数列公式大全(高考)
高中数学数列公式大全(很齐全哟~!)精编版
高中数学数列公式大全(很齐全哟~!)精编版
1:等比数列通项公式:an=a1_q^(n-1);推广式:an=am·q^(n-m);
2:等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an
①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π
2n-1=(an)2n-1,π2n+1=(an+1)2n+1
3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
4:性质:
①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;
②在等比数列中,依次每k项之和仍成等比数列.
例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an
证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)
所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:
ak_al=am_an
说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。
它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1+k)·a(n-k)=a1·an
对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。
即:a(1+k)+a(n-k)=a1+an。
高中数学数列公式大全很齐全哟~!
高中数学数列公式大全很齐全哟~!数列公式在高中数学中是非常重要的知识点之一。
数列是数学中一种基本的数学对象,它是由一个有限或无限多个数按照一定规律顺序排列所组成的。
在高中数学中,数列分为等差数列、等比数列、递推数列等各种类型。
下面将为大家介绍一下高中数学数列公式大全。
一、等差数列公式1. 等差数列的通项公式等差数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$d$ 表示公差。
2. 等差数列的前 $n$ 项和公式等差数列的前 $n$ 项和公式为:$S_n =\dfrac{n}{2}[2a_1 + (n-1)d]$,其中 $S_n$ 表示前 $n$ 项和。
3. 等差数列的公差公式等差数列的公差公式为:$d = \dfrac{a_n - a_1}{n-1}$,其中 $d$ 表示公差。
4. 等差数列的中项公式等差数列的中项公式为:$a_{\dfrac{n+1}{2}} =\dfrac{a_1 + a_n}{2}$,其中 $a_{\dfrac{n+1}{2}}$ 表示中项。
5. 等差数列的求和公式等差数列的求和公式为:$S_n = \dfrac{n[\,2a_1 + (n-1)d\,]}{2}$,其中 $S_n$ 表示前 $n$ 项和。
二、等比数列公式1. 等比数列的通项公式等比数列的通项公式为:$a_n = a_1q^{n-1}$,其中$a_n$ 表示第 $n$ 项,$a_1$ 表示第一项,$q$ 表示公比。
2. 等比数列的前 $n$ 项和公式等比数列的前 $n$ 项和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
3. 等比数列的公比公式等比数列的公比公式为:$q = \sqrt[n-1]{\dfrac{a_n}{a_1}}$,其中 $q$ 表示公比。
4. 等比数列的求和公式等比数列的求和公式为:$S_n = \dfrac{a_1(1-q^n)}{1-q}$,其中 $S_n$ 表示前 $n$ 项和。
高中数列公式总结大全
高中数列公式总结大全数列是数学中比较基础的概念,也是高中数学中常出现的内容之一。
在学习数列时,我们需要掌握一些基本的公式,下面是高中数列公式总结大全。
一、定义1. 数列:按照一定的规律排列成的数的序列。
2. 通项公式:数列中第 n 项 a_n 与 n 之间的关系式。
3. 通项公式(递推公式):数列中第 n 项 a_n 与前几项(如前一项)之间的关系式。
二、等差数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的差等于同一个常数 d,那么这个数列就称为等差数列。
2. 通项公式:a_n = a_1 + (n-1)d3. 前 n 项和公式:S_n = n/2( a_1 + a_n) = n/2[2a_1 + (n-1)d]4. 差值公式:d = a_n - a_{n-1} = a_{n+1} - a_n = ... = a_2 - a_15. 求和公式:(1)n 为奇数时:S_n = [n/2(a_1+a_n)](2)n 为偶数时:S_n = n/2 [a_1+a_n]6. 证明:设等差数列有n项,公差为d,则:S_n = a_1 + (a_1+d) + ... + (a_1 + (n-1)d)将公式第一项和最后一项括起来,第二项和倒数第二项括起来,以此类推:S_n = [(a_1+a_n)+(a_2+a_{n-1})+...+(a_{n-1}+a_2)+(a_n+a_1)]/2设 a_1 + a_n = a_2 + a_{n-1} = ... = a_{n/2}+a_{n/2+1} = S则 S_n = [n/2]S三、等比数列公式1. 定义:如果一个数列从第二项开始,每一项与前一项的比等于同一个常数 q,那么这个数列就称为等比数列。
2. 通项公式:a_n = a_1*q^{n-1}3. 前 n 项和公式(n≠1):S_n = a_1*(1-q^n)/(1-q)4. 无穷级数收敛条件(|q|<1):S = a_1/(1-q)5. 等比中项公式:a_m = sqrt(a_{m-1}*a_{m+1})6. 连续 n 项的和:Sn = a_1*(q^n-1)/(q-1)四、等差数列与等比数列的转化1. 等差数列转化为等比数列令 b_n = a_n/d,则有:b_n = a_n/d = a_1/d*q^{n-1}即 b_n 是以 q 为公比的等比数列,通项公式是 b_n = (a_1/d)*q^{n-1}。
高中数列公式总结大全
高中数列公式总结大全高中数列公式总结大全数列是高中数学中非常重要的一个概念,它是由一般概念到具体具有规律性的数值排列的组合,我们可以通过分析数列的规律,找到其通项公式,从而求解各种问题。
下面是我为你们总结的高中数列公式大全。
等差数列公式:等差数列是一种每个数与它的相邻数之间的差恒定的数列。
我们可以用a1表示首项,d表示公差,n表示项数来描述等差数列。
等差数列的通项公式和前n项和公式如下:1. 通项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an)等比数列公式:等比数列是一种每个数与它的前一项之比恒定的数列。
我们可以用a1表示首项,q表示公比,n表示项数来描述等比数列。
等比数列的通项公式和前n项和公式如下:1. 通项公式:an = a1 * q^(n-1)2. 前n项和公式(当q≠1):Sn = a1 * (1 - q^n) / (1 - q)算术-几何数列公式:算术-几何数列是一种既满足等差性质又满足等比性质的数列。
我们可以用a1表示首项,a表示公差差值,q表示公比,n表示项数来描述算术-几何数列。
算术-几何数列的通项公式如下:an = a1 + (n-1)d + a1(q - 1)(q^n - 1) / (q - 1)Fibonacci数列公式:Fibonacci数列是一种特殊的数列,其第1项和第2项都是1,从第3项开始,每个数是前两个数之和。
Fibonacci数列的通项公式如下:fn = (1/sqrt(5)) * ((1 + sqrt(5))/2)^n - (1/sqrt(5)) * ((1 -sqrt(5))/2)^n等差多项式数列公式:等差多项式数列是一种既满足等差性质又满足多项式规律的数列。
我们可以用a1表示首项,d表示公差,n表示项数,k表示多项式次数来描述等差多项式数列。
等差多项式数列的通项公式如下:an = a1 + (n-1)d + (n(n-1)/2)k等差奇数数列公式:等差奇数数列是一种等差数列,其项数都是奇数。
高考数列基本公式是什么
高考数列基本公式是什么高考数列基本公式1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);高考数学等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;用构造数列方法求通项公式题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……(1)求{an}通项公式 (2)略解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)∴{an--}是首项为a1--,公比为--1的等比数列。
数列公式大全
数列公式大全数列是数学中的重要概念,在高考中也是常见的考点。
以下是数列的一些常见公式和性质,供高考复习参考。
1.等差数列等差数列是数列中最简单的一种形式,公式为:an = a1 + (n-1)d。
其中,an表示数列的第n项,a1表示首项,d表示公差。
常见性质:-公差d的求解方法:d=a2-a1=a3-a2=...- 前n项和公式:Sn = (a1 + an) * n / 2- 根据首尾两项和项数求公差:d = (an - a1) / (n-1)2.等比数列等比数列是指数列中后一项与前一项的比相等的数列。
公式为:an = a1 * r^(n-1)。
其中,an表示数列的第n项,a1表示首项,r表示公比。
常见性质:-公比r的求解方法:r=a2/a1=a3/a2=...-前n项和公式:Sn=a1*(1-r^n)/(1-r)(当,r,<1)-无穷项和公式:Sn=a1/(1-r)(当,r,<1)3.等差数列与等比数列的转换对于等差数列,可以通过等比数列进行转换。
公式为:an = ar^(n-1)。
其中,an表示等差数列的第n项,a表示等差数列的公差,r表示等差数列的首项和公差的比。
4.斐波那契数列斐波那契数列是一个特殊的数列,公式为:an = an-1 + an-2,其中a1 = 1,a2 = 1常见性质:5.平方数列平方数列是指数列中每一项都是一个平方数的数列。
公式为:an = n^2常见性质:-平方数和公式:Sn=n(n+1)(2n+1)/6-平方数的性质:n^2=(n-1)^2+2n-16.立方数列立方数列是指数列中每一项都是一个立方数的数列。
公式为:an = n^3常见性质:-立方数和公式:Sn=n^2(n+1)^2/4-立方数的性质:n^3=(n-1)^3+3n(n-1)+1除了以上几种常见的数列外,高考中还会涉及到其他类型的数列,如等差数列和等比数列的组合、绝对值数列、等差中项数列等等,这些数列的性质和公式需要根据具体的题目进行掌握和记忆。
高考数学知识点总结:数列公式及结论总结
2019高考数学知识点总结:数列公式及结论总结?一、高考数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n 的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,三、高考数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c≠1) 是等差数列。
高中数列公式总结大全
高中数列公式总结大全数列是数学中的一个重要概念,它是由一系列按照某种规律排列的数所组成的序列。
在高中数学学习中,数列是一个重要的知识点,掌握数列的公式对于解题至关重要。
下面我们来总结一下高中数列公式的大全。
1.等差数列公式。
等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。
其通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示第一项,d表示公差,n表示项数。
2.等比数列公式。
等比数列是指一个数列中,从第二项开始,每一项与它的前一项之比都是一个常数。
其通项公式为,$a_n = a_1 q^{n-1}$,其中$a_n$表示第n项,$a_1$表示第一项,q表示公比,n表示项数。
3.斐波那契数列公式。
斐波那契数列是指一个数列中,每一项都是前两项之和。
其通项公式为,$F_n = F_{n-1} + F_{n-2}$,其中$F_n$表示第n项,$F_{n-1}$表示第n-1项,$F_{n-2}$表示第n-2项。
4.调和数列公式。
调和数列是指一个数列中,每一项是调和级数的一项。
其通项公式为,$a_n = \frac{1}{n}$,其中$a_n$表示第n项。
5.等差中项公式。
等差中项是指在等差数列中,位于两个已知项之间的项。
其公式为,$a_m =\frac{a_i + a_j}{2}$,其中$a_m$表示等差中项,$a_i$和$a_j$分别表示已知的两个项。
6.等比中项公式。
等比中项是指在等比数列中,位于两个已知项之间的项。
其公式为,$a_m =\sqrt{a_i a_j}$,其中$a_m$表示等比中项,$a_i$和$a_j$分别表示已知的两个项。
7.数列求和公式。
数列求和是指将数列中的所有项相加的操作。
对于等差数列来说,求和公式为,$S_n = \frac{n}{2}(a_1 + a_n)$;对于等比数列来说,求和公式为,$S_n =\frac{a_1(1-q^n)}{1-q}$。
高考数学一轮复习数列公式总结
高考数学一轮复习数列公式总结
数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
以下为查字典数学网整理的数列公式总结,希望对考生温习有协助。
数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差 2A=a+b
m+n=k+l am+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比 G2=ab
m+n=k+l aman=akal
不等式
不等式的基本性质重要不等式
ab b
ab,bc
ab a+cb+c
a+bc-b
ab,cd a+cb+d
ab,cbc
ab,c0 ac
a0,c0 ac
a0 dnbn(nZ,n1)
a0 (nZ,n1)
(a-b)20
a,bR a2+b22ab
|a|-|b||ab||a|+|b|
证明不等式的基本方法
比拟法
(1)要证明不等式ab(或a
a-b0(或a-b0=即可
(2)假定b0,要证ab,只需证明,
要证a
综合法综合法就是从或已证明过的不等式动身,依据不等式的性质推导出欲证的不等式(由因导果)的方法。
剖析法剖析法是从寻求结论成立的充沛条件入手,逐渐寻求所需条件成立的充沛条件,直至所需的条件正确时为止,清楚地表现出持果索因
数列公式总结的全部内容就是这些,更多精彩内容请考生继
续关注查字典数学网。
高中数学数列公式大全很齐全哟~!
高中数学数列公式大全很齐全哟~!数列是数学中一个重要的概念,它由一组按照一定规律排列的数所组成,是数学分析、离散数学、组合数学等学科的基础和核心,涉及到高中数学的各个知识点。
数列公式是描述数列规律的基本方法和工具,它们常用于解决数列的基本问题,如求首项、公差、项数、和等。
下面我们来一起盘点高中数学数列公式大全。
一、等差数列的公式等差数列是指一个数列中每一项与它前面的一项之差都相等的数列。
根据等差数列的规律,我们可以得到一系列的公式:1.通项公式:an = a1 + (n-1) * d在等差数列中,第n项为an,首项为a1,公差为d。
这个公式是求等差数列中的任意一项。
在这个公式的基础上,也可以推得首项和公差的通用公式:2.首项公式:a1 = an - (n-1) * d3.公差公式:d = (an - a1) / (n-1)4.前n项和公式:Sn = (a1 + an) * n / 2二、等比数列的公式等比数列是指一个数列中每一项与它前面的一项之比都相等的数列。
根据等比数列的规律,我们可以得到一系列的公式:1.通项公式:an = a1 * q^(n-1)在等比数列中,首项为a1,公比为q。
这个公式是求等比数列中的任意一项。
在这个公式的基础上,也可以推得首项和公比的通用公式:2.首项公式:a1 = an / q^(n-1)3.公比公式:q = (an / a1)^(1/(n-1))4.前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)三、斐波那契数列的公式斐波那契数列是指一个数列中每一项都等于它前面两项的和的数列,其前几项依次为:1, 1, 2, 3, 5, 8, 13, 21, 34……根据斐波那契数列的规律,我们可以得到一系列的公式:1.通项公式:fn = (1 / sqrt(5)) * ((1 + sqrt(5)) /2)^n - (1 / sqrt(5)) * ((1 - sqrt(5)) / 2)^n2.近似公式:fn ≈ (1 / sqrt(5)) * ((1 + sqrt(5))/ 2)^n根据斐波那契数列的通项公式,我们可以解决诸如求第n 项、求前n项和等问题;根据斐波那契数列的近似公式,我们可以快速地求出一个斐波那契数列中任意一项的近似值。
高中数列公式总结大全
高中数列公式总结大全数列是高中数学中最重要的知识点之一,也是考试的重要内容。
数列在生活中也有广泛的应用,有助于我们更好地理解世界及其规律。
因此,了解各种数列的表达式及其相应的规律,对我们的学习十分重要。
本文旨在收集常见的数列表达式,并将这些表达式归纳总结,以便读者能够更好地理解这些表达式及其应用。
一、等差数列等差数列是最常见的数列,它满足“等差公式”:an=a1+(n-1)d其中a1表示等差数列的第一项,n表示数列的项数,d表示数列的公差。
等差数列的前n项和可用公式表示:Sn=n(a1+an)/2其中,a1表示等差数列的第一项,an表示等差数列的最后一项,n表示数列的项数。
二、等比数列等比数列是一种有规律的数列,它的每一项与前一项的比值相同,即比值为常数。
等比数列可以用指数形式表示:an=a1qn-1其中,a1表示数列的第一项,q表示公比,n表示数列的项数。
等比数列的前n项和可用公式表示:Sn=a1(1-qn)/(1-q)其中,a1表示数列的第一项,q表示公比,n表示数列的项数。
三、等差等比混合数列等差等比混合数列是由等差数列和等比数列混合而成的数列。
它的一般项公式为:an=a1qn-1+(n-1)d其中,a1表示数列的第一项,q表示公比,d表示公差,n表示数列的项数。
等差等比混合数列的前n项和可用公式表示:Sn=(an+a1)nr/(r+1)-(a1-d)(qn-1)/(q-1)其中,a1表示数列的第一项,q表示公比,d表示公差,r表示r=1-q,an表示数列的最后一项,n表示数列的项数。
四、其他数列除了上述的等差数列、等比数列以外,还有一些常见的数列,如偶数数列、奇数数列等。
偶数数列的一般项公式是:an=a1+2(n-1)其中,a1表示数列的第一项,n表示数列的项数。
奇数数列的一般项公式是:an=a1+2(n-1)+1其中,a1表示数列的第一项,n表示数列的项数。
偶数数列和奇数数列的前n项和可用公式表示:Sn=n(a1+an)/2其中,a1表示数列的第一项,an表示数列的最后一项,n表示数列的项数。
高考数列知识点归纳总结
高考数列知识点归纳总结一、等差数列等差数列是指数列中任意两项之间的差值恒定的数列。
常用的表示方式是:a,a + d,a + 2d,a + 3d...,其中a为首项,d为公差。
1. 等差数列的通项公式为了快速计算等差数列中任意一项的数值,我们可以使用通项公式。
对于等差数列{an},其通项公式为:an = a + (n - 1)d其中,an表示第n项的值,a为首项,d为公差。
2. 等差数列的前n项和公式等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
3. 等差数列性质等差数列具有以下性质:- 任意三项成等差数列,当且仅当它们的差值相等。
- 等差数列中,如果知道了首项、末项和项数,就可以计算出公差。
或者前n项和。
二、等比数列等比数列是指数列中任意两项之间的比值恒定的数列。
常用的表示方式是:a,ar,ar^2,ar^3...,其中a为首项,r为公比。
1. 等比数列的通项公式为了快速计算等比数列中任意一项的数值,我们可以使用通项公式。
对于等比数列{an},其通项公式为:an = ar^(n-1)其中,an表示第n项的值,a为首项,r为公比。
2. 等比数列的前n项和公式等比数列的前n项和可以通过求和公式来计算,公式为:Sn = a(r^n - 1) / (r - 1)其中,Sn表示前n项和,n为项数,a为首项,r为公比。
3. 等比数列性质等比数列具有以下性质:- 任意三项成等比数列,当且仅当它们的比值相等。
- 等比数列中,如果知道了首项、末项和项数,就可以计算出公比。
或者前n项和。
三、数列的求和运算在高考数学中,常常会遇到需要计算数列前n项和的情况。
数列的求和运算可以通过特定的公式或者方法来实现。
1. 等差数列的求和等差数列的前n项和可以通过求和公式来计算,公式为:Sn = (n/2)(a + l)其中,Sn表示前n项和,n为项数,a为首项,l为末项。
高考数学复习知识点:数学数列公式大全
高考数学复习知识点:数学数列公式大全高考各科复习资料高三开学已经有一段时间了,高三的同学们是不是已经投入了紧张的高考一轮复习中,数学网高考频道从高三开学季开始为大家系列准备了高考复习,高考一轮复习,高考二轮复习,高考三轮复习都将持续系统的为大家推出。
一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n 的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{an}为等差数列,则(c0)是等比数列。
(完整版)高中数学数列公式大全(很齐全哟~)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
高中数列公式总结大全
高中数列公式总结大全1. 等差数列1.1 定义等差数列是指数列中任意两个相邻项之间的差恒定的数列。
1.2 公式1.通项公式:a n=a1+(n−1)d2.前n项和公式:$S_n = \\dfrac{n}{2}[2a_1 + (n-1)d]$3.总和公式:$S = \\dfrac{n}{2}(a_1 + a_n)$2. 等比数列2.1 定义等比数列是指数列中任意两个相邻项之间的比恒定的数列。
2.2 公式1.通项公式:$a_n = a_1 \\cdot r^{(n-1)}$2.前n项和公式(首项不为0):$S_n = \\dfrac{a_1 \\cdot (r^n - 1)}{r-1}$3.总和公式(首项不为0):$S = \\dfrac{a_1 \\cdot (r^n - 1)}{r-1}$ 3. 等差数列与等比数列的关系若等差数列的公差d等于0,则这个等差数列也是等比数列。
4. 斐波那契数列4.1 定义斐波那契数列是指从0和1开始,后面每一项都等于前面两项之和的数列。
4.2 公式通项公式:F n=F n−1+F n−25. 等差中项数列5.1 定义等差数列中相邻项之和的一半构成的数列,称为等差中项数列。
5.2 公式通项公式:$b_n = \\dfrac{a_{n+1} + a_n}{2}$6. 等差递推数列6.1 定义等差递推数列是指数列中的每个项都是它前面一项与公差的和。
6.2 公式通项公式:a n=a n−1+d7. 等比递推数列7.1 定义等比递推数列是指数列中的每个项都是它前面一项与公比的乘积。
7.2 公式通项公式:$a_n = a_{n-1} \\cdot r$8. 平均数列8.1 定义平均数列是指它每一项都等于它前面所有项的平均值。
8.2 公式通项公式:$a_n = \\dfrac{1}{n}(a_1 + a_2 + ... + a_{n-1})$9. 总结这篇文档总结了高中数学中常见的数列公式,包括等差数列、等比数列、斐波那契数列、等差中项数列、等差递推数列、等比递推数列和平均数列的定义和相关公式。
高中数列公式集锦
高中数列公式集锦一、等差数列(1) 前n项和公式:Sn = n×[a1 + an]/2(2) 通项公式:an = a1 + (n-1)d(3) 总项数公式:n = [an-a1]/d + 1(4) 差分公式:d = a(n+1) - an = an - a(n-1)(5) 求和性质:① Sn = na1 + n(n-1)d/2② S2n = 2Sn + n×d×n③ S3n = 3Sn + 3n(n-1)d/2④ Smn = (m+n-1)×[2a1 + (m-1)d + (n-1)d']/2(6) 应用题型:① 等差数列的列数、首项、末项和公差已知,求和② 等差数列的项数、首项、末项和公差已知,求和③ 等差数列的前n项和已知,求首项和公差④ 等差数列的和等于n倍的首项,求公差⑤ 等差数列的前m项和等于n项和的p倍,求首项和公差二、等比数列(1) 前n项和公式:Sn = a1(1 - q^n) / (1 - q)(2) 通项公式:an = a1 q^(n-1)(3) 最后一项公式:an = a1 q^(n-1)(4) 比公式:q = an / a(n-1)(5) 求和性质:① Sn / a1 = (1 - q^n) / (1 - q)② Sn / an = (q^n - 1) / (q - 1)③ S∞ / a1 = 1 / (1 - q)(6) 应用题型:① 等比数列的项数、首项、末项和公比已知,求和② 等比数列的项数、首项、末项和公比已知,求首项或公比③ 等比数列的前n项和已知,求首项和公比④ 等比数列的前n项和等于后m项和,求首项和公比三、等差-等比数列(1) 前n项和公式:Sn = a1×[1-q^n]/(1-q) +d×n×[1-q^(n-1)]/(1-q)(2) 通项公式:an = a1q^(n-1) + d×[q^(n-1)-1]/(q-1)(3) 差分公式:d = a1(q-1) / [(q^n-1)/(q-1) - nq^(n-1)/(q-1)]= (an-a1q^(n-1)) / [q^n(1-q) / (q-1)](4) 比公式:q = (an-d) / (a(n-1)-d)(5) 首项公式:a1 = (an-dq^(n-1)) / (q^(n-1)-1)(6) 应用题型:① 前24项和等于后6项和的p倍,求a1和q② 前n项和等于n/4×后n项和,求a1和q③ 前100项和等于后40项和,首项为1,公比为2,求d④ 等差-等比数列的前n项和已知,首项为1,公比为2,公差为1,求n及其末项四、调和数列(1) 前n项和公式:Sn = H(n) = 1/1 + 1/2 + ... +1/n(2) 通项公式:an = 1/n(3) 若数列的最小值为1/n,则有:Sn > ln(n+1)(4) 应用题型:① 求H(100)及其上限② 求H(100)与ln(100.5)的大小比较。
高中数列公式总结
高中数列公式总结1. 一元线性递推数列一元线性递推数列是指数列的每一项可以通过前一项进行递推得到的数列。
其一般形式为:an = an-1 + d,其中an表示数列的第n项,d表示公差。
1.1 等差数列等差数列是一种特殊的一元线性递推数列,其公差d为常数。
等差数列的通项公式为:an = a1 + (n-1)d,其中a1表示数列的首项,d表示公差。
示例:假设一个等差数列的首项为a1=2,公差为d=3,求第n项an的值。
an = a1 + (n-1)d= 2 + (n-1)3= 2 + 3n - 3= 3n - 11.2 等比数列等比数列是一种特殊的一元线性递推数列,其公差d为常数。
等比数列的通项公式为:an = a1 * r^(n-1),其中a1表示数列的首项,r表示公比。
示例:假设一个等比数列的首项为a1=2,公比为r=3,求第n项an的值。
an = a1 * r^(n-1)= 2 * 3^(n-1)2. 二元线性递推数列二元线性递推数列是指数列的每一项可以通过前两项进行递推得到的数列。
其一般形式为:an = an-1 + an-2,其中an表示数列的第n项。
2.1 斐波那契数列斐波那契数列是一种特殊的二元线性递推数列,其首两项为1,之后的每一项等于前两项之和。
斐波那契数列的通项公式为:an = Fn,其中Fn表示斐波那契数列的第n项。
示例:求斐波那契数列的前n项。
第一项:a1 = 1第二项:a2 = 1第三项:a3 = 1 + 1 = 2第四项:a4 = 1 + 2 = 3...第n项:an = an-1 + an-23. 三元线性递推数列三元线性递推数列是指数列的每一项可以通过前三项进行递推得到的数列。
3.1. 阶乘数列阶乘数列是一种特殊的三元线性递推数列,其首项为1,之后的每一项等于前一项的阶乘。
阶乘数列的通项公式为:an = n!示例:求阶乘数列的前n项。
第一项:a1 = 1第二项:a2 = 1!第三项:a3 = 2!第四项:a4 = 3!...第n项:an = n!结论数列公式总结如下:•一元线性递推数列:–等差数列:an = a1 + (n-1)d–等比数列:an = a1 * r^(n-1)•二元线性递推数列:–斐波那契数列•三元线性递推数列:–阶乘数列这些数列公式在高中数学中有广泛的应用,在数学建模、排列组合等领域起到重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、高中数列基本公式:
1、一般数列的通项a n与前n项和S n的关系:a n=
2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:
S n=S n=S n=
当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。
4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k
(其中a1为首项、a k为已知的第k项,a n≠0)
5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);
当q≠1时,S n=S n=
三、高中数学中有关等差、等比数列的结论
1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则
3、等比数列{a n}中,若m+n=p+q,则
4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列
{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)
11、{a n}为等差数列,则 (c>0)是等比数列。
12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。
13. 在等差数列中:
(1)若项数为,则
(2)若数为则,,
14. 在等比数列中:
(1)若项数为,则
(2)若数为则,。