注意什么?学生讨论后回答:(1)不能漏乘:即单项式要乘多项式的每一项.(2)去括号时注意符号的变化.教师问5:类比单项式与单项式或多项式的计算法则,思考计算:(a+b)(p+q).教师给出提示:把多项式看成单项式学生讨论后回答:将(a+b)看做一个字母或将(p+q)看做一个字母进行计算.解法一:将(a+b)看做一个字母计算得:(a+b)(p+q)=(a+b)p+(a+b)q=ap+bp+aq+bq解法二:将(p+q)看做一个字母计算得:(a+b)(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq教师问6:再次观察:以上运算过程,从形式上说,这是什么运算?学生回答:多项式乘以多项式的运算.教师问7:多项式乘以多项式是怎么进行计算的?学生回答:题中是用一个多项式去乘以另一个多项式来计算的。

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 积的乘方教案

2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解 积的乘方教案

第十四章整式的乘法与因式分解14.1整式的乘法14.1.3积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。

学生:直尺、计算器。

六、教学过程(一)导入新课若已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。

积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n=a m+n (m,n都是正整数).幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103)3km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab)(乘方的意义)=(aa)·(bb)(乘法交换律、结合律)=a2b2(同底数幂相乘的法则)同理:(ab)3=(ab)·(ab)·(ab)(乘方的意义)=(aaa)·(bbb)(乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n=?(出示课件9)学生猜想:(ab)n=a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算:(出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式=23a3=8a3;(2)原式=(–5)3b3=–125b3;(3)原式=x2(y2)2=x2y4;(4)原式=(–2)4(x3)4=16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2计算:(出示课件14)(1)–4xy2·(xy2)2·(–2x2)3;(2)(–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式=–4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12)=[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022×54044=(0.2)4044×54044=(0.2×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022×(25)2022=(0.04×25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是()A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)82024×0.1252023=________;(2)(-3)2023×(-13)2022________;(3)(0.04)2023×[(–5)2023]2=________.4.判断:(1)(ab2)3=ab6()(2)(3xy)3=9x3y3() (3)(–2a2)2=–4a4()(4)–(–ab2)2=a2b4() 5.计算:(1)(ab)8;(2)(2m)3;(3)(–xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(–3×103)3.6.计算:(1)2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3)·(–xy);(3)(–2x3)3·(x2)2.7.如果(a n•b m•b)3=a9b15,求m,n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5.解:(1)原式=a8b8;(2)原式=23·m3=8m3;(3)原式=(–x)5·y5=–x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(–3)3×(103)3=–27×109=–2.7×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7=2x9–27x9+25x9=0;(2)解:原式=9x2y4+4x2y4=13x2y4;(3)解:原式=–8x9·x4=–8x13.7.解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a3n•b3m•b3=a9b15,∴a3n•b3m+3=a9b15,∴3n=9,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。

14.1整式的乘法--积的乘方 初中八年级上册数学教案教学设计课后反思 人教版

14.1整式的乘法--积的乘方 初中八年级上册数学教案教学设计课后反思 人教版

教师姓名朱马哈力·库尔马西单位名称新源县第五中学填写时间2020.8.28学科数学年级/册八年级(上)教材版本人教版课题名称14.1整式的乘法--积的乘方难点名称积的乘方的运算性质的探索过程及其应用方法难点分析从知识角度分析为什么难掌握积的乘方的运算法则时不会熟练应用这一性质进行有关计算。

学生从数式通性的角度理解有困难。

从学生角度分析为什么难学生会推导出乘方的运算性质但在变成实际的数字的时候不知道怎么用法则来预算。

数式通性没有体会重要性难点教学方法以主动探索为基础,先引导发现,后讲评点拨。

鼓励学生运用独立思考、相互交流和总结归纳的学习方法真正掌握本节课的关键----熟练运用已学的幂的三个运算性质,深刻理解每种运算的意义,在综合运算中避免互相混淆。

教学环节教学过程导入1.积的乘方是指底数是几个因式的积的乘方.式子(2×3)2 的底数是 2 与 3 积;式子 (x2y3)m的底数是 x2 与 y3 的积.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b) =a( )b( )(2)(ab)3=_______________ =___________ =a( )b( )知识讲解(难点突破)思考:积的乘方(ab)n =?解:(ab) n= (ab)· (ab)· ··· ·(ab) (乘方的意义)=(a·a· ··· ·a)·(b·b· ··· ·b) (乘法交换律、结合律)=anbn(同底数幂相乘的法则)即:(ab)n=anbn (n为正整数)积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.推广:三个或三个以上的积的乘方等于什么?(abc)n = anbncn (n为正整数)= = 81 a12b8c4。

14.1整式的乘法 复习课 教案2022-2023学年人教版八年级数学上册

14.1整式的乘法 复习课 教案2022-2023学年人教版八年级数学上册

14.1整式的乘法复习课教案一、教学目标1.理解整式的定义和特点;2.掌握整式的乘法法则;3.能够运用整式的乘法法则解决实际问题。

二、教学重点1.整式的定义和特点;2.整式的乘法法则。

三、教学难点1.运用整式的乘法法则解决实际问题。

四、教学方法1.讲授教学法:通过引入例题,讲解整式的定义和特点,并通过示例演示整式的乘法法则;2.提问互动法:通过提问学生,调动学生积极性,激发思考。

五、教学过程第一步引入1.引入整式的概念,提问学生对整式的理解;2.引入例题,解释整式的特点。

第二步整式的乘法法则1.学生通过例题,观察整式的乘法规律;2.通过示例演示,讲解整式的乘法法则。

第三步例题练习1.出示例题,让学生尝试解答;2.学生互相交流思路,共同解决问题;3.教师进行答疑解惑,指导学生正确解题方法。

第四步拓展应用1.出示实际问题,让学生应用整式的乘法法则解决;2.学生展示解题过程和答案,进行讨论。

第五步归纳总结1.教师对整式的定义、特点和乘法法则进行总结;2.学生复述、总结学习要点。

六、课堂练习请学生完成以下题目:1.计算(2x+3)(4x+5);2.计算(3a−2b)(7a+4b);3.某建筑公司共修建了3x2+5x+2和7x2+x+4两座建筑物,求这两座建筑物的总面积。

七、课后作业1.完成课堂练习中的题目;2.总结整式的乘法法则,写一篇总结性文章。

八、教学反思本堂课通过引入整式的概念和特点,结合例题演示,使学生掌握了整式的乘法法则。

通过例题练习和实际问题的应用,激发了学生的思维,提高了他们解决问题的能力。

同时,布置了相关的作业,让学生巩固所学内容。

整体而言,本节课教学效果良好,学生参与积极,思维能力得到一定的提高。

14.1整式的乘法教案

14.1整式的乘法教案

14.1整式的乘法第1课时同底数幂的乘法教学目标1.探索并理解同底数幂的乘法法则,并能运用其熟练地进行运算;2.运用同底数幂的乘法法则解决一些简单实际问题,体会数式通性的思想方法.教学重点同底数幂的乘法法则.教学难点正确理解与推导同底数幂的乘法法则.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标七年级的时候我们学习过整式的加减,a2+2a2同学们肯定会计算,因为它们是同类项,相同字母的指数相同,当指数不一样的时候还能计算吗?如a2+a3?如果我们把加法转化为乘法,a2·a3它能计算吗?它等于多少呢?要想解开这个疑惑的话就认真学习第十五章的第一节同底数幂的乘法,相信学完以后都能解开谜底了.二、自主学习,指向目标自学教材第95页至96 页,思考下列问题:1.回顾乘法与幂的相关知识:①a n的意义是n个a相乘,我们把这种运算叫做乘方,乘方的结果叫幂,a叫做底数,n是指数; 24=(2) ×(2)× (2)×(2);10×10×10×10×10=105②指出下列幂的底数和指数:(-a)2底数为-a,指数为2;a2底数为a,指数为2;(x-y)3底数为x-y,指数为3;_(y-x)n底数为y-x,指数为n;2. 同底数幂的乘法法则是同底数幂相乘,底数不变,指数相加,即:a m·a n=a(m+n)(m,n都是正整数).3. 同底数幂乘法法则推导的依据是乘方的意义.三、合作探究,达成目标探究点一探究同底数幂的乘法法则的推导活动一:阅读教材第95页,思考并完成下列问题:(1) 思考:乘方的意义是什么?(即a m表示什么?) (相同因数积的形式,即m 个a 相乘.)(2)根据乘方的意义填空,看看计算结果有什么规律: 23×22=[(2)×(2) ×(2)]×[(2)×(2) ]=2(5) a 3·a 2=[(a)×(a)×(a)]×[(a)×(a)]=a (5) 5m ×5n =(5×5×…×5),\s\do4((m)个))×(5×5×…×5),\s\do4((n)个5))=5(m +n) 展示点评:两个同底数幂相乘,根据乘方的意义怎么去理解?完成下列填空: 运算过程 依据 a m ·a n=(a×a×…×a ),\s\do4((m)个))(a×a×…×a ),\s\do4((n)个5)) (乘方的意义) =(a×a×…×a _,\s\do4((m +n)个)) (乘法的结合律) =a (m +n) (m ,n 都是正整数)(乘方的意义)归纳:同底数幂相乘,底数不变,指数相加. 小组讨论:乘方也是一种运算形式,它与乘法有何联系? 对于同底数幂的乘法的理解,关键是什么?【反思小结】乘方是乘法的特殊形式,是几个相同因数积的形式;对于同底数幂乘法的理解,关键就在于对乘方意义的理解.针对训练:1.幂(-x)5的底数是-x ,-x 5的底数是x;_x 5的底数是x2.计算(-x)5=-x 5;_(-x)6=x 6;_(x -y)2=+(y -x )2;_(x -y)3=-(y -x )33.下列四个算式:①a 6·a 6=2a 6;②m 3+m 2=m 5;③x 2·x ·x 8=x 10;④y 2+y 2=y 4,其中计算正确的有( A )A .0个B .1个C .2个D .3个 4.下列各式中,计算过程正确的是( D )A .x 3+x 3=x 3+3=x 6B .x 3·x 3=2x 3=x 6C .x ·x 3·x 5=x 0+3+5=x 8D .x 2·(-x 3)=-x 2+3=-x 5探究点二 同底数幂乘法法则的应用活动二:(1)x 2·x 5(2)a·a 6(3)(-2)×(-2)4×(-2)3(4)x m·x 3m +1展示点评:学生自主解答,师生共同点评.变式:1.-2×23×25=-29.2.a 2·a 5+2a 7=4a 7;a 2·a 5+a 7=2a 7.小组讨论:在应用该法则进行运算时,应当注意哪两个方面的问题?反思小结:在应用同底数幂的乘法法则进行运算时,一是要先判断是不是同底数幂,不是同底数幂的形式,要转化成同底数幂;二是底是不变,指数相加(紧扣法则).针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.知识结构图乘方的意义――→推导类比、归纳、转化同底数幂乘法法则⎩⎪⎨⎪⎧计算实际运用2.在探索同底数幂的乘法运算法则时,进一步体会幂的意义,从而更好的理解该法则.3.能够熟练地应用该法则进行运算. 五、达标检测,反思目标1.下列各式中运算正确的是( D )A.a2·a5=a20 B.a2+a5=a7C.a2·a2=2a2 D.a2·a5=a72.下列能用同底数幂进行计算的是( C )A.(x+y)2(x-y)3 B.(-x+y)3(x+y)2C.(x+y)2(x+y)3 D.-(x-y)2(-x-y)3.一种电子计算机每秒可进行1014次运算,它工作103秒可进行__1017__次运算.4.计算:(1)102×104×105解:原式=102+4+5=1011(2)10n-1·102-n·103解:原式=10(n-1)+(2-n)+3=104(3)x m·x2m+1解:原式=x m+2m+1=x3m+15.已知a m=2,a n=3,试用a表示.求:(1)a m+n;(2)a m+n+2.解:(1)a m+n=a m·a n=2×3=6.(2)a m+n+2=a m·a n·a2=2×3·a2=6a2●布置作业,巩固目标教学难点1.上交作业:课本第104页1(1)(2);2(1).2.课后作业:见《学生用书》.第2课时幂的乘方教学目标1.探索并理解幂的乘方法则.2.运用幂的乘方法则进行计算.教学重点幂的乘方运算.教学难点幂的乘方法则总结及应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.根据乘方的意义填空:a·a·a=________;a2·a2·a2=________;a m·a m·a m=________(m为正整数).2.激趣导入你能说出444与533两个数中,哪个比较大吗?学习本节后你就可以回答这个问题了!二、自主学习,指向目标自学教材第95至96页,思考下列问题(1)(a m)n的意义是n个a m相乘.(2)幂的乘方运算法则是:(a m)n=a mn(m,n都是正整数)用文字语言可描述为:幂的乘方,底数不变,指数相乘.(3)同底数幂的乘法与幂的乘方运算形式的区别是前者是底数相同的幂相乘,即乘法运算;后者是幂的乘方,即是乘方运算;同底数幂的乘法与幂的乘方运算法则的区别是运算的结果都是底数不变,前者是指数相加;后者是底数相乘.三、合作探究,达成目标探究点一幂的乘方法则的推导活动一:根据乘方的意义及同底数幂的乘法法则填空,看看计算的结果有什么规律:(1)(32)3=32×32×32=3(6);(2)(a2)3=a2×a2×a2=__a6__;(3)(a m)3=__a m×a m×a m__=__a3m__(m是正整数).展示点评:对于任意底数a与任意正整数m、n,(a m)n=a m a m……a m,\s\do4(n个am))=__a mn__.由此可得到幂的乘方法则:(a m)n=__a mn__(m,n都是正整数),即:幂的乘方,底数__不变__,指数__相乘__.小组讨论:同底数幂相乘与幂的乘方的区别?反思小结:幂的乘方法则一定要与同底数幂相乘的乘法法则区分开:两个法则都是底数不变,但同底数幂相乘时,指数相加;而幂的乘方时,指数相乘,这是本质区别.针对训练:1.63表示__3__个__6__相乘;(62)3表示__3__个__62__相乘.2.判断正误,正确的打“√”,错误的打“×”.(1)a5+a5=2a10(×)(2)(x2)3=x5(×)(3)(-3)2·(-3)4=(-3)6=-36(×)(4)[(m-n)3]4-[(m-n)2]6=0(√)3.下列运算正确的是( C )A.(a3)3=a6B.a4·a4=a16C.(a3)4=a12D.a3+a4=a74.小明的解答有错误吗?如果错误,请说出正确的结果.(1)(x3)3=x6;(2)a6·a4=a24.解:(1)(x3)3=x9;(2)a6·a4=a10.探究点二幂的乘方的应用活动二:计算:(1)(103)5(2)(a4)4(3)(a m)2(4)-(x4)3思考:以上计算形式是幂的哪种运算?其运算法则如何?运算中有负号的应先确定什么?展示点评:都是幂的乘方运算,注意和同底数幂的乘法法则区分开;运算用有符号的,先确定结果的符号,再运用法则进行运算.解答过程见课本P 96例2解答过程.小组讨论:如何灵活运用幂的运算进行计算?反思小结:对于幂的运算,应当先观察形式,应用适当的法则进行运算. 针对训练:5.若(x 2)n =x 8,则n =__4__.6.若x m ·x 2m =2,求x 9m的值.解:原式=(x 3m )3=23=8. 四、总结梳理,内化目标 1.知识结构图: 乘方的意义――→推导类比、归纳、转化幂的乘方法则⎩⎪⎨⎪⎧计算实际运用2. 理解幂的乘方法则,并能灵活应用幂的乘方法则进行运算.3.注意幂的乘方法则与同底数幂相乘的区别:前者是底数不变,指数相乘;后者是底数不变,指数相加.五、达标检测,反思目标1.(a 2)3=__a 6__;(x 6)5=__x 30__.2.(a m )4=__a 4m __;(x 3m )2n =__x 6mn__.3.若a 2m =4,则a 3m=__±8__.4.若x 为正整数,且3x ·9x ·27x =96,则x =2. 5.计算:(1)(y m )2·(-y 3)解:原式=y 2m ·(-y 3)=-y 2m +3(2)(y 2)3·y 2+(y 2)2y 4解:原式=y 6·y 2+y 4y 4=2y 86.(1)已知x a=2,x b=3,求xa +b的值.解:x a +b =x a ·x b=2×3=6 (2)已知x a=2,x b=3,求x2a +3b的值.解:x 2a +3b =x 2a ·x 3b=(x a )2·(x b )3=22·33=4×27=108●布置作业,巩固目标教学难点 1.上交作业: 一、计算:(1)-b·(-b 3)5; (2)2(x 3)5-(x 5)3; (3)a·(a 2)4·(-a 2). 解:原式=-b (-b 15)=b16解:原式=2x 15-x 15=x 15 解:原式=a·a 8·(-a 2)=-a11二、已知a m=2,b m=5,求(a3)m+(b2)m的值.解:原式=a3m+b2m=(a m)3+(b m)2=23+52=8+25=332.课后作业:见《学生用书》.第3课时积的乘方教学目标1.探索并理解积的乘方法则.2.运用积的乘方法则进行计算.教学重点积的乘方运算法则及其应用.教学难点幂的运算法则的灵活运用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标若已知一个正方体的棱长为1.1×103 cm,你能计算出它的体积是多少吗?这个结果是幂的乘方形式吗?积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥妙.二、自主学习,指向目标自学教材第97至98页,思考下列问题:1.(ab)n的意义是n个ab相乘.2. 积的乘方运算法则是:(ab)n=a n b n(n为正整数)用文字形式可描述为:等于把积的每一个因式分别乘方,再把所得的幂相乘.3.和幂有关的运算法则有:同底数幂相乘;幂的乘方;积的乘方,应当如何区分?(一是注意运算形式:是乘法,还是乘方;二是从法则的运算结果进行区分.)三、合作探究,达成目标探究点一积的乘方运算法则推导活动一:阅读课本P143页的内容,展示点评:1.根据乘方的意义:(ab)3表示______个______相乘;(ab)m表示______个______相乘.2.填出下列运算每一步的依据:(ab)2=(ab)·(ab)→依据:____________=(a·a)·(b·b)→____________=a2b2→____________3.计算:(ab)3=________=________=________(ab)n=________=________=________展示点评:(ab)n=________(n为正整数)即:积的乘方,等于把________分别乘方,再把________相乘.小组讨论:如何区分同底数幂相乘,幂的乘方,积的乘方这三个运算法则?反思小结:一是注意运算形式:同底数幂相乘是乘法运算,幂的乘方是乘方运算;二是注意法则,即(幂的)乘法指数就是加, (幂的)乘方指数就是乘;积的乘方就是先将各个因式先乘方再相乘.针对训练:1.(1)同底数幂相乘,底数不变,指数__相加__;幂的乘方,底数不变,指数__相乘__;积的乘方,等于各个因式__乘方__的积.(2)m,n为正整数时,a m·a n=__a m+n__;(a m)n=__a mn__;(ab)n=__a n b n__2.如果(x3y n)2=x6y8,则n等于( D )A.3 B.2 C.6 D.43,4见《学生用书》相应部分。

14.1整式的乘法(第2课时)

14.1整式的乘法(第2课时)

你认为(am)n等于什么? amn
你能对你的猜想给出验证吗?
n个am
n个m
(am)n=am·am·…·am=am+m+…+m=amn
1. 请你总结一下幂的乘方法则是什么? 幂的乘方,底数不变,指数相乘。 2. 用字母表示幂的乘方法则: (am)n=amn
14.1整式的乘法(第2课时)
例2:计算:
2. 若(x2)n=x8,则n=__4_____ 3. 若[(x3)m]2=x12,则m=___2____ 4. 若xm•x2m=2,求x9m的值. 8
14.1整式的乘法(第2课时)
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!T幂的乘方
1. 叙述同底数幂乘法法则
同底数幂相乘底数不变,指数相加。
2. 用字母表示同底数幂乘法法则
am·an=am+n
3. 计算:①a2·a5·an;②a4·a4·a4
①a7+n
②a12
根据乘方的意义和同底数幂乘法填空: (1)(32)3=32×32×32=3( 6 ) (2) (a2)3=a2·a2·a2=a(6 ) (3)(am)3=am·am·am=a(3m )
(1) (103)5; (3) (am)2;
(2) (a4)4; (4) -(x4)3.
解: (1) (103)5=103×5 = 1015 ; (2) (a4)4=a4×4=a16;
(3) (am)2= a m×2 = a 2m ; (4) -(x4)3 = - x 4×3 = - x12 .
1. 判断题: (1)a5+a5=2a10 ( × ) (2)(x3)3=x6 ( ×) (3)(-3)2•(-3)4=(-3)6(√ ) (4)x3+y3=(x+y)3 ( × )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1整式的乘法
【教学目标】
1. 探索并了解正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),并会运用它们进行计算。

2. 探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式的乘法运算。

3. 会由整式的乘法推导乘法公式,并能运用公式进行简单计算。

4. 理解因式分解的意义及其与整式的乘法之间的关系,从中体会事物之间可以相互转化的辩证思想。

5. 会用提公因式法、公式法、分组法、十字相乘法进行因式分解(指数是正整数)。

6. 让学生主动参与到一些探索过程中去逐步形成独立思考,主动探索的习惯,提高自己数学学习兴趣。

【教学过程】
1. 正整数幂的运算性质:
(1)同底数幂相乘:
同底数幂相乘,底数不变,指数相加。

即:a a a
m n m n
·=+(m、n均为正整数)
(2)幂的乘方:
幂的乘方:底数不变,指数相乘。

即:()a a
m n m n

(m、n均为正整数)
(3)积的乘方:
积的乘方:等于各因数的乘方之积(把积的每一个因式分别乘方,再把所得幂相乘)。

即:()
a b a b
m m m
·=
(m为正整数)
注:①用同底数幂的乘法法则,首先要看是否同底,底不同,就不能用。

只有底数相同,才能指数相加。

如:a a
23
·中底数a相同,指数2和3才能相加。

②同底数幂的乘法法则要注意指数是相加,而不是相乘,不能与幂的乘方法则中的指数相乘混淆。

③同底数幂乘法法则中,底数不一定只是一个数或一个字母,可以是一个式子,如:单项式、多项式等。

如:()()()()x y x y x y x y --=-=-+23235·,其中x y -是一个多项式。

④同底数幂乘法法则中,幂的个数可以推广到任意多个数。

如:()()()()()a b a b a b a b a b +++=+=+++23523510·· ⑤要善于逆用积的乘方法则,有时可得不错结果,可使计算简便。

如:8122178122171110101010⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪=⨯⎛⎝ ⎫⎭⎪==·
⑥在计算中要注意符号的变化,如:()-a 43与()[]-a 43的符号有区别。

⑦在进行幂的乘方时,要分清底数、指数,然后用法则。

2. 整式的乘法:
(1)单项式与单项式相乘 单项式与单项相乘,只要将它们的系数相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。

注:在进行单项式乘法时,可分别按系数各单项式中都含有的字母进行计算,有乘方的要先算乘方。

如:()--⎛⎝ ⎫⎭⎪313232
x y xyz xy ·· ()()
=-=-⨯⎛⎝ ⎫⎭⎪=-2719
271936322
623296x y xyz x y x x x y y y z x y z ·········
(2)单项式与多项式相乘 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得积相加,用式子表示如下:
()m a b c ma mb mc ++=++(其中a 、b 、c 、m 都是单项式) 注:单项式与多项式相乘的关键是转化,即运用乘法对加法的分配律将单项式乘以多项式转化为单项式乘以单项式,计算时要注意符号。

如:()---2322x x x
()()=-----=-++22322264232x x x x x x x x ···
(3)多项式与多项式相乘 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加,用式子表示如下:
()()a b m n am an bm bn ++=+++ 注:a . 进行多项式乘法的关键是两次转化:第一次是把其中一个多项式看作一项,运用分配律将多项式乘法转化为单项式乘以多项式。

第二次是将单项式乘以多项式转化为单项式乘法。

b . 多项式乘法计算时注意不能漏项。

c . 多项式乘法计算时要注意符号,是同类项的一定要合并,最后对结果按某个指定的字母进行升(降)幂排列。

3. 乘法公式:
(1)平方差公式:()()a b a b a b +-=-22,即两数和与它们的差的积等于这两数的平方差。

注:a . 运用平方差公式的关键是正确识别两数(或式),即看是哪两个数(或式)的和与差的积。

如:()()---m m 11可以写成()[]()[]---+m m 11
即:()-m 与1的和与差的积。

b . 在平方差公式()()a b a b a b +-=-22中,字母a 、b 可以表示具体的数(正数、负数)、字母、单项式,也可以表示一个多项式,只要式子符合公式的结构特征,或变形后符合公式的结构特征,就可以运用公式进行计算。

如:()()a b c a b c +--+
()[]()[]
()=+---=--a b c a b c a b c 22
(2)完全平方公式:()
a b a ab b
±=±+
222
2
,即两数的和(差)的平方,等于它们
的平方和加上(减去)它们乘积的2倍。

注:a. 在运用完全平方公式时要注意符号与项数,不要漏掉中间的乘积项。

b. 三项式的平方,也可以写成两项和与第三项和的完全平方。

如:
()
a b c
+-
232
()
[]
=+-
a b c
232
()() =+-+-
a a
b
c b c
22 22323
c. 在综合运用公式时,要分清不同的公式的结构特征和不同的计算结果。

4. 因式分解:
(1)因式分解定义:把一个多项式化为几个整式的乘积形式,就是因式分解。

(2)公因式:多项式中各项都含有公共因式。

注:找公因式方法:a. 系数部分要提出各项系数的最大公因数。

b. 字母部分要找出相同字母。

c. 指数部分要找出相同字母的最低次幂。

如:728
2332
x y x y
-中公因式为722
x y。

(3)提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种方法叫做提公因式法。

如:()
ma mb mc m a b c
++=++
注:a. 当多项式的首项系数为负数,提公因式时要将负号提出,使括号内第一项的系
数是正的,且要注意括号内其他各项的变号。

如:
() -+=--555
32
a a
b a a b。

b. 当公因式是多项式时,引入“整体”概念,只要把这个多项式看成一个“整体”或
一个字母,按照提字母公因式一样提出即可。

如:
()()()() 2323
a b c b c b c a
+-+=+-。

c. 有时需要对多项式的项进行适当的变形之后才能提公因式,这时要注意各项的符号变化。

如:
()()()()()() 62262226
x x x x x x x x -+-=---=--
(4)公式法:
平方差公式:
()() a b a b a b 22
-=+-
完全平方公式:()a ab b a b 222±+=±2
注:a . 用公式法因式分解时,关键是掌握公式的结构特征。

b . 两种方法的综合运用是难点:一般情况下是先考虑是否可提公因式,然后,再运用公式法,要求分解时要分解到不能分解为止。

分解之后,有时要合并同类项,即“一提,二套,三化简”。

如:
()()()282422232x x x x x x x -=-=-+。

另外补充两种因式分解方法:
(1)十字相乘法:()()()x a b x ab x a x b 2+++=++ (2)分组分解法:四项式:二二分组或三一分组,分组后能提公因式继续分解,或分组后用公式,最终达到将四项式最后写成几个整式积的形式。

如:x x 256++
()=+++⨯x x 23232 ()()=++x x 32
()()
()()()
()()x y ax ay
x y ax ay x y x y a x y x y x y a 2222-++=-++=+-++=+-+。

相关文档
最新文档