数字信号处理实验指导书

合集下载

数字信号处理实验指导书(M)

数字信号处理实验指导书(M)

数字信号处理实验电子信息科学与技术实验室2007年7月目录实验一离散时间信号的时域表示 (3)实验二离散信号的卷积和 (6)实验三离散傅立叶变换及其特性验证 (8)实验四信号处理中FFT的应用 (11)实验五离散系统的Z域分析 (15)实验六无限冲激响应(IIR)数字滤波器的三种结构 (19)实验七冲激响应不变法IIR数字滤波器设计 (23)实验八双线性变换法IIR数字滤波器设计 (26)实验一 离散时间信号的时域表示一、实验目的1、熟悉Matlab 命令,掌握离散时间信号-序列的时域表示方法。

2、掌握用Matlab 描绘二维图像的方法。

3、掌握用Matlab 对序列进行基本的运算和时域变换的方法。

二、实验原理与计算方法(一)序列的表示方法 序列的表示方法有列举法、解析法和图形法,相应的用Matlab 也可以有这样几种表示方法,分别介绍如下:1、列举法 在Matlab 中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n 和表示量值的x 两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4]; >>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则Matlab 默认该序列的起始位置为n=0。

由于内存有限,Matlab 不能表示一个无限序列。

2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列nn x )9.0()(=,100≤≤n 的Matlab 程序为:>>n=[0:10]; >>x=(0.9).^n;例 1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的Matlab 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n); 3、图形法在Matlab 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在例1.1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n 的值决定,为-3到4,纵坐标的范围由向量x 的值决定,为-1到7。

数字信号处理实验指导书

数字信号处理实验指导书

数字信号处理实验指导书实验一离散时间系统及离散卷积一、实验目的(1)熟悉MA TLAB软件的使用方法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利用MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利用MATLAB计算离散卷积。

二、实验内容1、离散时间系统的单位脉冲响应(1)选择一个离散时间系统;(2)用笔进行差分方程的递推计算;(3)编制差分方程的递推计算程序;(4)在计算机上实现递推运算;(5)将程序计算结果与笔算的计算结果进行比较,验证程序运行的正确性;2、离散系统的幅频、相频的分析方法(1)给定一个系统的差分方程或单位取样响应;(2)用笔计算几个特殊的幅频、相频的值,画出示意曲线图;(3)编制离散系统的幅频、相频的分析程序;(4)在计算机上进行离散系统的幅频、相频特性计算,并画出曲线;(5)通过比较,验证程序的正确性;3、离散卷积的计算(1)选择两个有限长序列,用笔计算其线性卷积;(2)编制有限长序列线性卷积程序;(3)利用计算程序对(1)选择的有限长序列进行卷积运算;(4)比较结果验证程序的正确性。

三、实验要求a)自编并调试实验程序,并且,给实验程序加注释;b)按照实验内容完成笔算结果;c)验证计算程序的正确性,记录实验结果。

d) 至少要求一个除参考实例以外的实验结果,在实验报告中,要描述清楚实验结果对应的系统,并对实验结果进行解释说明。

实验二 离散傅立叶变换与快速傅立叶变换一、实验目的1、加深理解离散傅立叶变换及快速傅立叶变换概念;2、学会应用FFT 对典型信号进行频谱分析的方法;3、研究如何利用FFT 程序分析确定性时间连续信号;4、熟悉应用FFT 实现两个序列的线性卷积的方法。

二、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier 变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为()()[]()∑==-=10N n nk NWn x n x DFT k X 10-≤≤N k反变换为()()[]()∑==-=-101N n nk N Wk X Nk X IDFT n x 10-≤≤N n有限长序列的DFT 是其Z 变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

数字信号处理实验指导书

数字信号处理实验指导书

数字信号处理实验指导书实验一离散时间与系统的傅立叶分析一、实验目的用傅立叶变换对信号和系统进行频域分析。

二、实验原理对信号进行频域分析就是对信号进行傅立叶变换。

对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数。

也可以由差分方程经过;傅立叶变换直接求它的传输函数。

传输函数代表的就是系统的频率响应特性。

但传输函数是ω的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在0~2л之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。

当然,点数取得多一些,该包络才能接近真正的频率特性。

注意:非周期信号的频率特性是ω的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。

三、实验内容‘1.已知系统用下面差分方程描述:y(n)=x(n)十ay(n一1)试在a=0.95和a=一0.5两种情况下用傅立叶变换分析系统的频率特性。

要求写出系统的传输函数和幅度响应,并打印|H(e jw)|~ω曲线。

2.已知两系统分别用下面差分方程描述:y1(n)=x(n)+x(n一1)y2(n)=x(n)一x(n一1)试分别写出它们的传输函数和幅度响应,并分别打印|H(e jw)|~ω曲线。

3.已知信号x(n)=R3(n),试分析它的频域特性,要求打印|H(e jw)|~ω曲线。

4.假设x(n)=a(n),将x(n)以2为周期进行周期延拓,得到x(n),试分析它的频率特性,并画出它的幅频特性。

四、实验用MATLAB函数介绍1.abs功能:求绝对值(复数的模)。

y=abs(x):计算实数x的绝对值。

当x为复数时得到x的模(幅度值)。

当x为向量时,计算其每个元素的模,返回模向量y。

2.angle功能:求相角。

Ph=angle(x):计算复向量x的相角(rad)。

Ph值介于-л和+л之间.3.freqz:计算数字滤波器H(z)的频率响应。

《数字信号处理》实验指导书(完整)

《数字信号处理》实验指导书(完整)

《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应;● 学会运用MATLAB 求解离散时间系统的单位取样响应;● 学会运用MATLAB 求解离散时间系统的卷积和。

1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。

MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。

函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。

【实例1-1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。

解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。

1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。

数字信号处理实验指导书

数字信号处理实验指导书

注意此书用的时候N要先付值数字信号处理实验指导书目录前言 (1)第一章MATLAB基础知识 (1)第二章MATLAB基本数值运算 (4)第三章MATLAB的图形处理功能 (8)第四章MATLAB的程序设计 (11)第五章常用数字信号处理函数 (16)第六章MATLAB在数字信号处理中的应用 (23)实验一常见离散信号的MATLAB产生和图形显示 (33)实验二离散系统的频率响应分析和零、极点分布 (37)实验三序列线性卷积、圆周卷积的计算及其关系的研究 (39)实验四利用DFT分析信号的频谱 (41)实验五信号时间尺度变换的研究 (43)实验六快速傅里叶变换及其应用 (47)实验七IIR滤波器的实现与应用 (56)实验八FIR滤波器的实现与应用 (61)第一章MATLAB基础知识§1-1 MA TLAB软件简介MATLAB,Matrix Laboratory的缩写,是由Mathworks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个界面友好的用户环境,在这个环境中,问题与求解都能方便地以数学的语言(主要是矩阵形式)或图形方式表示出来。

与大家常用的Fortran 和C等高级语言相比,MA TLAB的语法规则更简单,更贴近人的思维方式,被称为“草稿纸式的语言”。

§1-2 MA TLAB应用入门1.MATLAB的安装与卸载MATLAB软件在用户接口时具有较强的亲和力,其安装过程比较典型,直接运行光盘中的安装向导支撑程序SETUP.exe,按其提示一步步选择即可。

MATLAB自身带有卸载程序,在其安装目录下有uninstall子目录,运行该目录下uninstall.exe的即可;也可以通过Windows系统的安装卸载程序进行卸载。

2.MATLAB的启动与退出MATLAB安装完成后,会自动在Windows桌面上生成一个MA TLAB图标,它是指向安装目录下\bin\win32\matlab.exe的链接,双击这个图标即可来到MATLAB集成环境的基本窗口;也可以在开始菜单的程序选项中选择MATLAB 快捷方式;还可以在MA TLAB的安装路径的bin子目录中双击可执行文件matlab.exe。

数字信号处理指导书

数字信号处理指导书

实验一卷积运算1. 实验目的(1) MATLAB中序列的表示;(2) 序列的图形显示;(3) 序列的卷积计算。

2. 实验原理与方法(1) 信号在MATLAB中的表示方法MATLAB中用两个参数向量来表示有限长序列x(n),一个是x(n)中各点的样值向量,一个是各点的位置向量。

两个向量长度相等,假设位置向量的第m 个元素的值为k,则样值向量的第m个元素的值即为x(k)。

(2) 序列的图形显示MATLAB中可调用stem函数来显示序列,其具体形式为:stem(X,Y)stem(...,'fill')stem(...,LineSpec)(3) 序列的卷积运算卷积和是离散信号与系统分析的有效方法和工具,两个序列x(n)和h(n)的卷积和定义为:∑∞-∞=-= =mmnhmxnhnxny)()()(*)()(利用MATLAB求离散序列卷积和的专用函数conv可以实现离散信号卷积和的计算。

其具体形式为:w = conv(u,v)3. 实验内容及步骤(1) 熟悉MATLAB造作环境,复习时域离散信号和系统的相关知识。

(2) 编写实验程序,产生以下序列并显示其图形:14234()()403()3470()c o s 01543()s in774x n R n n n x n n n x n n n x n nn ππ=-≤≤⎧⎪=-≤≤⎨⎪⎩=≤≤=-≤≤其它(3) 编制程序,计算x 2(n)*x 1(n)、x 3(n)*x 1(n)、x 4(n)*x 1(n),并显示其计算结果。

(4) 手动计算上述卷积和,并与程序运行结果进行比较。

4.实验方式及要求每人一台安装有Matlab7.0的计算机,在计算机上编程仿真。

一人一组,独立完成。

5. 思考题脚本文件与函数文件编写上有什么区别?如何利用函数文件完成任意两序列的卷积运算?6. 实验报告要求(1) 简述实验目的及实验原理。

(2) 按实验步骤附上实验过程中离散序列的时域波形,并对所得结果进行分析和解释。

《数字信号处理》实验指导书(正文)

《数字信号处理》实验指导书(正文)

实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。

2.掌握在计算机中生成及绘制数字信号波形的方法。

3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。

4.掌握线性卷积软件实现的方法。

5.掌握计算机的使用方法和常用系统软件及应用软件的使用。

6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。

离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。

2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。

3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。

4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。

两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。

其计算的过程包括以下4个步骤。

(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。

当n 为正数时,右移n 位;当n 为负数时,左移n 位。

(3)相乘:将)(m n h -和)(m x 的对应点值相乘。

(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。

《数字信号处理》实验指导书

《数字信号处理》实验指导书
1
R6(n)
0.5
0 0.2
0
5
10
15
20
25 n
30
35
40
45
ቤተ መጻሕፍቲ ባይዱ
50
Magnitude
0.1
0 4
-3
-2
-1
0 Frequency(rad)
1
2
3
Phase
2 0 -2 -4 -3 -2 -1 0 Frequency(rad) 1 2 3
k=0 时的直流分量及其合成的波形:
0.5
the Kth harmonic
the Kth harmonic
0
the Kth harmonic
0 5 10 15 20 25 n 30 35 40 45 50
0
-0.5
-0.5
0
5
10
15
20
sum of the first K+1 harmonics
1
sum of the first K+1 harmonics
25 n
30
35
0
-0.5
-0.5
0
5
10
15
20
sum of the first K+1 harmonics
1
sum of the first K+1 harmonics
25 n
30
35
40
45
50
1
0.5
0.5
0 0 5 10 15 20 25 n 30 35 40 45 50
0 0 5 10 15 20 25 n 30 35 40 45 50

数字信号处理实验指导书

数字信号处理实验指导书
5
j j
括幅频特性和相频特性)曲线。并将其和第 4 步中得到的结果进行比较。
七. 实验报告内容与要求
1. 简述实验目的、实验原理及实验方法和步骤。 2. 对各实验所得结果进行分析和解释。 3. 打印程序清单和要求的各信号波形。 4. 总结实验中的主要结论。 5. 简要回答思考题。
八. 思考
1. 信号的频域特性即信号的傅立叶变换利用 MATLAB 程序如何实现? 2. 信号的频域特性即频率响应函数 H (e ) 利用 MATLAB 程序如何求取?
4
X (e j ) FT [ x(n)]
n
x ( n) e

j n
(2.1)
序列和信号的傅立叶变换是ω的连续函数, 而计算机只能计算出有限个离散频率点的 函数值。因此在取得频谱函数后,应该在 0~2π之间取许多点,计算这些点的频谱函数 的值,并取它们的包络,该包络才是需要的频率特性。当然,点数取得多一些,该包络才
y(n) 0.05 x(n) 0.05 x(n 1) 0.9 y(n 1) 的响应 y2 (n) ,并绘出 y2 (n) 的时域特性曲
线。
( n) ,并绘出 y1 ( n) 的 5. 利用卷积函数 conv () 求信号 x1 ( n) 通过系统 h1 (n) 的响应 y1
j 能接近真正得频率特性。通常对 X (e ) 在[0,2π]上取模 X (e ) ,绘出幅频特性曲
j
线进行观察分析。系统的频域特性,通常是指求系统频率响应函数 H (e ) ,即系统单位 脉冲响应 h(n)的傅里叶变换。 对于线性时不变时域离散系统,当系统的输入序列为 x(n) ,系统的单位脉冲响应为 为 h(n) ,则线性时不变系统的输出序列为

《数字信号处理实验》指导书

《数字信号处理实验》指导书

《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。

实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。

实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。

4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。

5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。

(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。

《数字信号处理》实验指导书(全)

《数字信号处理》实验指导书(全)

数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。

(2)掌握对常用离散信号的理解与运算实现。

二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。

第二种格式用于生成步长为p的均匀等分的向量。

b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。

第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。

2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。

sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。

数字信号处理实验指导书

数字信号处理实验指导书
(2) 程序 1-2:正弦序列的产生和绘制
% Program P1_2
% Generation of a sinusoidal sequence
n = 0:40;
பைடு நூலகம்f = 0.1;
phase = 0;
A = 1.5;
arg = 2*pi*f*n - phase;
x = A*cos(arg);
clf;
% Clear old graph
附录A MATLAB系统的常用概念 .........................................................................28
附录B
信号处理工具箱函数...........................................................................33
分析,从而进一步研究它们的性质。 2.熟悉离散时间序列的 3 种表示方法:离散时间傅立叶变换(DTFT),离
散傅立叶变换(DFT)和 Z 变换。
二.实验相关知识准备 1.用到的 MATLAB 命令 运算符和特殊字符: < > .* ^ .^ 语言构造与调试: error function pause 基本函数: angle conj rem 数据分析和傅立叶变换函数: fft ifft max min 工具箱: freqz impz residuez zplane
数字信号处理 实验指导书
长沙理工大学电气与信息工程学院


实验一:离散时间信号的时域分析........................................................................3 实验二:离散时间系统的时域分析........................................................................6 实验三:离散时间信号的频域分析........................................................................9 实验四:线性时不变离散时间系统的频域分析..................................................13 实验五: IIR数字滤波器的设计...........................................................................17 实验六: FIR数字滤波器的设计..........................................................................24

《数字信号处理》实验指导书

《数字信号处理》实验指导书

实验一 采样率对信号频谱的影响一、实验目的1.理解采样定理; 2.掌握采样频率确定方法; 3.理解频谱的概念; 4.理解三种频率之间的关系。

二、实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (1))()()(ˆt M t x t xa a = (2) 式中T s 为采样间隔。

因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。

显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (3)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。

对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。

下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (4)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。

只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。

根据式(4)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。

这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(5) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。

数字信号处理实验指导书

数字信号处理实验指导书

实验一 信号、系统及系统响应1、实验目的:(1)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2)熟悉时域离散系统的时域特性。

(3)利用卷积方法观察分析系统的时域特性。

(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

2、实验仪器:PC 机一台 MATLAB 软件 3、实验原理:采样是连续信号数字处理的第一个关键环节。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示。

)()()(ˆt p t x t xa a = 其中)(ˆt xa 为)(t x a 的理想采样,)(t p 为周期冲激脉冲, 即 ∑∞-∞=-=n nT t t p )()(δ;由频域卷积定理,得)]([1)(ˆs a am j X Tj X Ω-Ω=Ω ※ 上式表明,)(ˆΩj X a为)(Ωj X a 的周期延拓,其延拓周期为采样角频率(T s /2π=Ω)。

采样前后的频谱示意图见课本。

只有满足采样定理时,才不会发生频率混叠失真。

在计算机上用高级语言计算)(ˆΩj X a 很不方便,下面给出用序列的傅里叶变换来计算)(ˆΩj X a的方法。

课本中(2.4.7)式∑∞-∞=-=r ajwr TT w j X T e X )]2([1)(π,表示序列的傅里叶变换)(jwe X 和模拟信号)(t x a 的傅里叶变换)(Ωj X a 之间的关系式。

与※式比较,可得T w jw a e X j X Ω==Ω|)()(ˆ,这说明两者之间只在频率度量上差一个常数因子T 。

实验过程中应注意这一差别。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jwe X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=1)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。

《数字信号处理》实验指导书

《数字信号处理》实验指导书

《数字信号处理》实验指导书实验序号:1 实验名称:利用FFT 进行谱分析和实现快速卷积 适用专业:通信工程、电子信息工程 学 时 数:4学时一、实验目的1.加深DFT 算法原理和基本性质的理解。

2.熟悉FFT 算法原理和FFT 子程序的应用。

3.学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

4.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

5.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理1.在工程技术的许多分支中,要掌握的基本内容之一就是正确理解时域和频域的关系。

对于数字系统来说,就是要精通离散傅立叶变换,因此离散傅立叶变换在数字信号处理中占有十分重要的地位。

在实际应用中,有限长序列有相当重要的地位,有限长序列的离散傅氏变换(DFT)的定义:[][]10)(1)()(10)()()(1010-≤≤==-≤≤==∑∑-=--=N n W k X N k X IDFT n x N k W n x n x DFT k X N k nk N N n nk N快速傅里叶变换(FFT )并不是一种新的变换,而是离散傅里叶变换(DFT )的一种快速算法。

用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N (即x(n)长度为N )有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

《数字信号处理》实验指导书

《数字信号处理》实验指导书

的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас

数字信号处理实验指导书

数字信号处理实验指导书

1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
2
4
6
8
10
12
14
16
18
20
(3)用 impz 函数 a1=[1,0.75,0.125]; b1=[1,-1]; impz(b1,a1,21);
Impulse Response 1.5
1
0.5
Amplitude
0
-0.5
-1
-1.5
-2
0
2
4
6
8
10 12 n (samples)
5
……
程序计算结果: I.
y[n] + 0.75 y[n − 1] + 0.125 y[n − 2] = x[n] − x[n − 1]
a. 单位冲激响应: (1) 用 filter 函数 a1=[1,0.75,0.125]; b1=[1,-1]; n=0:20; x1=[1 zeros(1,20)]; y1filter=filter(b1,a1,x1); stem(n,y1filter); title('y1filter'); xlabel('x'); ylabel('y');
3. 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。要求分
别用 filter、conv、impz 三种函数完成。
y[n] + 0.75 y[n − 1] + 0.125 y[n − 2] = x[n] − x[n − 1] y[n] = 0.25{x[n − 1] + x[n − 2] + x[n − 3] + x[n − 4]}

数字信号处理实验指导书

数字信号处理实验指导书

《数字信号处理》实验指导书编写:刘梦亭审核:司玉娟阎维和适用专业:电子信息工程电子信息科学与技术通信工程等电子信息与工程系2009年9月目录实验一:离散时间信号分析 (1)实验二:离散时间系统分析 (3)实验三:离散系统的Z域分析 (6)实验四:FFT频谱分析及应用 (9)实验五:IIR数字滤波器的设计 (12)实验六:FIR数字滤波器的设计 (16)附录: MATLAB基本操作及常用命令 (20)实验一:离散时间信号分析实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的1) 掌握离散卷积计算方法; 2) 学会差分方程的迭代解法;3) 了解全响应、零输入响应、零状态响应和初始状态的物理意义和具体求法; 二、实验内容 1、信号的加数学描述 )()()(21n x n x n x += MATLAB 实现 21X X X +=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]2、信号的乘数学描述 )()()(21n x n x n x *= MATLAB 实现 2.1X X X *=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]3、计算卷积用MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。

首先用手工计算,然后用MATLAB 编程验证。

三、实验组织运行要求1、学生在进行实验前必须进行充分的预习,熟悉实验内容;2、学生根据实验要求,读懂并理解相应的程序;3、学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;4、教师在学生实验过程中予以必要的辅导,独立完成实验;5、采用集中授课形式。

四、实验条件1、具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台; 2.、MATLAB 编程软件。

数字信号处理实验指导书

数字信号处理实验指导书

实验一DES 综合外设实验1.1实验目的和要求DES320E 提供了键盘,液晶,数码管,直流电机,步进电机,交通灯等外设。

本实验学习这些外设的控制原理。

本实验为大型综合性实验,要求学生掌握DSP编程的基本方法。

通过实验,学生能编写外设控制程序。

例如,使用交通灯和定时器实现十字路口红绿灯的控制,直流电机的调速控制,使用液晶数码管显示和键盘实现计算器等。

1.2实验原理1) C54XX 的I O 空间读写C54XX 提供64K 字的I O 空间访问能力。

在汇编指令中分别提供了读和写命令:portr和p ortw。

你也可以在C中实现该I O 操作,方法如下:首先定义I O 空间变量,如:ioport unsigned portXXXX;/* 其中,XXXX 代表具体I O 口地址*/然后,就可以象访问普通变量一样访问I O 口。

如portXXXX=0x55;/* 将0x55 写到X XXX 指定的I O 口*/2) 交通灯的控制DES320E 提供了 12 个 LED,其控制地址为 IO 空间的 0x0c000h。

该地址的 D0-11比特位分别对应这12 个L ED。

将1写入可以点亮L ED,0 则关闭。

3) 直流电机控制DES320E 实验系统配有一个小型直流电机,可以 DSP 编程完成直流电机的调速控制。

其控制方法为:当向0x0e000h(…VC5402 的I O 空间)的D0 比特位写入1时,电机正向转动;当写入 0 时,电机反向转动。

用户可以通过 D0 位为 1 或 0 的持续时间(即D0 输出方波的占空比)控制电机的转速。

注意,使用直流电机时,应该先接通电机的电源,方法如下:向I O 空间的0x8000 地址的D0 比特位写入1。

若要关闭电源,请写入0。

当写入1或0时,你可以听到继电器动作的声音。

4) 步进电机的控制DES320E 实验系统还配有一个步进电机。

IO 空间的0x0f000h 的D0,D1,D2,D3 四个比特位分别对应步进电机的四相驱动端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》—实验指导数字信号处理课程组电子与信息工程学院班级:姓名:学号:综合评定:成绩:指导教师签字:实验一 典型离散信号及其MATLAB 实现一、实验目的1. 掌握MATLAB 语言的基本操作,学习基本的编程功能。

2. 掌握MATLAB 产生常用离散时间信号的编程方法。

3. 掌握MATLAB 计算卷积的方法。

二、实验原理(一)MATLAB 常用离散时间信号1. 单位抽样序列:⎩⎨⎧=01)(n δ 00≠=n n在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n kn2.单位阶跃序列:⎩⎨⎧01)(n u<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =3.正弦序列:)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中:)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复正弦序列:n j e n x ϖ=)(在MATLAB 中:)**ex p(1:0n w j x N n =-=5.指数序列:na n x =)(在MATLAB 中:na x N n .^1:0=-=6.y=fliplr(x)——信号的翻转; y=square(x)——产生方波信号y=sawtooth(x)——产生锯齿波信号; y=sinc(x)——产生sinc 函数信号。

(二)离散时间信号的卷积由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。

离散时间信号的卷积定义为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(可见,离散时间信号的卷积运算是求和运算,因而常称为“卷积和”。

MATLAB 求离散时间信号卷积和的命令为conv ,其语句格式为y=conv(x,h)其中,x 与h 表示离散时间信号值的向量;y 为卷积结果。

用MA TLAB 进行卷积和运算时,无法实现无限的累加,只能计算时限信号的卷积。

三、实验内容(一) 离散信号的产生离散信号的图形显示使用stem 指令。

编写MATLAB 程序,产生下列典型脉冲序列。

(1) 单位脉冲序列:起点n0,终点nf ,在ns 处有一单位脉冲。

(2) 单位阶跃序列:起点n0,终点nf ,在ns 前为0,在ns 处及以后均为1(n0<=ns<=nf)。

n0=0;nf=10;ns=3;n2=n0:nf;x2=[(n2-ns)>=0]; %单位阶跃序列(3) 实指数序列:nx )75.0(3= (4) 复指数序列:n j e x )7.02.0(4+-=程序:n0=0;nf=10;ns=3;n1=n0:nf;x1=(n1-ns)==0; %单位脉冲序列 n2=n0:nf;x2=(n2-ns)>=0; %单位阶跃序列n3=n0:nf;x3=(0.75).^n3; %实指数序列n4=n0:nf;x4=exp((-0.2+0.7j)*n4); %复指数冲序列subplot(2,2,1),stem(n1,x1);subplot(2,2,2),stem(n2,x2);subplot(2,2,3),stem(n3,x3);figuresubplot(2,2,1),stem(n4,real(x4)); %注意subplot的变化subplot(2,2,2),stem(n4,imag(x4));subplot(2,2,3),stem(n4,abs(x4));subplot(2,2,4),stem(n4,angle(x4));(二)离散时间信号的卷积用MATLAB编写卷积运算函数。

function [y,ny]=conv_improve(x,nx,h,nh)%[x,nx]为第一个信号%[h,nh]为第二个信号%conv(x,h)可以实现两个有限长度序列的卷积ny1=nx(1)+nh(1);ny2=nx(length(x))+nh(length(h));ny=[ny1:ny2];y=conv(x,h);在命令窗口调用卷积函数。

x=[3 4 0 -2 2 3 5]; nx=[-3:3]; h=[1 4 5 6 0 1]; nh=[N:N+5];N是你的学号最后两位,带入后求结果。

结果为:y =3 16 31 36 184 19 47 41 32 3 5ny =61 62 63 64 65 66 67 68 69 70 71 72四、实验分析观察实验结果,掌握、分析典型的离散时间信号,分析卷积运算。

五、实验总结总结实验认识、过程、效果、问题、收获、体会、意见和建议。

实验二离散时间信号和离散时间系统一、实验目的1.掌握计算线性时不变系统的冲激响应的方法。

2.理解时域采样的概念及方法。

3.掌握离散时间信号的z变换和z逆变换分析4.了解离散时间傅里叶变换(DTFT)二、实验原理(一)信号采样采样就是利用周期性抽样脉冲序列p T(t),从连续信号x a(t)中抽取一系列的离散值,得到抽样信号(或称抽样数据信号)即离散时间信号。

(二)线性时不变离散时间系统线性系统:满足线性叠加原理的系统。

若y1(n)和y2(n)分别是输入序列x1(n)和x2(n)的响应,则输入x(n)=ax1(n)+bx2(n)的输出响应为y(n)=ay1(n)+by2(n)。

时不变系统:即系统参数不随时间变化的系统,亦即系统对于输入信号的响应与信号加于系统的时间无关。

即满足:若y(n)是x(n)的响应,则y(n-m)是输入x(n-m)的响应,其中m是任意整数。

数字滤波器对单位样本序列()nδ的响应称为冲激响应,用h(n)表示。

线性时不变离散系统对输入信号x(n)的响应y(n)可用h(n)来表示:∑∞-∞=-=kknxkhny)()()(。

(三)z 变换和逆z 变换序列()n x 的z 变换定义为:()()∑∞-∞=-=n nzn x z X其中,z 是复变量。

相应地,单边z 变换定义为:()()∑∞=-=0n n z n x z XMATLAB 提供了计算离散时间信号单边z 变换的函数ztrans 和z 反变换函数iztrans : Z=ztrans(x),x=iztrans(z)。

上式中的x 和Z 分别为时域表达式和z 域表达式的符号表示,可通过sym 函数来定义。

如果信号的z 域表示式)(z X 是有理函数,进行z 反变换的另一个方法是对)(z X 进行部分分式展开,然后求各简单分式的z 反变换。

设)(z X 的有理分式表示为)()(1)(221122110z A z B za z a z a zb z b z b b z X nn m m =++++++++=------ΛΛ (4-3) MATLAB 信号处理工具箱提供了一个对)(z X 进行部分分式展开的函数residuez ,其语句格式为[R,P,K]=residuez(B,A)其中,B ,A 分别表示X(z)的分子与分母多项式的系数向量;R 为部分分式的系数向量;P 为极点向量;K 为多项式的系数。

若X(z)为有理真分式,则K 为零。

三、实验内容(一)线性时不变系统的冲激响应的计算设系统为y(n)-0.5y(n-1)+0.75y(n-2)=2.5x(n)+2.5x(n-1)+2x(n-2),计算上述系统的冲激响应。

N=40;num=[2.5 2.5 2]; den=[1 -0.5 0.75]; y=impz(num,den,N); %画出冲激响应stem(y);xlabel('时间序号n'); ylabel('振幅');title('冲激响应'); grid;(二)时域采样对连续正弦时间信号x(t)=cos(2πft)进行采样,其中f=13。

t=0:0.0005:1;f=13;xa=cos(2*pi*f*t);subplot(2,1,1)plot(t,xa);gridxlabel('时间,msec'); ylabel('振幅');title('连续时间信号');axis([0 1 -1.2 1.2])subplot(2,1,2);T=0.1;n=0:T:1;xs=cos(2*pi*f*n); k=0:length(n)-1; stem(k,xs);gridxlabel('时间序号n'); ylabel('振幅'); title('离散时间信号'); axis([0 length(n)-1 -1.2 1.2])(三)z 变换和z 反变换1.用ztrans 函数求函数)()cos()(n u n a n x nπ=的z 变换。

x=sym('a^n*cos(pi*n)'); Z1=ztrans(x); Z=simplify(Z1); Z =z/(z+a)2.用iztrans 函数求函数32)2)(1()12112()(--+-=z z z z z z X 的z 反变换。

Z=sym('z*(2*z^2-11*z+12)/(z-1)/(z-2)^3'); x=iztrans(Z); simplify(x)ans =3*2^n-1/4*2^n*n-1/4*2^n*n^2-3四、实验分析1.观察实验结果,分析系统的线性、时不变性,求出系统的冲激响应。

2.对正弦信号进行采样。

3.求出程序(三)中的(三)z 变换和z 反变换表达式。

4.观察程序(四)离散时间信号的傅里叶变换的结果并分析。

五、实验总结总结实验认识、过程、效果、问题、收获、体会、意见和建议。

实验三 离散傅里叶变换(DFT )及其快速算法(FFT)一、实验目的1.理解DFT 算法,并能用MATLAB 实现DFT 。

2. 加深对FFT 的理解,体会DFT 和FFT 之间的关系。

3.熟悉应用FFT 实现两个序列的线性卷积的方法。

二、实验原理N 点序列x(n) 的DFT 和IDFT 定义:若将DFT 变换的定义写成矩阵形式,则得到 X=A ﹒x ,其中DFT 变换矩阵A 为⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=---2)1(111...1...............11...11N N N N N N N W W W W A可以用函数U=fft(u,N)和u=ifft(U,N)计算N 点序列的DFT 正、反变换。

三、实验内容(一)离散傅里叶变换(DFT )1.用MATLAB 求N=16的有限序列)4/sin()8/sin()(ππn n n x +=的DFT 结果,并画出结果图。

相关文档
最新文档