材料力学-第四章 扭转_2

合集下载

材料力学 第四章 扭转

材料力学 第四章  扭转
W = Me 2 n
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m

P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:

Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学4.

材料力学4.
1. 剪应力互等定理 由 MZ 0
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G

E
21


低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max

M nmax Wn


Wn

D3
16

M nmax

解得: D 66mm
(三)由刚度条件设计 D 。
max

M nmax GI p
180



D4
32

Ip

M nmax
G
180

解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max

Mn
hb2


4

9
单位长度的扭转角为:


Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图

第四章北航 材料力学 全部课件 习题答案

第四章北航 材料力学 全部课件 习题答案

(
d 1/ m (3m 1)T ) d dx 2πCm( ) ( 3m 1) / m 2
(e)
将式(e)代入式(b),并注意到 T=M ,最后得扭转切应力公式为
M 1/ m 2πm d (3 m 1)/m ( ) 3m 1 2 横截面上的切应力的径向分布图示如图 4-8。

R0
此管不是薄壁圆管。
D 80 6 mm 37mm, δ 6mm R0 10 2 2

80- 6 2 68 0.85 80 80
max2
由此得 M 的许用值为
M2 16M 2 [ 2 ] Wp2 πD 3 (1 4 )
[M 2 ]
第四章 扭 转
4-5
一受扭薄壁圆管,外径 D = 42mm,内径 d = 40mm,扭力偶矩 M = 500N•m,切
变模量 G=75GPa。试计算圆管横截面与纵截面上的扭转切应力,并计算管表面纵线的倾斜角。 解:该薄壁圆管的平均半径和壁厚依次为
1 D d D d R0 ( ) 20.5mm, 1mm 2 2 2 2 2 于是,该圆管横截面上的扭转切应力为 T 500N 1.894108 Pa 189.4MPa 2 2 2 2πR0 2π 0.0205 0.001m
式中的 C 与 m 为由试验测定的已知常数。试建立扭转切应力公式,并画横截面上的切应力分
题 4-8 图 解:所研究的轴是圆截面轴,平面假设仍然成立。据此,从几何方面可以得到
d dx 根据题设,轴横截面上距圆心为 ρ 处的切应力为

(a)
τ ρ C(
由静力学可知,
d 1/ m ) dx
2

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

材料力学第04章 杆件变形分析

材料力学第04章 杆件变形分析
桁架的变形通常用节点的位移(displacement)表示,现以 下图所示桁架为例,说明桁架节点位移的分析方法。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

材料力学第4章扭转变形

材料力学第4章扭转变形

1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为

材料力学 扭转(2)

材料力学 扭转(2)
2. 刚度校核
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)

材料力学第四章 扭转

材料力学第四章 扭转

扭转轴的内力偶矩称为扭矩
3、扭矩利用截面法、并建立平衡方程得到
m
m
x
m
Mn
MX 0 Mnm0
Mn m
8
§3-2 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI


符 号 规
Mn I
离M开n截 面
定 :
mI
I
m
Mn
I
I
m
Mn
Mn I
指向M 截n 面
I
右手定则:右手四指内屈,与扭矩转向相同,则拇指的
m
转速:n (转/分)
1分钟输入功: 1分钟m 作功:
W W '
W 6 N 0 10 60 0 N 0 000
W m m 2 n 1 2 nm
m955N0 Nm 单位
n
7
§3-2 外力偶矩、扭矩和扭矩图
2、扭矩的概念
扭转变形的杆往往称之为扭转轴
Mn
Mn
(r )
A
B
(r )
C
C
D d
D
b
x
d
d


d
dx
d
dx
dx
d
称为单位长度相对扭转角
dx
对于同一截面,
d 常量 dx
上式表明:圆轴扭转时,其横截面上任意点处的剪应变与该点至截 面中心之间的距离成正比。上式即为圆轴扭转时的变形协调方程。
32
§3-4 等值圆杆扭转时的应力强度条件
dAsin
d d A cA s o i s d n sA i c n o 0

《材料力学》第四章 扭转

《材料力学》第四章 扭转

第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。

2、汽车方向盘的转动轴工作时受扭。

3、机器中的传动轴工作时受扭。

4、钻井中的钻杆工作时受扭。

二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。

变形特点:杆任意两截面绕轴线发生相对转动。

轴:主要发生扭转变形的杆。

§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。

外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。

外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。

(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。

)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。

4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。

作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。

1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。

纵向线——倾斜了同一个角度,小方格变成了平行四边形。

3、切应变(角应变、剪应变):直角角度的改变量。

4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。

⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。

材料力学:第四章 扭转

材料力学:第四章 扭转

回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题

材料力学扭转

材料力学扭转


dx

c
x
它们组成的力偶,其矩为
(dxdy )dz
z
(dxdy )dz
y

此力偶矩与前一力偶矩
dy
d
a

b
( dy dz) dx 数量相等而转向相反,从而可得 z

dx

c
x

剪应力互等定理:
单元体两个相互垂直平面上
a
dy
y


b
d
的剪应力同时存在,且大小
相等,都指相(或背离)该
y

程中,认为上,下两面上的外
a
'
d

x
力将不作功。只有右侧面的外 力 (dydz) 对相应的位移 dx 作
z
b dx
dx

了功。
当材料在线弹性范围内内工作时,
y
上述力与位移成正比,因此,单
元体上外力所作的功为
1 2 1 2
z a

'
d

x
dW
( dydz)( dx)
( dxdydz)

M GI
e P

r

o

dA



M I
e p

上式为圆轴在扭转时横截面上任一点处的剪应力计算公式



M I
e p

式中:Me 为横截面上的扭矩; 为求应力的点到圆心的距离:
I p A dA
2
称为横截面对圆心的 极惯性矩

说明:
M n I
p
max
Mn

材料力学课件 第四章 扭 转

材料力学课件 第四章  扭  转

3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a

b

dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转



T ( 2 A 0t)


( L ) R

剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4

《材料力学 第2版》_顾晓勤第04章第2节 扭矩和扭矩图

《材料力学 第2版》_顾晓勤第04章第2节 扭矩和扭矩图
第 2 节 扭矩和扭矩图 一、外力偶矩的计算
第四章 扭 转
MHale Waihona Puke 9550P nM — 作用在轴上的外力偶矩,单位为牛顿·米(N·m) P — 为轴所传递的功率,单位为千瓦(kW) n — 轴的转速,单位为转/分(r/min)
当传递的功率 P 的单位为 PS(马力,1PS = 735.5W)
时,上式变为:
当轴上同时有几个外力偶矩作用时,一般而言,轴 的各段截面上的扭矩是不相同的,必须用截面法分 段求出。
截面法求扭矩 的一般步骤
假截留半; 内力代换; 内外平衡。
第 2 节 扭矩和扭矩图
第四章 扭 转
例 4-1 如图所示,传动系统的主轴 ABC,其转速
n 1450r/min,输入功率 PA 100kW,输出功率 PB 80kW,PC 20kW,不计轴承摩擦等功率消耗。试画
3)作出扭矩图如图
1 1
T1 T
659 Nm
第四章 扭 转
2 2
T2
132 Nm
第 2 节 扭矩和扭矩图
第四章 扭 转
例 4-2 求如图所示传动轴 1-1 截面和 2-2 截面的扭 矩,并画扭矩图。
解:用截面法求扭矩 1)取 1-1 截面左侧
T11 M 3 kN m
2)取 2-2 截面右侧
= 3kNm 1
= 5kNm = 2kNm
2
1
2
2kNm
T
T22 M C 2 kN m
3)作出扭矩图如图
3kNm
第 2 节 扭矩和扭矩图
第四章 扭 转
扭矩图的简捷画法
在外力偶矩作用处的截面上,扭矩发生突变,突变 量等于外力偶矩的数值。利用这一突变特性,可较 快地画出扭矩图。 当轴上有多个外力偶矩作用时,愈显示出这种方法 的快捷简便。

材料力学课件-第四章 扭转-薄壁杆件的扭转

材料力学课件-第四章  扭转-薄壁杆件的扭转
部分加厚由于最小壁厚不变,最大应力不变。部分加厚后甚至由于应力集中更危险。
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
T 6b 3T TS 2 2 2 2 4G 4G ( 2b ) 8Gb 3
1 2b 2
1 4b 2 2 2 3
结论 若将开口件加工为闭口件,将极大地提高构件的扭转
强度和刚度。
本 章 作 业
4-5,4-10, 4-13,4-29 4-16, 4-17 , 4-19 4-21(c),4-23 4-32,4-34
max
T h b2 T [ ] 2 0.246 2b b
取 b = 45 mm。
6 T 3 10 b 3 3 44.3 0.492[ ] 0.492 70
由 h / b = 2 查表得 = 0.229
T 3 10 6 2 1 2 10 m G 2b b 3 80 103 0.229 2 454
闭口薄壁杆件切应力分析
F
dx dx
x
0
1 1dx 2 2 dx 0
1
1
2
x
2
1 1 2 2
dFS ds
Const
dT ds
T ds ds 2
S S


闭口薄壁杆件切应力

ds dFS
例 正方形截面轴两端承受转矩而产生自由扭转。在强度相同
长度相等的条件下计算圆轴与正方形截面轴的重量比。
转矩 T 在矩形边中点引起最大切应力。 max 由正方形 h / b = 1
T h b2
3
查表得 = 0.208
圆轴
max
T [ ] 3 0.208b
16T d π[ ]

2.约束扭转
扭转时,由于杆的端部支座的约束,使杆件截 面翘曲受到一定限制,而引起任意两相邻横 截面的翘曲程度不同,将在横截面上产生附 加的正应力。
分析与讨论
横截面上角点处扭转切应力的情况是怎样的? 如果角点处存在着切应力,将 会导致什么情况产生? 由此可得到什么结论?
三角形截面轴的情况又怎样?
§5-6 非圆截面杆扭转的概念

圆截面杆扭转时的应力和变形公式,均
建立在平面假设 的基础上。

对于非圆截面杆,受扭时横截面不再保
持为平面,杆的横截面已由原来的平面变
成了曲面。这一现象称为截面翘曲。

因此,圆轴扭转时的应力、变形公式对
非圆截面杆均不适用。

非圆截面杆在扭转时有两种情形:
1.自由扭转或纯扭转 在扭转过程中,杆的各横截面的翘曲不受任何约束,任意两相邻横 截面的翘曲程度完全相同。此时横截面只有剪应力,而没有正应 力。
本 章 内 容 小 结
线弹性圆轴扭转切应力
Tr IP
切应力在横截面上的分布规律 最大切应力
max
T [ ] WP
WP
1 πd 3 16
实心
WP
1 π D 3 1 4 16
空心
当圆轴各段的轴径和扭矩互不相同时,应综合考虑以 确定最大切应力所在的截面。
线弹性圆轴扭转的相对转角
狭长矩形截面 两个端面的相对转角
max

3T 2 ht 3TL G ht3
等厚度开口薄壁杆件可展平为狭长矩形计算。 不同厚度开口薄壁杆件可视为若干个狭长矩形的组合。
闭口薄壁杆件
在闭口薄壁杆件中,沿厚度方向上的扭转切应力均匀 分布,并形成切应力流 。 切应力流特点 闭口薄壁杆件切应力 两个端面的相对转角
相同,左为开口,右为闭口,比较两者 在相同扭矩 T 作用下的最大切应力和单
位长度转角。
开口件 1max
3T 3T T 2 2 ht 6b 2b 2
2
3T 3T T 1 3 3 Ght G 6b 2Gb 3
闭口件 2b
T T 2 2 2 2 2 2b 4b

T 2
max
T 2 min
两个端面的相对转角
L
两个端面的相对转角 S

TL ds 4G 2 S

等厚度截面两个端面的相对转角
TSL 4G 2 TS 4G 2
等厚度截面单位长度上的相对转角

2b δ b δ b 2b
如图的两薄壁杆件尺寸、材料完全
i 3T ti

k 1
n
hk t k3
max 3T t max

k 1
n
hk t k3
n
i 3T L G hk t k3
k 1
4. 闭口薄壁杆件
在闭口薄壁杆件中,沿厚度方向上的扭转切应力均
匀分布,并形成切应力流 (shearing stress flow )。
max
3T 2 ht
t h
3TL G ht3 3T G ht3
例 立柱横截面是长为 2b 、宽为 b 的矩形。两
2b
端转矩为 3 kN m,许用切应力为 70 MPa ,试 确定尺寸 b 。若材料 G = 80 GPa ,根据所选定
b
的尺寸确定单位长度的相对转角。
转矩在长边中点引起最大切应力。 max 由 h / b = 2 查表得 = 0.246
Const
max
T 2 min
TL ds 4G 2 S

屈服扭矩和极限扭矩
横截面上切应力分布的概貌
本章内容结束
3
T b 0.208[ ]
max
16T [ ] 3 πd
两者重量比即横截面积之比:
π 3 16T 0.208[ ] G1 π d 2 0.82 4 π[ ] T G2 4b
2
2
3. 开口薄壁杆件
h
h
等厚度开口薄壁杆件可展平为狭长矩形计算。 不同厚度开口薄壁杆件可视为若干个狭长矩形的组合。 第 i 个狭长矩形长边各点处 最大切应力发生在壁厚 最大的狭长矩形长边上 相对转角
2. 矩形截面轴
角点上切应力必为零。
b
最大切应力出现在长边中点
max
h
T h b2
与 h / b 有关,见有关数表
轴两端面相对扭角

TL G h b 3
与 h / b 有关,见有关数表

狭长矩形截面
max
T h b2
1 3
最大切应力 两个端面的 相对转角 单位长度上 的相对转角
T dx 适用于变截面或有分布力偶矩作用的情况。 GI P 0

L

TL GI P
适用于等截面且无分布力偶矩作用的情况。
分段等截面圆轴应分段求出相对转角再求和。 单位长度上的相对转角

d T dx GI P
扭转超静定问题
平衡方程 物理方程 协调方程
矩形截面轴的扭转切应力
T 最大切应力(长边中点) max h b2 TL 轴两端面相对扭角 G h b 3
相关文档
最新文档