1向量,矩阵范数与谱半径

合集下载

数值计算方法-范数

数值计算方法-范数

0
1 k 2k 1 1 例 求向量序列x ,(1 ) , 的极限向量 k k 11 k 1 解:首先求出每个分量向量的极限,即
(k )
T
1 k 2k 1 1 lim x lim ,(1 ) , k k k 1 k k 11 T k 1 2k 1 1 lim ,lim 1 ,lim k k 1 k k k 11 k
k k k
反之,设( A) 1,且为矩阵A的任一特征值,x为其 对应的特征向量,其中 = (A),
则有 从而
k
Ax x x
k k 2 2
2
A
k 2

Ak x x
2
2
1,
即lim Ak 0不成立,假设不成立,原命题正确。
误差分析
例 设线性方程组: 0.99 x1 1.99 1 0.99 0.98 x 1.97 2 试分析系数矩阵和右端项有微小扰动, 解将产生 什么样的变化 ? 解: 易求该方程组的精确解为x (1,1)T 。
从上述定理可以推知,向量的P-范数(p=1,2,)有如下 等价关系:
1 x1 x n


x2 x1
注:定义在同一个R n空间中的所有范数都是等价的
向量序列的极限:
(k ) (k ) T 设x ( k ) ( x1( k ) , x2 , , xn ) R n , k 0,1, ,为R n中的一个
|| Ax ||2 T T ② || A ||2 max = ( A A ) ;( 为 A A特征值 max n xR || x || 2 || x|| 0

向量范数

向量范数

向量范数定义1. 设,满足1. 正定性:║x║≥0,║x║=0 iff x=02. 齐次性:║cx║=│c│║x║,3. 三角不等式:║x+y║≤║x║+║y║则称Cn中定义了向量范数,║x║为向量x的范数.可见向量范数是向量的一种具有特殊性质的实值函数.常用向量范数有,令x=( x1,x2,…,xn)T1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)易得║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞定理中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使m║x║α≤║x║β≤M║x║可根据范数的连续性来证明它.由定理1可得定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞)其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k) →x(k→∞),或 .三、矩阵范数定义2. 设,满足1. 正定性:║X║≥0,║X║=0 iff X=02. 齐次性:║cX║=│c│║X║,3. 三角不等式:║X+Y║≤║X║+║Y║4. 相容性: ║XY║≤║X║║Y║则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩阵向量乘使我们定义矩阵范数向量范数的相容性:║Ax║≤║A║║x║所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.定理3. 设A是n×n矩阵,║?║是n维向量范数则║A║=max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0}是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性或者说是相容的.单位矩阵的算子范数为1可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:║x║=║X║,X=(xx…x)常用的三种向量范数诱导出的矩阵范数是1-范数:║A║1= max{║Ax║1:║x║1=1}=2-范数:║A║2=max{║Ax║2:║x║2=1}= ,λ1是AHA的最大特征值.∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}=此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.四、矩阵谱半径定义3.设A是n×n矩阵,λi是其特征值,i=1,2,…,n.称为A的谱半径.谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:ρ(A)≤║A║因为任一特征对λ,x,Ax=λx,令X=(xx…x),可得AX=λX.两边取范数,由矩阵范数的相容性和齐次性就导出结果.定理 3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)。

向量和矩阵的范数

向量和矩阵的范数

|| k Ax || | k ||| Ax || 2) || k A || max max | k ||| A || x0 x0 || x || || x || || Ax || 3) 由 || A || max ,则 || Ax |||| A |||| x || x R n x 0 || x || 于是 || ( A B ) x || || Ax Bx |||| A |||| (|| A || || B ||) || x ||
法则对应于一非负实数 ||
n
则称 || x || 为向量x的范数。
常见的向量范数
设向量x ( x1 , x2 ,..., xn )T || ||
x || | x |
1 i 1 i
n
x || || x ||
( | xi | ) ( x, x) ( xT x) 2
i 1
3.5 病态方程组与矩阵的条件数
例3.5.1 设线性方程组 0.99 x1 1.99 1 0.99 0.98 x 1.97 2 试分析系数矩阵和右端项有微小扰动, 解将产生 什么样的变化 ? 解 该方程组的精确解为x (1,1)T 。

||
Hale Waihona Puke x ||2 n ||
x ||

1 例如 : || n
1 n x ||1 | xi | || n i 1
x ||

max{| xi |} | xi |
1i n i 1
n
向量的收敛性
定义3.4.2 设R n中一向量序列{ x ( k ) }( k 1,2,...), 其中 (i 1,2,..., n)

矩阵范数理论及其应用

矩阵范数理论及其应用
1
n 2 2 x k k E ,成立着 A x k B x 。 k 1 k 1
证明: x

k 1 k
n
k
0 时,令 y
x

k 1
n
, f (1 , 2 ,
2 k
, n ) y ,则 f (1 , 2 ,
p p
n 定理 1:对于 n 维向量 x C , lim x
x 。
注:几何意义上,向量 PQ 的 2-范数、 ∞-范数和1-范数分别是斜边 PQ 长度、直角边 PR 长 度以及两直角边 PR 和 RQ 的长度之和。
三、范数的等价性
定义 3:对任意 x V ,满足不等式 C1 x

x
j 1
设 A ( aij ) C
n
n n
, x (1 , 2 ,
, n )T C n , 令 Ax y (1 ,2 ,
,n )T , 其 中
,n。 i a i j j, i 1, 2,
j 1
Ax

y

max i max aij j max ( aij j ) x max aij 。
中范数,且 P, Q C
F
都是酉矩阵,则
n n
PA
F
AQ
F
A F ,即给 A 左乘或右乘以酉矩阵后其
值不变 (在 A R
时P 和
Q 都是正交矩阵 )。
证明: PA
F
[tr ( AH P H PA)] 2 [tr ( AH A)] 2 A F 。
1
1
由 A
F
( aij )

第四章_线形方程组求根

第四章_线形方程组求根

max | aij |
1 i n j 1
n
max表示A ' A的最大特征值
§1
向量范数,矩阵范数,谱半径 及有关性质
2 0 0 A 0 1 0 0 0 1
n 1 j n i 1 n
例子:设有方阵A,求其1-范数,2-范数及-范数。
其中
A 1 max | aij | max(2 ,1 ,1 ) 2 A

max | aij | max(2 ,1 ,1 ) 2
1 i n j 1
§1
向量范数,矩阵范数,谱半径 及有关性质
X BX ( I B ) X 0 X 0, ( I B ) 0 det( I B ) 0 2 0 0 2 0 0 4 0 0 A' A 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 || A ||2 max ( A ' A) 4 2
|| X ||2 x12 x2 2 ... xn 2 ( xi )
i 1
1-范数
1 2 2
i 1 n
2-范数
|| X || max{| x1 |,| x2 |,...,| xn |} max{| xi |}
1i n
其中x1,x2, …,xn分别是X的n个分量 -范数 上述范数都是p范数的特例 || X || p ( xi )
§1
向量范数,矩阵范数,谱半径 及有关性质
|| A ||F
F-范数(Frobenius OR Euclid范数)
i , j 1
a

矩阵论范数知识点总结

矩阵论范数知识点总结

矩阵论范数知识点总结一、概述矩阵论是线性代数的一个分支,它研究矩阵及其性质。

矩阵的范数是矩阵的一种性质的度量,它在矩阵分析、数值线性代数、优化理论等领域中有着广泛的应用。

本文将对矩阵范数的定义、性质、应用以及相关的其他知识点进行总结和介绍。

二、矩阵的定义在数学中,矩阵是一个按照矩形排列的复数或实数集合。

也可以看成是一个数域上的矩形阵列。

矩阵的元素可以是实数、复数或者是其他的数学对象。

一个n×n矩阵A是一个由n×n个元素(a_ij)组成的矩形数组。

三、范数的定义在数学中,范数是定义在向量空间中的一种函数,它通常被用来衡量向量的大小或长度。

对于矩阵来说,范数是一种度量矩阵大小的方法。

对于一个矩阵A,它的范数通常记作||A||。

矩阵的范数满足以下性质:1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||四、矩阵范数的种类矩阵范数一般有几种不同的类型。

1. Frobenius范数:矩阵A的Frobenius范数定义为||A||_F = sqrt(Σ_(i=1)^m Σ_(j=1)^n|a_ij|^2)2. 1-范数:矩阵A的1-范数定义为||A||_1 = max(Σ_(i=1)^n |a_ij|)3. 2-范数:矩阵A的2-范数定义为||A||_2 = max(Σ_(i=1)^m Σ_(j=1)^n |a_ij|^2)^(1/2)4. ∞-范数:矩阵A的∞-范数定义为||A||_∞ = max(Σ_(j=1)^n |a_ij|)五、矩阵范数的性质矩阵范数具有一些重要的性质,下面将介绍其中一些主要性质。

1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||4. 乘法范数:||AB|| ≤ ||A|| * ||B||5. 谱半径:对于任意矩阵A,它的谱半径定义为rho(A) = max|λ_i(A)|6. 对称矩阵:对于对称矩阵A,其2-范数定义为rho(A),即||A||_2 = rho(A),其中rho(A)是A的最大特征值六、矩阵范数的应用矩阵范数在数学和工程领域有着广泛的应用,下面将介绍一些主要的应用。

向量与矩阵的范数

向量与矩阵的范数

那么
n
X X H *
xi
X 1
i 1
矩阵旳谱半径及其性质
定义:设 A C mn ,A 旳 n 个特征值为 1, 2, , n ,我们称
( A) max{ 1 , 2 , , n }
为矩阵 A 旳谱半径。 例 1 :设 A C mn ,那么
( A) A
这里 A 是矩阵 A 旳任何一种范数。
F
F
于是有
AB A B
F
F
F
例 4 :对于任意 A C nn ,定义
A
[Tr
(
AH
A)]
1 2
证明如此定义旳 A 是矩阵 A 旳范数。
证明: 首先注意到这么一种基本事实,

[Tr( AH
1
A)] 2
(
m
n
aij
2
)
1 2
i1 j1
由一种例题可知此定义满足范数旳性质。
Frobenious范数旳性质:
(1)' n
1
(2)' n
2
1
2
(3)' n
2
引理(Hoider不等式):设
a1, a2, , an T , b1, b2, , bn T Cn

n
n
aibi (
ai p ) 1 p ( n
bi
q)
1 q
i 1
i 1
i 1
其中 p 1,
q1 且
1p
是矩阵范数。
证明:非负性,齐次性和三角不等式轻易 证得。目前我们考虑乘法旳相容性。设
A C nn , B C nn ,那么
n
n
AB

数值计算方法第3章3-04范数

数值计算方法第3章3-04范数

是收敛的,称 A 为矩阵序列 A(k) 的收敛极限。
矩阵的收敛
记矩阵序列 A(k) 是收敛于 A 为: lim A(k) A 。 k
Rnn 上 的 矩 阵序 列 A(k) 是 收 敛 于 A 的 充 要 条件 为
lim
k
a(k ij
)
aij

其中
a(k ij
矩阵范数的另一个定义 设A Rnn ,矩阵A
A sup Ax
x 1 xR n
的范数
4 常用的矩阵范数
设 A [aij ]nn常用的矩阵范数有行(无穷)范数和列(一)范数。
n
A max aij 1in j1
n
A 1 max aij 1 jn i 1
)
和 aij
分别表示
A( k )

A
的第 i 行第
j
列的元素。
定义 设 A Rnn ,如果存在 R 使
Ax x
则称 为A 的一个特征值。x 就是特征值 对应的特征向量。
谱半径
定义 6:对于 Rnn 上的矩阵 A ,设 A 的特
征值为 1, 2 , , n ,称 ( A) max{1, 2 , ,n} 为 矩 阵 A 的 谱 半
但在各种范数下,考虑向量序列收敛性时结论时一致的,一致的含义
是收敛都收敛,且有相同的极限。
提出各种范数是为解不同问题时用的,即对某一个问题可能是某一种
范数方便,而另一种范数不方便。
向量范数的等价定理 给定 x Rn ,对于Rn




,总存在与x 无关的正常数m

,M
对一切 x Rn 成立。

数值分析第五章-矩阵分析基础1

数值分析第五章-矩阵分析基础1

定理5.2.5 (对角优势定理) 若矩阵 A 为严格对角占优阵,
或者为不可约且弱对角占优阵,则
det(A) 0
历史与注记
阿尔斯通·豪斯霍德(Alston Scott Householder,1904–1993 )Householder 1904 年生于美国伊利诺州的洛克福特。1937 年取得了芝加哥大学博士学位之后他获得洛克菲勒基金会的 资助,在芝加哥大学从事研究, 1944年被提升为数学和生物 物理学的副教授。二战后他为美国海军研究实验室作数学顾
h1n
h2
n

H

h32 h33 L OO
hM3n

hnn1 hnn
的矩阵 H 为上Hessenberg(海森伯格)阵,或拟上三角阵。
如果次对角线元素hi,i1(i 2,3,L , n)全不为零,则称该矩阵为 不可约的上Hessenberg阵。
定理5.2.4 对任意矩阵A Rnn,总存在正交阵Q使得 Q1AQ
1


O

Li Li (li ) E(li , ei ;1) I lieiT

1 li1,i 1

为初等下三角阵。

M
O

lni
1
定理5.2.1 初等下三角阵 Li具有如下性质: (1) Li1(li ) Li (li ), Li 1 ;
lim
k
Ak

A
定理6 设B∈Rn×n,则由B的各幂次得到的
矩阵序列Bk, k=0,1,2…)收敛于零矩阵

lim)B的k 充0要条件
k

。(B) 1Βιβλιοθήκη 4. 矩阵的条件数定义5 设矩阵 A 为非奇异矩阵,则称

第五章 向量与矩阵的范数

第五章 向量与矩阵的范数

A
F
= ( ∑∑ aij )
2 i =1 j =1
X
2
= ( ∑ xi )
i =1
n
2 12
= (X X )
H
12
根据Hoider不等式可以得到 不等式可以得到 根据
AX ≤
m 2 2
=
n
∑ ∑
i =1
m
n
2
j =1
a ij x
n
j

2 j

m
i =1
( ∑ a ij x j ) 2
j =1
n
∑ [( ∑
AB = n max
i, j i ,k
∑a
k =1 k, j
n
ik kj
b ≤ n max ∑ aik bkj
i, j k =1
n
≤ n ⋅ n max aik max bkj = n max aik ⋅ n max bkj
i ,k k, j
= A B
因此 的范数。 A 为矩阵 A 的范数。
例3
p
= ( ∑ ai )
p i =1
n
1
p
∑a
i =1
n
i
(2)2-范数 ) -
α 2 = ( ∑ ai ) = (α α )
2 12 H i =1
n
12
也称为欧氏范数。 也称为欧氏范数。 欧氏范数 (3)∞ -范数 α ∞ = lim α ) p →∞ 定理
p
α

= max ai
1≤i ≤ n
证明 令
第五章
向量与矩阵的范数
定义: 定义: 设 V 是实数域 R (或复数域 C )上 维线性空间, 的 n 维线性空间,对于 V 中的任意一个向量 α 按照某一确定法则对应着一个实数,这个 按照某一确定法则对应着一个实数, 范数, 实数称为 α 的范数,记为 α ,并且要求 范数满足下列运算条件: 范数满足下列运算条件: (1)非负性:当 )非负性: 有且仅有当 α = 0, (2) 齐次性: ) 齐次性: 意数。 意数。

3.3向量和矩阵的范数

3.3向量和矩阵的范数
2
y
2
定理1:设 x R n , 则x的三种基本范数l, l 2 , l满足下面的不等式关系 : 1
(1) x 2 x 1 n x (2) x (3) x
2
x2 n x x1n x

对于以上三种范数而言,它们的值是不同的。但有 如下的定义: 定义2(范数等价):x R n, 对于任意两种范数 x 和 x 总存在两个与x无关的正实常数c1,c2,使得
k
记为: x (k) x * . lim
k
例如:按照
l 范数的定义 x (k) x * max x i( k ) x * i
1i n
故, x ( k ) x * x (k) x * lim
k
0(k ).
定理3 :
设{x ( k ) }是R n中的一个向量序列,且 * R n,则lim x ( k ) x * x
例:有了距离,对
方程组Ax b的数值计算解x c与其准确解x *之间 的误差就可以度量了。 如定义其绝对误差为 x c x * ,相对误差为 x c x* x
*

例: x* (0.0002140.0003090.000397T 设 , , )
x (0.0001860.0003420.000504T , , ) c 当限定范数为 1范数时,请计算 与x* l x c 之间的绝对误差和相对 误差。

lim l p ( x i )
p i 1
n
p
1
p
在R n空间中,向量 [ x1 , , x n ]T 和y [ y1 , , y n ]T 的内积记作( x , y), x 可定义为 (x, y) x i y i x T y.

矩阵与范数—扫盲讲解

矩阵与范数—扫盲讲解

矩阵与范数、谱半径、奇异值矩阵论主要研究的是线性空间以及在线性空间中的一些操作,主要是线性变换。

当然书中主要是针对有限维的情况来讨论的,这样的话就可以用向量和矩阵来表示线性空间和线性变换,同其他的数学形式一样,矩阵是一种表达形式(notation),而这一方面可以简洁地表达出我们平时遇到的如线性方程和协方差关系的协方差矩阵等,另一方面又给进一步的研究或者问题的简化提供了一个平台。

如特征值分析、稳定性分析就对应着诸如统计分布和系统稳定性等实际问题。

而一系列的分解则可以方便方程的数值计算。

作为矩阵论的学习,我们需要了解具体的一些计算究竟是怎么算的,但更关键的是要知道各个概念和方法的实际意义,各个概念之间的关系。

首先介绍的是线性空间,对于线性空间中的任意一个向量的表示有基(相当于度量单位)和坐标(相当于具体的尺度),基既然作为度量标准了,当然要求对每一个向量都适用,同时这个标准本身也应该尽可能的简洁,那么就得到了基定义的两点约束:1、基的组成向量线性无关;2、线性空间中的任一个向量都可以由基的线性表示。

基作为一种“计量标准”,当然可能会存在多种形式,只要满足上面的两点条件,因而就有必要解决不同的度量标准之间的转换关系,从而得到过渡矩阵的概念,同时可以使用这种转换关系(过渡矩阵)去完成度量量(坐标)之间的转换。

在完成了线性空间这一对象的认识和表达之后,下面需要研究对象和对象之间的关系。

这里主要是线性变换,线性变换针对于实际对象主要完成类似于旋转和尺度变换方面的操作,而这种操作也牵涉到表达的问题。

为了保持与空间的一致性,我们也同样是在特定的基下来表示,从而线性变换就具体化为一个变换矩阵,并且,在不同的基下对应的变换矩阵当然也不相同,这里的不同的变换矩阵的关系就是相似的概念。

到此,我们完成了空间中向量的表示和线性变换的矩阵表达。

这里涉及了基、坐标、过渡矩阵、变换矩阵、相似矩阵这几个重要的概念。

上面算是内涵上的认识,下面我们需要知道线性空间里究竟有些什么东西,它是如何组成的,各个组成成分之间的关系,也就是空间的结构性方面的东西。

向量和矩阵的范数

向量和矩阵的范数

A的列范数 A的“2”范 数或A的谱
范数
其中 max ( A A)为A A的最大特征值。
T T
第一章 绪论
例2
求矩阵A的各种常用范数
1 2 0 3 A 1 2 1 4 0 1 1
2
n
5
2
2
解:
A 1 max aij 1 j n
i 1
"范数"是对向量和矩阵的一种度量,实际上是二维和三维
向量长度概念的一种推广.
数域:数的集合,对加法和乘法封闭.
有理数、实数、复数数域
线性空间:可简化为向量的集合,对向量的加法和数量乘 法封闭,也称为向量空间。
第一章 绪论
5.4.1 向量范数 ( vector norms )
二维,三维的长度概念:
T 2 2 2 R 中,x R , x x1 x2,其中x x1 , x2 ; T 3 3 2 2 2 R 中, x R , x x1 x 2 x 3 , 其中x x1 , x 2 , x 3 。
② x 也是 x p 的特例
xi ( x1 因为 max 1i n
p
x2
p
xn
p
)
1
p
(n max xi )
1 i n
p
1
p
n
1
p
xi ( p ) max xi max 1i n
1 i n
x
p
x

( p 时),
所以 x 也是 x p的特例
A 4
3.0237
3.6056
A2
AF

第四章 向量和矩阵范式

第四章 向量和矩阵范式

定义4.8 A或b的微小变化(又称扰动或摄动) 引起方程组Ax=b解的巨大变化,则称方程组 为病态方程组,矩阵A称为病态矩阵。否则方 程组是良态方程组,矩阵A也是良态矩阵 为了定量地刻画方程组“病态”的程度, 要对方程组Ax=b进行讨论,考察A(或b)微 小误差对解的影响。为此先引入矩阵条件数的 概念。
§4.2 向量和矩阵的范数 为了研究线性方程组近似解的误差估计
和迭代法的收敛性, 有必要对向量及矩阵的
“大小”引进某种度量----范数的概念。向量 范数是用来度量向量长度的,它可以看成是 二、三维解析几何中向量长度概念的推广。 用Rn表示n维实向量空间。
记笔记
§4.2 向量和矩阵的范数
定义4.2 对任一向量XRn, 按照一定规则确定一个实 数与它对应, 该实数记为||X||, 若||X||满足下面三个 性质:
x* R n , 记 一向量序列,
x x , x ,, x
* * 1 * 2
x
(k )
x

(k ) 1
,x
(k ) 2
,, x
(k ) T n


* T n
。如果
lim xi( k ) xi*
k
(i =1,2,…, n),
则称 x ( k ) 收敛于向量 x * ,记为
1 例4.12 计算方阵 A 0 0

0 2 2
0 的三种范数 4 4
1 例4.12 计算方阵 A 0 0

3
0 2 2
0 的三种范数 4 4
A
A
1
max aij max 1,4,8 8
1 j 3 i 1

max aij max 1,6,6 6

CH2-1向量矩阵范数

CH2-1向量矩阵范数
2
1 2
x 2 1
1
例4:给定矩阵 2 1 0
2 1 0 A 1 1 1 AT 1 1 1 A 0 1 2 0 1 2
求矩阵 A 的1、2、
范数。
3
A13 A 2 3
A

矩阵A 的特征值为
0, 2, 3
T 1 2
T
A 2 max Ax 2 max[( Ax ) Ax ]
max[ x ( A A) x ]
T T x 2 1
1 2
因为 A
T
A 是半正定的对称阵,可设其特征值为
1 2 L n 0
其对应的正交规范特征向量为
v1 , L , v n R
n
则对
x R , x 2
2.1 向量范数与矩阵范数
为了研究线性方程组近似解的误差估 计和迭代法的收敛性,我们需要对 Rn 中 向量或 Rn×n 中矩阵的“大小”引进某种 度量----向量或矩阵的范数。向量范数是 三维欧氏空间中向量长度概念的推广,在 数值计算中起着重要作用。
一、 向量范数(/*Vector Norm*/)
| k | max | xi | | k | || x ||
(3) 设 x ( x1 , x2 , K
, xn ), y ( y1 , y2 ,K , yn ) , 则 || x y || || ( x1 y1 , x2 y2 ,K , xn yn ) ||
二、 矩阵范数(/*Matrix Norm*/)

Def 2设
是R
nn
R 的一个映射,若对A R
可以推广到 C
nn

矩阵的数值半径与谱半径的关系

矩阵的数值半径与谱半径的关系

矩阵的数值半径与谱半径的关系1.介绍矩阵理论是线性代数的一个重要分支,研究矩阵的性质对于理解和应用线性代数具有重要意义。

矩阵的数值半径和谱半径是矩阵理论中的两个重要概念,它们之间的关系对于理解矩阵的特征值和特征向量具有重要意义。

2.数值半径和谱半径的定义数值半径是矩阵的所有特征值绝对值的最大值,通常用符号ρ(A)表示。

谱半径是矩阵的所有特征值绝对值中的最大值,通常用符号ρ(A)表示。

3.数值半径与谱半径的关系研究矩阵的数值半径与谱半径的关系是矩阵理论中的一个重要问题。

根据矩阵理论的知识,可以得出以下结论:(1) 对于任意一个n阶矩阵A,都有ρ(A)≤γ(A)。

(2) 当且仅当矩阵A是对称正定矩阵或者Hermite矩阵时,有ρ(A)=γ(A)。

(3) 对于一般的矩阵A,ρ(A)与γ(A)之间的关系不是简单的大小关系,而是通过矩阵A的特征值分布情况来决定的。

4.数值半径与谱半径的计算方法矩阵的数值半径和谱半径的计算方法对于矩阵理论的研究和应用具有重要意义。

常用的计算方法有幂法、反幂法等,这些方法能够有效地计算矩阵的数值半径和谱半径,为矩阵理论的研究和应用提供了重要的工具。

5.矩阵的数值半径与谱半径的应用矩阵的数值半径与谱半径在科学和工程领域有着广泛的应用。

在数值计算和优化领域,矩阵的数值半径和谱半径能够帮助我们分析和评价算法的收敛速度和稳定性,为算法的设计和优化提供重要的参考。

在控制理论和信号处理领域,矩阵的数值半径和谱半径能够帮助我们分析系统的稳定性和性能,为系统的设计和优化提供重要的指导。

6.结论矩阵的数值半径与谱半径是矩阵理论中的重要概念,它们之间的关系对于理解矩阵的特征值和特征向量具有重要意义。

研究矩阵的数值半径与谱半径的关系能够帮助我们更好地理解和应用矩阵理论,为科学和工程领域的应用提供重要的理论支持。

希望本文能够对矩阵理论的研究和应用提供一些参考,促进学术界对于矩阵理论的深入讨论和探索。

向量与矩阵的范数

向量与矩阵的范数
1/35
3.5 向量与矩阵的范数
一、. 向量范数: 对n维实空间Rn中任一向量X ,按一定规则有一
确定的实数与其相对应,该实数记为||X||,若||X||满足 下面三个性质: (1)(非负性)||X||0,||X||=0当且仅当X=0。 (2)(齐次性)对任意实数 ,|| X||=| | ||X||。 (3)(三角不等式)对任意向量YRn,||X+Y||||X||+||Y||
解:A=[1,2,3,4;2,3,4,1;3,4,1,2;4,1,2,9]; n1=norm(A,1), n2=norm(A), n3=norm(A,inf),n4=norm(A, 'fro') n1=16,n2=12.4884,n3=16,n4=13.8564
计算方法三⑤
15/35
•矩阵范数的性质:
|λE-A’A|=0 λ2-30λ+4=0
——弗罗贝尼乌斯 (Frobenius)范数 简称F范数
12/35
几种常用的矩阵范数:
弗罗贝尼乌斯 (Frobenius) 范数简称F范数
计算方法三⑤
13/35
Matlab中计算矩阵的范数的命令(函数):
(1) n = norm(A) 矩阵A的谱范数(2范数), = A’A的最大特征值的算术根
定义:设A非奇异,称||A-1|| ||A|| 为矩阵A的条件数, 记为Cond (A),即Cond (A)= ||A-1||||A||.
当cond(A)>>1,则方程组称为“病态”的; 当cond(A)较小时,则方程组称为“良态”的。
计算方法三⑤
28/35
>>cond(a,p)
通常使用的条件数有:
证:设λ为A的任意一个特征值, X为对应的特征向量 AX=λX

1 向量,矩阵范数与谱半径

1 向量,矩阵范数与谱半径

向量、矩阵范数与谱半径1.向量的范数||x||2=(∑|x i|2ni=1) 12⁄||x||1=∑|x i|ni=1||x||∞=max1≤i≤n|x i|由以上三个公式可以容易看出:向量的2范数各项平方和的开方,1范数就是各项绝对值之和,无穷范数就是各项绝对值最大。

例:向量x=(1−42)解:||x||2=√12+(−4)2+22=√21||x||1=|1|+|−4|+|2|=7||x||∞=|−4|=42.矩阵的范数||A||∞=max1≤i≤n ∑|a ij| nj=1||A||1=max1≤j≤n ∑|a ij| ni=1||A||2=(A T A最大特征值)1 2⁄可以(这个看的不太容易)看出:矩阵的无穷范数是行绝对值之和最大值,又称“行和范数”;1范数是列绝对值之和最大值,又称“列和范数”。

而2范数是需要求解的,也是经常要用到的!例:矩阵A=(1−2−34)解:||A||∞=max(|1|+|−2|,|−3|+|4|)=7||A||1=max(|1|+|−3|,|−2|+|4|)=6下面来教大家求矩阵的2范数:A T A=(1−3−24)(1−2−34)=(10−14−1420)求最大特征值|λE−A T A|=|(λλ)−(10−14−1420)|=|λ−101414λ−20|=0(λ−10)(λ−20)−14×14=0λ2−30λ+4=0λ=30±√302−4×42λ1=15+√221,λ2=15−√221故||A||2=√15+√2213.谱半径矩阵A的特征值的按模最大值成为A的谱半径,即:ρ(A)=max1≤i≤n|λi|例:还是矩阵A=(1−2−34)解:|λE−A|=|(λλ)−(1−2−34)|=|λ−123λ−4|=0(λ−1)(λ−4)−2×3=0λ2−5λ−2=0λ=5±√332故:ρ(A)=5+√332。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量、矩阵范数与谱半径
1.向量的范数
由以上三个公式可以容易看出:向量的2范数各项平方和的开方,1范数就是各项绝对值之和,无穷范数就是各项绝对值最大。

例:向量
解:
2.矩阵的范数
可以(这个看的不太容易)看出:矩阵的无穷范数是行绝对值之和最大值,又称“行和范数”;1范数是列绝对值之和最大值,又称“列和范数”。

而2范数是需要求解的,也是经常要用到的!
例:矩阵解:
下面来教大家求矩阵的2范数:
求最大特征值

3.
谱半径
矩阵A的特征值的按模最大值成为A的谱半径,即:
例:还是矩阵
解:
故:。

相关文档
最新文档