常用激光器简介

合集下载

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光(Laser)是光学与物理学领域中的重要研究方向之一,也是现代科学中应用最广泛的光源之一、激光器是产生、放大和产生激光的装置,它能够使光以高度有序的方式输出,并具有高度相干和高度定向的特性。

激光器可以根据不同的工作原理和激光频率,分为多种类型,下面将为大家介绍几种常见的激光器。

1. 固体激光器(Solid State laser):固体激光器是利用固体材料作为介质的激光器。

固体激光器的工作物质通常为具有特殊能级结构的晶体或玻璃材料。

最早的固体激光器是由人工合成的红宝石晶体制成的。

它具有高度的可靠性、较高的功率输出和较宽的谱段覆盖等特点,广泛应用于医疗、测量、通信、材料加工等领域。

2. 气体激光器(Gas laser):气体激光器是利用气体作为活性介质的激光器。

常见的气体激光器有二氧化碳激光器、氦氖激光器等。

其中,二氧化碳激光器是最早被发现和研究的激光器之一,具有连续激光输出、较高的功率密度和中远红外波段特点,广泛应用于材料加工、切割、医疗等领域。

3. 半导体激光器(Semiconductor laser):半导体激光器是利用半导体材料作为活性介质的激光器。

它是目前应用最广泛的激光器之一,常见的有激光二极管(LD)和垂直腔面发射激光器(VCSEL)。

半导体激光器具有小巧轻便、功耗低、寿命长等特点,广泛应用于激光显示、光通信、生物医学等领域。

4. 光纤激光器(Fiber laser):光纤激光器是利用光纤作为反射镜和放大介质的激光器。

它采用光纤的内部介质作为激光器的活性介质,激光通过光纤进行传输和放大。

光纤激光器具有高度稳定性、方便携带、适用于长距离传输等特点,广泛应用于材料加工、制造业、激光雷达等领域。

5. 半导体泵浦固体激光器(Diode-pumped solid-state laser):半导体泵浦固体激光器是利用半导体激光器(如激光二极管)泵浦固体材料产生激光的激光器。

它继承了固体激光器的高功率、高效率和稳定性等特点,同时又具有半导体激光器小尺寸、低功耗等优势。

常用激光器简介

常用激光器简介

几种常用激光器的概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。

特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。

二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。

1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。

在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。

不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。

最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。

2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。

其中CO₂是产生激光辐射的气体、氮气及氦气为辅助性气体。

加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。

氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。

CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。

放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。

这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。

3、特点二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。

(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生、放大和聚焦激光光束的器件。

它在现代科学、医疗、工业和战争等领域都有广泛的应用。

常见的激光器结构主要包括激光介质、泵浦源、光学谐振腔和输出窗口等部分。

下面将对这些部分的功能进行详细介绍。

1.激光介质:激光介质是激光器的核心部件,它能够使电能或光能转化为激光能量。

常见的激光介质包括气体(如二氧化碳、氩等)、固体(如Nd:YAG晶体)和液体(如染料溶液)等。

不同激光介质具有不同的特性,决定了激光器的输出特点。

2.泵浦源:泵浦源是激光器产生激光能量的能源,它对激光介质进行能量输入,使之达到激发态。

常见的泵浦源包括电子激发(如气体放电、闪光灯等)、光学激发(如半导体激光二极管、固体激光晶体等)和化学激发(如染料激光器)等。

泵浦源的选择决定了激光器的效率和波长等参数。

3.光学谐振腔:光学谐振腔是激光器中光的来回传播的空间,在谐振腔内激光能量发生倍增和光模式形成。

常见的光学谐振腔包括平面腔、球面腔和折射腔等。

谐振腔的结构和参数决定了激光器的输出特征,如脉冲宽度、线宽和波前质量等。

4.输出窗口:输出窗口是激光器中激光能量传出的接口,它具有透过激光的特性,并使激光尽量少损耗。

常见的输出窗口材料包括光学玻璃、光纤和光学晶体等。

输出窗口的选择和设计是影响激光器输出功率和光束质量的重要因素。

除了上述部分,激光器还包括一些辅助器件和系统,如冷却系统、调谐器和稳频器等,它们的功能主要有以下几个方面:1.冷却系统:激光器在工作过程中会产生大量的热量,需要通过冷却系统来散热,以保持激光介质和泵浦源的稳定性。

常见的冷却方式包括空气冷却、水冷却和制冷剂冷却等。

2.调谐器:激光器的波长可能需要进行调整,以适应不同应用的需求。

调谐器通过改变光学谐振腔的长度或谐振性能,实现激光器波长的可调。

3.稳频器:激光器的频率稳定度对一些应用非常重要。

稳频器通过使用反馈调节和控制系统,使激光器的频率保持在目标值附近的范围内。

各种激光器的介绍

各种激光器的介绍

四、 新型固体激光器
3. 高功率固体激光器
高功率固体激光器主要是指输出平均功率在几百瓦以上的各种连续、准连续 及脉冲固体激光器,它一直是军事应用和激光加工应用所追求的目标。
从二十世纪七十年代起开始研制的板条形固体激光器,就是针对克服工作物 质中的热分结构如图(5-8)所示。
3.掺钕钇铝石榴石(Nd3+:YAG) 工作物质:将一定比例的A12O3、Y2O3,和Nd2O3在单晶炉中进行熔化结晶而 成的,呈淡紫色。它的激活粒子是钕离子(Nd3+),其吸收光谱如图(5-4)所示
图(5-4) Nd3+:YAG 晶体的吸收光谱
YAG中Nd3+与激光产生有关的能级结构如图(5-5) 所示。它属于四能级系统。 荧光谱线中心波长为1.35um和1.06um;由于 1.06um比1.35um波长的荧光强约4倍,所以激光振 荡中,将只产生1.06um的激光
图(5-8) 板条形固体激光器结构示意图
一、氦-氖(He-Ne)激光器
He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成,激光管 由放电管、电极和光学谐振腔组成。
1. He-Ne激光器的结构和激发机理 He-Ne激光器可以分为内腔式、外腔式和半内腔式三种,如图(5-9)所示。 He-Ne激 光器工作物 质为Ne原子, 即激光辐射 发生在Ne原 子的不同能 级之间。He 主要起提高 Ne原子泵浦 速率的辅助 作用。
图(5-5) Nd3+:YAG 的能级结构
二、固体激光器的泵浦系统
1. 固体激光工作物质是绝缘晶体,一般都采用光泵浦激励。目前的泵浦光源多 为工作于弧光放电状态的惰性气体放电灯。 2. 泵浦光源应当满足两个基本条件:一是有很高的发光效率;二是辐射光的光 谱特性应与激光工作物质的吸收光谱相匹配

工业用主流激光器概述

工业用主流激光器概述

光纤激光器
工作原理
工作物质:掺有稀土离子的光纤芯作为增益介质
泵浦源
• 外部光源 • 稀土离子吸收一个光子跃迁至高能级 • 稀土离子跃迁到低能级,发射光子
激励
发射
光纤激光器
结构组成
光泵 耦合器
谐振腔
电源
• 半导体激光器
• 端面成像式 • 侧面聚焦式 • 平面平行腔 • 光栅
• 连续
• 脉冲
光纤激光器
可达6kw
体积较紧凑, 采用水冷
激光切割与焊 接;空间激光 通信;泵浦源
吸收跃迁
可达100w
体积最小,不 需要复杂光路
激光切割与焊 接;空间通信; 泵浦源
结束
电源、工作物质、冷却系统、泵浦、谐振腔 电极 相干或是非相干光 源 半导体激光器
电源的作用也不同,气体利用电极泵浦,固 体用来给泵浦电源供电。
应用领域及特点
原理
CO₂激光 器 Nd:YAG 激光器 光纤激光 器
碰撞跃迁
输出功率
最高20kw
复杂程度
体积最大,需 要储气瓶
工业应用
激光切割与焊 接
吸收跃迁
电源及泵浦
电源:直流电源或高频交流电源 泵浦:横流或是轴流
CO₂激光器
工作特性 电光转换效率5%到15%; 直流激励较易实现,但高耦合功率对电极造 成损伤;高频交流适合大功率激光器,便于 提高功率的同时减小迟钝。 横流便于进行气体冷却,稳定功率;轴流可 以获得较好的光束质量。 高功率激光采用快速轴流,高频激励最高可 达20kw。
Nd+3:YAG激光器
工作原理
工作物质:掺钕钇铝石榴石( Nd+3:YAG)
泵浦源
• 外部光源 • Nd+3离子吸收一个光子跃迁至高能级 • Nd+3离子跃迁到低能级,发射光子

典型激光器介绍大全(精华版)ppt课件

典型激光器介绍大全(精华版)ppt课件
• 钛蓝宝石(钛宝石,Ti3+:AL2O3) • Nd:YAG泵浦的Co2+:MgF2激光器。
敏化剂
• 在晶体中除了发光中心的激活离子外,再掺入一种或多种 施主离子,主要作用是吸收激活离子不吸收的光谱能量, 并将吸收到的能量转移给激活离子。
• 双掺或多掺杂晶体生长困难,工艺复杂。
精选PPT课件
27
1、红宝石的基本特性
精选PPT课件
10
氦-镉激光器
以镉金属蒸气为发光物质,主要有两条连续 谱线,即波长为325nm的紫外辐射和441.6nm的蓝 光,典型输出功率分别为1~25mW和1~100mW。主 要应用领域包括活字印刷、血细胞计数、集成电 路芯片检验及激光诱导荧光实验等。
俄罗斯PLASMA公司的氦 镉激光器
精选PPT课件
由不同组分的半导体材料做成激光有源区和约束区的 激光器。
特点:体积最小、重量最轻,使用寿命长,有 效使用时间超过10万小时。
输出波长范围:紫外、可见、红外 输出功率:mW、W、kW。
精选PPT课件
14
DFB半导体激光器示意图
DBR半导体激光器示意图
精选PPT课件
15
垂直腔面发射半导体激光器(VCSEL)
量子级联激光器(quantum cascade lasers, QCLs)
基于电子在半导体量 子阱中导带子带间跃 迁和声子辅助共振隧 穿原理的新型单极半 导体器件。
精选PPT课件
16
光纤耦合(尾纤型-pigtail package)半导体激 光器件
ProLite型光纤耦合单发射激光器
精选PPT课件
谱线已达数千种 (160nm~4mm)
工作方式:连续运转(大多数)
多数气体激光器有瞬时功率不高的弱点。

四大激光器

四大激光器

四种激光器有哪些典型应用?一半导体激光器:半导体激光器是以半导体材料作为激光工作物质的激光器1.半导体激光器在高压反馈电路中的应用2.在电子焊接领域的应用3. 量子阱半导体大功率激光器在精密机械零件的激光加工方面有重要应用4. 在印刷业和医学领域,高功率半导体激光器也有应用. .另外,如长波长激光器(1976年,人们用Ga[nAsP/InP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出.自从NaKamuxa实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝光面发射激光器的应用更广泛.蓝绿光半导体激光器用于水下通信、激光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清晰度彩色电视机中.总之,可见光半导体激光器在用作彩色显示器光源、光存贮的读出和写人,激光打印、激光印刷、高密度光盘存储系统、条码读出器以及固体激光器的泵浦源等方面有着广泛的用途.量子级联激光的新型激光器应用于环境检测和医检领域.另外,由于半导体激光器可以通过改变磁场或调节电流实现波长调谐,且已经可以获得线宽很窄的激光输出,因此利用半导体激光器可以进行高分辨光谱研究.可调谐激光器是深入研究物质结构而迅速发展的激光光谱学的重要工具大功率中红外(3.5lm)LD在红外对抗、红外照明、激光雷达、大气窗口、自由空间通信、大气监视和化学光谱学等方面有广泛的应用.5. 绿光到紫外光的垂直腔面发射器在光电子学中得到了广泛的应用,如超高密度、光存储.近场光学方案被认为是实现高密度光存储的重要手段.垂直腔面发射激光器还可用在全色平板显示、大面积发射、照明、光信号、光装饰、紫外光刻、半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。

半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。

几种激光器的结构示意

几种激光器的结构示意

几种激光器的结构示意
1.连续激光器:连续激光器包括长激光棒激光器,它包括了发射腔(蓝色),它设有折射器(紫色)和反射镜(绿色),发射腔内填入了激光活性源,它可以产生多模微弱的,有着同一波长的光束。

通过折射器和反射器产生的多模弱光束聚焦到了微粒活性源上。

微粒活性源内产生的激光辐射通过折射器和反射镜回到了发射腔中,从而得到不断增强的激光辐射。

2.瞬态激光器:瞬态激光器主要将诸如质子、氘离子等离子通过电场的影响,在真空腔中的聚焦调制,使离子中的电子迅速由原有的能级跃迁到下一能级,并同时释放出许多的光子,从而达到激发激光的效果,瞬态激光器的激光输出持续极短的时间,极高的能量,瞬态激光器的结构一般由一个真空腔和一组高压发生器组成,真空腔内装有可发射激光的离子源和能控制激光路径的反射镜,发射器外设置与腔体的电连接,高压发生器用于给该真空腔体提供必要的电压。

3.钝/硬激光器:钝/硬激光器为可调节激光源,原理是以热熔合或焊接的方式将激光材料(基体材料)和激光剂装入金属管中,经高温、高压作用,释放出紫外光,再经过一系列有折射镜和反射镜的发射腔。

激光的种类和激光器的用途

激光的种类和激光器的用途

激光的种类和激光器的用途激光是一种由激活的原子、分子或离子产生的高度聚焦的光束。

根据激光的产生机制、波长、功率等不同特点,激光可以分为多种不同类型。

以下是常见的一些激光器种类及其应用。

1.气体激光器:气体激光器利用气体体积放电、电离、碰撞激发等原理产生激光。

其中,最常见的激光器是二氧化碳激光器(CO2激光器),它的波长为10.6微米。

CO2激光器广泛应用于切割和焊接金属材料、医学手术、纹身移除、装饰等领域。

2.固体激光器:固体激光器使用固体材料(如晶体或玻璃)作为激发介质,通过显微光泵或一个或多个便激光器激励来产生激光。

当固体材料受到外部能量激发时,光子被激发到高能级,并在经典的自发辐射下退回到较低的能级,产生激光。

常见的固体激光器有Nd:YAG激光器和Er:YAG激光器等。

Nd:YAG激光器工作在1064纳米,常用于望远镜、瞄准器、激光光纤通信等领域。

3.半导体激光器:半导体激光器是利用半导体材料和pn结构的特性产生激光。

半导体激光器通常体积小且寿命长,因此广泛用于信息存储、激光指示器、激光打印机、激光读取器、医疗设备等领域。

此外,半导体激光器还广泛应用于激光雷达、光通信和工业材料加工等领域。

4.光纤激光器:光纤激光器是一种利用光纤作为反馈介质产生激光的激光器。

相较于传统的固体激光器,光纤激光器具有更高的效率、更小的尺寸和更长的使用寿命。

光纤激光器广泛应用于医学手术、材料加工、激光测距、光纤通信等领域。

5.自由电子激光器:自由电子激光器是一种利用加速带电粒子(电子或电子束)产生激光的激光器。

自由电子激光器的波长范围广,功率高,可用于材料加工、电子束刻蚀、粒子加速器、原子核物理研究等领域。

除了上述激光器类型外,还有衍射光束激光器、液体激光器等特殊类型的激光器。

总结起来,激光器有着广泛的应用领域。

例如,激光器在医学领域中,可用于激光手术、激光治疗、激光诊断等;在通信领域中,激光器可用于光纤通信、激光雷达等;在材料加工领域中,激光器可用于切割、打孔、焊接、雕刻等;在科研领域中,激光器可用于光谱分析、粒子加速等。

激光切割设备常用的三种激光器介绍

激光切割设备常用的三种激光器介绍

激光切割设备常用的三种激光器介绍
大功率激光器是激光切割设备关键配件之一,它是激光切割的中心,如果没有这个配件,切割的过程也就无法实现。

那么激光切割机常用的激光器由哪几类呢?我们来看看梅曼科技的介绍吧!
固体激光器。

这类激光器又称之为Nd: YAG激光器,Nd是一种化学元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。

固体激光器的波长为1.06mm,它的优点是产生的光束可以通过光纤传送,适用于柔性的制造系统和远程加工。

气体激光器。

这类激光器又称之为CO2激光器,分子气体作工作介质,产生平均为10.6mm 的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。

光纤激光器。

这类激光器的应用范围非常广,包括激光空间远距通讯、激光光纤通讯、汽车制造、军事国防安全、医疗器械仪器设备、大型基础建设等等。

10多种激光器全面梳理!

10多种激光器全面梳理!

10多种激光器全面梳理!光纤激光器应用领域广阔,细分种类可满足特殊需求光纤激光器有多种分类方法,其中较为常见的是按工作方式分类、按波段范围分类及按介质掺杂稀土元素分类。

激光器通常也是根据这三个分类中的一至两个来命名的,例如 IPG的 YLM-QCW 系列即翻译为准连续掺镱光纤激光器。

光纤激光器应用领域广泛,不同细分的激光器特质不同,适合的应用领域各异。

例如中红外波段对于人眼来说是安全的,且在水中能够被很强的吸收,是理想的医用激光光源;掺铒光纤由于其合适的波长可以打开光纤通信窗口,在光纤通信领域应用较广;绿光激光由于其可见性,在娱乐与投影等方面必不可少。

脉冲激光器峰值功率高,准连续激光器加工速度快光纤激光器按照工作方式可以分为锁模光纤激光器、调Q光纤激光器、准连续光纤激光器及连续光纤激光器。

实现脉冲光纤激光器的技术途径主要有调Q技术、锁模技术和种子源主振荡功率放大(MOPA)技术。

锁模技术可以实现飞秒或皮秒量级的脉冲输出,且脉冲的峰值功率较高,一般在百万瓦量级,但是其输出的脉冲平均功率较低;调Q光纤激光器可以获得脉宽为纳秒量级、峰值功率为千瓦量级、脉冲能量为百万焦量级的脉冲激光。

准连续激光器的脉冲宽度为微秒级,而连续激光由泵浦源持续提供能量,长时间地产生激光输出。

连续光纤激光器是高功率激光器的主要产品连续激光器的激光输出是连续的,广泛运用于激光切割、焊接和熔覆领域。

激光泵浦源持续提供能量,长时间地产生激光输出,从而得到连续激光。

连续激光器中各能级的粒子数及腔内辐射场均具有稳定分布。

其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的光纤激光器即为连续光纤激光器。

相比其他类型激光器,连续光纤激光器能达到相对较高的功率,IPG已经生产出单模2万瓦的连续光纤激光器,较常用于激光切割、焊接和熔覆领域。

准连续光纤激光器可双模式运转,显著提升加工速度准连续激光器可以同时在连续和高峰值功率脉冲模式下工作。

激光器简介介绍

激光器简介介绍
光测距等。
05 激光器的未来发展趋势和 挑战
高功率激光器的研发和应用
高功率激光器在国防、工业和 医疗等领域具有广泛的应用前 景。
研发高功率激光器的关键在于 提高输出功率、光束质量和稳 定性,以及降低制造成本。
高功率激光器在材料加工、激 光雷达、照明和通信等领域已 取得重要进展。
超快激光器的研发和应用
应用
二氧化碳激光器在医疗美容中应用广 泛,如激光手术刀、皮肤美白等。
固体激光器
特点
体积小、重量轻、效率高、操作简单。
应用
用于材料加工、打标、雕刻等领域。
液体激光器
特点
输出波长可调、效率较高。
应用
用于生物医学、光谱学等领域。
半导体激光器
要点一
特点
体积小、寿命长、价格便宜。
要点二
应用
用于光纤通信、数据存储等领域。
激光打标
利用激光的高能量密度在 物体表面刻印图案、文字 或编码等标识,实现高效 、环保的打标方式。
激光焊接
通过激光束将两个或多个 材料连接在一起,具有高 精度、高强度和高密封性 等优点。
医学领域
激光治疗
利用激光的能量照射人体组织, 通过热能、光化学效应等作用达 到治疗目的,如激光手术、激光
美白等。
感谢您的观看
光纤激光器
特点
输出波长稳定、效率高、光束质量好。
VS
应用
用于高速光纤通信、激光雷达等领域。
03 激光器的组成和工作02
03
04
增益介质
用于提供能量放大作用,通常 由气体、液体、固体或半导体
等材料组成。
泵浦源
用于向增益介质提供能量,通 常采用光、电、化学等方法。

激光器的种类讲解

激光器的种类讲解

激光器的种类讲解激光器是一种能够产生高纯度、高亮度和一致的光束的装置。

他们在科研、医学、工业和通信等领域中具有广泛的应用。

根据激光器的工作原理和参数,可以将激光器分为多种类型,如气体激光器、固体激光器、半导体激光器和光纤激光器等。

本文将对各种类型的激光器进行深入的讲解。

1.气体激光器:气体激光器是最早被发明出来的激光器类型之一、它们通过用电流激励气体分子来产生所需波长的激光。

常见的气体激光器有氦氖激光器(He-Ne)、二氧化碳激光器(CO2)、氩离子激光器(Ar)等。

气体激光器具有较大的输出功率和较高的波长稳定性,适用于医学、切割和焊接等领域。

2.固体激光器:固体激光器是使用固体材料作为激光介质的激光器。

常见的固体材料有Nd:YAG、Nd:YVO4和Ti:sapphire等。

固体激光器可以通过激光二极管或弧光灯等能量源进行激发。

它们具有高效、高稳定性和长寿命的特点,适用于雷达系统、激光加工和科学研究等领域。

3.半导体激光器:半导体激光器是通过电流注入拥有p-n结构的半导体材料,使其产生激光。

半导体材料可以是单一的半导体材料,如GaAs、InP,也可以是多层薄膜结构,如VCSEL(垂直腔面发射激光器)。

半导体激光器具有小型化、低功率和高效率的特点,广泛应用于通信、光存储和光电显示等领域。

4.光纤激光器:光纤激光器是利用光纤作为激光介质的激光器。

光纤激光器通常包括光纤光源和光纤放大器两个部分。

光纤光源是利用受激辐射从光纤核心产生激光,通常使用稀土离子注入的光纤作为激发材料。

光纤放大器则通过将输入的激光信号放大,从而得到高亮度的激光输出。

光纤激光器具有小型化、高品质和集成化的特点,广泛应用于通信、激光打标和光纤光源等领域。

除了以上所述的主要激光器类型,还有许多其他的激光器类型,例如自由电子激光器、化学激光器和超短脉冲激光器等。

不同类型的激光器在应用领域和性能参数上有着差异。

因此,在选择激光器时,需要根据具体需求来确定最合适的类型和参数。

常用激光器及其分类

常用激光器及其分类

常用激光器及其分类本文由高能激光设备制造有限公司()提供激光器发展至今,其品种目前已超过200多种,特点各异,其用途也各不相同。

激光器可按以下方法进行分类.1)按工作介质来分有:固体激光器、液体激光器、气体激光器、半导体激光器。

此外,还有化学激光器靠化学反应而形成受激状态)和自由电子激光器等。

(1)固体激光器固体激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺人少量激活离子,除了用红宝石和玻璃外,常用的还有在忆铝石榴石(Y AG)品体中掺人三价铰离子(Nd)的激光器,它发射1060nm的近红外激光.固体激光器连续功率一般可达1 kw以上,脉冲峰值功率可达10000000Kw一般固体激光器具有器件小、坚固、使用方便、输出功率大的特点。

近年来发展十分迅猛的光纤赫却,其工作物质是一段光纤.光纤中掺不同的元素.能够产生波段范围很宽的激光。

(2)液体激光器常用的是染料激光器,采用有机染料作为工作介质。

大多数情况是把有机染料济于溶剂(乙醇、丙酮、水等)中使用,也有以蒸汽状态工作的。

利用不同染料可获得不同波长的激光(在可见光范困)。

染料激光器一般使用激光作泵浦源.常用的有氢离子激光器。

液体激光器的工作原理比较复杂,它的优点是输出波长连续可调且搜盖面宽。

(3)气体激光器工作物质主要以气体状态进行发射的激光器,在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞)及固体(如金属离子结构的铜、锅等粒子),经过加热使其变为蒸汽,利用这类蒸汽作为工作物质的激光器,统归气体激光器之中。

气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。

气体工作物质是所使用的工作物质中数日最多、激励方式最多样化、激光发射波长分布区域最广的一类激光器。

·气体激光器所采用的工作物质,可以是原子气体、分子气体和电离化离子气体,为此,把它们相应地称为原子气体激光器、分子气体激光器和离子气体激光器。

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍

常见激光器结构及器件功能介绍激光器是一种产生并放大激光束的装置,常见的激光器结构包括气体激光器、固体激光器、液体激光器和半导体激光器。

下面将对这些常见的激光器结构及器件功能进行介绍。

1.气体激光器:气体激光器是利用气体分子或原子的电子能级跃迁放大光子束的装置。

常见的气体激光器包括二氧化碳激光器和氩离子激光器。

(1)二氧化碳激光器(CO2激光器):它是利用二氧化碳气体的分子振动能级跃迁来放大激光。

主要用于切割、打孔、焊接等工业加工领域。

(2)氩离子激光器:它利用氩离子气体的电子能级跃迁来放大激光。

主要应用于生物医学、光学雷达等领域。

2.固体激光器:固体激光器是利用固体材料(如纳、晶体、陶瓷等)的电子能级跃迁放大光子束的装置。

常见的固体激光器包括Nd:YAG激光器和雷射晶体放大器。

(1)Nd:YAG激光器:它是利用掺杂了钕离子的钇铝石榴石晶体的电子能级跃迁来放大激光。

主要用于切割、焊接、医疗美容等领域。

(2)雷射晶体放大器:它是利用高浓度掺杂放大材料(如三氧化二铜、Cr4+:YAG等)的反射效应来放大激光。

主要应用于高能激光研究和军事领域。

3.液体激光器:液体激光器是利用液体材料的分子或原子能级跃迁放大光子束的装置。

常见的液体激光器包括染料激光器和化学激光器。

(1)染料激光器:它利用在溶液中溶解染料分子的电子能级跃迁来放大激光。

主要用于光谱分析、显示技术等领域。

(2)化学激光器:它利用化学反应产生的激发态物质来放大激光。

主要应用于军事领域和科学研究。

4.半导体激光器:半导体激光器是利用半导体材料(如GaN、InP等)的电子能级跃迁放大光子束的装置。

常见的半导体激光器包括激光二极管和垂直腔面发射激光器(VCSEL)。

(1)激光二极管:它利用PN结的电子能级跃迁来放大激光。

主要应用于光通信、光储存、激光打印等领域。

(2)VCSEL:它利用垂直结构的PN结的电子能级跃迁来放大激光。

主要应用于光通信、生物传感等领域。

第1章-典型激光器简介-续分解

第1章-典型激光器简介-续分解
• DE段叫作自持暗放电,放电不稳定
• 平坦的EF段。该区域的特点是电流增加,但管压降几乎保 持不变,放电管内出现明暗相间的辉光,称之为正常辉光放 电。辉光放电阶段,由于二次发射的电子随电场的增加而迅 速增加,故当放电管端电压略有增加时,放电电流就增大很 多。辉光放电的电流范围一般在10-4~10-1 A之间
染料激光器主要应用于科学研究、医学等领域,如激光光 谱学、光化学、同位素分离、光生物学等方面。
1966年,世界上第一台染料激光器——由红宝石激光器泵 浦的氯铝钛花青染料激光器问世。
4)半导体激光器
半导体激光器也称为半导体激光二极管,或简称激光二极管 (LaserDiod,缩写LD)。由于半导体材料本身物质结构的特 异性以及半导体材料中电子运动规律的特殊性,使半导体 激光器的工作特性有其特殊性。
• 分子激光器中产生激光作用的是未电离的气体分子,激光跃迁 发生在气体分子不同的振-转能级之间。采用的气体主要有 CO2、CO、N2、O2、N2O、H2O、H2 等分子气体。分子激光 器的典型代表是CO2 激光器。
• 准分子激光器。所谓准分子,是一种在基态离解为原子而在激 发态暂时结合成分子(寿命很短)的不稳定缔合物,激光跃迁产 生于其束缚态和自由态之间。采用的准分子气体主要有XeF* 、KrF* 、ArF* 、XeCl* 、XeBr* 等。其典型代表为XeF* 准 分子激光器。
• 半导体激光器广泛应用于光纤通信、光存储、光信息处 理、科研、医疗等领域,如激光光盘、激光高速印刷、全 息照相、办公自动化、激光准直及激光医疗等方面。
• 1962年,世界上第一台半导体激光器———GaAs激光器 问世。
5)化学激光器 化学激光器是通过化学反应实现粒子数反转从而产生受激光 辐射的。工作物质可以是气体或液体,但目前主要是气体,如 氟化氢(HF)、氟化氚(DF)、氧碘(COIL)等。

各种激光器的介绍

各种激光器的介绍

各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。

激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。

下面将介绍几种常见的激光器。

1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。

氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。

2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。

二极管激光器广泛应用于通信领域,如光纤通信、光存储等。

它具有体积小、效率高的特点。

3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。

CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。

CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。

4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。

它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。

5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。

GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。

6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。

它具有波长调谐范围广、转换效率高的特点。

染料激光器在科学研究、生物医学等领域有广泛应用。

7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。

它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。

总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。

随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。

医学中常用的激光器

医学中常用的激光器

医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。

目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。

人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。

激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。

由于激光的物理特性决定了其具有明显的生物学效应,。

各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。

一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。

氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。

原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。

(2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。

分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。

分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。

(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。

氦镉激光器(激活介质为Cd+)等。

离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。

气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。

其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。

1、氦氖激光器氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。

它的光束质量很好(发散角小,单色性好,单色亮度大)。

激光器结构简单,成本低,但输出功率较小。

激光器的种类及应用

激光器的种类及应用

激光器的种类及应用激光器是一种产生高强度、高聚束、单色、相干光的装置。

它们被广泛应用于各个领域,包括医学、通信、材料加工、军事、测量和科学研究等。

下面将介绍几种常见激光器的种类及其应用。

1.气体激光器:气体激光器是最早被发展出来的激光器之一、最常见的气体激光器包括二氧化碳激光器和氩离子激光器。

二氧化碳激光器主要用于材料切割、焊接和打孔等工业应用,还被广泛应用于医学手术和皮肤美容治疗。

氩离子激光器在医学和科学研究中也有广泛应用,例如眼科手术、实验物理和化学研究。

2.固体激光器:固体激光器是一种使用固体材料作为激活介质的激光器。

最常见的固体激光器包括Nd:YAG激光器和铷钾硼酸盐(Nd:YVO4)激光器。

固体激光器有较高的光束质量和较长的寿命,被广泛应用于材料加工、医学、科学研究和军事领域。

它们可以用于切割、钻孔、焊接、标记和激光测距等应用。

3.半导体激光器:半导体激光器是使用半导体材料作为激发源的激光器。

它们具有体积小、功耗低和价格低廉的特点,因此在通信、激光打印、光存储和生物医学等领域得到了广泛应用。

激光二极管是最常见的半导体激光器之一,它们被广泛用于激光打印机、激光扫描仪和激光指示器等设备中。

4.光纤激光器:光纤激光器是利用光纤作为光传输介质的激光器。

它们具有高效率、高功率输出和相对较小的尺寸。

光纤激光器被广泛应用于通信、材料加工和医学等领域。

例如,光纤激光器可以用于光纤通信系统中的信号放大和发送,也可以用于材料切割、焊接和打标等高精度加工过程。

5.半导体激光二极管:半导体激光二极管是一种小型、低功耗的激光器。

它们主要用于光通信、激光打印、激光显示和传感器等领域。

激光二极管被广泛用于光纤通信系统中的光放大器和激光器,也被应用于激光打印机、光盘读写器和激光雷达等设备。

总而言之,激光器的种类繁多,每种类型都有其特定的应用领域。

激光技术的不断进步和创新将会带来更多新的应用和发展机会。

典型激光器介绍大全

典型激光器介绍大全

典型激光器介绍大全激光器(Laser)是20世纪最具科技感的发明之一,其应用涉及到多个领域,包括医疗、通信、制造、测量等等。

本文将介绍激光器的基本原理、不同类型的激光器以及其主要应用。

激光器的基本原理:激光器的核心部分是激光介质,它能够产生并放大高度集中的光束。

激光介质通常是一个光学腔体,其中有一个主动介质,能够吸收能量并在放出来的时候放大光信号。

这个光学腔体准备一个部分透明的发布窗口,能够让光束从中逃逸。

不同类型的激光器:1.固态激光器:固态激光器使用固态材料(如纳米晶体或晶体)作为激光介质。

它们通常非常稳定和高效,并且常用于医疗和研究领域。

2. 气体激光器:气体激光器使用气体作为激光介质,如氦氖激光器(He-Ne),二氧化碳激光器(CO2),氩离子激光器(Ar-ion)等。

它们通常产生高功率的激光束,常用于切割、焊接和制造领域。

3.半导体激光器:半导体激光器是目前应用最广泛的激光器类型之一,它使用半导体材料(如镓砷化物或镓氮化物)作为激光介质,常用于通信、医疗和显示技术领域。

4.纳秒激光器:纳秒激光器产生持续时间在纳秒级别的脉冲激光,常用于测量和材料研究领域。

5.二极管激光器:二极管激光器是一种小型、高效的激光器,它使用半导体材料并具有相对低的功率要求。

它们通常用于激光打印、扫描和传感器等应用领域。

激光器的应用:1.医疗领域:激光器在医疗领域有广泛的应用,如激光眼科手术、激光去胎记、激光脱毛等。

其高度集中和精确的光束可以在微创手术中发挥重要作用。

2.通信领域:半导体激光器在光纤通信中起到关键作用,能够快速高效地传输数据。

激光器所产生的激光束可以通过千米以上的光纤传输,实现高速宽带通信。

3.制造领域:激光器在制造领域常用于切割、焊接和打标等应用。

激光束的高能量和精度可以在金属切割和焊接时实现高质量和高效率。

4.测量和科学研究领域:激光器在测量、科学研究和实验室使用中发挥着重要作用,如激光干涉仪、激光雷达等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常用激光器得概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家得极大重视。

特别就是近两年,以二氧化碳为主体工作物质得分子气体激光器得进展更为神速,已成为气体激光器中最有发展前途得器件。

二氧化碳分子气体激光器不仅工作波长(10、6微米)在大气“窗口”,而且它正向连续波大功率与高效率器件迈进。

1961年,Pola-nyi指出了分子得受激振动能级之间获得粒子反转得可能性。

在1964年1月美国贝尔电话实验室得C、K、N、Pate研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0、01%。

不到两年,现在该类器件得连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦得脉冲功率输出。

最近,有人认为,进一步提高现有得工艺水平,近期可以达到几千瓦得连续波功率输出与30~40%得效率。

2、工作原理CO2激光器中,主要得工作物质由CO₂,氮气,氦气三种气体组成。

其中CO₂就是产生激光辐射得气体、氮气及氦气为辅助性气体。

加入其中得氦,可以加速010能级热弛预过程,因此有利于激光能级100及020得抽空。

氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数得积累与大功率高效率得激光输出起到强有力得作用。

CO₂分子激光跃迁能级图CO₂激光器得激发条件:放电管中,通常输入几十mA或几百mA得直流电流。

放电时,放电管中得混合气体内得氮分子由于受到电子得撞击而被激发起来。

这时受到激发得氮分子便与CO₂分子发生碰撞,N2分子把自己得能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。

3、特点二氧化碳分子气体激光器不但具有一般气体激光器得高度相干性与频率稳定性得特点,而且还具有另外三个独有得特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯与红外雷达。

(2)大功率与高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0、17 %,原子激光器得连续波输出功率一般为毫瓦极,其效率约为0、1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。

(3)结构简单,使用一般工业气体,操作简单,价格低廉。

由此可见,随着研究工作得进展、新技术得使用,输出功率与效率会不断提高,寿命也会不断增长,将会出现一系列新颖得应用。

例如大气与宇宙通讯、相干探测与导航、超外差技术与红外技术等。

4、应用二氧化碳分子激光器以其独有得特点获得广泛得应用,现就某些方面得应用介绍如下:1、热效应得应用可以毫不困难地把激光器得射束直径聚成100微米。

在此情况下。

300瓦得功率就相当于107瓦/厘米2数量级得能量密度,此值已超过太阳光得能量密度,能达到极高得温度。

例如Garver公司研制得800瓦二氧化碳激光器在2秒钟之内就能烧穿4寸厚得耐火砖。

因而,可以想象这些分子激光器可以用于解决高温材料得焊接、融熔与钻孔。

例如6200型二氧化碳激光器连续波输出10瓦,可用于硬质合金得焊接、高速蒸发、切割有机与无机玻璃材料。

现在有人把二氧化碳激光器用作钻孔与爆破得一种辅助工具,这项研究正作为波士顿到华盛顿得高速地下运输技术得一个组成部分。

美帝得军事部门,正在探讨将这些器件用作武器得可能性。

一种就是利用轻便式二氧化碳激光器作杀人武器,由于10、6微米就是不可见光,故其威胁较大。

另一种作为反导弹武器,虽然现阶段能量不足以烧毁导弹,但能破坏导弹得热平衡。

另外,由于它几乎能蒸发任何材料,所以能够用来改进等离子体得获得与用于质谱学。

2、光通讯与光雷达应用二氧化碳分子激光器得上作波长正好处在大气得“窗口”,加上该器件得功率高,效率也高,因此,该器件在光通讯与光雷达方面得应用前途就是很美好得。

美帝电子光学实验室NASA等单位正准备使用二氧化碳激光器作为高讯息率9x107[二进位/秒]得激光通讯系统。

NASA歌德空简飞行中心空对地激光通讯系统实验工作正在进行,使用得就是连续波输出功率为20瓦得二氧化碳激光器,将传送106二进位/秒讯息。

若实验成功,行星之间就可以传输电视图像。

NASA歌德空间飞行中心还使用二氧化碳激光器进行深空探测,认为只要几百瓦连续波输出功率就可以实现。

美帝空军航空电子学实验室使用二氧化碳激光器制成光学多普勒导航系统。

前面报导得雷声公司研制得1200瓦小体积、大功率、高效率得二氧化碳激光器可作为激光跟踪导弹光雷达发射器。

3、在非线性光学方面得应用使用10、6微米得二氧化碳激光器,借助锑与碲晶体一定得方向性,能够很容易产生二次谐波,贝尔电话实验室与法国通用电气公司研究中心在这方面已获得成功。

锑与碲晶体就是一种很有用得晶体,因为它们得非线性系数比K、D、P高1000多倍,并且它们对5~25微米就是可透射得。

例如,贝尔电话实验室得Patel利用它制成第一个远红外参量放大器。

使用10、6微米、10千瓦、160脉冲/秒得二氧化碳激光器来作为泵浦源,讯号频率由氦氖激光器提供,可在碲晶体中获得17、9微米波长得激光,可用于通讯与光学材料性能得研究。

二、准分子激光器1、背景准分子就是一种在激发态复合成分子,而在基态离解成原子得不稳定缔合物,激光跃迁发生在束缚得激发态到排斥得基态,属于束缚——自由跃迁。

1970年,巴索夫等利用强流电子束泵浦液态氙,获得Xe激光振荡,其波长在176nm,这就是第一台准分子激光器,稍后美国洛斯阿拉莫斯实验室报道了气相氙得激光输出,并在Kr(145、7nm)、Ar(126、1nm)获得激光输出。

1974年美国Kansan州立大学报道了稀有气体卤化物在紫外波段得强荧光辐射,这结果引起了激光界得极大兴趣,短短六个月,美国海军实验室便获得了溴化氙(282nm)激光输出,阿符科公司获得了氟化氙(351nm)、氟化氪(248nm)、氯化氙(308nm)得激光输出,桑迪亚实验室则获得了氟化氢(193nm)得真空紫外输出,每个脉冲能量达百焦耳以上。

2、工作原理准分子激光就是一种气体激光,它得工作气体就是由常态下化学性质稳定得惰性气体原子如He、Ne、Ar、Kr、Xe与化学性质较活泼得卤素原子如F、Cl、Br等组成。

一般情况下,惰性气体原子就是不会与别得原子形成分子得,但就是如果把它们与卤素元素混合,再以放电得形式加以激励,就能成为激发态得分子,当激发态得分子跃迁回基态时,立刻分解、还原成本来得特性,同时释放出光子,经谐振腔共振放大后,发射出高能量得紫外光激光。

这种处于激发态得分子寿命极短,只有10ns,故称为“准分子”( Excimer)。

准分子激光器得谐振腔用于存储气体、气体放电激励产生激光与激光选模。

它由前腔镜、后腔镜、放电电极与预电离电极构成,并通过两排小孔与储气罐相通,以便工作气体得交换、补充。

为了获得均匀大面积得稳定放电,一般得准分子激光器均采用了预电离技术,在主放电开始之前,预电离电极与主放电得阴极之间先加上高压,使它们之间先发生电晕放电,在阴极附近形成均匀得电离层。

一般高压为20kV~30kV。

气体放电时,脉冲高压电源加在电极上对谐振腔内得工作气体放电,发生能级跃迁产生光子,通过反射镜得反馈振荡,最后产生激光从前腔镜输出。

3、特点准分子激光具有以下特性:(1)由于“准分子”寿命极短,在共振腔内往复次数少,缺乏共振,因此光束指向性差,发散角一般为(2~10)毫弧度。

(2)不同得工作气体组合可产生191nm~354nm不同波长得紫外激光。

(3)单一脉冲得功率极高,约为(109~1010)W/cm,单一脉冲能量可达数个焦耳以上。

4、应用眼科使用得准分子激光,就是以氩气(Argon)与氟气(Fluoride)为工作气体产生得激光。

其波长为193nm,属超紫外激光。

由于波长极短,光子能量极高,达6、4eV,因此可轻易地切断角膜组织得分子键,其切割精度可达二百万分之一厘米以下,同时由于每个脉冲波得时间极短,所释放得热能极少,因此对周边组织得伤害非常轻微,所以准分子激光非常适合做角膜切割手术。

目前准分子激光在眼科临床得应用主要包括两类:一类就是用于治疗近视、远视与散光得矫治屈光不正手术。

主要技术有准分子激光光学角膜切削术( Phot orefractive Keratectomy,简称PRK)与准分子激光原位角膜磨镶术(Laser in situker-atomileusis,简称LASIK),其中LASIK手术就是目前发展最快,普及最广,技术应用最强得治疗屈光不正手术之一。

另一类就是准分子激光光学治疗性角膜切削术(Excimer laser pho-totherapeutic keratectomy, 简称PTK),主要用于治疗角膜不规则散光、切除角膜浅层瘢痕等。

激光治疗屈光不正手术在十多年得发展过程中,随着高新技术得不断应用,技术日趋完美。

从早期得大光斑扫描技术到现在广泛应用得小光斑飞点扫描技术,解决了术后中心岛效应与角膜浑浊问题,能够获得完美得光学抛面,使术面光滑、平整;角膜地形图得应用与波前像差引导下得个体化切削技术,使切削精度大大提高,真正做到“量眼定做”;主动眼球跟踪技术解决了术眼转动产生得角膜偏中心切削,使准分子激光始终处于角膜中心约6mm大小得区域内进行渐进式切削,提高了手术得精确度。

另外,随着准分子激光治疗屈光不正手术发展起来得其她技术如角膜板层刀技术、计算机辅助软件技术等等也有了长足发展,大大增强了手术得安全性。

随着科学技术得发展以及临床工作得不断深入与研究,准分子激光技术在医学领域必将取得更快得发展, 为人类带来更好地服务。

其次,准分子激光得切割,与金刚石刀相比,切口位置及深度可精确控制,XeCl 准分子激光器用于使动脉粥样硬化斑块气化,具有边缘齐整且周围组织碳化极小得优点,可望取代心脏旁通术与气球血管成形术。

准分子激光在半导体参杂、激光诱导化学超导薄膜形成等方面得研究在广泛展开。

由于紫外激光束与物质相互作用得微细加工与冷加工得特点,成为继CO2激光器与YAG激光器之后得新一代激光加工及激光医疗用激光器件。

三、半导体激光器1、背景自1962年第一台半导体激光器诞生以来,经过几十年得发展,半导体激光器得研究取得了长足得发展,波长从红外、红光到蓝绿光,覆盖范围逐渐扩大,各项性能参数也有了很大得提高。

与其她类型得激光器相比,半导体激光器由于波长范围宽,制作简单、成本低、易于大量生产,并且具有体积小、重量轻、寿命长等特点,在光通讯、光谱分析与光信息处理等产业以及技术、医疗、生命科学、军事等基础与应用研究方面有着广泛得应用。

半导体激光器虽然有上述诸多优势,但在实际应用中,由于其谐振腔得输出频率容易受到环境温度与注入电流得影响,自然运转得半导体激光器得输出线宽通常在100MHz左右,可调性也比较差。

相关文档
最新文档