六年级奥数 第二讲.比和比例.教师版
六年级奥数-第二讲.比和比例.教师版
比和比例(二)例题精讲:模块一、比例转化【例1】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例2】 (2007年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例3】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?模块二、按比例分配与和差关系(一)量倍对应【例4】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【例5】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例6】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例7】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例8】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例9】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。
六年级奥数比和比例讲座【DOC范文整理】
六年级奥数比和比例讲座比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a:b=c:d,则:=a:b=c:d;性质2:若a:b=c:d,则:=a:b=c:d;性质3:若a:b=c:d,则:=a:b=c:d;性质4:若a:b=c:d,则a×d=b×c;正比例:如果a÷b=,则称a、b成正比;反比例:如果a×b=,则称a、b成反比.二、比和比例在行程问题中的体现在行程问题中,因为有速度=,所以:当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比..A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有:=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A、B的差不变,开始时差占3份,后来差占1份且与B一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A为17×8=136,B为17×5=85..近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?【分析与解】设北京西站、安庆西站相距多少千米?x=60:120,即:x=1:2,即x=x+112,解得x=1232.即北京西站、安庆西站两地相距1232千米,.两座房屋A和B各被分成两个单元.若干只猫和狗住在其中.已知:A房单元内猫的比率大于B房单元内猫的比率;并且A房第二单元内猫的比率也大于B房第二单元内猫的比率.试问是否整座房屋A内猫的比率必定大于整座房屋B内猫的比率?【分析与解】如下表给出的反例指出:对所提出问题的回答应该是否定的.表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.4.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比.【分析与解】公鸡占家禽场家禽总数的=,母鸡占总数的;公鸭占总数的,母鸭占总数的;公鹅占总数的,母鹅占总数的,公鹅、母鹅数量之比为:3:2..在古巴比伦的金字塔旁,其朝西下降的阶梯旁6的地方树立有1根走子,其影子的前端正好到达阶梯的第3阶.另外,此时树立l根长70c自杆子,其影子的长度为175c,设阶梯各阶的高度与深度都是50c,求柱子的高度为多少?【分析与解】70c的杆子产生影子的长度为175c;所以影子的长度与杆子的长度比为:175:70=2.5倍.于是,影子的长度为6+1.5+1.5×2.5=11.25,所以杆子的长度为11.25÷2.5=4.5..已知三种混合物由三种成分A、B、c组成,种仅含成分A和B,重量比为3:5;第二种只含成分B和c,重量比为I:2;第三种只含成分A和c,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和c,这三种成分的重量比为3:5:2?【分析与解】注意到种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A、B重量比调整到3:5,再将第二种、第三种混合物中A、B与种混合物中A、B视为单一物质.第二种混合物不含A,第三种混合物不含B,所以1.5倍第三种混合物含A为3,5倍第二种混合物含B为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有c为5×2+1.5×3=14.5,在最终混合物中c的含量为3A/5B含量的2倍.有14.5÷2-1=6.25,所以含有种混合物6.25.即、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为“1”,此时女工为“”,有1名男工相当名女工.男工、女工人数对调以后,则男工为“”,相当于女工“2”,女工为“I”.有2:1=36:25,所以=.于是,开始有男工数为×1100=500人,女工600人..有甲乙两个钟,甲每天比标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少?【分析与解】标准的时钟每隔分钟重合一次.假设经历了x分钟.于是,甲钟每隔分钟重合一次,甲钟重合了×x次;同理,乙钟重合了×x次;于是,需要乙钟比甲钟多重合×x-×x=×x=10;所以,x=24×60;所以要经历24×60×65分钟,则为天.于是为65天小时分钟..一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天.后来,由一队工人与二队工人组成新一队,其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天.试求前后两次工程的工作量之比?【分析与解】一队与二队的工作效率之比为::=15:16.一队干前一个工程需9÷=144天.新一队与新二队的工作效率之比为:新一队干后一个工程需6÷=282天.一队与新一队的工作效率之比为所以一队干后一个工程需282×天.前后两次工程的工作量之比是144:=:=540:1081.。
小学六年级奥数教案比和比例2
小学六年级奥数教案比和比例2小学六年级奥数教案比和比例2小学六年级比和比例姓名:例1 已知3∶(x-1)=7∶9,求x。
例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。
求现在的男、女生人数之比。
分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。
由此求出女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为24∶20=6∶5。
在例2中,我们用到了按比例分配的方法。
将一个总量按照一定的比分成若干个分量叫做按比例分配。
按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。
例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。
分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15,答:生石灰、硫磺粉、水分别需要180,360和2160千克。
在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。
如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。
例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。
完成任务时,师傅比徒弟多加工多少个零件?分析与解:解法很多,这里只用按比例分配做。
师傅与徒弟的工作效率有多少学生?按比例分配得到例6 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5∶6,小客车与小轿车之比是4∶11,收取小轿车的通行费比大客车多210元。
求这天这三种车辆通过的数量。
奥数六年级千份讲义424第二讲比和比例
✧参考书目:导引六年级第2讲;课本六年级上学期第2讲,第4讲。
✧本讲重点内容总结:一、比的基本概念,比值的基本概念,比例的基本概念,前项,后项,内项,外项。
二、正比例的概念,反比例的概念。
三、百分数与比例之间的联系。
四、比例的本质是两个数量之间的倍数关系,解题的时候常常将几比几转化为几份和几份。
五、浓度问题的基本概念和方法,十字交叉法和跷跷板原理。
六、和差倍分问题,行程问题,工程问题,浓度问题中比例的应用。
✧例题以及练习1.判断下面每个小题中的两个数量是否成比例,如果成比例,请指出是正比例还是反比例?1)小明每天都骑车56分钟来锻炼身体,他每天行进的路程和速度;2)小明每天走5公里来锻炼身体,他每天行进的时间和速度;3)小明正在以每小时15公里的速度匀速前进,他行进的时间和路程;4)长方形的面积不变,它的长和宽;5)圆的周长和半径;圆的面积和半径;圆的面积和半径的平方;6)杨老师行走的速度比小明快,两人同时从A地出发向北前进,那么两人之间的距离和运动的时间;7)杨老师行走的速度比小明快,两人同时从A地出发向北前进,那么杨老师前进的距离和两人之间的距离;8)杨老师在小明前方100米,杨老师行走的速度比小明快,两人同时同向出发,那么两人之间的距离和运动的时间;9)汽车的大小不同所选用的轮胎大小也不同,从甲地行驶到乙地,轮胎转过的圈数和轮胎的半径。
2.1)小明和小强的速度比为3:4,小明和小强的运动时间比为5:6,那么他们的运动路程比等于: ;2)小明和小强的速度比为3:4,小明和小强运动的路程比为5:6,那么他们的运动时间比等于: ;3)小明和小强的运动时间比为3:4,小明和小强的运动路程比为5:6,那么他们的运动速度比等于: ;3.小明从甲地去往乙地,如果按照原计划的速度走12公里,然后将速度提高30%,那么将提前1小时到达乙地。
如果按照原计划走1小时20分,然后将速度提高25%,那么也可以提前1小时到达乙地,求甲、乙两地之间的距离。
奥数六年级千份讲义5103_第二讲_比和比例
奥数六年级千份讲义5103_第二讲_比和比例知识点比和比例的基本概念:1. 什么是比?什么是比值?什么是比例?比和比例的形式分别是怎样的?2. 什么是正比(例)?什么是反比(例)?3. 百分数、分数、比例之间有什么区别和联系?4. 浓度问题中,溶液、溶质、溶剂、浓度分别指什么?它们之间有什么联系?5. 掌握浓度三角的解题方法,这和以前解平均数问题时有什么相似的地方?[注:如果某一讲中有新的概念,那么“知识点”都以提问的形式出现,学生在上课之后应当能对这些问题有很清晰的回答,适当做好笔记。
回家后把“例题与练习”尽量完成。
预习下一讲的相关内容:导引03、12、13讲(尽量做前8题,不看答案独立完成,不会的留到下次上课后再考虑);课本六年级上册1、3、4讲]例题与练习题1. (1)河面上立着两根竹竿,露出水面部分的长度之比是11:3,当水面下降84厘米后,露出水面部分的长度变成5:2,求较短的一根竹竿原来露出水面的部分的长度是_______厘米.(2)小姚、小明两个同学玩游戏牌,都尽力把对方的牌赢过来。
一开始小姚和小明手上的牌数之比为2:7,结果小姚一共赢了28张牌,且他和小明手上的牌数之比变为5:7。
那么小姚和小明共有______张牌.2. 鸡兔关在同一个笼子里,兔比鸡多9只,鸡腿和兔腿的数量的比为2:5,求鸡、兔分别有_____、_____只.3. 康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前了4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务。
这批零件共有______件.4. 已知甲乙丙三个班所有男生和女生的比例为13:14,甲班男女生的比例为5:4,丙班男女生的比例为2:1,三个班总人数的比例为3:4:2。
求乙班男女生的比例是_____:_____.5. 某班男生和女生的比例为4:5,他们一起参加植树劳动,男生的工作效率和女生工作效率之比为3:2。
学而思 小学六年级数学奥数刘 第二讲 _比和比例
第二讲比和比例学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;④x ay b=,y cz d=⇒x acz bd=;::::x y z ac bc bd=;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为():a a b+和():b a b+,所以甲分配到axa b+个,乙分配到bxa b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:a b(这里a b>),数量差为x,那么A的元素数量为axa b-,B的元素数量为bxa b-,所以解题的关键是求出()a b-与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
奥数 六年级 千份讲义 31 02比和比例
✧参考书目:导引六年级第2讲;课本六年级上学期第2讲,第4讲。
✧本讲重点内容总结:一、比的基本概念,比值的基本概念,比例的基本概念,前项,后项,内项,外项。
二、正比例的概念,反比例的概念。
三、百分数与比例之间的联系。
四、比例的本质是两个数量之间的倍数关系,解题的时候常常将几比几转化为几份和几份。
五、浓度问题的基本概念和方法,浓度三角和跷跷板原理。
六、和差倍分问题,行程问题,工程问题,浓度问题中比例的应用。
✧例题以及练习1.判断下面每个小题中的两个数量是否成比例,如果成比例,请指出是正比例还是反比例?(1)小明每天都骑车56分钟来锻炼身体,他每天行进的路程和速度;(2)小明每天走5公里来锻炼身体,他每天行进的时间和速度;(3)小明正在以每小时15公里的速度匀速前进,他行进的时间和路程;(4)长方形的面积不变,它的长和宽;(5)圆的周长和半径;圆的面积和半径;圆的面积和半径的平方;(6)须老师行走的速度比小明快,两人同时从A地出发向北前进,那么两人之间的距离和运动的时间;(7)须老师行走的速度比小明快,两人同时从A地出发向北前进,那么须老师前进的距离和两人之间的距离;(8)须老师在小明前方100米,须老师行走的速度比小明快,两人同时同向出发,那么两人之间的距离和运动的时间;(9)汽车的大小不同所选用的轮胎大小也不同,从甲地行驶到乙地,轮胎转过的圈数和轮胎的半径。
2.鸡兔关在同一个笼子里,兔比鸡多9只,鸡腿和兔腿的数量的比为2:5,求鸡兔各几只?3.已知甲乙丙三个班所有男生和女生的比例为13:14,甲班男女生的比例为5:4,丙班男女生的比例为2:1,三个班总人数的比例为3:4:2。
求乙班男女生的比例是多少?4.某次数学竞赛设一、二、三等奖,已知:(1)甲、乙两校获一等奖人数比为1:2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;(2)甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍;(4)甲校三等奖获奖人数占该校获奖人数的80%,那么,乙校获三等奖人数占该校获奖人数的百分之多少?5.有两堆石头,如果从第一堆中取出80块石头放进第二堆,那么第二堆与第一堆石头数之比为6:5;如果从第二堆中取出一些石头放进第一堆,那么第一堆与第二堆石头数之比为5:2。
(完整版)六年级奥数-第二讲.比和比例.教师版
比和比例(二)例题精讲:模块一、比例转化【例 1】某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【例 2】 (2007年华杯赛总决赛)A、B、C三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【巩固】某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【例 3】①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?模块二、按比例分配与和差关系(一)量倍对应【例 4】一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【巩固】小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【巩固】在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐元,乙捐元,丙捐元.【巩固】有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【例 5】一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【例 6】幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【巩固】参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【巩固】圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【例 7】甲乙两车分别从A,B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?【例 8】师徒二人加工一批零件,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工100个零件,求师傅和徒弟一共加工了多少个零件?【巩固】师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟.完成任务时,师傅比徒弟多加工多少个零件?【例 9】A、B、C三个水桶的总容积是1440公升,如果A、B两桶装满水,C桶是空的;若将A桶水的全部和B桶水的15,或将B桶水的全部和A桶水的13倒入C桶,C桶都恰好装满.求A、B、C三个水桶容积各是多少公升?【巩固】学而思学校四五六年级共有615名学生,已知六年级学生的12,等于五年级学生的25,等于四年级学生的37。
冀教版六年级数学上册 (比的基本性质)比和比例教学课件
2 比和比例
比的基本性质
课前导入
探究新知
课堂练习
课堂小结
课后作业
课前导入 有两种包装的饲料。算一算:两袋
中粗蛋白和总质量的比值一样吗?
可以根据分数的 基本性质约分。
探究新知
根据分数的基本性质,你能说说比的前 项、后项和比值有什么关系吗?
比的前项、后项同时乘或除以相同 的数(0除外),比值不变。这叫做比 的基本性质。 应用这个性质可以把比化成最简单 的整数比。
7
最简单的 整数比
求比值和化简比的异同点
(1)相同点
求两个数的比值和化简比的方法是一样的,都是运用比的基本性质。
(2)不同点
名称 意义不同
计算方法不同
表示形式不同
求比 比值是两个数相除 比的前项÷比的后项。
值 的结果。
是一个数,可以是分数、 小数或整数。
根据比的基本性质,比的前
化简 把两个数的比化成
(1)女生的人数是24个,男生的人数是21 个,则男生比女生为21:24,约分之后就是 7:8。
(2)全班总人数是21+24=45,女生比全班 人数应该是24:45,约分之后就是8:15。
配制一种盐水,在120克水中放了5克盐。 (1)求盐和水的质量的比; (2)求盐和盐水的质量的比; (3)求水和盐水的质量的比。
六年级数学·上 新课标[冀教] 第2 单元
比的基本性质
想一想,填一填。
5:6 =(
5 )÷( 6
)=
( (
5 6
) )
2 5
=
(
3
)
=
( (
6 15
) )
8÷12 =16÷ ( 24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲比和比例教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay b=⇒y bx a=;x ya b=;a bx y=;②x ay b=⇒mx amy b=;x may mb=(其中0m≠);③x ay b=⇒x ax y a b=++;x y a bx a--=;x y a bx y a b++=--;L④x ay b=,y cz d=⇒x acz bd=;::::x y z ac bc bd=;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为():a a b+和():b a b+,所以甲分配到axa b+个,乙分配到bxa b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:a b(这里a b>),数量差为x,那么A的元素数量为axa b-,B的元素数量为bxa b-,所以解题的关键是求出()a b-与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。
题中如果有几个不同的单位“1”,必须根据具体情况,将不同的单位“1”,转化成统一的单位“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点:1.题中有几种数量相比较时,要选择与各个已知条件关系密切、便于直接解答的数量为单位“1”。
2.若题中数量发生变化的,一般要选择不变量为单位“1”。
3.应用正、反比例性质解答应用题时要注意题中某一数量是否一定,然后再确定是成正比例,还是成反比例。
找出这些具体数量相对应的分率与其他具体数量之间的正、反比例关系,就能找到更好、更巧的解法。
4.题中有明显的等量关系,也可以用方程的方法去解。
5.赋值解比例问题例题精讲:模块一、比例转化【例 1】已知甲、乙、丙三个数,甲等于乙、丙两数和的13,乙等于甲、丙两数和的12,丙等于甲、乙两数和的57,求::甲乙丙. 【解析】 由甲等于乙、丙两数和的13,得到甲等于三个数和的113+14=,同样的乙等于甲、丙两数和的112+13=,同样的丙等于甲、乙两个数和的557512=+ ,所以115::::3:4:54312==甲乙丙. 【例 2】 已知甲、乙、丙三个数,甲的一半等于乙的2倍也等于丙的23,那么甲的23、乙的2倍、丙的一半这三个数的比为多少?【解析】 甲的一半、乙的2倍、丙的23这三个数的比为1:1:1,所以甲、乙、丙这三个数的比为()121:12:123⎛⎫⎛⎫÷÷÷ ⎪ ⎪⎝⎭⎝⎭即132::22,化简为4:1:3,那么甲的23、乙的2倍、丙的一半这三个数的比为()214:12:332⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭即83:2:32,化简为16:12:9. 【例 3】 如下图所示,圆B 与圆C 的面积之和等于圆A 面积的45,且圆A 中的阴影部分面积占圆A 面积的16,圆B 的阴影部分面积占圆B 面积的15,圆C 的阴影部分面积占圆C 面积的13.求圆A 、圆B 、圆C 的面积之比.【解析】 设A 与B 的共同部分的面积为x ,A 与C 的共同部分的面积为y ,则根据题意有()()564A B C x y =+=+,5B x =,3C y =,于是得到()56453B C B C ⎛⎫+=+ ⎪⎝⎭,这条式子可化简为15B C =,所以()5204A B C C =+=.最后得到::20:15:1A B C =. 【例 4】 某俱乐部男、女会员的人数之比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数之比是3:1,乙组中男、女会员的人数之比是5:3.求丙组中男、女会员人数之比.【解析】 以总人数为1,则甲组男会员人数为103310873110⨯=+++,女会员为31110310⨯=,乙组男会员为8511087535⨯=+++,女会员为1335525⨯=;丙组男会员为33113+210510⎛⎫-+= ⎪⎝⎭,女会员为21393+2102550⎛⎫-+= ⎪⎝⎭;所以,丙组中男、女会员人数之比为19:5:91050=. 【巩固】 一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的一段时间后,分别剩下60%、40%的任务没有完成,已知两个工程队的工作效率(建设速度)之比3:1,求这两个工程队原先承包的修建公路长度之比.【解析】 (法一)甲工程队以3倍乙工程队建设速度,仅完成了40%的承包任务,而乙工程队完成了60%,所以甲工程队承包任务的40%等于乙工程队承包任务的60%3180%⨯=,所以甲工程队的承包的任务是乙工程队承包任务的180%40%450%÷=,所以两个工程队承包的修建公路长度之比为450%:19:2=.(法二)两个工程队完成的工程任务(修建公路长度)之比等于工作效率之比,等于3:1,而他们分别完成了各自任务的40%和60%,所以两个工程队承包的修建公路长度之比为()()340%:160%9:2÷÷=.【例 5】 某团体有100名会员,男女会员人数之比是14:11,会员分成三组,甲组人数与乙、丙两组人数之和一样多,各组男女会员人数之比依次为12:13、5:3、2:1,那么丙组有多少名男会员?【解析】 会员总人数100人,男女比例为14:11,则可知男、女会员人数分别为56人、44人;又已知甲组人数与乙、丙两组人数之和一样多,则可知甲组人数为50人,乙、丙人数之和为50人,可设丙组人数为x 人,则乙组人数为()50x -人,又已知甲组男、女会员比为12:13,则甲组男、女会员人数分别为24人、26人,又已知乙、丙两组男、女会员比例,则可得:5224(50)5683x x +-+=,解得18x =.即丙组会员人数为18人,又已知男、女比例,可得丙组男会员人数为218123⨯=人. 【例 6】 (20XX 年华杯赛总决赛)A 、B 、C 三项工程的工作量之比为1:2:3,由甲、乙、丙三队分别承担.三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?【解析】 根据题意,如果把A 工程的工作量看作1,则B 工程的工作量就是2,C 工程的工作量就是3. 设甲、乙、丙三个工程队的工作效率分别为x 、y 、z .经过k 天,则:()()()22133213kx ky ky kz kz kx =-⎧⎪=-⎨⎪=-⎩L L L LL L 将⑶代入⑵,得()243kx ky +=L L , 将⑷代入⑴,得2223kx kx +=-,47x k=, 将47x k =代入⑴,得67y k =.代入⑶,得37z k=. 甲、乙、丙三队的.工作效率的连比是463::4:6:3777k k k=. 【巩固】 某次数学竞赛设一、二、三等奖.已知:①甲、乙两校获一等奖的人数相等;②甲校获一等奖的人数占该校获奖总人数的百分数与乙校相应的百分数的比为5:6;③甲、乙两校获二等奖的人数总和占两校获奖人数总和的20%;④甲校获三等奖的人数占该校获奖人数的50%;⑤甲校获二等奖的人数是乙校获二等奖人数的4.5倍.那么,乙校获一等奖的人数占该校获奖总人数的百分数等于多少?【解析】 由①、②可知甲、乙两校获奖总人数的比为6:5,不妨设甲校有60人获奖,则乙校有50人获奖.由③知两校获二等奖的共有(6050)20%22+⨯=人;由⑤知甲校获二等奖的有22(4.51) 4.518÷+⨯=人;由④知甲校获一等奖的有606050%1812-⨯-=人,那么乙校获一等奖的也有12人,从而所求百分数为1250100%24%÷⨯=.【例 7】 ①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【解析】 如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,四至九班的男生等于四个班的人数之和.所以,男、女生人数之比是5:4.模块二、按比例分配与和差关系(一)量倍对应【例 8】 一些苹果平均分给甲、乙两班的学生,甲班比乙班多分到16个,而甲、乙两班的人数比为13:11,求一共有多少个苹果?【解析】 一共有()()1613111311192÷-⨯+=个苹果.【巩固】 小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量.【解析】 根据题意可知,他们三人各自的藏书数量分别占三人藏书总量的3346++、4346++、6346++,所以小新拥有的藏书数量为35212346⨯=++本,小志拥有的藏书数量为45216346⨯=++本,小刚拥有的藏书数量为65224346⨯=++本. 【巩固】 在抗洪救灾区活动中,甲、乙、丙三人一共捐了80元.已知甲比丙多捐18元,甲、乙所捐资的和与乙、丙所捐资的和之比是10:7,则甲捐 元,乙捐 元,丙捐 元.【解析】 由于甲比丙多捐18元,所以甲、乙所捐资的和比乙、丙所捐资的和多18元,那么甲、乙所捐资的和为:18(107)1060÷-⨯=(元),乙、丙所捐资的和为601842-=元.所以,甲捐了804238-=(元),乙捐了603822-=(元),丙捐了381820-=(元).【巩固】 有120个皮球,分给两个班使用,一班分到的13与二班分到的12相等,求两个班各分到多少皮球?【解析】 根据题意可知一班与二班分到的球数比11:3:223=,所以一班分到皮球31207232⨯=+个,二班分到皮球1207248-=个.【例 9】 一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数.【解析】 原来一班的人数为两班总人数的888715=+,调班后一班的人数是两班人数的44459=+,调班前后一班人数的比值为84:6:5159=,所以一班原来的人数为()865648÷-⨯=人,二班原来的人数为488742÷⨯=人.【例 10】 幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?【解析】 由于男、女生人数有比例关系,而且知道总数,所以可以用鸡兔同笼的方法.假设18名女生全部是大班,则大班男生数:女生数5:330:18==,即男生应有30人,实际上男生有32人,相差2个人;又中班男生数:女生数2:16:3==,以3个中班女生换3个大班女生,每换一组可增加1个男生,所以需要换2组;所以,大班女生有183212-⨯=(名).【巩固】 参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【解析】 假设四年级和六年级人数同样多,则参加植树的同学共有72080800+=人,四、五、六三个年级的人数比为3:2:3,知道三个量的和及它们的比,就可以按比例分配,分别求出三个年级参加植树的人数.六年级:3800300323⨯=++人;五年级:2800200323⨯=++人;四年级:30080220-=人. 【巩固】 圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?【解析】 设圆珠笔的价格为4,那么铅笔的价格为3,则20支圆珠笔和21支铅笔的价格为20×4+21×3=143,则单位“1”的价格为71.5÷143=0.5元.所以圆珠笔的单价是O .5×4=2(元).【例 11】 甲、乙两只蚂蚁同时从A 点出发,沿长方形的边爬去,结果在距B 点2厘米的C 点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长.【解析】 两只蚂蚁在距B 点2厘米的C 点相遇,说明乙比甲一共多走了224⨯=(厘米).又知乙蚂蚁的速度是甲蚂蚁的1.2倍,相同时间内乙蚂蚁爬的路程与甲蚂蚁爬的路程比为:1.2:1=6:5,所以甲爬的路程是()465520÷-⨯=(厘米),乙爬的路程是20424+=(厘米),长方形的周长为202444+=(厘米).【例 12】 甲乙两车分别从 A , B 两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米.问:A ,B两C B地相距多少千米?【解析】 甲、乙原来的速度比是5∶4,相遇后的速度比是:[5×(1-20%)]∶[4×(1+20%)]=4∶4.8=5∶6.相遇时,甲、乙分别走了全程的95和94。