三角函数的图象与性质练习题及答案之欧阳光明创编
(精校版)必修4三角函数的图像与性质1.41.6(含答案)
6
2
6
所以函数 f (x) 的解析式为 f (x) 3sin(2x π ) 2 6 分 6
(2)将函数 y f (x) 的图像向左平移 π 个单位后得到的函数解析式为 y 3sin[2(x π ) π ] 2
12
12 6
,即 y 3sin(2x π ) 2 ,再将图像上各点的横坐标扩大为原来的 4 倍,得 g(x) 3sin(1 x π ) 2
11.已知函数 f (x) cos(2x ) 2sin(x ) sin(x ) .
3
4
4
(1)求函数 f (x) 的最小正周期和图像的对称轴方程;
(2)求函数
f
(x) 在区间[
,
] 上的值域。
12 2
【答案】(1)T 2π π , x kπ π (k Z) ;(2)[ 3 ,1]
长到原来的 2 倍(纵坐标不变)得到函数 f(x)的图象,则 f(-π)等于( )
A. 3
B。 3
C. 1
2
2
2
【答案】D
D.- 1 2
【解析】
试题分析:因为将函数 y sin x 的图像上所有的点向右平行移动 π 个单位长度,得到的函数解析 3
式为 y sin(x ) 。再把函数 y sin(x ) 各点的横坐标伸长到原来的 2 倍(纵坐标不变)得到
(直打版)必修 4 三角函数的图像与性质 1.4-1.6(含答案)(word 版可编辑修改)
(直打版)必修 4 三角函数的图像与性质 1.4-1.6(含答案)(word 版可编辑修改) 编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对 文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)必修 4 三角函数的图 像与性质 1.4-1.6(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。同时也 真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以 下为(直打版)必修 4 三角函数的图像与性质 1.4-1.6(含答案)(word 版可编辑修改)的全部内容。
高二数学三角函数的图象与性质试题答案及解析
高二数学三角函数的图象与性质试题答案及解析1.函数的单调递增区间是A.B.C.D.【答案】D【解析】因为函数,所以,即.【考点】三角函数的单调性.2.已知函数的图象分别交M、N两点,则|MN|的最大值为A.3B.4C.D.2【答案】C【解析】由已知可知,因此|MN|的最大值为,答案选C.【考点】三角函数的图象与三角恒等变换3.要得到函数y=f′(x)的图象,需将函数f(x)=sinx﹣cosx(x∈R)的图象()A.向左平移个单位B.向右平移个单位C.向左平移π个单位D.向右平移π个单位【答案】A【解析】,,需将f(x)的图象向左平移个单位得到,答案选A.【考点】1.三角函数的图象与变换;2.三角恒等变形;3.三角函数的导数4.函数的导函数的部分图象如图所示,其中,为图象与轴的交点,为图象与轴的两个交点,为图象的最低点.(1)若,点的坐标为,则___________;(2)若在曲线段与轴所围成的区域内随机取一点,则该点在内的概率为___________.【答案】(1);(2).【解析】(1),将,代入有,得;(2)由的图象可知:,,,则,,,从而,所以曲线段与轴所围成的区域面积为,而,所以该点在内的概率为.【考点】1.三角函数图象与性质;2.定积分;3.几何概型的概率计算.5.函数的值域为.【答案】[-7,7]【解析】由于函数,(其中且是第一象限角)故知函数的值域为[-7,7];故应填入[-7,7].【考点】三角函数的值域.6.已知函数(1)求的最小正周期;(2)当时,若,求的值.【答案】(1);(2).【解析】(1)由于求三角函数的最小正周期,首先化简函数解析式为,则最小正周期为;则只须利用三角公式将的解析式化简即可;(2)求角的值,只须先由已知条件求出角的某一三角函数值,在结合,求可求得;由于最好求出余弦值或正切值较好.试题解析:(1)因为;所以的最小正周期为 6分(2)由得,又因为,所以,结合函数图象得到: 12分【考点】1.三角恒等公式;2.三角函数的周期;3.给值求角.7.已知函数.(1)求函数的最小正周期;(2)已知中,角所对的边长分别为,若,,求的面积.【答案】(1);(2).【解析】(1)利用二倍角公式的变形:,及辅助角公式,可将化简为,从而的最小正周期为;(2)由(1)及,可得:,根据可得或,从而或(,舍去),再利用正弦定理,从而得,则,, 因此的面积.试题解析:(1)∵,∴,∴的最小正周期为;(2)由(1)及,∴,又∵,∴或,∴或,又∵,∴,由正弦定理:,得,则, , ∴.【考点】1.三角恒等变形;2.正弦定理解三角形.8.函数是()A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【答案】A【解析】由,所以该函数是以最小正周期为的奇函数【考点】二倍角的余弦,正弦函数的性质9.已知函数(A>0,ω>0)的一系列对应值如下表:-1131-113(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数(k>0)周期为,当x∈[0,]时,方程恰有两个不同的解,求实数m的取值范围;【答案】(1) ;(2) .【解析】(1)由周期,得,由振幅可得,由平衡位置可得,可得;(2)由周期,得k=3, 令,由x∈[0,],得,,得在上有两个不同的解的充要条件是,可得的取值范围.解:(1)设f(x)的最小正周期为T,得,由,得ω=1. 1分又解得: 3分令,即,解得,∴. 5分(2)∵函数的周期为,又k>0,∴k=3. 6分令,∵,∴.如图在上有两个不同的解的充要条件是, 10分∴方程在时恰好有两个不同的解,,即实数m的取值范围是. 12分【考点】的图象与性质.10.已知角的终边经过点,函数图象的相邻两条对称轴之间的距离等于,则= .【答案】【解析】由题意得因为角的终边经过点,所以因此【考点】三角函数定义11.设函数的定义域是,其图象如图(其中),那么不等式的解集为()A.B.C.D.【答案】C【解析】由图可知,时,,时,。
5.4 三角函数的图象与性质(原卷版)附答案.docx
5.4 三角函数的图象与性质A 组-[应知应会]1.函数y =tan x πx ,2k k Z π⎛⎫≠+∈ ⎪⎝⎭的单调性为( )A .在整个定义域上为增函数B .在整个定义域上为减函数C .在每一个开区间 ππ,22k k ππ⎛⎫-++ ⎪⎝⎭ (k ∈Z)上为增函数D .在每一个开区间ππ2,222k k ππ⎛⎫-++ ⎪⎝⎭ (k ∈Z)上为增函数2.在区间3π3π,22⎛⎫- ⎪⎝⎭内,函数y =tan x 与函数y =sin x 的图象交点的个数为() A .1 B .2C .3D .43.给出下列命题:①sin ,y x x R =∈的图象关于点(),0P π成中心对称;②cos ,y x x R =∈的图象关于直线x π=成轴对称;③sin ,cos y x y x ==的图象不超过两直线1y =和1y =-所夹的范围.其中正确的个数是( )A .0B .1C .2D .34.函数2()cos ln f x x x =-⋅的部分图像大致是图中的()A .B .C .D .5.函数()2sin tan ,,33f x x x m x ππ⎡⎤=++∈-⎢⎥⎣⎦有零点,则m 的取值范围是( )A .)+∞B .(,-∞C .(,)-∞⋃+∞D .[-6.函数y =sin x 的定义域为[a,b],值域为11,2⎡⎤-⎢⎥⎣⎦,则b -a 的最大值和最小值之和等于( )A .43πB .83πC .2πD .4π7.若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=()A .3B .2C .32 D .238.已知()tan (01)f x x ωω=<<在区间2[0,]3π则ω=( )A .12B .13C .23D .349.函数y =|tanx|与直线y =1相邻两个交点之间距离是( )A .π4B .π3C .π2D .π10.(多选)对于函数()sin tan f x a x b x c =++(其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果可能是( )A .4和6B .3和1C .2和4D .1和211.(多选)下列命题中,真命题的是( )A .sin y x =的图象与sin y x =的图象关于y 轴对称B .()cos y x =-的图象与cos y x =的图象相同C .sin y x =的图象与()sin y x =-的图象关于x 轴对称D .cos y x =的图象与()cos y x =-的图象相同12.函数lg(sin cos )y x x =-的定义域为___________13.函数()tan f x x =在,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为__________. 14.(2019·保定市第二中学高一月考)满足[]cos 0,0,2x x >∈π的x 的取值范围是______.15.已知()f x 是以π为周期的偶函数,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =_____________. 16.若方程sin 41x m =+在[]0,2x π∈上有解,则实数m 的取值范围是______.17.(2019·山东济南一中期中)设函数()()221sin 1x x f x x ++=+的最大值为M ,最小值为m ,则m M+=___________ .18.求下列函数的定义域.(1)y =;(2)y =19.利用“五点法”作出函数2sin 1y x =-(02x π≤≤)的简图.20.比较6tan 5π-与13tan 5π⎛⎫- ⎪⎝⎭的大小.21.求函数2cos 4sin y x x =+的最大值和最小值,及取到最大值和最小值时的x 的取值集合.22.(2020·陕西省商丹高新学校期中)已知()22tan 1f x x x θ=+-,x ⎡∈-⎣,其中,22ππθ⎛⎫∈- ⎪⎝⎭.(1)当6πθ=-时,求函数()f x 的最大值;(2)求θ的取值范围,使()y f x =在区间⎡-⎣上是单调函数.23.已知ω是正数,函数f(x)=2sin ωx 在区间[,]34ππ-上是增函数,求ω的取值范围.B 组-[素养提升]1.(2019·大名县第一中学月考)已知0,02a x π>≤<,若函数2sin sin 1y x a x b =--++的最大值为0,最小值为4-,试求a 与b 的值,并分别求出使y 取得最大值和最小值时x 的值.5.4 三角函数的图象与性质A组-[应知应会]1.函数y=tan xπx,2k k Zπ⎛⎫≠+∈⎪⎝⎭的单调性为()A.在整个定义域上为增函数B.在整个定义域上为减函数C.在每一个开区间ππ,22k kππ⎛⎫-++⎪⎝⎭(k∈Z)上为增函数D.在每一个开区间ππ2,222k kππ⎛⎫-++⎪⎝⎭(k∈Z)上为增函数【参考答案】C【解析】由正切函数的图象可知选项C正确故选C2.在区间3π3π,22⎛⎫-⎪⎝⎭内,函数y=tan x与函数y=sin x的图象交点的个数为()A.1B.2 C.3D.4【参考答案】C【解析】如图,在同一坐标系内画出函数y=tan x与函数y=sin x的在区间3π3π,22⎛⎫-⎪⎝⎭内的图象,由图象可得两图象有3个交点.选C.3.给出下列命题:①sin ,y x x R =∈的图象关于点(),0P π成中心对称;②cos ,y x x R =∈的图象关于直线x π=成轴对称;③sin ,cos y x y x ==的图象不超过两直线1y =和1y =-所夹的范围.其中正确的个数是( )A .0B .1C .2D .3 【参考答案】D【分析】由正弦函数的对称性可判断①,由余弦函数的对称性可判断②,由三角函数的有界性可判断③.【解析】由于正弦曲线的对称中心为(),0k π,k Z ∈,可得sin ,y x x R =∈的图象关于点(),0P π成中心对称,即①正确;由于余弦曲线的对称轴为,x k k Z π=∈,可得cos ,y x x R =∈的图象关于直线x π=成轴对称,即②正确; 由于1sin 1x -≤≤,1cos 1x -≤≤,可得sin ,cos y x y x ==的图象不超过两直线1y =和1y =-所夹的范围,即③正确;故正确的个数为3个.故选D .4.函数2()cos ln f x x x =-⋅的部分图像大致是图中的()A .B .C .D .【参考答案】A【分析】可判断函数为偶函数,且()0,1x ∈时,有()0f x >,故可得正确的选项.【解析】函数()f x 的定义域是()(),00,-∞⋃+∞,()()()()22cos ln cos ln f x x x x x f x -=---=-=,则函数()f x 是偶函数,其图像关于y 轴对称,排除选项C 和D ;当()0,1x ∈时,2cos 0,01x x ><<,则2ln 0x <,此时()0f x >,此时函数()f x 的图像位于x 轴的上方,排除选项B.故选A. 5.函数()2sin tan ,,33f x x x m x ππ⎡⎤=++∈-⎢⎥⎣⎦有零点,则m 的取值范围是()A .)+∞B .(,-∞C .(,)-∞⋃+∞D .[-【参考答案】D【分析】利用()f x 在,33ππ⎡⎤-⎢⎥⎣⎦上为增函数可得()f x 的值域,根据值域端点的正负可得实数m 的取值范围. 【解析】因为()2sin tan f x x x m =++,故()f x 在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,其值域为,m m ⎡⎤-⎣⎦.因为()f x 有零点,故0m m ⎧+≥⎪⎨-≤⎪⎩,即m -≤≤,故选D. 6.函数y =sin x 的定义域为[a,b],值域为11,2⎡⎤-⎢⎥⎣⎦,则b -a 的最大值和最小值之和等于( )A .43π B .83π C .2π D .4π【参考答案】C【分析】作出y =sin x 的图像,由其值域为11,2⎡⎤-⎢⎥⎣⎦,可得b -a 的最大值和最小值,从而可得到结论.【解析】解:如图,可知b -a 的最大值为13566ππ-=43π,b -a 的最小值为3526ππ-=23π, 故b -a 的最大值和最小值之和为2π, 故选C.7.若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .3B .2C .32D .23【参考答案】C 【分析】利用当02xπω时,函数()f x 是增函数,当2x πωπ时,函数()f x 为减函数,求出当02xπω时,函数()f x 为增函数,当2x ππωω时,函数()f x 为减函数,根据题目条件可求出ω的值 【解析】因为当02xπω时,函数()f x 是增函数,当2x πωπ时,函数()f x 为减函数,即当02xπω时,函数()f x 为增函数, 当2x ππωω时,函数()f x 为减函数,所以23ππω=,所以32ω=. 参考答案选C8.已知()tan (01)f x x ωω=<<在区间2[0,]3π则ω=( ) A .12B .13 C .23D .34【参考答案】A【分析】根据已知区间,确定x ω的范围,求出它的最大值,结合0<ω<1,求出ω的值.【解析】因为 220,033x x ππ⎡⎤∈≤≤⎢⎥⎣⎦,即,又01ω<< 所以22033x ωππω≤≤<所以()233max f x tantan ωππ=== 所以21332ωππω==, 故选A9.函数y =|tanx|与直线y =1相邻两个交点之间距离是( )A .π4B .π3C .π2D .π【参考答案】C【分析】根据tan 1x =确定函数tan y x =与直线1y =相邻两个交点之间距离为半个周期,从而可求出结果.【解析】因为函数tan y x =的最小正周期为π,由tan 1x =可得()x k π,k Z 4π=±所以函数tan y x =与直线1y =相邻两个交点之间距离为函数tan y x =的半个周期,即2π. 10.(多选)对于函数()sin tan f x a x b x c =++(其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果可能是( )A .4和6B .3和1C .2和4D .1和2【参考答案】ABC【分析】求出()1f 和()1f -,求出它们的和;由于c Z ∈,判断出(1)(1)f f +-为偶数。
高中三角函数习题解析精选(含详细解答)之欧阳治创编
三角函数题解1.(2003上海春,15)把曲线y cos x+2y-1=0先个单位,再沿y轴向下平移1个沿x轴向右平移2单位,得到的曲线方程是()A.(1-y)sin x+2y-3=0B.(y-1)sin x+2y-3=0C.(y+1)sin x+2y+1=0D.-(y+1)sin x+2y+1=02.(2002春北京、安徽,5)若角α满足条件sin2α<0,cosα-sinα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2002上海春,14)在△ABC中,若2cos B sin A=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形4.(2002京皖春文,9)函数y=2sin x的单调增区间是()A.[2k π-2π,2k π+2π](k ∈Z )B.[2k π+2π,2k π+23π](k ∈Z )C.[2k π-π,2k π](k ∈Z )D.[2k π,2k π+π](k ∈Z )5.(2002全国文5,理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( )A.(4π,2π)∪(π,45π) B.(4π,π) C.(4π,45π) D.(4π,π)∪(45π,23π)6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( )A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)图4—1π,3)C.(0,1)∪(2D.(0,1)∪(1,3)7.(2002北京理,3)下列四个函数中,以π为π,π)上为减函数的是最小正周期,且在区间(2()A.y=cos2xB.y=2|sin x|1)cos x D.y=-cot xC.y=(38.(2002上海,15)函数y=x+sin|x|,x∈[-π,π]的大致图象是()9.(2001春季北京、安徽,8)若A、B是锐角△ABC的两个内角,则点P(cos B-sin A,sin B-cos A)在()A.第一象限B.第二象限C.第三象限D.第四象限10.(2001全国文,1)tan300°+cot405°的值是()A.1+3B.1-3C.-1-3D.-1+311.(2000全国,4)已知sinα>sinβ,那么下列命题成立的是()A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β12.(2000全国,5)函数y =-x cos x 的部分图象是( )13.(1999全国,4)函数f (x )=M sin (ωx +ϕ)(ω>0),在区间[a ,b ]上是增函数,且f(a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +ϕ)在[a ,b ]上( )A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m 14.(1999全国,11)若sin α>tan α>cot α(-2π<α<2π),则α∈( ) A.(-2π,-4π) B.(-4π,0)C.(0,4π)D.(4π,2π)15.(1999全国文、理,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( )A.sin xB.cos xC.sin2xD.cos2x16.(1998全国,6)已知点P (sin α-cos α,tanα)在第一象限,则在[0,2π]内α的取值范围是( )A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π) D.(4π,2π)∪(43π,π) 17.(1997全国,3)函数y =tan (3121-x π)在一个周期内的图象是( )18.(1996全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π<x <2k π+4π,k ∈Z } B.{x |2k π+4π<x <2k π+45π,k ∈Z } C.{x |k π-4π<x <k π+4π,k ∈Z } D.{x |k π+4π<x <k π+43π,k ∈Z }19.(1995全国文,7)使sin x ≤cos x 成立的x 的一个变化区间是( )A.[-43π,4π] B.[-2π,2π] C.[-4π,43π] D.[0,π] 20.(1995全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A.6πB.2πC.32πD.3π21.(1995全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( )A.322 B.-322 C.32D.-3222.(1994全国文,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a等于( )A.2B.-2C.1D.-123.(1994全国,4)设θ是第二象限角,则必有( )A.tan 2θ>cot 2θB.tan 2θ<cot2θ C.sin 2θ>cos 2θD.sin 2θ-cos2θ 24.(2002上海春,9)若f (x )=2sin ωx (0<ω<1)在区间[0,3π]上的最大值是2,则ω=.25.(2002北京文,13)sin 52π,cos 56π,tan 57π从小到大的顺序是.26.(1997全国,18)︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.(1996全国,18)tan20°+tan40°+3tan20°·tan40°的值是_____.28.(1995全国理,18)函数y =sin (x -6π)cos x 的最小值是.29.(1995上海,17)函数y =sin 2x +cos 2x在(-2π,2π)内的递增区间是.30.(1994全国,18)已知sin θ+cos θ=51,θ∈(0,π),则cot θ的值是.31.(2000全国理,17)已知函数y =21cos 2x +23sin x cos x +1,x ∈R . (1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?32.(2000全国文,17)已知函数y =3sin x +cos x ,x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?33.(1995全国理,22)求sin 220°+cos 250°+sin20°cos50°的值.34.(1994上海,21)已知sin α=53,α∈(2,π),tan (π-β)=21,求tan (α-2β)的值.35.(1994全国理,22)已知函数f (x )=tan x ,x ∈(0,2π),若x 1、x 2∈(0,2π),且x 1≠x 2,证明21[f (x 1)+f (x 2)]>f (221x x +).36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性. 37. 求函数f (x )=121log cos()34x π+的单调递增区间 38. 已知f (x )=5sin x cos x -35cos 2x +325(x ∈R )⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。
三角函数基础测试题及答案之欧阳光明创编
三角函数单元测试题一、欧阳光明(2021.03.07)二、 选择题:(12ⅹ5分=60分)1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为()2.已知角α的终边经过点P (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-3.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对4.函数)62sin(5π+=x y 图象的一条对称轴方程是( ) 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示, 如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( )A. 2或0B. 2-或2C.0D. 2-或0 7.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )A. 1B.22C. 0D.22-8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B.5(,)(,)424ππππ C.353(,)(,)2442ππππ D.33(,)(,)244ππππ9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为()A .1个B .2个C .3个D .4个10.已知1A ,2A ,…n A 为凸多边形的内角,且sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是( )A .)62sin(π+=x y B . )32cos(π+=x y C .)62sin(π-=x y D . )62cos(π-=x y12.已知函数 f (x )=f (x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b 二、填空题(4x4分=16分)13.函数12log sin 23y x π⎛⎫=- ⎪⎝⎭的定义域是 14. 函数]0,[)(62sin(2ππ-∈+=x x y 的单调递减区间是15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________. 16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题:①由()()021==x f x f 可得21x x -必是π的整数倍;②()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ; ③ ()x f y =的图象关于点⎪⎭⎫⎝⎛-0,6π对称;④()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.三.解答题:(5ⅹ12分+14分=74分)17.(本题共12分)化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-18.(本题共12分)已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值. 19.(本题共12分)已知函数12sin()63y x π=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ? 20.(本题共12分)函数)2,0,0(),sin()(πθθ<>>+=w A wx A x f 的图象如右,求出它的解析式,并说出它的周期、振幅、初相。
三角函数综合测试题(卷)含答案解析之欧阳歌谷创编
三角函数综合测试题欧阳歌谷(2021.02.01)(本试卷满分150分,考试时间120分)第Ⅰ卷(选择题 共40分)一.选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若点P 在32π的终边上,且OP=2,则点P 的坐标( )A .)3,1(B .)1,3(-C.)3,1(--D .)3,1(-2、已知=-=-ααααcos sin ,45cos sin 则()A .47B .169-C .329-D .3293、下列函数中,最小正周期为2π的是()A .)32sin(π-=x yB .)32tan(π-=x y C .)62cos(π+=x yD .)64tan(π+=x y 4、等于则)2cos(),,0(,31cos θππθθ+∈=()A .924-B .924C .97-D .975、将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( )A .12π-B .3π-C .3πD .12π6、50tan 70tan 350tan 70tan -+的值等于() A .3 B .33C .33-D .3-7.在△ABC 中,sinA >sinB 是A >B 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB第Ⅱ卷(非选择题 共110分)二.填空题(本大题共5小题,每小题6分,共30分,把答案填在题中横线上)9.已知3sin()45x π-=,则sin 2x 的值为;10.在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________11.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______. 12.函数x x y 2cos )23cos(--=π的最小正周期为__________.13.关于三角函数的图像,有下列命题: ①x y sin =与x y sin =的图像关于y 轴对称;②)cos(x y -=与x y cos =的图像相同;③x y sin = 与)sin(x y -=的图像关于y 轴对称;④ x y cos =与)cos(x y -=的图像关于y 轴对称;其中正确命题的序号是___________.三.解答题(本大题共6小题,共80分。
三角函数的图像和性质(附答案解析)
第 䁮页,共 3页
.
故 䁲 在区间 䁮 h上的最小值为 䁮,最大值为 1.
10.解:䁲Ⅰ 䁲
쀀 ݏ䁮 쳌 쀀 ݏ
ಀ쀀
1
ಀ쀀䁮 䁮
쳌
1 䁮
쀀
ݏ䁮
䁮 䁮
sin䁲䁮
쳌
1,
䁮
令䁮
쳌䁮
,
解得
䁮
쳌
3 8
.
䁲 的对称轴方程为
䁮
쳌
3 8
.
䁲Ⅱ 由 䁲
1
得
䁮 䁮
sin䁲䁮
쳌
1 䁮
1,
即 sin䁲䁮
䁮,
䁮
第 3页,共 3页
10. 已知 䁲쀀 ݏಀ쀀 , 䁲쀀 ݏ쀀 ݏ,函数 䁲
.
䁲Ⅰ 求 䁲 的对称轴方程; 䁲Ⅱ 求使 䁲 1 成立的 x 的取值集合;
䁲Ⅲ 若对任意实数
h,不等式
3
䁲
一.选择题. 1--5CDABC
二.填空题 6. 1
7.
8.
三.解答题
t 䁮 恒成立,求实数 m 的取值范围. 答案
9.解:䁲1 䁲 1 쳌 䁮 3쀀 ݏಀ쀀 䁮쀀 ݏ䁮 ,
3쀀 ݏ䁮 쳌 ಀ쀀䁮 䁮쀀 ݏ䁲䁮 쳌 ,
令䁮
䁮쳌 䁮 쳌, ,
䁮
䁮
得
3
쳌, ,
可得函数 䁲 的单调增区间为
3 쳌 h,
;
令䁮 쳌䁮 䁮 쳌
䁮
쳌
3 䁮
,
,
得쳌
쳌
䁮 3
,
,
可得函数 䁲 的单调减区间为 쳌
쳌
䁮 3
h,
三角函数的图象和性质练习题及答案
1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。
(完整版)三角函数的图像与性质练习题
三角函数的图像与性质练习题正弦函数、余弦函数的图象A组1.下列函数图象相同的是()A.y=sin x与y=sin(x+π)B.y=cos x与y=sin(π2-x)C.y=sin x与y=sin(-x)D.y=-sin(2π+x)与y=sin x解析:由诱导公式易知y=sin(π2-x)=cos x,故选B.答案:B2.y=1+sin x,x∈[0,2π]的图象与直线y=2交点的个数是()A.0B.1C.2D.3解析:作出y=1+sin x在[0,2π]上的图象,可知只有一个交点.答案:B3.函数y=sin(-x),x∈[0,2π]的简图是()解析:y=sin(-x)=-sin x,x∈[0,2π]的图象可看作是由y=sin x,x∈[0,2π]的图象关于x轴对称得到的,故选B.答案:B4.已知cos x=-12,且x∈[0,2π],则角x等于()A.2π3或4π3B.π3或2π3C.π6或5π6D.5π6或11π6解析:如图:由图象可知,x=2π3或4π3.答案:A5.当x ∈[0,2π]时,满足sin (π2-x)≥-12的x 的取值范围是( ) A.[0,2π3] B.[4π3,2π] C.[0,2π3]∪[4π3,2π] D.[2π3,4π3]解析:由sin (π2-x)≥-12,得cos x ≥-12.画出y=cos x ,x ∈[0,2π],y=-12的图象,如图所示.∵cos 2π3=cos 4π3=-12,∴当x ∈[0,2π]时,由cos x ≥-12,可得x ∈[0,2π3]∪[4π3,2π]. 答案:C6.函数y=2sin x 与函数y=x 图象的交点有 个.解析:在同一坐标系中作出函数y=2sin x 与y=x 的图象可见有3个交点.答案:37.利用余弦曲线,写出满足cos x>0,x ∈[0,2π]的x 的区间是 .解析:画出y=cos x ,x ∈[0,2π]上的图象如图所示. cos x>0的区间为[0,π2)∪(3π2,2π]答案:[0,π2)∪(3π2,2π]8.下列函数的图象:①y=sin x-1;②y=|sin x|;③y=-cos x ;④y=√cos 2x ;⑤y=√1-cos 2x .其中与函数y=sin x 图象形状完全相同的是 .(填序号)解析:y=sin x-1的图象是将y=sin x 的图象向下平移1个单位,没改变形状,y=-cos x 的图象是作了对称变换,没改变形状,与y=sin x 的图象形状相同,∴①③完全相同.而②y=|sin x|的图象,④y=√cos 2x =|cos x|的图象和⑤y=√1-cos 2x =|sin x|的图象与y=sin x 的图象形状不相同.答案:①③9.若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,求这个封闭图形的面积.解:观察图可知:图形S1与S2,S3与S4是两个对称图形,有S1=S2,S3=S4,因此函数y=2cos x的图象与直线y=2所围成的图形面积可以转化为求矩形OABC的面积.因为|OA|=2,|OC|=2π,所以S矩形OABC=2×2π=4π.故所求封闭图形的面积为4π.10.作出函数y=-sin x,x∈[-π,π]的简图,并回答下列问题.(1)观察函数图象,写出满足下列条件的x的区间:①y>0;②y<0.与函数y=-sin x,x∈[-π,π]的图象有几个交点?(2)直线y=12解:列表:描点作图:(1)根据图象可知,①当y>0时,x∈(-π,0);②当y<0时,x∈(0,π).,由图可知有两个交点.(2)在简图上作出直线y=12B组1.函数f(x)=√x-cos x在[0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析:数形结合法,令f(x)=√x-cos x=0,则√x=cos x.设函数y=√x和y=cos x,它们在[0,+∞)上的图象如图所示,显然两函数图象的交点有且只有一个,所以函数f(x)=√x-cos x在[0,+∞)内有且仅有一个零点.答案:B2.已知f(x)=sin(x+π2),g(x)=cos(x-π2),则f(x)的图象()A.与g(x)的图象相同B.与g(x)的图象关于y轴对称C.向左平移π2个单位,得g(x)的图象D.向右平移π2个单位,得g(x)的图象解析:∵f(x)=sin(x+π2)=cos x,g(x)=cos(x-π2)=sin x,∴f(x)的图象向右平移π2个单位,得g(x)的图象.由y=sin x和y=cos x的图象知,A,B,C都错,D正确.答案:D3.在(0,2π)内,使sin x>cos x成立的x的取值范围是()A.(π4,π2)∪(π,5π4) B.(π4,π)C.(π4,5π4) D.(π4,π)∪(5π4,3π2)解析:如图所示(阴影部分)时满足sin x>cos x.答案:C4.在[0,2π]内,不等式sin x<-√32的解集是.解析:画出y=sin x,x∈[0,2π]的草图如下:因为sinπ3=√32,所以sin (π+π3)=-√32,sin (2π-π3)=-√32.即在[0,2π]内,满足sin x=-√32的是x=4π3或x=5π3.可知不等式sin x<-√32的解集是(4π3,5π3).答案:(4π3,5π3)5.(2016·河南南阳一中期末)函数y=√sinx +√12-cosx 的定义域是 . 解析:由题意,得{sinx ≥0,12-cosx ≥0,∴{2kπ≤x ≤2kπ+π,k ∈Z ,2kπ+π3≤x ≤2kπ+5π3,k ∈Z ,∴2k π+π3≤x ≤2k π+π,k ∈Z .故函数y=√sinx +√12-cosx 的定义域为[π3+2kπ,π+2kπ],k ∈Z .答案:[π3+2kπ,π+2kπ],k ∈Z6利用正弦曲线,写出函数y=2sin x (π6≤x ≤2π3)的值域是 .解析:y=2sin x 的部分图象如图.当x=π2时,y max =2, 当x=π6时,y min =1,故y ∈[1,2]. 答案:[1,2]7.画出正弦函数y=sin x (x ∈R )的简图,并根据图象写出: (1)y ≥12时x 的集合;(2)-12≤y ≤√32时x 的集合.解:(1)画出y=sin x 的图象,如图,直线y=12在[0,2π]上与正弦曲线交于(π6,12),(5π6,12)两点,在[0,2π]区间内,y ≥12时x 的集合为{x |π6≤x ≤5π6}.当x ∈R 时,若y ≥12,则x 的集合为{x |π6+2kπ≤x ≤5π6+2kπ,k ∈Z}.(2)过(0,-12),(0,√32)两点分别作x 轴的平行线,从图象可看出它们分别与正弦曲线交于点(7π6+2kπ,-12)(k ∈Z ),(11π6+2kπ,-12)(k ∈Z )和点(π3+2kπ,√32)(k ∈Z ),(2π3+2kπ,√32)(k ∈Z ),那么曲线上夹在对应两点之间的点的横坐标的集合即为所求,故当-12≤y ≤√32时x 的集合为{x |-π6+2kπ≤x ≤π3+2kπ,k ∈Z}∪{x |2π3+2kπ≤x ≤7π6+2kπ,k ∈Z}.8.作出函数y=2+sin x ,x ∈[0,2π]的简图,并回答下列问题: (1)观察函数图象,写出y 的取值范围; (2)若函数图象与y=1-a 2在x ∈[0,π]上有两个交点,求a 的取值范围.解:列表:描点、连线,如图.(1)由图知,y ∈[1,3]. (2)由图知,当2≤1-a 2<3时,函数图象与y=1-a 2在[0,π]上有两个交点,即-5<a ≤-3.故a 的取值范围是(-5,-3].正弦函数、余弦函数的性质(一)A 组1.函数f (x )=-2sin (πx +π3)的最小正周期为( )A.6B.2πC.πD.2解析:T=2ππ=2. 答案:D2.下列函数中,周期为π2的是( )A.y=sin x2 B.y=sin 2x C.y=cos x4D.y=cos(-4x )解析:对D,y=cos(-4x )=cos 4x ,∴T=2π4=π2,故选D .答案:D3.(2016·四川遂宁射洪中学月考)设函数f (x )=sin (2x -π2),x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析:因为f (x )=sin (2x -π2)=-cos 2x ,所以f (-x )=-cos 2(-x )=-cos 2x=f (x ),所以f (x )是最小正周期为π的偶函数. 答案:B4.已知函数f (x )=sin (4x +π3),g (x )=sin (3x +π6)的最小正周期分别为T 1,T 2,则sin(T 1+T 2)=( ) A.-√32B.-12C.12D.√32解析:由已知T 1=2π4=π2,T 2=2π3,∴sin(T 1+T 2)=sin (π2+2π3)=sin (π+π6)=-sin π6=-12. 答案:B5.(2016·浙江金华一中月考)设f (x )是定义域为R 且最小正周期为2π的函数,且有f (x )={sinx ,0≤x ≤π,cosx ,-π<x <0,则f (-13π4)=( )A.√22 B.-√22 C.0D.1解析:因为f (x )是定义域为R 且最小正周期为2π的函数,所以f (-13π4)=f (-4π+3π4)=f (3π4). 又因为0≤3π4≤π,所以f (-13π4)=f (3π4)=sin 3π4=√22. 答案:A6.函数y=4sin(2x+π)的图象关于 对称.解析:y=4sin(2x+π)=-4sin 2x ,易证函数为奇函数,所以其图象关于原点对称. 答案:原点7.函数y=sin (ωx +π4)(ω>0)的最小正周期为23π,则ω= .解析:∵y=sin (ωx +π4)的最小正周期为T=2πω,∴2πω=2π3,∴ω=3.答案:38.若f (x )(x ∈R )为奇函数,且f (x+2)=f (x ),则f (4)= . 解析:∵f (x+2)=f (x ),∴f (x )的周期为T=2.∴f (4)=f (0).又f (x )(x ∈R )为奇函数,∴f (0)=0.∴f (4)=0.答案:09.判断函数f (x )=cos(2π-x )-x 3sin 12x 的奇偶性.解:因为f (x )=cos(2π-x )-x 3sin 12x=cos x-x 3sin 12x 的定义域为R ,f (-x )=cos(-x )-(-x )3sin 12(-x )=cos x-x 3sin 12x=f (x ),所以f (x )为偶函数.10.若函数f (x )是以π2为周期的偶函数,且f (π3)=1,求f (-17π6)的值.解:∵f (x )的周期为π2,且为偶函数,∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6)=f (π6).而f (π6)=f (π2-π3)=f (-π3)=f (π3)=1,∴f (-17π6)=1.B 组1.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( )解析:显然D 中函数图象不是经过相同单位长度图象重复出现.而A,C 中每经过一个单位长度,图象重复出现.B 中图象每经过2个单位,图象重复出现.所以A,B,C 中函数是周期函数,D 中函数不是周期函数. 答案:D2.函数y=cos (k 4x +π3)(k>0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11C.12D.13解析:∵T=2πk 4=8πk≤2,∴k ≥4π.又k ∈Z ,∴正整数k 的最小值为13.答案:D3.将函数y=sin x 的图象向左平移π2个单位,得到函数y=f (x )的图象,则下列说法正确的是( ) A.y=f (x )是奇函数 B.y=f (x )的周期为πC.y=f (x )的图象关于直线x=π2对称D.y=f (x )的图象关于点(-π2,0)对称解析:y=sin x 的图象向左平移π2个单位,得y=f (x )=sin (x +π2)=cos x 的图象,所以f (x )是偶函数,A 不正确;f (x )的周期为2π,B 不正确;f (x )的图象关于直线x=k π(k ∈Z )对称,C 不正确;f (x )的图象关于点(kπ+π2,0)(k ∈Z )对称,当k=-1时,点为(-π2,0),故D 正确.综上可知选D . 答案:D4.若函数f (x )是以π为周期的奇函数,且当x ∈[-π2,0)时,f (x )=cos x ,则f (-5π3)=( )A.12B.√32C.-12D.-√32解析:∵f (x )的最小正周期是π,∴f (-5π3)=f (-2π3)=f (π3).又f (x )是奇函数,∴f (π3)=-f (-π3)=-cos (-π3)=-12. 答案:C5.定义在R 上的偶函数f (x )满足f (x )=f (x+2),当x ∈[3,4]时,f (x )=x-2,则有下面三个式子:①f (sin 12)<f (cos 12);②f (sin π3)<f (cos π3);③f (sin 1)<f (cos 1).其中一定成立的是 .(填序号)解析:当0≤x ≤1时,3≤-x+4≤4,f (-x+4)=-x+4-2=-x+2,∴f [-(x-4)]=f (x-4)=f (x )=-x+2, ∴f (x )在[0,1]上是减函数.∵1>sin π3>cos π3>0,1>sin 1>cos 1>0,1>cos 12>sin 12>0,∴f (sin π3)<f (cos π3),f (sin 1)<f (cos1),f (sin 12)>f (cos 12).答案:②③6.已知函数y=12sin x+12|sin x|.(1)画出这个函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y=12sin x+12|sin x|={sinx ,x ∈[2kπ,2kπ+π](k ∈Z ),0,x ∈[2kπ-π,2kπ)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,故函数的最小正周期是2π.7.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x.(1)求当x ∈[-π,0]时,f (x )的解析式; (2)画出函数f (x )在[-π,π]上的简图; (3)求当f (x )≥12时x 的取值范围.解:(1)∵f (x )是偶函数,∴f (-x )=f (x ).∵当x ∈[0,π2]时,f (x )=sin x ,∴当x ∈[-π2,0]时,f (x )=f (-x )=sin(-x )=-sin x. 又当x ∈[-π,-π2]时,x+π∈[0,π2],f (x )的周期为π,∴f (x )=f (π+x )=sin(π+x )=-sin x.∴当x ∈[-π,0]时,f (x )=-sin x.(2)如图.(3)∵在[0,π]内,当f (x )=12时,x=π6或5π6,∴在[0,π]内,f (x )≥12时,x ∈[π6,5π6].又f (x )的周期为π,∴当f (x )≥12时,x ∈[kπ+π6,kπ+5π6],k ∈Z .正弦函数、余弦函数的性质(二)A 组1.函数y=|sin x|的一个单调增区间是( )A.(-π4,π4)B.(π4,3π4)C.(π,3π2) D.(3π2,2π)解析:画出y=|sin x|的图象即可求解.故选C . 答案:C2.(2016·福建三明一中月考)y=cos (x 2-π6)(-π≤x ≤π)的值域为( )A.[-12,12]B.[-1,1]C.[-12,1]D.[-12,√32] 解析:因为-π≤x ≤π,所以-2π3≤x2−π6≤π3.所以-12≤cos (x 2-π6)≤1,y=cos (x 2-π6)(-π≤x ≤π)的值域为[-12,1]. 答案:C3.函数f (x )=3sin (x +π6)在下列区间内递减的是( ) A.[-π2,π2] B.[-π,0]C.[-2π3,2π3] D.[π2,2π3]解析:令2k π+π2≤x+π6≤2k π+3π2,k ∈Z 可得2k π+π3≤x ≤2k π+4π3,k ∈Z ,∴函数f (x )的递减区间为[2kπ+π3,2kπ+4π3],k ∈Z .从而可判断[π2,2π3]⊆[π3,4π3],∴在x ∈[π2,2π3]时,f (x )单调递减.答案:D4.函数f (x )=2sin (ωx -π6)(ω>0)的最小正周期为4π,当f (x )取得最小值时,x 的取值集合为( ) A.{x |x =4kπ-2π3,k ∈Z} B.{x |x =4kπ+2π3,k ∈Z}C.{x |x =4kπ-π3,k ∈Z} D.{x |x =4kπ+π3,k ∈Z}解析:∵T=2πω=4π,∴ω=12.∴f (x )=2sin (12x -π6).由12x-π6=2k π-π2(k ∈Z ),得x=4k π-2π3(k ∈Z ).答案:A5.已知函数f (x )=sin (x -π2),x ∈R ,下列结论错误的是 ( )A.函数f (x )的最小正周期为2πB.函数f (x )在区间[0,π2]上是增函数C.函数f (x )的图象关于y 轴对称D.函数f (x )是奇函数解析:f (x )=sin [-(π2-x)]=-sin (π2-x)=-cos x ,∴周期T=2π,∴选项A 正确;f (x )在[0,π2]上是增函数,∴选项B 正确; 定义域是R ,f (-x )=-cos(-x )=-cos x=f (x ),∴f (x )是偶函数,其图象关于y 轴对称, ∴选项C 正确,选项D 错误.答案:D6.函数y=sin |x|+sin x 的值域是 . 解析:∵y=sin |x|+sin x={2sinx ,x ≥0,0,x <0,∴-2≤y ≤2.答案:[-2,2]7.函数y=cos x 在区间[-π,a ]上为增函数,则a 的取值范围是 . 解析:∵y=cos x 在[-π,0]上为增函数,又在[-π,a ]上递增,∴[-π,a ]⊆[-π,0].∴a ≤0.又∵a>-π,∴-π<a ≤0.答案:(-π,0]8.若函数f (x )=sin ωx (0<ω<2)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω= . 解析:由题意知函数f (x )在x=π3处取得最大值,∴ωπ3=2k π+π2,ω=6k+32,k ∈Z .又0<ω<2,∴ω=32.答案:329.已知函数f (x )=sin (2ωx +π4)(x ∈R ,ω>0)的最小正周期为π.(1)求f (x )在[0,π2]上的值域,并求出取最小值时的x 值;(2)求f (x )的单调递增区间.解:由已知得2π2ω=π,ω=1,∴f (x )=sin (2x +π4).(1)当x ∈[0,π2]时,π4≤2x+π4≤5π4.∴-√22≤sin (2x +π4)≤1.∴f (x )值域为[-√22,1]. 当2x+π4=5π4时,f (x )取最小值-√22,∴x=π2时,f (x )取最小值.(2)令2k π-π2≤2x+π4≤2k π+π2(k ∈Z ), 得k π-3π8≤x ≤k π+π8(k ∈Z ).∴f (x )的递增区间为[kπ-3π8,kπ+π8](k ∈Z ).10.已知函数f (x )=2a sin (2x +π6)+a+b 的定义域是[0,π2],值域是[-5,1],求a ,b 的值. 解:∵0≤x ≤π2,∴π6≤2x+π6≤7π6.∴-12≤sin (2x +π6)≤1. ∴a>0时,{b =-5,3a +b =1,解得{a =2,b =-5.a<0时,{b =1,3a +b =-5,解得{a =-2,b =1.因此a=2,b=-5或a=-2,b=1.B 组1.若0<α<β<π4,a=√2sin (α+π4),b=√2sin (β+π4),则 ( )A.a<bB.a>bC.ab<1D.ab>√2解析:∵0<α<β<π4,∴π4<α+π4<β+π4<π2.而正弦函数y=sin x 在x ∈[0,π2]上是增函数,∴sin (α+π4)<sin (β+π4).∴√2sin (α+π4)<√2sin (β+π4),即a<b.答案:A2.若a 为常数,且a>1,0≤x ≤2π,则函数y=sin 2x+2a sin x 的最大值为( ) A.2a+1 B.2a-1 C.-2a-1D.a 2解析:令sin x=t ,则-1≤t ≤1,原函数变形为y=t 2+2at=(t+a )2-a 2.∵a>1,∴当t=1时,y max =12+2a×1=2a+1,故选A .答案:A3.函数y=cos (π4-2x)的单调递增区间是( ) A.[kπ+π8,kπ+5π8],k ∈ZB.[kπ-3π8,kπ+π8],k ∈ZC.[2kπ+π8,2kπ+5π8],k ∈ZD.[2kπ-3π8,2kπ+π8],k ∈Z解析:函数y=cos (π4-2x)=cos (2x -π4),令2k π-π≤2x-π4≤2k π,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z , 故单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .答案:B4.函数y=2sin (π3-x)-cos (π6+x)(x ∈R )的最小值为 . 解析:∵(π3-x)+(π6+x)=π2,∴y=2sin [π2-(π6+x)]-cos (x +π6)=2cos (x +π6)-cos (x +π6)=cos (x +π6).∴y min =-1.答案:-15.若函数f (x )=sin ωx (ω>0)在区间[-π3,π6]上单调递增,则当ω取最大值时,函数f (x )=sin ωx 的周期是 .解析:令2k π-π2≤ωx ≤2k π+π2可得2kπω−π2ω≤x ≤2kπω+π2ω,∴k=0时,f (x )在[-π2ω,π2ω]上递增.又∵f (x )在[-π3,π6]上递增,∴{-π2ω≤-π3,π2ω≥π6,ω>0,解得0<ω≤32.∴ω的最大值为32.∴周期T=2πω=4π3.答案:4π36.对于函数f (x )={sinx ,sinx ≤cosx ,cosx ,sinx >cosx ,给出下列四个命题:①该函数是以π为最小正周期的周期函数; ②当且仅当x=π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于直线x=5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x<π2+2k π(k ∈Z )时,0<f (x )≤√22.其中正确命题的序号是 . 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x=π+2k π(k ∈Z )和x=3π2+2k π(k ∈Z )时,该函数都取得最小值,为-1,故①②错误.由图象知,函数图象关于直线x=5π4+2k π(k ∈Z )对称,在2k π<x<π2+2k π(k ∈Z )时,0<f (x )≤√22,故③④正确.答案:③④7.已知函数y=sin (π3-2x). (1)求函数的周期;(2)求函数在[-π,0]上的单调递减区间. 解:y=sin (π3-2x)可化为y=-sin (2x -π3).(1)周期T=2πω=2π2=π.(2)令2k π-π2≤2x-π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z ,所以x ∈R 时,y=sin (π3-2x)的单调递减区间为[kπ-π12,kπ+5π12],k ∈Z . 从而x ∈[-π,0]时,y=sin (π3-2x)的单调递减区间为[-π,-7π12],[-π12,0].8.已知函数f (x )=sin(ωx+φ)(其中ω>0,|φ|<π2),若函数y=f (x )的图象与x 轴的任意两个相邻交点间的距离为π2,且直线x=π6是函数y=f (x )图象的一条对称轴.(1)求ω的值;(2)求y=f (x )的单调递增区间; (3)若x ∈[-π6,π3],求y=f (x )的值域.解:(1)因为函数y=f (x )的图象与x 轴的任意两个相邻交点间的距离为π2,所以函数的周期T=π,所以ω=2ππ=2.(2)因为直线x=π6是函数y=f (x )图象的一条对称轴,所以2×π6+φ=k π+π2,k ∈Z ,φ=k π+π6,k ∈Z . 又|φ|<π2,所以φ=π6.所以函数的解析式是y=sin (2x +π6). 令2x+π6∈[-π2+2kπ,π2+2kπ],k ∈Z ,解得x ∈[kπ-π3,kπ+π6],k ∈Z .所以函数的单调递增区间为[kπ-π3,kπ+π6],k ∈Z . (3)因为x ∈[-π6,π3],所以2x+π6∈[-π6,5π6].所以sin (2x +π6)∈[-12,1], 即函数的值域为[-12,1].正切函数的性质与图象A 组1.当x ∈(-π2,π2)时,函数y=tan |x|的图象( )A.关于原点对称B.关于y 轴对称C.关于x 轴对称D.没有对称轴解析:∵x ∈(-π2,π2),f (-x )=tan |-x|=tan |x|=f (x ),∴f (x )为偶函数,即y=tan |x|的图象关于y 轴对称. 答案:B2.(2016·河北衡水二中月考)函数f (x )=tan (π4-x)的单调递减区间为( )A.(kπ-3π4,kπ+π4),k ∈ZB.(kπ-π4,kπ+3π4),k ∈ZC.(kπ-π2,kπ+π2),k ∈ZD.(k π,(k+1)π),k ∈Z解析:因为f (x )=tan (π4-x)=-tan (x -π4),所以原函数的单调递减区间就是函数y=tan (x -π4)的单调递增区间.故k π-π2≤x-π4≤k π+π2,k ∈Z ,k π-π4≤x ≤k π+3π4,k ∈Z .所以原函数的单调递减区间是(kπ-π4,kπ+3π4),k∈Z . 答案:B3.函数f (x )=tan ax (a>0)的图象的相邻两支截直线y=π3所得线段长为2,则a 的值为( ) A.π2 B.12C.πD.1解析:由已知得f (x )的周期为2,∴πa =2.∴a=π2.答案:A4.函数f (x )=tanx2-cosx 的奇偶性是( ) A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:f (x )的定义域为{x |x ≠kπ+π2,k ∈Z},∴f (-x )=tan (-x )2-cos (-x )=-tanx2-cosx =-f (x ). ∴f (x )是奇函数.答案:A5.下列图形分别是①y=|tan x|;②y=tan x ;③y=tan(-x );④y=tan |x|在x ∈(-3π2,3π2)内的大致图象,那么由a到d 对应的函数关系式应是( )A.①②③④B.①③④②C.③②④①D.①②④③解析:y=tan(-x )=-tan x 在(-π2,π2)上是减函数,只有图象d 符合,即d 对应③. 答案:D6.已知函数y=3tan (ωx +π6)的最小正周期是π2,则ω= .解析:由题意知,T=π|ω|=π2,∴ω=±2. 答案:±27.函数y=3tan (x +π3)的对称中心的坐标是 .解析:由x+π3=kπ2,k ∈Z ,得x=kπ2−π3,k ∈Z ,即对称中心坐标是(kπ2-π3,0)(k ∈Z ). 答案:(kπ2-π3,0)(k ∈Z )8.满足tan (x +π3)≥-√3的x 的集合是 .解析:把x+π3看作一个整体,利用正切函数的图象可得k π-π3≤x+π3<k π+π2,k ∈Z ,解得k π-2π3≤x<k π+π6,k ∈Z .故满足tan (x +π3)≥-√3的x 的集合是{x |kπ-2π3≤x <kπ+π6,k ∈Z}.答案:{x |kπ-2π3≤x <kπ+π6,k ∈Z}9.求函数y=tan (4x -π4)的定义域、值域,并指出它的周期性、奇偶性、单调性. 解:由4x-π4≠k π+π2,得x ≠kπ4+3π16,∴所求定义域为{x |x ≠kπ4+3π16,k ∈Z},值域为R ,周期T=π4.又f (3π16)没有意义,f (-3π16)=tan [4×(-3π16)-π4]=0, ∴f (x )是非奇非偶函数.令-π2+k π<4x-π4<π2+k π,k ∈Z , 解得kπ4−π16<x<kπ4+3π16,k ∈Z .∴f (x )的单调递增区间是(kπ4-π16,kπ4+3π16)(k ∈Z ),不存在单调递减区间.10.已知函数f (x )=2tan (ωx +π4)(ω>0),y=f (x )的图象与直线y=2的两个相邻交点的距离等于2π,求f (x )的单调递增区间.解:由题意知,函数f (x )的周期为2π,则π|ω|=2π,由于ω>0,故ω=12. 所以f (x )=2tan (12x +π4). 再由k π-π2<12x+π4<k π+π2,k ∈Z ,得2k π-3π2<x<2k π+π2,k ∈Z ,即函数f (x )的单调递增区间为(2kπ-3π2,2kπ+π2),k ∈Z .11.求函数y=-tan 2x+4tan x+1,x ∈[-π4,π4]的值域. 解:∵-π4≤x ≤π4,∴-1≤tan x ≤1.令tan x=t ,则t ∈[-1,1].∴y=-t 2+4t+1=-(t-2)2+5. ∴当t=-1,即x=-π4时,y min =-4,当t=1,即x=π4时,y max =4.故所求函数的值域为[-4,4].B 组1.函数y=tan2x tanx的定义域为( )A.{x ∈R |x ≠kπ4,k ∈Z}B.{x ∈R |x ≠kπ+π2,k ∈Z} C.{x ∈R |x ≠kπ+π4,k ∈Z} D.{x ∈R |x ≠kπ-π4,k ∈Z} 解析:由题意知{tan2x 有意义,tanx 有意义,且tanx ≠0,即{2x ≠k 'π+π2(k '∈Z ),x ≠kπ+π2,且x ≠kπ(k ∈Z ),得{x ≠k 'π2+π4(k '∈Z ),x ≠kπ+π2,且x ≠kπ(k ∈Z ),故x ≠kπ4(k ∈Z ). 答案:A2.函数f (x )=tan (ωx -π4)与函数g (x )=sin (π4-2x)的最小正周期相同,则ω=( )A.±1B.1C.±2D.2解析:∵函数g (x )的周期为2π2=π,∴π|ω|=π,∴ω=±1.答案:A3.设a=lo g 12tan 70°,b=lo g 12sin 25°,c=(12)cos25°,则有( )A.a<b<cB.b<c<aC.c<b<aD.a<c<b解析:∵tan 70°>tan 45°=1,∴a=lo g 12tan 70°<0.又∵0<sin 25°<sin 30°=12,∴b=lo g 12sin 25°>lo g 1212=1.而c=(12)cos25°∈(0,1),∴b>c>a.答案:D4.已知函数y=tan ωx 在(-π2,π2)内是减函数,则ω的取值范围为 . 解析:由题意可知ω<0,又(π2ω,-π2ω)⊆(-π2,π2).故-1≤ω<0. 答案:-1≤ω<05.已知y=2tan(ωx+φ)(ω>0,|φ|<π2)的部分图象如图所示,则ω= ,φ= .解析:由题图可知,当x=π4时,y=2,即2tan (π4ω+φ)=2,tan (π4ω+φ)=1,即π4ω+φ=k π+π4(k ∈Z ).① 又直线x=3π8为它的一条渐近线,∴3π8ω+φ=k π+π2(k ∈Z ),②而ω>0,|φ|<π2,由①②可得{ω=2,φ=-π4.答案:2 -π46.方程(12)x-tan x=0在x ∈(-π2,π2)∪(π2,3π2)内的根的个数为 .解析:分别画出y=(12)x与y=tan x 在x ∈(-π2,π2)∪(π2,3π2)内的图象,如图.易知y=(12)x与y=tan x 在相应区间内有2个交点,原方程有2个根. 答案:27.函数f (x )=tan(3x+φ)图象的一个对称中心是(π4,0),其中0<φ<π2,试求函数f (x )的单调区间. 解:由于函数y=tan x 的对称中心为(kπ2,0),其中k ∈Z ,则3π4+φ=kπ2,即φ=kπ2−3π4.由于0<φ<π2,所以当k=2时,φ=π4. 故函数解析式为f (x )=tan (3x +π4).由于正切函数y=tan x 在区间(kπ-π2,kπ+π2)(k ∈Z )上为增函数,则令k π-π2<3x+π4<k π+π2, 解得kπ3−π4<x<kπ3+π12,k ∈Z , 故函数的单调增区间为(kπ3-π4,kπ3+π12),k ∈Z .没有单调减区间. 8.设函数f (x )=tan (x 2-π3).(1)求函数f (x )的定义域、周期和单调区间; (2)求不等式-1≤f (x )≤√3的解集; (3)作出函数y=f (x )在一个周期内的简图. 解:(1)由x2−π3≠π2+k π(k ∈Z ),得x ≠5π3+2k π,∴f (x )的定义域是{x ∈R |x ≠5π3+2kπ,k ∈Z}.∵ω=12,∴周期T=πω=2π.由-π2+k π<x 2−π3<π2+k π(k ∈Z ), 得-π3+2k π<x<5π3+2k π(k ∈Z ).∴函数f (x )的单调递增区间是(-π3+2kπ,5π3+2kπ)(k ∈Z ).(2)由-1≤tan (x 2-π3)≤√3, 得-π4+k π≤x2−π3≤π3+k π(k ∈Z ), 解得π6+2k π≤x ≤4π3+2k π(k ∈Z ).∴不等式-1≤f (x )≤√3的解集是{x |π6+2kπ≤x ≤4π3+2kπ,k ∈Z}.(3)令x2−π3=0,则x=2π3. 令x2−π3=π2,则x=5π3. 令x2−π3=-π2,则x=-π3.∴函数y=tan (x 2-π3)的图象与x 轴的一个交点坐标是(2π3,0),在这个交点左、右两侧相邻的两条渐近线方程分别是x=-π3,x=5π3.从而得函数y=f (x )在区间(-π3,5π3)内的简图(如图所示).函数y=A sin(ωx+φ)的图象A 组1.把函数y=cos x 的图象上每一点的纵坐标保持不变,横坐标变为原来的12倍,然后将图象沿x 轴负方向平移π4个单位长度,得到的图象对应的解析式为( )A.y=sin 2xB.y=-sin 2xC.y=cos (2x +π4)D.y=cos (12x +π4)解析:y=cos x 的图象上每一点的横坐标变为原来的12倍(纵坐标不变)得到y=cos 2x 的图象;再把y=cos 2x 的图象沿x 轴负方向平移π4个单位长度,就得到y=cos 2(x +π4)=cos (2x +π2)的图象.即y=-sin 2x 的图象. 答案:B2.某同学用“五点法”画函数y=A sin(ωx+φ)(A>0,ω>0)在一个周期内的简图时,列表如下:则有( ) A.A=0,ω=π12,φ=0B.A=2,ω=3,φ=π12 C.A=2,ω=3,φ=-π4D.A=1,ω=2,φ=-π12解析:由表格得A=2,3π4−π12=2πω,∴ω=3.∴ωx+φ=3x+φ.当x=π12时,3x+φ=π4+φ=0,∴φ=-π4.答案:C3.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( ) A.13B.1C.53D.2解析:把f (x )=sin ωx 的图象向右平移π4个单位长度得y=sin [ω(x -π4)]的图象.又所得图象过点(3π4,0),∴sin [ω(3π4-π4)]=0. ∴sinωπ2=0,∴ωπ2=k π(k ∈Z ).∴ω=2k (k ∈Z ).∵ω>0,∴ω的最小值为2.答案:D4.把函数y=sin (2x -π4)的图象向左平移π8个单位,再把所得的函数图象上所有点的纵坐标伸长为原来的2倍,横坐标不变,得到函数g (x )的图象,则函数g (x )为( ) A.最大值为12的偶函数B.周期为π的偶函数C.周期为2π,且最大值为2的函数D.最大值为2的奇函数 解析:y=sin (2x -π4)y=sin [2(x +π8)-π4]=sin 2xy=2sin 2x ,即g (x )=2sin 2x ,故g (x )的最大值为2,周期T=π,g (x )为奇函数,故选D.答案:D5.(2016·四川成都石室中学期中)为了得到函数y=3cos 2x 的图象,只需把函数y=3sin (2x +π6)的图象上所有的点( ) A.向右平移π3个单位长度 B.向右平移π6个单位长度C.向左平移π3个单位长度 D.向左平移π6个单位长度解析:函数y=3cos 2x=3sin (2x +π2)=3sin [2(x +π6)+π6],把函数y=3sin (2x +π6)的图象上所有的点向左平移π6个单位长度,可得函数y=3cos 2x 的图象. 答案:D6.把y=sin x 的图象上所有点的横坐标和纵坐标都缩短到原来的13倍,得到 的图象. 解析:将y=sin x 的图象上所有点的横坐标缩短到原来的13倍得y=sin 3x 的图象,纵坐标再缩短为原来的13倍得到y=13sin 3x 的图象. 答案:y=13sin 3x7.已知函数f (x )=sin (ωx +π4)(ω>0)的最小正周期为π,为了得到g (x )=sin (12x +π4)的图象,只需将y=f (x )的图象上 .解析:∵f (x )的最小正周期为π,∴2πω=π.∴ω=2.∴f (x )=sin (2x +π4).又g (x )=sin (12x +π4)=sin [2×(14x)+π4],∴只需将y=f (x )的图象上所有点的横坐标伸长为原来的4倍,纵坐标不变,得到g (x )=sin (12x +π4)的图象.答案:所有点的横坐标伸长为原来的4倍,纵坐标不变8.设函数f (x )=cos ωx (ω>0),将y=f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于 .解析:将f (x )的图象向右平移π3个单位长度得g (x )=f (x -π3)=cos [ω(x -π3)]=cos (ωx -π3ω)的图象,则-π3ω=2k π(k ∈Z ),∴ω=-6k (k ∈Z ).又ω>0,∴k<0(k ∈Z ),∴当k=-1时,ω有最小值6. 答案:69.将函数y=f (x )的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再向左平移π2个单位所得的曲线是y=12sin x 的图象,试求y=f (x )的解析式.解:将y=12sin x 的图象向右平移π2个单位得y=12sin (x -π2)的图象,化简得y=-12cos x.再将y=-12cos x 的图象上的横坐标缩短为原来的12倍(纵坐标不变)得y=-12cos 2x 的图象,所以f (x )=-12cos 2x. 10.(2016·湖北武汉十一中期末)已知函数f (x )=3sin (2x +π6),x ∈R . (1)用五点法作出y=f (x )在长度为一个周期的闭区间上的简图;(2)请说明函数y=f (x )的图象可以由正弦函数y=sin x 的图象经过怎样的变换得到.解:(1)列表:简图如下:(2)将函数y=sin x 图象上所有点的横坐标不变,纵坐标变为原来的3倍得到y=3sin x 的图象,再将得到的图象向左平移π6个单位长度得到y=3sin (x +π6)的图象,最后将得到的图象上所有点的纵坐标不变,横坐标变为原来的12得到y=3sin (2x +π6)的图象. B 组1.给出几种变换:(1)横坐标伸长到原来的2倍,纵坐标不变; (2)横坐标缩小到原来的12倍,纵坐标不变; (3)向左平移π3个单位长度; (4)向右平移π3个单位长度; (5)向左平移π6个单位长度; (6)向右平移π6个单位长度.则由函数y=sin x 的图象得到y=sin (2x +π3)的图象,可以实施的方案是( ) A.(1)→(3) B.(2)→(3) C.(2)→(4)D.(2)→(5)解析:由y=sin x 的图象到y=sin (2x +π3)的图象可以先平移变换再伸缩变换,即(3)→(2);也可以先伸缩变换再平移变换,即(2)→(5). 答案:D2.(2016·河北唐山一中期末)把函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有的点向右平移π3个单位,所得图象关于y 轴对称,则φ的一个可能值为( ) A.π12B.π6C.π3D.π2解析:函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变)可得函数y=sin(2x+φ)的图象,再将图象上所有的点向右平移π3个单位,可得函数y=sin [2(x -π3)+φ]=sin (2x -2π3+φ)的图象,若此函数图象关于y 轴对称,则-2π3+φ=k π+π2,k ∈Z ,所以φ=k π+7π6,k ∈Z ,当k=-1时,有φ=π6.故选B . 答案:B3.把函数y=3sin(ωx+φ)(ω>0,|φ|≤π)的图象向左平移π6个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的解析式为y=3sin x ,则( ) A.ω=2,φ=π6 B.ω=2,φ=-π3 C.ω=12,φ=π6D.ω=12,φ=-π3解析:y=3sin(ωx+φ)的图象向左平移π6个单位,得到y=3sin [ω(x +π6)+φ]=3sin (ωx +π6ω+φ)的图象,再将图象上所有点的横坐标伸长到原来的2倍,得到y=3sin (12ωx +π6ω+φ)=3sin x 的图象,则{12ω=1,π6ω+φ=0,即{ω=2,φ=-π3.答案:B4.函数y=sin x 的图象上所有点的横坐标和纵坐标同时扩大到原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为 . 解析:y=sin x y=3sin 13xy=3sin 13(x-3)=3sin (13x -1).答案:y=3sin (13x -1)5.先把函数y=2sin (2x +π6)的图象上的所有点向左平移π6个单位长度,再把所有点的横坐标伸长到原来的12倍,纵坐标不变,得到的图象对应的函数解析式是 .解析:把y=2sin (2x +π6)的图象上的所有点向左平移π6个单位长度,得函数y=2sin [2(x +π6)+π6]=2sin (2x +π2)=2cos 2x 的图象,再把所有点的横坐标伸长到原来的12倍,纵坐标不变,得到函数y=2cos 4x 的图象. 答案:y=2cos 4x6.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin (2x +π3)的图象重合,则φ= .解析:函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位,得平移后的图象对应的函数解析式为y=cos [2(x -π2)+φ]=cos(2x+φ-π),而函数y=sin (2x +π3)=cos (2x +π3-π2),由函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后与函数y=sin (2x +π3)的图象重合,得2x+φ-π=2x+π3−π2,解得φ=5π6,符合-π≤φ<π,故答案为5π6. 答案:5π67.已知函数y=√2cos (2x +π4).求: (1)函数的周期及单调递减区间;(2)函数的图象可由y=cos x 的图象经过怎样的变换得到? 解:(1)∵ω=2,∴T=2π2=π.由2k π≤2x+π4≤2k π+π,k ∈Z , 得k π-π8≤x ≤k π+3π8,k ∈Z .∴函数的周期为π,单调递减区间为[kπ-π8,kπ+3π8],k ∈Z .(2)将函数y=cos x 的图象上的所有点向左平移π4个单位长度,所得图象的函数解析式为y=cos (x +π4),再把所得图象上各点的横坐标缩短到原来的12倍(纵坐标不变),得y=cos (2x +π4)的图象,再把图象上各点的纵坐标伸长到原来的√2倍(横坐标不变),即得y=√2cos (2x +π4)的图象. 8.设函数f (x )=sin (ωx -3π4)(ω>0)的最小正周期为π.(1)求ω; (2)若f (α2+3π8)=2425,且α∈(-π2,π2),求tan α的值; (3)完成下面列表,并画出函数y=f (x )在区间[0,π]上的图象. 列表:描点连线:解:(1)∵函数f (x )=sin (ωx -3π4)(ω>0)的最小正周期为π,∴2πω=π,∴ω=2. (2)由(1)知,f (x )=sin (2x -3π4).由f (α2+3π8)=2425,得sin α=2425,∴cos α=±725. 又-π2<α<π2,∴cos α=725,∴tan α=247. (3)由y=sin (2x -3π4)知:故函数y=f (x )在区间[0,π]上的图象是:。
(完整版)三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y=2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是( B ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( A ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( D ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( C )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( A )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( D ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( D ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( A )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________.⎣⎡⎦⎤98π+3k π,21π8+3k π (k ∈Z ) 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 31415.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1, 则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π, 可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx2+sin 2ωx +1=sin 2ωx +cos 2ωx +2=2⎝⎛⎭⎫sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2, 所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝⎛⎭⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2, 此时x 的集合为⎩⎨⎧⎭⎬⎫x |x =π16+k π2,k ∈Z .19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解 f (x )=32sin 2ωx +12cos 2ωx +12=sin ⎝⎛⎭⎫2ωx +π6+12. (1)因为T =π,所以ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎡⎦⎤-π6,5π6, 所以f (x )的值域为⎣⎡⎦⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝⎛⎭⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)由图象可知,函数的最大值M =3,最小值m =-1, 则A =,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f (x )=2sin(2x +φ)+1, 将x =6π,y =3代入上式,得1)3π(=+ϕ ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2k π,k ∈Z ,∴φ=6π, ∴f (x )=2sin )6π2(+x +1. (2)由2x +6π=2π+k π,得x =6π+21k π,k ∈Z , ∴f (x )=2sin )6π2(+x +1的对称轴方程为 216π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos ⎝⎛⎭⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12. ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π, ∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝⎛⎭⎫-π4+φ=0. ∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x . ∵x ∈⎣⎡⎦⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.当。
2021年三角函数中sec csc 是什么意思之欧阳学文创编
三角函数中sec csc 是什么意思?欧阳光明(2021.03.07)SEC正割sec在三角函数中表示正割直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。
正割与余弦互为倒数,余割与正弦互为倒数。
即:secθ=1/cosθ在y=secθ中,以x的任一使secθ有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.y=secθ的性质:(1)定义域,θ不能取90度,270度,-90度,-270度等值; 即θ≠kπ+π/2或θ≠kπ-π/2 (k∈Z,且k=0)(2)值域,|secθ|≥1.即secθ≥1或secθ≤-1;(3)y=secθ是偶函数,即sec(-θ)=secθ.图像对称于y轴;(4)y=secθ是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.CSC又叫余割函数:即在直角三角形中斜边比角的对边a 0` 30` 45` 60` 90`cosa 1 √3/2 √2/2 1/2 0 baobao1975 2009-07-15 14:06:30 正割-sec直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。
(sec的完整形式为secant)在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y).在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线.y=secx的性质:(1)定义域,{x|x≠kπ+π/2,k∈Z}(2)值域,|secx|≥1.即secx≥1或secx≤-1;(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴;(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π.正割与余弦互为倒数,余割与正弦互为倒数。
(5)secθ=1/cosθ余割-csc直角三角形斜边与某个锐角的对边的比,叫做该锐角的余割,用csc(角)表示。
三角函数图像与性质练习题及答案.doc
三角函数的图像与性质练习题一 选择题1.把函数 y=sin x 的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变 ,再把图像向左平移个单位 ,这时对应于这个图像的解析式是()4A . y cos 2xB . y sin 2xC . y sin(2x 4 )D . y sin(2 x 4)2.函数 y cos(4 x ) 图象的两条相邻对称轴间的距离为( )3A .πB .πC .πD . π8423.函数 f ( x)1 cos2 x ()cosxA .在 (π π上递增B .在 (π上递增,在 (0,π上递减, ),0])2 222 C .在 (π π上递减D .在 ( π上递减,在 (0, π上递增,),0] )2 222 4.下列四个函数中 ,最小正周期为,且图象关于直线 x 对称的是( )12 A . y x)x )sin(B . y sin(2323 C . y sin(2 x)D . y sin(2 x)335.函数 y1sin 2x 3cos 2 x 3 的最小正周期等于()22A .B .2C . 4D . 46.“φ =是π”“曲线 y=sin(2x+φ)过坐标原点的 ”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.函数 y 2sin( x ) 在一个周期内的图象如图所示, 则此函数的解析式可能是( )A . y 2sin(2 x) B . y 2sin(2 x)44 C . y 2sin( x3D . y x7)2sin()82 168.(北京市东城区普通校 2013 届高三 3 月联考数学(理)试题)已知函数 y A sin(x ) 的图象如图所示,则该函数的解析式可能是 ( )..y1O 2x-1第 6 题图A . y4 sin(2 x 1)B . y3sin(2 x 1 )5 52 5C . y4sin( 4x 1 ) D . y4sin( 4x 1)5 5 55 559.(2013 湖·北 )将函数 y = 3cos x +sin x(x ∈R) 的图象向左平移 m(m >0)个单位长 度后,所得到的图象关于y 轴对称,则 m 的最小值是 ( )10.函数 y = sin 2x + sin x -1 的值域为 ()555A .[ -1,1]B .[- 4,- 1]C .[-4,1]D . [-1,4 ]π π11.已知函数 f(x)= 2cos(ωx+φ)+b 对任意实数 x 有 f(x + 4)=f(-x)成立,且 f(8)= 1,则实数 b 的值为 ()A .- 1B . 3C .- 1 或 3D .- 3二 填空题函数 =+9 - 2的定义域为 ________________. 12.y lg sin 2xx13.已知函数 f ( x)sin(2x π π 时, f ( x) 的值域是 ) ,其中 x [ ,a] .当 a6 6 3 ______;若 f (x) 的值域是 [1,1] ,则 a 的取值范围是 ______.214.定义一种运算 ,令,且 ,则函数的最大值是 ______15.(北京北师特学校 203 届高三第二次月考理科数学)把函数y sin 2x 的图象沿 x 轴向左平移个单位,纵坐标伸长到原来的 2 倍(横坐标不变 )后得到函6数 y f ( x) 图象,对于函数 y f ( x) 有以下四个判断:①该函数的解析式为y 2sin(2x) ;② 该函数图象关于点(,0) 对称;6 3③ 该函数在[0, ] 上是增函数; ④函数y f ( x) a 在 [0, ] 上的最小值为 3 ,6 2则 a 2 3 .其中 ,正确判断的序号是 ________________________ππ16.设函数 f(x)= 3sin(2x+4),若存在这样的实数x1,x2,对任意的 x∈R,都有f(x1) ≤f(x) ≤f(x2)成立,则 | x1-x2| 的最小值为 ________.三解答题17. 已知函数f ( x) 3 sin x cos x cos2 x a .(Ⅰ)求 f (x) 的最小正周期及单调递减区间;(Ⅱ)若 f (x) 在区间 [ , ] 上的最大值与最小值的和为3,求 a 的值.6 3 218. 已知函数 f x cos 2 x6 cos 2 x 1 2sin 2 x, x R , 0 的6最小正周期为 .(I)求的值 ;求函数f x 在区间,上的最大值和最小值 .(II)4 319. 已知函数 f ( x) sin x6 sin x62 cos2x, 其中x R , 0 .2(1)求函数f ( x)的值域;(2)若函数 f (x)的图象与直线y 1 的两个相邻交点间的距离为2,求函数 f (x) 的单调增区间.20. 已知函数 f x 3 cos x sin x sin 2x 1 .2 cos x 2(I)求f的值;3(II)求函数f x的最小正周期及单调递减区间.r r r r 221. 已知向量 a 3 cosx,0 ,b 0,sin x ,记函数 f x a b 3 sin 2x .求:(I)函数 f x 的最小值及取得小值时x 的集合 ;(II)函数 f x 的单调递增区间 .22. 函数 f ( x) Asin( x) ( A 0,0,| | ) 部分图象如图所示 .2y23o x62(Ⅰ)求函数f (x)的解析式 ,并写出其单调递增区间;(Ⅱ)设函数g(x) f (x) 2cos 2x ,求函数 g(x) 在区间[, ] 上的最大值和最小值.6 4答案1. A 【解析】 把函数 y=sinx 的 像上所有点的横坐 都 小到原来的一半, 坐 保持不 , 得 到y=sin 2x的象 , 再 把像 向 左 平 移个位 , 得 到4y=sin 2( x) sin(2 x) cos2 x ,所以 A.424 C5. Ay= 1sin 2x3 1 cos2x3 = 1 sin 2x3cos2 xsin(2 x)【解析】22 2 223 ,所以函数的周期 T 22 , A.26. A,y sin(2 x ) sin 2x , 原点 ,便是函数 原点的 候可以取其他 ,故 A 答案 .7. 【答案】 B解:由 象可知T 5,所以函数的周期T,又 T2,所以28822 。
(完整word版)三角函数图像与性质试题及配套答案
xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin |x |C .y=-sin |x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A 。
)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( )。
A 。
,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6。
要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C 。
向左平移8π个单位 D.向右平移8π个单位7。
设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3 B 。
13C 。
1D 。
1- 8。
A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23-D 。
2110.函数2cos 1y x =+的定义域是( )。
三角函数图像和性质练习题(附答案)之欧阳文创编
三角函数的图像与性质时间:2021.03.12创作:欧阳文一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32 B.23 C.2 D.32.若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于. A .12B .12C .2D .43.将函数sin()()6y x x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈4.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F/,F/的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-πB.)2,6(πC.)2,6(--πD.)2,6(π- 5.将函数sin y x =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin()6y x π=-的图象,则ϕ等于( )高考资源网A.6πB.76π C.116π D.56π 6.函数x x y 2cos 32sin -=)66(ππ≤≤-x 的值域为A.[]2,2- B. []0,2- C. []2,0 D.]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A . B .C. D.8.函数f() =sin-1cos-2的最大值和最小值分别是() (A) 最大值 43 和最小值0(B)最大值不存在和最小值 34(C) 最大值 -43 和最小值0(D) 最大值不存在和最小值-349.ααcos sin +=t 且αα33cos sin +<0,则t 的取值范围是( )A. [)0,2-B. []2,2- C. ()(]2,10,1 - D.()()+∞-,30,310.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则()高考资源网A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y 二、填空题 11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=.12.方程2cos()14x π-=在区间(0,)π内的解是. 13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数()max sin ,cos ,2f x x x ⎧=⎨⎬⎩⎭的最大值与最小值的和等于。
三角函数的图象与性质练习题及答案之欧阳学文创编之欧阳家百创编
欧阳家百创编三角函数的图象与性质练习题欧阳家百(2021.03.07)一、选择题1.函数f(x)=sinxcosx 的最小值是() A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为 () A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t]上至少取得2次最大值,则正整数t 的最小值是 () A .6B .7C .8D .94.已知在函数f(x)=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x2+y2=R2上,则f(x)的最小正周期为() A .1B .2C .3D .45.已知a 是实数,则函数f(x)=1+asinax 的图象不可能是 `(D)6.给出下列命题: ①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sinα+cosα=32;③若α、β是第一象限角且α<β,则tanα<tanβ;欧阳家百创编 ④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形.其中正确的序号为()A .①③B .②④C .①④D .④⑤7.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是()A .y =2cos2xB .y =2sin2xC .y =1+sin(2x +π4)D .y =cos2x 8.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是() A .f(x)=sinxB .f(x)=cosxC .f(x)=sin4xD .f(x)=cos4x9.若函数y =Asin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是()A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+210.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为()A.16B.14C.13D.1211.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)(A>0,ω>0,0<φ<2π)的图象如右图所示,则当t=1001秒时,电流强度是 ()A .-5安B .5安C .53安D .10安12.已知函数f(x)=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx 的图象,只要将y =f(x)的图象() A .向左平移π8个单位长度B .向右平移π8个单位长度 C .向左平移π4个单位长度D .向右平移π4个单位长度 二、填空题(每小题6分,共18分)13.函数y =12sin ⎝ ⎛⎭⎪⎫π4-23x 的单调递增区间为______________.14.已知f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f(x)在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f(x)=4sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R),有下列命题: ①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; ②y =f(x)的表达式可改写为y =4cos ⎝ ⎛⎭⎪⎫2x -π6;③y =f(x)的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;④y =f(x)的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f(x)=sinx 和g(x)=cosx 的图象分别交于M 、N 两点,则|MN|的最大值为________. 三、解答题(共40分)17.设函数f(x)=sin ()2x +φ(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f(x)的单调增区间.18.已知函数f(x)=2cos2ωx +2sinωxcosωx +1(x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f(x)的最大值,并且求使f(x)取得最大值的x 的集合.19.设函数f(x)=cosωx(3sinωx +cosωx),其中0<ω<2. (1)若f(x)的周期为π,求当-π6≤x≤π3时f(x)的值域; (2)若函数f(x)的图象的一条对称轴为x =π3,求ω的值.20.已知函数f(x)=Asin(ωx+φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示:(1)求f(x)的表达式; (2)试写出f(x)的对称轴方程.21.函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)的一段图象如图所示. (1)求函数y =f(x)的解析式;(2)将函数y =f(x)的图象向右平移π4个单位,得到y =g(x)的图象,求直线y =6与函数y =f(x)+g(x)的图象在(0,π)内所有交点的坐标.22.已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π2,x ∈R)的图象的一部分如图所示. (1)求函数f(x)的解析式; (2)当x ∈⎣⎢⎡⎦⎥⎤-6,-23时,求函数y =f(x)+f(x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f(x)=sinxcosx 的最小值是(B) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为 (A) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t]上至少取得2次最大值,则正整数t 的最小值是 (C) A .6B .7C .8D .94.已知在函数f(x)=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x2+y2=R2上,则f(x)的最小正周期为(D) A .1B .2C .3D .45.已知a 是实数,则函数f(x)=1+asinax 的图象不可能是 `(D)6.给出下列命题: ①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sinα+cosα=32;③若α、β是第一象限角且α<β,则tanα<tanβ;④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形.其中正确的序号为(C)A .①③B .②④C .①④D .④⑤7.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是(A)A .y =2cos2xB .y =2sin2xC .y =1+sin(2x +π4)D .y =cos2x 8.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是(A) A .f(x)=sinxB .f(x)=cosxC .f(x)=sin4xD .f(x)=cos4x9.若函数y =Asin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是(D)A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+210.若将函数y =tan ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为(D)A.16B.14C.13D.1211.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)(A>0,ω>0,0<φ<2π)的图象如右图所示, 则当t=1001秒时,电流强度是 (A)A .-5安B .5安C .53安D .10安12.已知函数f(x)=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx 的图象,只要将y =f(x)的图象(A) A .向左平移π8个单位长度B .向右平移π8个单位长度 C .向左平移π4个单位长度D .向右平移π4个单位长度 二、填空题(每小题6分,共18分) 13.函数y =12sin ⎝ ⎛⎭⎪⎫π4-23x 的单调递增区间为______________.⎣⎢⎡⎦⎥⎤98π+3kπ,21π8+3kπ(k ∈Z)14.已知f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f(x)在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=________.31415.关于函数f(x)=4sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R),有下列命题: ①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; ②y =f(x)的表达式可改写为y =4cos ⎝ ⎛⎭⎪⎫2x -π6; ③y =f(x)的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;④y =f(x)的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)②③16.若动直线x =a 与函数f(x)=sinx 和g(x)=cosx 的图象分别交于M 、N 两点,则|MN|的最大值为________.2 三、解答题(共40分)17.设函数f(x)=sin ()2x +φ(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f(x)的单调增区间. 解(1)令2×π8+φ=kπ+π2,k ∈Z ,∴φ=kπ+π4,又-π<φ<0,则-54<k<-14, ∴k =-1,则φ=-3π4.(2)由(1)得:f(x)=sin ⎝ ⎛⎭⎪⎫2x -3π4,令-π2+2kπ≤2x -3π4≤π2+2kπ,可解得π8+kπ≤x≤5π8+kπ,k ∈Z , 因此y =f(x)的单调增区间为⎣⎢⎡⎦⎥⎤π8+kπ,5π8+kπ,k ∈Z.18.已知函数f(x)=2cos2ωx +2sinωxcosωx +1(x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x 的集合.解(1)f(x)=21+cos2ωx2+sin2ωx +1=sin2ωx +cos2ωx +2=2⎝ ⎛⎭⎪⎫sin2ωxco s π4+cos2ωxsi n π4+2=2sin ⎝ ⎛⎭⎪⎫2ωx +π4+2.由题设,函数f(x)的最小正周期是π2,可得2π2ω=π2,所以ω=2.(2)由(1)知,f(x)=2sin ⎝ ⎛⎭⎪⎫4x +π4+2. 当4x +π4=π2+2kπ,即x =π16+kπ2(k ∈Z)时,sin ⎝ ⎛⎭⎪⎫4x +π4取得最大值1,所以函数f(x)的最大值是2+2,此时x 的集合为⎩⎨⎧⎭⎬⎫x|x =π16+kπ2,k ∈Z . 19.设函数f(x)=cosωx(3sinωx +cosωx),其中0<ω<2. (1)若f(x)的周期为π,求当-π6≤x≤π3时f(x)的值域; (2)若函数f(x)的图象的一条对称轴为x =π3,求ω的值.解f(x)=32sin2ωx +12cos2ωx +12=sin ⎝ ⎛⎭⎪⎫2ωx +π6+12. (1)因为T =π,所以ω=1.∴f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6+12,当-π6≤x≤π3时,2x +π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以f(x)的值域为⎣⎢⎡⎦⎥⎤0,32. (2)因为f(x)的图象的一条对称轴为x =π3,所以2ω⎝ ⎛⎭⎪⎫π3+π6=kπ+π2(k ∈Z), ω=32k +12(k ∈Z),又0<ω<2,所以-13<k<1,又k ∈Z ,所以k =0,ω=12.20.已知函数f(x)=Asin(ωx+φ)+b (ω>0,|φ|<2π)的图象的一部分如图所示:(1)求f(x)的表达式;(2)试写出f(x)的对称轴方程.解 (1)由图象可知,函数的最大值M=3,最小值m=-1,则A=,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f(x)=2sin(2x+φ)+1, 将x=6π,y=3代入上式,得1)3π(=+ϕ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2kπ,k ∈Z ,∴φ=6π,∴f(x)=2sin )6π2(+x +1. (2)由2x+6π=2π+kπ,得x=6π+21kπ,k ∈Z ,∴f(x)=2sin )6π2(+x +1的对称轴方程为216π+=x kπ,k ∈Z.21.函数y =Asin(ωx +φ)(A>0,ω>0,|φ|<π2)的一段图象如图所示. (1)求函数y =f(x)的解析式;(2)将函数y =f(x)的图象向右平移π4个单位,得到y =g(x)的图象,求直线y =6与函数y =f(x)+g(x)的图象在(0,π)内所有交点的坐标.解(1)由题图知A =2,T =π,于是ω=2πT =2,将y =2sin2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.欧阳家百创编 于是φ=2×π12=π6,∴f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)依题意得g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=-2cos ⎝ ⎛⎭⎪⎫2x +π6. 故y =f(x)+g(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6-2cos ⎝ ⎛⎭⎪⎫2x +π6=22sin ⎝ ⎛⎭⎪⎫2x -π12. 由22sin ⎝ ⎛⎭⎪⎫2x -π12=6,得sin ⎝ ⎛⎭⎪⎫2x -π12=32.∵0<x<π,∴-π12<2x -π12<2π-π12.∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π,∴所求交点坐标为⎝ ⎛⎭⎪⎫5π24,6或⎝ ⎛⎭⎪⎫3π8,6. 22.已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π2,x ∈R)的图象的一部分如图所示.(1)求函数f(x)的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-6,-23时,求函数y =f(x)+f(x +2)的最大值与最小值及相应的x 的值.解(1)由图象知A =2,T =8,∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝ ⎛⎭⎪⎫-π4+φ=0.∵|φ|<π2,∴φ=π4. ∴f(x)=2sin ⎝ ⎛⎭⎪⎫π4x +π4. (2)y =f(x)+f(x +2)=2sin ⎝ ⎛⎭⎪⎫π4x +π4+2sin ⎝ ⎛⎭⎪⎫π4x +π2+π4=22sin ⎝ ⎛⎭⎪⎫π4x +π2=22cos π4x.∵x ∈⎣⎢⎡⎦⎥⎤-6,-23,∴-3π2≤π4x≤-π6.欧阳家百创编∴当π4x=-π6,即x=-23时,y=f(x)+f(x+2)取得最大值6;当π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.。
三角函数图像及性质,图像变换习题之欧阳学文创编
考点测试20 三角函数的图象和性质欧阳歌谷(2021.02.01)一、基础小题 1.已知f(x)=sin ⎝ ⎛⎭⎪⎫x +π2,g(x)=cos ⎝ ⎛⎭⎪⎫x -π2,则f(x)的图象()A .与g(x)的图象相同B .与g(x)的图象关于y 轴对称C .向左平移π2个单位,得到g(x)的图象D .向右平移π2个单位,得到g(x)的图象解析 因为g(x)=cos ⎝ ⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sinx ,所以f(x)向右平移π2个单位,可得到g(x)的图象,故选D.2.函数y =+sinx -1的值域为()A .[-1,1]B .⎣⎢⎡⎦⎥⎤-54,-1C .⎣⎢⎡⎦⎥⎤-54,1D .⎣⎢⎡⎦⎥⎤-1,54答案 C 解析(数形结合法)y =+sinx -1,令sinx =t ,则有y =t2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1可得y ∈⎣⎢⎡⎦⎥⎤-54,1. 3.函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈[-π,0])的单调递增区间是() A .⎣⎢⎡⎦⎥⎤-π,-5π6B .⎣⎢⎡⎦⎥⎤-π3,0C .⎣⎢⎡⎦⎥⎤-2π3,-π6D .⎣⎢⎡⎦⎥⎤-π3,-π6答案 C 解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,所以函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x 的单调递增区间就是函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的单调递减区间.由π2+2kπ≤2x -π6≤3π2+2kπ(k ∈Z),解得π3+kπ≤x≤5π6+kπ(k ∈Z),即函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x 的单调递增区间为⎣⎢⎡π3+kπ,⎦⎥⎤5π6+kπ(k ∈Z),又x ∈[-π,0],所以k =-1,故函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈[-π,0])的单调递增区间为⎣⎢⎡⎦⎥⎤-2π3,-π6. 4.使函数f(x)=sin(2x +φ)为R 上的奇函数的φ的值可以是() A .π4B .π2C .πD .3π2答案 C 解析 若f(x)是R 上的奇函数,则必须满足f(0)=0,即sinφ=0.∴φ=kπ(k ∈Z),故选C.5.已知函数f(x)=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f(x)的值域是⎣⎢⎡⎦⎥⎤-12,1,则a 的取值范围是()A .⎝ ⎛⎦⎥⎤0,π3B .⎣⎢⎡⎦⎥⎤π3,π2C .⎣⎢⎡⎦⎥⎤π2,2π3 D .⎣⎢⎡⎦⎥⎤π3,π解析 若-π3≤x≤a ,则-π6≤x +π6≤a +π6.因为当x +π6=-π6或x +π6=7π6时,sin ⎝ ⎛⎭⎪⎫x +π6=-12,当x +π6=π2时,sin ⎝⎛⎭⎪⎫x +π6=1,所以要使f(x)的值域是⎣⎢⎡⎦⎥⎤-12,1,则有π2≤a +π6≤7π6,即π3≤a≤π,即a 的取值范围是⎣⎢⎡⎦⎥⎤π3,π.故选D.二、高考小题6.[2015·全国卷Ⅰ]函数f(x)=cos(ωx +φ)的部分图象如图所示,则f(x)的单调递减区间为()A .⎝ ⎛⎭⎪⎫kπ-14,kπ+34,k ∈ZB.⎝ ⎛⎭⎪⎫2k π-14,2kπ+34,k ∈ZC .⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈ZD 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎢⎡⎦⎥⎤-34,54(f(x)的一个周期)内,函数f(x)的单调递减区间为⎝ ⎛⎭⎪⎫-14,34.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z ,故选D.7.[2015·四川高考]下列函数中,最小正周期为π且图象关于原点对称的函数是()A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin2x +cos2xD .y =sinx +cosx答案 A 解析 选项A ,y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x ,符合题意,故选A.三、模拟小题8.[2016·广州调研]函数f(x)=sinx +x 在区间[0,+∞)内() A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点答案 B 解析 在同一坐标系中画出函数y =sinx 与y =-x 的图象,由图象知这两个函数图象有1个交点,∴函数f(x)=sinx +x 在区间[0,+∞)内有且仅有1个零点.9.[2017·河北邢台调研]已知定义在R 上的函数f(x)满足:当sinx≤cosx 时,f(x)=cosx ,当sinx>cosx 时,f(x)=sinx.给出以下结论:①f(x)是周期函数;②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z)时,f(x)取得最小值;④当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;⑤f(x)的图象上相邻两个最低点的距离是2π.其中正确的结论序号是________.答案 ①④⑤解析 易知函数f(x)是周期为2π的周期函数.函数f(x)在一个周期内的图象如图所示.由图象可得,f(x)的最小值为-22,当且仅当x =2kπ+5π4(k ∈Z)时,f(x)取得最小值;当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;f(x)的图象上相邻两个最低点的距离是2π.所以正确的结论的序号是①④⑤.四、模拟大题10.[2017·江西上饶模拟]设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f(x)的单调递增区间. 解 (1)由f ⎝ ⎛⎭⎪⎫π8=±1得sin ⎝ ⎛⎭⎪⎫π4+φ=±1,∵-π<φ<0,∴-3π4<φ+π4<π4,∴φ+π4=-π2,φ=-3π4.(2)由(1)得f(x)=sin ⎝ ⎛⎭⎪⎫2x -3π4,令-π2+2kπ≤2x -3π4≤π2+2kπ,k ∈Z ,可解得π8+kπ≤x≤5π8+kπ,k ∈Z.因此y =f(x)的单调增区间为⎣⎢⎡⎦⎥⎤π8+kπ,5π8+kπ,k ∈Z.函数y =Asin(ωx +φ)的图象和性质一、基础小题1.将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是()A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝ ⎛⎭⎪⎫12x -π20C .y =sin ⎝ ⎛⎭⎪⎫2x -π5D .y =sin ⎝ ⎛⎭⎪⎫12x -π10 答案 B 解析 将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x -π10=sin ⎝ ⎛⎭⎪⎫12x -π20.故选B.2.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x的图象()A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B 解析y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12,故要将函数y =sin4x 的图象向右平移π12个单位.故选B.3.下列函数中,最小正周期为π且图象关于原点对称的函数是()A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin2x +cos2x D .y=sinx +cosx答案 A 解析 采用验证法.由y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x ,可知该函数的最小正周期为π且为奇函数,故选A.4.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为()A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝ ⎛⎭⎪⎫4x +π4D .f(x)=sin ⎝ ⎛⎭⎪⎫4x -π4答案A 解析 由题图可知,函数y =f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,又函数f(x)的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2kπ+π2(k ∈Z),解得φ=2kπ+π4,又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4,故选A.5.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x≤9)的最大值与最小值之和为()A .2-3B .0C .-1D .-1-3答案 A 解析 ∵0≤x≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2,∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为2-3.6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)图象的两条相邻的对称轴,则φ=()A .π4B .π3C .π2D .3π4答案 A 解析 由题意可知函数f(x)的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f(x)=sin(x +φ),令x +φ=kπ+π2(k ∈Z),将x =π4代入可得φ=kπ+π4(k ∈Z),∵0<φ<π,∴φ=π4.7.已知函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则()A .函数f(x)的图象关于点⎝ ⎛⎭⎪⎫π3,0对称B .函数f(x)的图象关于直线x =π3对称C .函数f(x)的图象向右平移π3个单位后,图象关于原点对称D .函数f(x)在区间(0,π)内单调递增答案 C 解析 因为函数的周期T =2πω=4π,所以ω=12,所以f(x)=sin ⎝ ⎛⎭⎪⎫12x +π6.当x =π3时,f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f(x)的图象向右平移π3个单位后得到g(x)=sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π3+π6=sin x 2的图象,关于原点对称,所以C 正确.由-π2+2kπ≤12x +π6≤π2+2kπ(k ∈Z),得-4π3+4kπ≤x≤2π3+4kπ(k ∈Z),所以f(x)=sin⎝ ⎛⎭⎪⎫12x +π6的单调递增区间为⎣⎢⎡-4π3+4kπ,⎦⎥⎤2π3+4kπ,k ∈Z ,当k =0时,增区间为⎣⎢⎡⎦⎥⎤-4π3,2π3,所以D 错误.故选C.8.已知函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________. 答案 ±2解析 函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.二、高考小题9.[2016·全国卷Ⅱ]若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为()A .x =kπ2-π6(k ∈Z)B .x =kπ2+π6(k ∈Z)C .x =kπ2-π12(k ∈Z)D .x =kπ2+π12(k ∈Z)答案 B 解析 将函数y =2sin2x 的图象向左平移π12个单位长度得到函数y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象,由2x +π6=kπ+π2(k ∈Z),可得x =kπ2+π6(k ∈Z).则平移后图象的对称轴为x =kπ2+π6(k ∈Z),故选B.10.[2016·北京高考]将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s(s>0)个单位长度得到点P′.若P′位于函数y =sin2x 的图象上,则()A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6 C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3答案 A 解析 点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,∴t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=12. 函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象向左平移π6个单位长度即可得到函数y =sin2x 的图象,故s 的最小值为π6.11.[2016·福州一中模拟]已知函数f(x)=Asin(ωx +φ)⎝⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,为了得到函数g(x)=Asinωx 的图象,只需要将y =f(x)的图象()A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度答案 D 解析 根据函数f(x)=Asin(ωx +φ)( A>0,ω>0,|φ|<π2 )的部分图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,g(x)=2sin2x ,故把f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π6个单位长度,可得g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=2sin2x 的图象,故选D.三、高考大题12.[2015·湖北高考]某同学用“五点法”画函数f(x)=Asin(ωx+φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φπ2π3π22π(2)将y =f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g(x)的图象.若y =g(x)图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6. 数据补全如下表:且函数表达式为f(x)=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f(x)=5sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6.因为函数y =sinx 的对称中心为(kπ,0),k ∈Z.令2x +2θ-π6=kπ,k ∈Z ,解得x =kπ2+π12-θ,k ∈Z.由于函数y =g(x)的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令kπ2+π12-θ=5π12,k ∈Z ,解得θ=kπ2-π3,k ∈Z.由θ>0可知,当k =1时,θ取得最小值π6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的图象与性质练习题欧阳光明(2021.03.07)一、选择题1.函数f (x )=sin x cos x 的最小值是()A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为 ()A.π6B.π4C.π3D.π23.已知函数y =sin πx 3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ()A .6B .7C .8D .94.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为()A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `(D)6.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sin α+cos α=32;③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝⎛⎭⎪⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形. 其中正确的序号为()A .①③B .②④C .①④D .④⑤7.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是()A .y =2cos 2x B .y =2sin 2x C .y=1+sin(2x +π4)D .y =cos2x8.将函数y =sin ⎝⎛⎭⎪⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是()A .f (x )=sin xB .f (x )=cos xC .f (x )=sin4xD .f (x )=cos4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是()A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为()A.16B.14C.13D.1211.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)(A>0,ω>0,0<φ<2π)的图象如右图所示, 则当t=1001秒时,电流强度是 ()A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象()A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝ ⎛⎭⎪⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=________.15.关于函数f (x )=4sin ⎝⎛⎭⎪⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________.三、解答题(共40分)17.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1(x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2.(1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f(x)=Asin(ωx+φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示:(1)求f(x)的表达式; (2)试写出f(x)的对称轴方程.21.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是(B)A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为 (A)A.π6B.π4C.π3D.π23.已知函数y =sin πx 3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 (C)A .6B .7C .8D .94.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为(D)A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `(D)6.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得sin α+cos α=32;③若α、β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形. 其中正确的序号为(C)A .①③B .②④C .①④D .④⑤7.将函数y =sin2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是(A)A .y =2cos 2xB .y =2sin 2x C .y =1+sin(2x +π4)D .y =cos2x 8.将函数y =sin ⎝⎛⎭⎪⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是(A)A .f (x )=sin xB .f (x )=cos xC .f (x )=sin4xD .f (x )=cos4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是(D)A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝⎛⎭⎪⎫2x +π3+2 C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝⎛⎭⎪⎫4x +π6+210.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为(D)A.16B.14C.13D.1211.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)(A>0,ω>0,0<φ<2π)的图象如右图所示,则当t=1001秒时,电流强度是 (A)A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象(A)A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝ ⎛⎭⎪⎫π4-23x 的单调递增区间为______________.⎣⎢⎡⎦⎥⎤98π+3k π,21π8+3k π(k ∈Z ) 14.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=________.314 15.关于函数f (x )=4sin ⎝⎛⎭⎪⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________.2三、解答题(共40分)17.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间.解(1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1,则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎪⎫2x -3π4,令-π2+2k π≤2x -3π4≤π2+2k π,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1(x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值;(2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.解(1)f (x )=21+cos2ωx 2+sin2ωx +1=sin2ωx +cos2ωx +2 =2⎝ ⎛⎭⎪⎫sin2ωxcos π4+cos2ωxsin π4+2=2sin ⎝ ⎛⎭⎪⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2,所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝ ⎛⎭⎪⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2,此时x 的集合为⎩⎨⎧⎭⎬⎫x|x =π16+k π2,k ∈Z . 19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2.(1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解f (x )=32sin2ωx +12cos2ωx +12=sin ⎝⎛⎭⎪⎫2ωx +π6+12.*欧阳光明*创编 2021.03.07 (1)因为T =π,所以ω=1.∴f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以f (x )的值域为⎣⎢⎡⎦⎥⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝ ⎛⎭⎪⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12(k ∈Z ),又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f(x)=Asin(ωx+φ)+b (ω>0,|φ|<2π)的图象的一部分如图所示:(1)求f(x)的表达式;(2)试写出f(x)的对称轴方程.解 (1)由图象可知,函数的最大值M=3,最小值m=-1, 则A=,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f(x)=2sin(2x+φ)+1, 将x=6π,y=3代入上式,得1)3π(=+ϕ∴π22π3πk +=+ϕ,k ∈Z ,即φ=6π+2k π,k ∈Z ,∴φ=6π,∴f(x)=2sin )6π2(+x +1.(2)由2x+6π=2π+k π,得x=6π+21k π,k ∈Z ,∴f(x)=2sin )6π2(+x +1的对称轴方程为216π+=x k π,k ∈Z.21.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解(1)由题图知A =2,T =π,于是ω=2πT =2,将y =2sin2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)依题意得g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=-2cos ⎝ ⎛⎭⎪⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6-2cos ⎝⎛⎭⎪⎫2x +π6=22sin ⎝ ⎛⎭⎪⎫2x -π12. 由22sin ⎝ ⎛⎭⎪⎫2x -π12=6,得sin ⎝ ⎛⎭⎪⎫2x -π12=32.∵0<x <π,∴-π12<2x -π12<2π-π12.∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π,∴所求交点坐标为⎝ ⎛⎭⎪⎫5π24,6或⎝ ⎛⎭⎪⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.解(1)由图象知A =2,T =8,∵T =2πω=8,∴ω=π4. 又图象过点(-1,0),∴2sin ⎝ ⎛⎭⎪⎫-π4+φ=0.∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4. (2)y =f (x )+f (x +2)=2sin ⎝ ⎛⎭⎪⎫π4x +π4+2sin ⎝ ⎛⎭⎪⎫π4x +π2+π4=22sin ⎝ ⎛⎭⎪⎫π4x +π2=22cos π4x .∵x ∈⎣⎢⎡⎦⎥⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2.。