开关电源降压变换器设计及计算
开关直流降压电源(BUCK)设计
开关直流降压电源(BUCK)设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。
近年来,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展,新一代的电源开始逐步取代传统的电源电路。
该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。
开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。
开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。
本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计开关电源,利用MOSFET 管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。
关键词:直流,降压电源,TL494,MOSFET1目录摘要 (1)Abstract........................................................... ........ 错误!未定义书签。
1.方案论证与比较 (4)1.1 总方案的设计与论证 ...................................... 错误!未定义书签。
1.2 控制芯片的选择 (4)1.3 隔离电路的选择 .............................................. 错误!未定义书签。
2. BUCK电路工作原理 ......................................... 错误!未定义书签。
3. 控制电路的设计及电路参数的计算 ................ 错误!未定义书签。
3.1 TL494控制芯片................................................ 错误!未定义书签。
DCDC变换器的设计方案
DC-DC变换器的设计方案一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC 的DC-DC变换器。
在电阻负载下,要求如下:1、输入电压U=220VDC,输出电压u=600VDC。
2、输出额定电流|;:=2.5A,最大输出电流Iomax=3Ao3、当输入山在小范围内变化时,电压调整率SV W2%(在匕=2.5A时)。
4、当|<在小范围你变化时,负载调整率SI W5%(在||=220VDC时)。
5、要求该变换器的在满载时的效率n±90%o6、输出噪声纹波电压峰-峰值U t)pp<1V(在Ui=220VDC,u=600VDC,[(=2・5A条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在3A o8、设计相关均流电路,实现多个模块之间的并联输出。
二、设计方案分析1、DC-DC升压变换器的整体设计方案主电路图1DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。
控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。
2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为DC600V降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。
图2(a )DC-DC变换器主电路图2(b )DC-DC 变换器主电路图2(a )是升压式DC-DC 变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b )是用matlab 模拟主电路 DC220V出的升压式DC-DC变换器的主电路图。
开关电源的设计及计算
等级:内部密
开关电源的设计及计算
1.先 计 算 BUCK 电 容 的 损 耗 ( 电 容 的 内 阻 为 Rbuck 85VAC~264VAC,频率为 50Hz,POUT =60W,VOUT=60W) : 2 电容的损耗: Pbuck=Rbuck*Ibuck,rms Ibuck,rms=Iin,min 假 设 为 350m Ω , 输 入 范 围 为
2 1 NP − 1000 LM AL
(mm)
其中:AL 为没气隙时的值,单位 nH/圈数 2 变压器次级线径的计算: 其中:KL(n)= Isec(n) = Ids rms
* V OR L ( n) 1− DMAX * V O ( n ) + VF ( n ) DMAX
(
*K
)
VO ( n ) + VF ( n ) * NS 1 VO1 + VF1 Vcc + VFa Na= * NS 1 VO1 + VF 1
翻译和整理:周月东 ON,FAIRCHILD 应用文档
控制芯片正常工作的电压,一般取 12~1等级:内部密
变压器气隙长度计算: G=40*π*Ae*
△I 2
2 △I DMAX 2 * 3 * (IEDC ) + 3 2 Idsrms =
其中:
IEDC =
Pin V min* DMAX V min* DMAX △I= LM * FS
文档内容参考: 翻译和整理:周月东 ON,FAIRCHILD 应用文档
单路 KL=1
PO ( n ) PO
PO(n) 为每路输出的最大功率
一般大于 1M 时,电流密度取 5A/mm 2,当圈数少,长度小,电流密度取 6~10A/mm2 也是可 以接受的。为了绕制容易和避免严重的涡流损耗,应避免使用单根 1mm 以上的线。对于大 电流输出应使用多根并联以减少趋肤效应。 同时必须检查窗口面积是否能绕制的下, 检查如 下: Awr=
TL494开关电源设计--BUCK电路解析
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极
TL494开关电源设计--BUCK电路
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
几种开关电源变压器设计计算方法
RCC方式电源变压器设计计算方法在RCC设计中,一般先设定工作频率,如为50K,然後设定工作DUTY在90V入力,最大输出时为假设设计一功率为12V/1A1. 最大输出电流为定格电流的~倍,取倍.2. 出力电力Pout =Vout × Iout = 12V×1.3A =3. 入力电力Pin = Pout/∩=(RCC效率∩一般设在65%~75% , 取70%)4. 入力平均电流Iin=Pin/Vdc(INmin)=85*=( Vin(DCmin) = Vac(Inmin)×5. T=1/swF=1/50K=20uS Ton=Toff=10uS6. Ipk=Iin入力平均电流*2/DUTY=*2/=7. 一次侧电感量Lp=Vin(DCmin)*Ton/Ipk=102*10/=1159uH 取1160uH8. 选择磁芯,根据磁芯规格,选择EI28. Ae=0.85CM^2 动作磁通=2000~2800取2000(当然,这是很保守的作法)9.Np=Ipk*Lp*K/Ae*▲Bm=*1160*100)/*200 0)=60Ts10. Ns=(Vout+Vf)*Np/Vin(DCmin)= 取8Ts11. 辅助电压取5V(电晶体) 如功率管使用MOSFET则应设为11V12. Vin(DCmin)/Np=Vb/Nb----Nb= 取3Ts 故变压器的构造如下:Lp=1160uHNp=60TsNs=7TsNb=3Ts以上采用三明治绕法:三明治绕法详解:所谓三明治就是夹层绕法,因结构如同三明治一样,所以叫三明治绕法.通常会有两种绕法:1. 一次侧平均法,就是a.最底层绕上一半的圈数,b.然後再绕二次侧,c.再绕一次侧的另一半.d.再绕Vcc.最常用的做法还会在二次侧上下两层各加一铜箔或绕线屏蔽.在小功率上会起到Y电容的效果,所以说在小功率上有些人说可以不用Y电容,其实在整体成本上没有太大的差别.2. 屏蔽绕法, 就是a.最底层绕上与二次相同的圈数,b.然後再绕二次侧,c.再绕一次侧的其它圈数.d.再绕Vcc.这种方式很少加屏蔽.当然还有很多种不同的配对方式.但基本原理是一样的.三明治的真正用意就是减小漏感,人为的在一次与二次之间加上一个寄生电容.用三明治绕法不可以短路为什么(短路指输出短路保护) 设计参数选取有问题。
TL494降压开关电源的设计
TL494降压开关电源的设计一、设计任务及要求:1、掌握TL494主要性能参数、端子功能、工作原理及典型应用2、掌握DC—DC降压型开关电源原理,掌握电路布线及焊接。
主要技术指标:设计要求:1直流输入:0—30v,电压变化范围为+15%~-20%;2输出电压:5v—30v连续可调,最大输出电流1.5A二、DC—DC变换器buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。
图1S为开关管,D为续流二极管,当给S一个高电平使得开关管导通,输入电源对电感,电容充电,同时向负载供电。
当给S一个低电平时使得开关管关断,负载电流经二极管续流。
改变开关管的占空比即能改变输出的平均电压。
三、TL494中文资料及应用电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。
TL494主要特征集成了全部的脉宽调制电路。
片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
内置误差放大器。
内止5V参考基准电压源。
可调整死区时间。
内置功率晶体管可提供500mA的驱动能力。
推或拉两种输出方式。
TL494引脚图TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。
四、电路设计输出为5V的电源电路:电路分析:50u/50v是滤波电容对输入电源滤波,47欧的电阻主要是当8和11引脚输出高电平时不足以驱动大功率三极管,通过47欧电阻来上拉高电平,将高电平拉高驱动三极管,当三极管导通以后就铅位到三极管基极和发射极的管压降。
8和11引脚处的150欧电阻是限流电阻。
2和3引脚处连接成PI 调节器,提高精度,增加电路的稳定性。
开关电源参数计算详细推导过程
(V =
IN
* D *T
) *F
2
SW
*η
2 * POUT
有: T =
LP
(V =
IN
IN
* D *T
) *F
2
SW
*η
2 *VOUT * I OUT
=
(V
2
IN
* D *T
) *η
2
2 *VOUT * I OUT *
IN
(V =
* D *T
2 *VOUT * I OUT * T
) *η = (V
TSW * I P − P =
1 2 POUT 2 POUT 2 POUT * C * I P− P = + +π * N FSW FSW *η *VIN F *η * (V + V ) * P FSW *η SW OUT F NS FSW * 1 2 POUT * I P − P = FSW * + FSW * FSW FSW *η *VIN F 2 POUT
di VIN V *T ,在关闭之前其值到达最大: I P − P = IN ON = dt LP LP
一个开关周期内传输的能量即输入功率: PIN = 等同: PIN =
1 * LP * I 2 P − P * FSW 2
1 1 * LP * I 2 P − P * 2 T P V *I POUT *100% 推导出 PIN = OUT = OUT OUT η η P IN 1 V *I * LP * I 2 P − P * FSW = OUT OUT 2 η
2
* D ) * T (VIN * D ) * T (V * D ) = = IN V *I 2 * PIN 2 * PIN * FSW 2 * OUT OUT η
Buck降压电路设计与实现
开关电源设计及MATLAB仿真胡志健学号21411300设计要求:(1)输⼊24V,输出18V,10A,开关频率为50kHz;(2)画出电路原理图,计算所⽤的元器件参数;(3)画出仿真波形图(PWM和主回路关键波形),开环闭环都可。
根据要求,需要设计⼀个降压电路。
Buck电路是⼀个降压斩波器,降压变换器的输出电压平均值U o总是⼩于输出电压U d,通常电感中的电流是否连续,取决于开关频率、滤波器电感L和电容C的数值。
1主电路设计参数说明:(1) 输⼊直流电压:V in=24V;1(2) 输出电压:V o=18V;(3) 输出电流:I N=10A;(4) 开关频率:f s=50kHz;(5)Buck主电路⼆极管的通态压降V D=0.5V,电感中的电阻压降V L=0.1V,开关管导通压降V on=0.5V,滤波电容C和电阻R C的乘积为75µΩ·F。
根据以上对元器件参数分析设计主电路,如上所⽰。
1.1滤波电容的设计因为输出纹波电压只与电容的容量以及ESR有关,R c=V rr∆i L=V rr0.2I N(1)电解电容⽣产⼚商很少给出ESR,但C与RC的乘积趋于常数,约为50∼80µΩ·F。
在本课题中取为75µΩ·F,由公式可得R C=25mΩ,C=3000µF。
1.2滤波电感的设计根据电路知识,可以列出开关管闭合与导通状态的基尔霍夫电压⽅程。
如下所⽰:V in−V o−V L−V ON=L∆i L/T ON(2)V o+V L+V D=L∆i L/T OF F(3)T off+T on=1/f s(4)假设⼆极管的通态压降为V D=0.5V,电感中的电阻压降为V L=0.1V,开关管导通压降为V ON=0.5V。
利⽤T on+T off=1/f s,可得T on=15.5µs,代⼊(2)式可算得L=8.37µH。
开关电源功率变换器拓扑与设计
开关电源功率变换器拓扑与设计1. 开关电源的基本概念说到开关电源,可能很多人会想:“这玩意儿是啥?”别急,让我来给你唠叨唠叨。
简单来说,开关电源就是一种把交流电(咱们家里插座里的电)转换成直流电(电子设备需要的电)的小家伙。
它就像一个高效的“电力魔法师”,能把电压调高调低,甚至能把功率变换得流畅自如。
想象一下,你家冰箱、电视机、甚至手机充电器,都是它的“铁杆粉丝”。
开关电源的出现,简直就是电子设备的“救星”,大大提高了设备的效率,还减少了能耗,真是天上掉下来的“福星”。
1.1 开关电源的工作原理那它是怎么做到这一点的呢?哦,话说这就得从它的工作原理讲起。
开关电源的核心在于“开关”两个字,没错,就是那种一开一关的开关。
它通过快速地开关电路,来控制电流的流动。
想象一下,一群小电流在电线上跳舞,开关就像一个指挥家,挥挥手,电流们就跟着节奏一起起舞。
开关电源通过这种“舞蹈”,把输入电压转变为我们想要的输出电压。
简单点说,就是通过调节开关的频率和占空比,来达到我们所需的功率转换。
1.2 开关电源的种类开关电源可不是只有一种类型哦!它有好几种不同的“身世”。
比如说,有的叫“降压型”,就像你在商场打折一样,把高价压得低低的;而“升压型”则相反,能把低价推得高高的。
再有就是“升降压型”,这可是个灵活的小家伙,可以随心所欲地调节。
每种类型都有各自的“拿手绝活”,适用于不同的场景,就像不同的调味料能让一道菜变得鲜美。
2. 开关电源的设计2.1 设计原则设计开关电源可不是随便捏个饺子那么简单哦!要考虑的因素可多着呢。
首先是效率,大家都知道,越省电越好。
开关电源的效率一般都能达到80%以上,甚至90%!这可是电源界的“高分考生”啊。
其次是稳压能力,稳得住才靠谱,输出电压要稳定,不能时高时低,要不然电器可受不了。
2.2 设计步骤接下来就是设计的步骤了,首先得选定一个合适的拓扑结构。
拓扑就像是开关电源的“骨架”,决定了它的基本性能。
反激式开关电源的设计计算
反激式开关电源的设计计算一、反激式开关电源变换器:也称Flyback变换器,是将Buck/Boost变换器的电感变为变压器得到的,因为电路简洁,所用元器件少,成本低,是隔离式变换器中最常用的一种,在100W以下AC-DC变换中普遍使用,特别适合在多输出场合。
其中隔离变压器实际上是耦合电感,注意同名端的接法,原边绕组和副边绕组要紧密耦合,而且用普通导磁材料铁芯时必须有气隙,以保证在最大负载电流时铁芯不饱和。
二、AC-DC变换器的功能框图:交流220V电压经过整流滤波后变成直流电压V1,再由功率开关管(双极型或MOSFET)斩波、高频变压器T降压,得到高频矩形波电压,最后通过整流滤波器D、C2,获得所需要的直流输出电压V o。
脉宽调制控制器是其核心,它能产生频率固定而脉冲宽度可调的驱动信号,控制功率开关管的通断状态,来调节输出电压的高低,达到稳压目的;锯齿波发生器提供时钟信号;利用误差放大器和比较器构成闭环调节系统。
三、设计步骤:1.基本参数:交流输入电压最小值Umin交流输入电压最大值Umax电网频率Fa:50Hz或60Hz开关频率f:大于20kHz,常用50kHz~200kHz输出电压V o输出功率Po损耗分配系数Z :代表次级损耗与总损耗的比值,一般取0.5电源效率k :一般取75~85%。
低电压(5V 以下)输出时,效率可取75%,高压(12V 以上)输出,效率可取85%;中等电压(5V 到12V 之间)输出,可选80%。
2. 确定输入滤波电容Cin :对于宽范围交流输入(85~265Vac ),C1/Po 的比例系数取2~3,即每输出1W 功率,对应3uF 电容量 对于100V/115V 交流固定输入,C1/Po 的比例系数取2~3,即每输出1W 功率,对应3uF 电容量 对于230V ±35V 交流固定输入,C1/Po 的比例系数取1,即每输出1W 功率,对应1uF 电容量若采用100V/115V 交流倍压输入方式,需两只容量相同的电容串联,此时C1/Po 的比例系数取23. 直流输入电压最小值Vimin 的计算:in C a O i kC t F P u V ⎟⎟⎠⎞⎜⎜⎝⎛−−=21222min min 其中:tc 为整流桥的响应时间,一般为3ms也可以由要求的直流输入电压最小值Vimin 来反推需要的输入滤波电容Cin 的精确值:)2(2122min 2min i C a O in V u k t F P C −⎟⎟⎠⎞⎜⎜⎝⎛−= 4. 确定初级感应电压Vor :对于宽范围交流输入(85~265Vac ),初级感应电压V or 取135V对于100V/115V 交流固定输入,初级感应电压V or 取60V对于230V ±35V 交流固定输入,初级感应电压V or 取135V5. 确定钳位二极管反向击穿电压Vb :高温大电流下二极管钳位电压要高于标称值,所以选用TVS 钳位电压Vb=1.5V or对于宽范围交流输入(85~265Vac ),钳位二极管反向击穿电压Vb 取200V对于100V/115V 交流固定输入,钳位二极管反向击穿电压Vb 取90V对于230V ±35V 交流固定输入,钳位二极管反向击穿电压Vb 取200V当功率开关管关断而次级电路处于导通状态时,次级电压会感应到初级上,感应电压V or 就与Vi 叠加后加到开关管漏极上,与此同时初级漏感也释放能量,并在开关管漏极上产生尖峰电压VL 。
开关电源设计计算公式
CDQZ-5107SEHOTTKY 计算方法1、由于前面计算变压器可知:Np=82T 3Ns=13T 32、在输入电压为264Vac 时,反射到次级电压为:Vmax=264Vac*2=373V DCV SR =P S N N *Vmax =8213*373=59.5V DC 3、设次级感量引起的电压为:(VR :初级漏感引起的电压)V RR =PS N N *V R =8213*90=14.5V DC 4、计算肖特基的耐压值:V PP =V SR +V RR +V o =59.5+14.5+12=86V DC5、计算出输出峰值电流:V SPK =D I O -12=474.011*2-=3.8A 6、由计算变压器可知:I rms =1.59A故选择3A/100V 的肖特基满足设计要求。
(因3A 的有效值为3.9A )客户名称客户编号公司编号样品单编号日期输入范围输入电压电流CDQZ-5107MOSFET 计算方法1、由于前面计算变压器可知:Np=82T 3Ns=13T 32、输入电压最大值为264Vac ,故经过桥式整流后,得到:Vmax=264Vac*2=373V DC3、次级反射到初级的电压为:V PR =S P N N *V O =1382*12=76V DC 4、由前面计算变压器可知,取初级漏感引起的电压,V R =90V DC ,故MOFET 要求耐压值为:V DS =V max +V R +V PR =373+90+76=539V DC5、计算初级峰值电流:I rms =DF V I V in O P *** =6.0*100*88.01*82=0.227A ∴I PK =3D I rms =3473.0227.0=0.571A 6、故选择2A/600V 的MOSFET 满足设计要求,即选用仙童2N60C 。
客户名称客户编号公司编号样品单编号日期输入范围输入电压电流CDQZ5107输入及输出电容估算方法一、输入电解电容计划算方法:1、因输出电压12V 输出电流1A 故输出功率:Pour=Vo*Io=12.0V*1A=12W2、设变压器的转换效率为80%,则输出功率为12W 的电源其输入功率:Pin=Pout/效率=15%8012=W 3、因输入最小电压为90VAC ,则直流输出电压为:Vin=90*2=127Vdc故负载直流电流为:I=Vin Pin =A V acW 1182.012715=4、设计允许30V 峰一峰值的纹波电压,并且电容要维持电压的时间为半周期,即半周期的线性频率的交流电压在约是8ms 则:C=uF V t I 6.313010*8*1182.0.3==∆-实际用选择用33uF5、因最大输入电压为264Vac ,则直流输出电压为:V1=264*2=373Vdc实际选用耐压400Vdc 的电解电容,故选用47uF/400v 电解电容可以满足要求。
buck电路频率计算
buck电路频率计算【原创版】目录1.Buck 电路简介2.Buck 电路频率计算的重要性3.Buck 电路频率计算的方法4.实际应用中的 Buck 电路频率计算5.总结正文1.Buck 电路简介Buck 电路,又称降压型开关电源电路,是一种基于开关管工作在开关状态下的直流 - 直流变换器。
其主要作用是将高电压转换为较低电压,以满足不同电子设备对电源电压的需求。
Buck 电路具有高效率、小体积和较低的输出电压纹波等优点,因此在电子设备中得到了广泛应用。
2.Buck 电路频率计算的重要性在 Buck 电路的设计中,频率的选择至关重要。
高频率能够带来较小的器件尺寸、较低的损耗和较小的输出电压纹波,但同时也会增加开关损耗和电磁干扰。
相反,低频率可以降低开关损耗和电磁干扰,但会导致器件尺寸增大、损耗增加以及输出电压纹波增大。
因此,合理的频率选择对于优化 Buck 电路的性能至关重要。
3.Buck 电路频率计算的方法Buck 电路的频率计算通常采用以下公式:f = (1 / (2π× (R × L) × (t × (di/dt)))其中,f 表示开关频率,R 表示负载电阻,L 表示电感,t 表示开关时间,di/dt 表示电流变化率。
在实际应用中,需要根据负载电流、电源电压、电感值和开关时间等参数,结合上述公式进行计算,以确定合适的开关频率。
4.实际应用中的 Buck 电路频率计算在实际应用中,Buck 电路的频率计算通常需要考虑多种因素,例如负载电流的变化范围、电源电压的波动范围、电感器的额定电流等。
此外,为了保证系统的稳定性,还需要对电路进行建模和仿真,以验证所选频率的正确性。
5.总结Buck 电路的频率计算是开关电源设计中的重要环节,需要综合考虑多种因素,以确定合适的开关频率。
合理的频率选择能够优化电路性能,提高系统效率和稳定性。
开关电源设计报告
开关电源设计报告一、引言开关电源是一种能将交流电转换为稳定直流电的电源系统,其重要性在于它可以提供各种电子设备所需的不同电压和电流。
本设计报告旨在介绍一种基于开关电源的设计方案,以满足特定要求的电子设备的电源需求。
二、设计目标本设计的目标是设计一种能够提供稳定电压和电流输出的开关电源,以满足特定要求的电子设备的供电需求。
具体要求如下:1.输出电压范围:12V-24V可调;2.输出电流范围:0.5A-2A可调;3.输出电压稳定度:小于1%;4.输出电流稳定度:小于1%;5.效率:大于80%。
三、设计方案为满足上述需求,本设计选择了 Buck 变换器作为开关电源的拓扑结构。
Buck 变换器是一种非绝缘型降压式开关电源,其输出电压小于输入电压。
1.元器件选择(1)功率开关管:选择具有较低导通和开通损耗的MOSFET作为功率开关管。
(2)电感:选择合适的电感,以确保在开关电源工作时,电感上的输出电流变化平滑。
(3)二极管:选择具有较低正向压降的二极管,以降低二极管的功耗。
(4)电容:选择合适的电容,以滤波输出电压,稳定电源。
2.控制策略本设计选择了固定频率脉冲宽度调制(PWM)控制策略,通过控制MOSFET的导通与开通时间,来调节输出电压。
PWM控制器会根据输出电压与设定电压之间的差异调整功率开关管的工作状态,从而实现输出电压的稳定。
3.反馈回路为了实现开关电源的稳定输出,本设计引入了反馈回路。
通过采集输出电压,并与设定电压进行比较,从而控制PWM控制器的工作,维持稳定输出。
四、设计结果及性能测试基于上述设计方案,进行了原型设计和性能测试,得到了以下结果:1.输出电压范围:12V-24V,可调。
2.输出电流范围:0.5A-2A,可调。
3.输出电压稳定度:小于1%。
4.输出电流稳定度:小于1%。
5.效率:大于80%。
通过与实际要求进行对比,设计结果基本满足了我们的需求。
五、总结本设计报告详细介绍了一种基于开关电源的设计方案,满足特定要求的电子设备的电源需求。
tl494开关电源变压器计算
tl494开关电源变压器计算
TL494是一种常用的PWM控制集成电路,广泛应用于开关电源和DC-DC变换器中。
在设计开关电源变压器时,需要考虑输入电压范围、输出电压、输出电流、变压器的工作频率、变比、损耗和效率等因素。
以下是一些需要考虑的关键因素:
1. 输入电压范围,确定输入电压范围,以便选择合适的变压器工作点。
通常需要考虑输入电压的最小和最大值。
2. 输出电压和电流,确定所需的输出电压和输出电流,这将影响变压器的变比和功率。
3. 工作频率,TL494的工作频率通常在几十kHz到几百kHz之间,选择合适的工作频率可以影响变压器的尺寸和损耗。
4. 变压器变比,根据输入输出电压比和工作频率选择合适的变压器变比,以确保输出电压稳定。
5. 变压器损耗和效率,考虑变压器的铜损和铁损,以及绕组间的漏耗,以提高系统的效率。
在实际计算中,可以根据所选的工作频率、输入输出电压和电
流等参数,利用变压器的基本公式进行计算。
通常包括变压器的匝
数计算、磁芯截面积计算、绕组电流密度计算等。
同时,还需要考
虑变压器的工作模式(如连续导通模式或不连续导通模式)以及所
选的开关管的特性等因素。
总的来说,TL494开关电源变压器的计算涉及多个方面的因素,需要综合考虑设计要求、器件特性和性能指标,以及实际应用中的
稳定性、可靠性和成本等因素,进行全面的设计和计算。
基于BUCK变换器开关电源设计
基于BUCK变换器开关电源设计一、引言开关电源是一种常见的电源系统,其主要由开关电路、滤波电路和稳压电路组成。
其中,开关电路是关键部分,负责将输入电源的直流电压转换为需要的电压形式。
BUCK变换器是开关电源中常用的一种变换器类型,在工业和电子设备中广泛应用。
本文将介绍基于BUCK变换器的开关电源设计的详细步骤和注意事项。
二、BUCK变换器的原理BUCK变换器是一种降压变换器,其工作原理是通过开关管控制输入电源的导通和断开,从而通过电感和电容的锁相环作用,实现输出电压的稳定调节。
具体工作步骤如下:1.开关管导通状态:当开关管导通时,输入电源与电感形成回路,电感里的能量被储存在磁场中,同时电容开始充电。
2.开关管断开状态:当开关管断开时,电感的磁场崩溃,释放能量,使得电流通过二极管回路,电容开始放电。
通过这种开关过程,BUCK变换器可以将输入电源的直流电压降低,达到需要的输出电压。
三、基于BUCK变换器的开关电源设计步骤1.确定输入电源和输出电压要求:根据具体应用需求,确定所需要的输入电压和输出电压,以及电流要求。
2.计算开关管的参数:根据输出电压和电流要求,计算开关管的额定电流和功率,选择合适的开关管类型。
3.计算电感和电容的参数:根据输入电压、输出电压和电流要求,计算出合适的电感和电容参数。
选择合适的电感和电容类型,并进行热稳定计算。
4.设计开关频率:根据应用需求和电路参数,选择合适的开关频率,以达到较高的功率转换效率。
5.设计控制电路:根据选择的开关频率和开关管类型,设计合适的控制电路,实现开关管的正常工作,如脉宽调制控制、开关管的驱动电路等。
6.选择滤波电路:根据输出电压的纹波和稳压要求,选择合适的滤波电路进行设计,如低通滤波器、电容滤波器等。
7.PCB布局和散热设计:根据电路参数和设计要求,进行PCB布局和散热设计,确保电路能够正常工作并具有较高的稳定性和可靠性。
四、注意事项1.在设计过程中,需根据电路参数和工作条件选择合适的元件,如开关管、电感、电容等。
开关电源(1)之BUCK降压变换器工作原理及Multisim实例仿真
开关电源(1)之BUCK降压变换器⼯作原理及Multisim实例仿真开关电源(Switching Mode Power Supply)即开关稳压电源,是相对于线性稳压电源的⼀种的新型稳压电源电路,它通过对输出电压实时监测并动态控制开关管导通与断开的时间⽐值来稳定输出电压。
由于开关电源效率⾼且容易⼩型化,因此已经被⼴泛地应⽤于现代⼤多数电⼦产品中。
如果说每个现代家庭都⾄少有⼀个开关电源都不为过,如电视机(彩⾊的)、电脑、笔记本、电磁炉等等内部都有开关电源,虾⽶?这些东西你们家都没有?我去!那⼿机有没有?⼿机充电器也是⼀个⼩型的开关电源,中招了吧!⼿机也没有,那就是古代家庭了,忽略之!如下图所⽰为线性稳压电源电路的基本原理图:之所以称其为线性电源,是因为其稳定输出电压的基本原理是:通过调节调整管(如三极管)的压降V D来稳定相应的输出电压V O,也因调整管处于线性放⼤区⽽得名。
如果某些因素使得输出电压V O下降了,则控制环路降低调整管的压降V D,从⽽保证输出电压V o不变,反之亦然,但这样带来的缺点是调整管消耗的功率很⼤,使得该电路转换效率低下,当然,线性电源的优点是电路简单,纹波⼩,但是在很多应⽤场合下,转换效率才是⾄关重要的。
为了进⼀步提升稳压电路中的转换效率,提出⽤处于开关状态的调整管来代替线性电源中处于线性状态中的调整管,⽽BUCK变换器即开关电源基本拓扑之⼀,如下图所⽰:其中,开关K1代表三极管或MOS管之类的开关管(本⽂以MOS管为例),通过矩形波控制开关K1只⼯作于截⽌状态(开关断开)或导通状态(开关闭合),理想情况下,这两种状态下开关管都不会有功率损耗,因此,相对于线性电源的转换效率有很⼤的提升。
开关电源调压的基本原理即⾯积等效原理,亦即冲量相等⽽形状不同的脉冲加在具有惯性环节上时其效果基本相同,如下图所⽰:同样是从输⼊电源10V中获取5V的输出电压,线性稳压电源的有效⾯积为5×T,⽽对应在开关稳压电源的单个有效周期内,其有效⾯积为10×T×50%(占空⽐)=5×T,这样只要在后⾯加⼀级滤波电路,两者的输出电压有效值(平均值)是相似的。
开关电源设计常用公式
-7
Tp*Vout Vout =D* Vin 2*Iout*Lp
dBuV=20Log Vnoise 1uV ZL=ωL=2∏FL 1 1 Zc= ωC = 2∏FC PF= 1 Watts cosθ = = Vrms*Irms V*A
B
√
UL=
N*dB*S dt
I
(此处L都是磁 路长度)
N*S*dB=U*dt
C
di dΦ U*dt UL= L = N => L= di dt dt 1 Ψ2 (N*S*B) 2 2 WL = L*I = = 2 2L 2L 2 2 2 dΨ N*dΦ N*S*dB N *S*dB N *S*B N *S*B L= = = = = = dI dI dI N*dI H*L磁路长度 B *L 磁路长度 u N2*S*u 2 = = N *A L L磁路长度 AL= S*u L磁路长度 Ψ=N*Φ Φ=S*B B=H*u
V*dT=N*dB*Ae=di*L V:Vdc min, 初级大电容最小 电压值 dT:T*Dmax, 最大导 通时间 dB:磁通密 度变化量 Ae:磁芯横截面积
D
初级绕 组串联漏电感,对磁芯 的选择
2
dΦ N*S*dB = di di N*S*dB N*S*dB = S*dB di= = L N 2 *AL N*A L L=
反激变 换器初级 电感计算式
Vo*Np*Toff Ton*Vin = Ns
(临界模 式)
Lp=
Ro 2.5T
max ( Vin min*Ton ) Vo Ip=
2
( Vin min*Ton max ) =
2.5*T*Po max
B*S*S Lp 1 2 WL= Lp*dip 2 Pin WL= F Ns Vout*Toff = Np Vdc*Ton
基于LM5117的降压型开关稳压电源设计
基于LM5117的降压型开关稳压电源设计摘要:为了更好地发挥DC-DC开关电源在体积、质量、成本等方面的优势,从切换速度、频率、效率、安全、环境等方面考虑,研制了一种以LM5117为核心,采用CDS18532KCS MOS作为主要器件的低功耗开关电源。
主要介绍了DC-DC 降压模块、 PWM调制模块和减少纹波的方法,并对LM5117周边电路进行了详细的设计考虑。
系统的硬件部分主要是对 MOS管的滤波器和驱动电路进行了优化。
实验表明,在额定输入电流时,最大输出电压为5 V,误差在15毫伏以下,最高可达到3 A,且具有较好的运行性能。
关键词:直流-直流开关电源;电压下降调节器;开关调节器; MOS管驱动器1前言20世纪五十年代初期,开关电源逐渐取代了工作电源,它具有体积小、重量轻、高效率、高稳定等优点,在工业电子等方面得到了广泛的应用。
到了90年代,开关电源已经进入了快速发展的关键阶段,在军事、电子、电力、家电等关键应用中得到了广泛的应用。
二十一世纪,开关电源已经被应用于手机,个人电脑,消费电子,家用电子,学校设备,以及工业机械。
在目前的应用环境中,如何快速、高频率、高效率、安全、环保的供电方式,是目前国内外许多学者所关注的问题。
本文试图以CDS18532KCS MOS等器件为核心,围绕LM5117进行低功率开关电源的研制。
2设计计划2.1基本线路DC-DC同步整流电路包括 LC低通滤波电路,同步整流电路,开关电路,以及负载电阻器,在图1中显示了DC-DC同步整流电路。
采用同步回路,可以有效地提高转换效率;功率 MOSFET采用的是整流型二极管.该方案能实现对两个 MOS 晶体管的切换时间的控制,从而实现对输出电压的控制。
图 1 同步整流电路原理图LM5117是一种适用于高输入和高输出功率的降压电路。
LM5117采用了一种自带输入电压前馈和循环电流的电流梯度调节模式。
该方法能有效地减小 PWM电路的噪声灵敏度,特别适合在需要较高的输入电压时使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
降压变换器的工作原理
降压变换器的设计步骤 降压变换器的设计实例
降压变换器
降压变换器
降压变换器
降压变换器
从CCM到CRM和DCM 的电流变化波形
降压变换器
降压变换器
降压变换器的设计步骤
1) 获得已知的参数: 如输出电压,电流,工作频率,占空比。 2)设定纹波电流: 一般选0.2~0.4倍左右。
3)计算最小要求的电感量。
降压变换器
4)利用AP法则选择合适的磁性。
5)选定合适的磁芯。
降压变换器
6)基于AL值计算所需绕组匝数。
7)计算交流磁通密度。
降压变换器
8)计算磁场强度:9)计算最大直流磁饱和密度。
10)计算磁芯损耗
降压变换器
11)计算线径
12)计算所占窗口面积