专升本高数真题

合集下载

河南专升本高等数学试题(含答案)

河南专升本高等数学试题(含答案)

高数试题练习一、函数、极限连续 1.函数)(x f y =的定义域是( )A .变量x 的取值范围B .使函数)(x f y =的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是 2.以下说法不正确的是( )A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数 3.两函数相同则( )A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同 4.函数y =的定义域为( )A .(2,4)B .[2,4]C .(2,4]D .[2,4) 5.函数3()23sin f x x x =-的奇偶性为( )A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(-+=-x xx f 则)(x f 等于( )A .12-x xB .x x 212--C .121-+x xD .xx212--7. 分段函数是( )A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数 8.下列函数中为偶函数的是( ) A .x e y -= B .)ln(x y -= C .x x y cos 3= D .x y ln =9.以下各对函数是相同函数的有( ) A .x x g x x f -==)()(与 B .xx g x x f cos )(sin 1)(2=-=与C .1)()(==x g x xx f 与 D .⎩⎨⎧<->-=-=2222)(2)(x xx x x g x x f 与10.下列函数中为奇函数的是( )A .)3cos(π+=x y B .x x y sin = C .2xx e e y --=D .23x x y +=11.设函数)(x f y =的定义域是[0,1],则)1(+x f 的定义域是( )A .]1,2[--B .]0,1[- C .[0,1] D . [1,2]12.函数⎪⎩⎪⎨⎧≤<+=<<-+=20200022)(2x x x x x x f 的定义域是( )A .)2,2(-B .]0,2(-C .]2,2(-D . (0,2]13.若=---+-=)1(,23321)(f xx x x x f 则( )A .3-B .3C .1-D .1 14.若)(x f 在),(+∞-∞内是偶函数,则)(x f -在),(+∞-∞内是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x f15.设)(x f 为定义在),(+∞-∞内的任意不恒等于零的函数,则)()()(x f x f x F -+=必是( )A .奇函数B .偶函数C .非奇非偶函数D .0)(≡x F16. 设⎪⎩⎪⎨⎧<<≤<-≤<--=42,021,1211,1)(2x x x x x x f 则)2(πf 等于 ( ) A .12-π B .182-π C . 0 D .无意义17.函数x x y sin 2=的图形( )A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y =对称18.下列函数中,图形关于y 轴对称的有( )A .x x y cos = B .13++=x x yC .2xx e e y -+=D .2xx e e y --=19.函数)(x f 与其反函数)(1x f -的图形对称于直线( )A .0=y B .0=x C .x y = D .x y -= 20. 曲线)1,0(log ≠>==a a x y a y a x 与在同一直角坐标系中,它们的图形( )A .关于x 轴对称B .关于y 轴对称C .关于直线x y =轴对称D .关于原点对称21.对于极限)(limx f x →,下列说法正确的是( ) A .若极限)(lim 0x f x →存在,则此极限是唯一的 B .若极限)(lim 0x f x →存在,则此极限并不唯一C .极限)(limx f x →一定存在D .以上三种情况都不正确 22.若极限A )(lim=→x f x 存在,下列说法正确的是( )A .左极限)(lim 0x f x -→不存在 B .右极限)(lim 0x f x +→不存在C .左极限)(lim 0x f x -→和右极限)(lim 0x f x +→存在,但不相等D .A )(lim )(lim )(lim 00===→→→-+x f x f x f x x x23.极限ln 1limx e x x e→--的值是( )A .1B .1eC .0D .e24.极限ln cot lim ln x xx→+0的值是( ).A . 0B . 1C .∞D . 1-25.已知2sin lim20=+→xx bax x ,则( ) A .0,2==b aB .1,1==b aC .1,2==b aD .0,2=-=b a26.设b a<<0,则数列极限l i m n n n n a b →+∞+是A .aB .bC .1D .b a + 27.极限xx 1321lim+→的结果是A .0B .21C .51D .不存在28.∞→x lim xx 21sin 为( )A .2B .21C .1D .无穷大量29. n m nxmxx ,(sin sin lim 0→为正整数)等于( )A .nm B .mn C .n m nm --)1( D .mn m n --)1( 30.已知1tan lim230=+→xx bax x ,则( ) A .0,2==b aB .0,1==b aC .0,6==b aD .1,1==b a31.极限xx xx x cos cos lim+-∞→( )A .等于1B .等于0C .为无穷大D .不存在32.设函数⎪⎩⎪⎨⎧>-=<+=010001sin )(x e x x x x f x 则=→)(limx f x ( )A .1B .0C .1-D .不存在 33.下列计算结果正确的是( )A .e x x x =+→10)41(lim B .410)41(lim e xx x =+→ C .410)41(lim --→=+e x x x D .4110)41(lim e x x x =+→34.极限x x xtan 0)1(lim +→等于( ) A . 1 B .∞ C .0 D .21 35.极限⎪⎭⎫⎝⎛-→x x x x x sin 11sinlim 0的结果是 A .1- B .1 C .0 D .不存在36.()01sinlim≠∞→k kxx x 为 ( )A .kB .k1C .1D .无穷大量37.极限xx sin lim 2π-→=( )A .0B .1C .1-D .2π-38.当∞→x时,函数x x)11(+的极限是( )A .eB .e -C .1D .1-39.设函数⎪⎩⎪⎨⎧>-=<+=01cos 001sin )(x x x x x x f ,则=→)(lim 0x f xA .1B .0C .1-D .不存在40.已知a xax x x 则,516lim21=-++→的值是( ) A .7 B .7- C . 2 D .341.设⎪⎩⎪⎨⎧≥+<=020tan )(x x x xaxx f ,且)(limx f x →存在,则a 的值是( )A .1B .1-C .2D .2- 42.无穷小量就是( )A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是 43.当0→x 时,)2sin(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 44.当0→x 时,与x 等价的无穷小是( ) A .xx sin B .)1ln(x + C .)11(2x x -++ D .)1(2+x x45.当0→x 时,)3tan(3x x +与x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 46.设,1)(,)1(21)(x x g x xx f -=+-=则当1→x 时( )A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小 D .)(x f 与)(x g 为等价无穷小 47.当+→0x 时, 11)(-+=a x x f 是比x 高阶的无穷小,则( )A .1>aB .0>aC .a 为任一实常数D .1≥a48.当0→x 时,x 2tan 与2x 比较是( )A .高阶无穷小B .等价无穷小C .同阶无穷小 ,但不是等价无穷小D .低阶无穷小 49.“当0x x→,A x f -)(为无穷小”是“A x f x x =→)(lim 0”的( )A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件 50. 下列变量中是无穷小量的有( ) A .)1ln(1lim0+→x x B .)1)(2()1)(1(lim 1-+-+→x x x x xC .x x x 1cos 1lim ∞→D .x x x 1sin cos lim 0→ 51.设时则当0,232)(→-+=x x f x x ( )A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量 D .)(x f 是比x 较低阶的无穷小量 52. 当+→0x时,下列函数为无穷小的是( )A .x x 1sinB .x e 1C .x lnD .x xsin 153. 当0→x 时,与2sin x 等价的无穷小量是 ( ) A .)1ln(x + B .x tan C .()x cos 12- D .1-x e54. 函数,1sin )(xx x f y ==当∞→x 时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55. 当0→x 时,下列变量是无穷小量的有( )A .xx 3B .xx cos C .x ln D .xe -56. 当0→x 时,函数xxy sec 1sin +=是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量 57.若0x x→时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则( )A .0)()(lim=→x g x f x x B .∞=→)()(lim 0x g x f x xC .)1,0()()(lim≠=→c c x g x f x x D .)()(lim 0x g x f x x →不存在58.当0→x 时,将下列函数与x 进行比较,与x 是等价无穷小的为( )A .x 3tan B .112-+x C .x x cot csc - D .xx x 1sin2+ 59.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的( )A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件 60.若点0x 为函数的间断点,则下列说法不正确的是( )A .若极限A )(lim 0=→x f x x 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A 0x f ≠,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x +→与极限)(lim 0x f x x -→都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点 61.下列函数中,在其定义域内连续的为( )A .x x x f sin ln )(+= B .⎩⎨⎧>≤=00sin )(x ex xx f xC .⎪⎩⎪⎨⎧>-=<+=01011)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f62.下列函数在其定义域内连续的有( ) A .x x f 1)(=B .⎩⎨⎧>≤=0cos 0sin )(x xx x x fC .⎪⎩⎪⎨⎧>-=<+=01001)(x x x x x x f D .⎪⎩⎪⎨⎧=≠=001)(x x xx f63.设函数⎪⎩⎪⎨⎧=-≠=021arctan )(x x x x f π 则)(x f 在点0=x 处( )A .连续B .左连续C .右连续D .既非左连续,也非右连续64.下列函数在0=x 处不连续的有( )A .⎪⎩⎪⎨⎧=≠=-00)(2x x e x f xB .⎪⎩⎪⎨⎧=≠=010sin )(21x x xx x f C .⎩⎨⎧≥<-=00)(2x xx xx f D .⎩⎨⎧≤->+=00)1ln()(2x xx x x f65.设函数⎪⎩⎪⎨⎧=≠--=12111)(2x x x x x f , 则在点)(1x f x 处函数=( ) A .不连续 B .连续但不可导 C .可导,但导数不连续 D .可导,且导数连续 66.设分段函数⎩⎨⎧<+≥+=011)(2x x x x x f ,则)(x f 在0=x 点( )A .不连续B .连续且可导C .不可导D .极限不存在 67.设函数)(x f y =,当自变量x 由0x 变到y x x ∆∆+相应函数的改变量时,0=( )A .)(0x x f ∆+ B .x x f ∆)('0 C .)()(00x f x x f -∆+ D .x x f ∆)(068.已知函数⎪⎩⎪⎨⎧>+=<=012000)(x x x x e x f x ,则函数)(x f ( )A .当0→x 时,极限不存在B .当0→x 时,极限存在C .在0=x 处连续D .在0=x 处可导69.函数)1ln(1-=x y 的连续区间是( )A .),2[]2,1[+∞⋃B .),2()2,1(+∞⋃C .),1(+∞D .),1[+∞ 70.设nxnxx f x -=∞→13lim )(,则它的连续区间是( )A .),(+∞-∞B .处为正整数)(1n nx ≠C .)0()0,(∞+⋃-∞D .处及n x x 10≠≠71.设函数⎪⎪⎩⎪⎪⎨⎧=≠-+=031011)(x x x x x f , 则函数在0=x 处( )A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数⎪⎩⎪⎨⎧=≠=00x x xx y ,则)(x f 在点0=x 处( )A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot)(2-+=x arc x x f ,则1=x 是)(x f 的( )A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2x y e x z y-+=的间断点是( )A .)1,1(),1,1(),0,1(--B .是曲线y e y -=上的任意点C .)1,1(),1,1(),0,0(-D .曲线2x y =上的任意点75.设2)1(42-+=x x y ,则曲线( ) A .只有水平渐近线2-=y B .只有垂直渐近线0=x C .既有水平渐近线2-=y ,又有垂直渐近线0=x D .无水平,垂直渐近线76.当0>x时, xx y 1sin=( ) A .有且仅有水平渐近线 B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线 二、一元函数微分学 77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是( )A .x yx f x ∆∆=→∆00lim)(' B .xx f x x f x f x ∆-∆+=→∆)()(lim )('0000C .00)()(lim)('0x x x f x f x f x x --=→ D .hx f h x f x f h )()21(lim)('0000--=→ 78.若e cos x y x =,则'(0)y =( )A .0B .1C .1-D .2 79.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -80.设函数)(x f 在点0x 处可导,且2)('0=x f ,则h x f h x f h )()21(lim 000--→等于( )A .1-B .2C .1D .21-81.设)(x f 在a x =处可导,则xx a f x a f x )()(lim 0--+→=( )A .)('a fB .)('2a fC .0D .)2('a f 82.设)(x f 在2=x 处可导,且2)2('=f ,则=--+→hh f h f h )2()2(lim( )A .4B .0C .2D .383.设函数)3)(2)(1()(---=x x x x x f ,则)0('f 等于( )A .0B .6-C .1D .3 84.设)(x f 在0=x 处可导,且1)0('=f ,则=--→hh f h f h )()(lim( )A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0lim→h hx f f )()h - x (00-( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关 86.设)(x f 在1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=)1('f ( )A .21B . 21-C . 41D .41-87.设==-)0('')(2f e x f x 则( )A .1-B .1C .2-D .2 88.导数)'(log x a等于( )A .a x ln 1B .a x ln 1 C .x x a log 1 D .x 1 89.若),1()2(249102+-++=x x x x y 则)29(y =( )A .30B .29!C .0D .30×20×10 90.设',)(',)()(y x f e e f y x f x 则存在且==( )A .)()()()('x f x x f x e e f e e f +B .)(')(')(x f e e f x f x ⋅C .)(')()(')()(x f e e f e e f x f x x f x x ⋅++D .)()('x f x e e f91.设=---=)0('),100()2)(1()(f x x x x x f 则 ( )A .100B .100!C .!100-D .100- 92.若==',y x y x 则( )A .1-⋅x x x B .x xxln C .不可导 D .)ln 1(x x x +93.处的导数是在点22)(=-=x x x f ( )A .1B .0C .1-D .不存在 94.设==-',)2(y x y x 则( )A .)1()2(x x x +--B .2ln )2(x x -C .)2ln 21()2(x x x+- D .)2ln 1()2(x x x +--95.设函数)(x f 在区间],[b a 上连续,且,0)()(<b f a f 则 ( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,=ξξf 使C .)(x f 在),(b a 内至少存在一个0)(,=ξξf 使D .)(x f 在),(b a 内存在唯一的0)(',=ξξf 使96.设,)()(x g x f y =则=dx dy ( ) A .])()(')()('[2x g x g x f x f y - B .])(1)(1[2x g x f y - C .)()('21x g x f y ⋅ D .)()('2x g x f y ⋅97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是( )A .若在)b a,(内0)('>x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('<x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('≥x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(y x f =在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为( )A .)('0x f B .)(0x f C .0 D .199.设函数)(yx f =为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为( ) A .211k k =B .121-=⋅k k C .121=⋅k k D .021=⋅k k100.设0x 为函数)(x f 在区间()b a ,上的一个极小值点,则对于区间()b a ,上的任何点x ,下列说法正确的是( )A .)()(0x f x f >B .)()(0x f x f <C .)()(0x f x f -> D .)()(0x f x f -<101.设函数)(x f 在点0x 的一个邻域内可导且0)('0=x f (或)('0x f 不存在),下列说法不正确的是( )A .若0x x <时, 0)('>x f ;而0x x >时, 0)('<x f ,那么函数)(x f 在0x 处取得极大值B .若0x x <时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极小值C .若0x x<时, 0)('<x f ;而0x x >时, 0)('>x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时, )('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0=x f ,0)(''0≠x f ,若0)(''0>x f ,则函数)(x f 在0x 处取得( )A .极大值B .极小值C .极值点D .驻点 103.b x a <<时,恒有0)(>''x f ,则曲线)(x f y =在()b a ,内( )A .单调增加B .单调减少C .上凹D .下凹 104.数()e x f x x =-的单调区间是( ) .A .在),(+∞-∞上单增B .在),(+∞-∞上单减C .在(,0)-∞上单增,在(0,)+∞上单减D .在(,0)-∞上单减,在(0,)+∞上单增 105.数43()2f x x x =-的极值为( ).A .有极小值为(3)fB .有极小值为(0)fC .有极大值为(1)fD .有极大值为(1)f -106.x e y =在点(0,1)处的切线方程为( )A .x y +=1 B .x y +-=1 C .x y -=1 D .x y --=1107.函数x x x x x f 处的切线与的图形在点)1,0(162131)(23+++=轴交点的坐标是( ) A .)0,61(- B .)0,1(- C .)0,61( D .)0,1(108.抛物线xy =在横坐标4=x的切线方程为 ( )A .044=+-y xB .044=++y xC .0184=+-y xD .0184=-+y x109.线)0,1()1(2在-=x y 点处的切线方程是( )A .1+-=x y B .1--=x y C .1+=x y D .1-=x y 110.曲线)(x f y =在点x 处的切线斜率为,21)('x x f -=且过点(1,1),则该曲线的方程是( ) A .12++-=x x y B .12-+-=x x y C .12++=x x y D .12-+=x x y111.线22)121(++=x e y x 上的横坐标的点0=x 处的切线与法线方程( )A .063023=-+=+-y x y x 与B .063023=--=++-y x y x 与C .063023=++=--y x y x 与D .063023=+-=++y x y x 与112.函数处在点则0)(,)(3==x x f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0=x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0=x 处的导数,0)0('=f 则0=x 称为)(x f 的( )A .极大值点B .极小值点C .极值点D .驻点 115.曲线)1ln()(2+=x x f 的拐点是( )A .)1ln ,1(与)1ln ,1(-B .)2ln ,1(与)2ln ,1(-C .)1,2(ln 与)1,2(ln -D .)2ln ,1(-与)2ln ,1(-- 116.线弧向上凹与向下凹的分界点是曲线的( )A .驻点B .极值点C .切线不存在的点D .拐点 117.数)(x f y =在区间[a,b]上连续,则该函数在区间[a,b]上( )A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值 118.下列结论正确的有( )A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程y x e xy+=确定的隐函数)(x y y ==dxdy( ) A .)1()1(x y y x -- B .)1()1(y x x y -- C .)1()1(-+y x x y D .)1()1(-+x y y x120.=+=x y y xe y ',1则( )A .yy xe e -1 B .1-yy xe e C .yyxe e -+11 D .y e x )1(+121.设x x g e x f x sin )(,)(==,则=)]('[x g f ( )A .xe sin B .xecos - C .xecos D .xesin -122.设x x g e x f x cos )(,)(-==,则=)]('[x g fA .xe sin B .xecos - C .xecos D .xesin -123.设)(),(x t t f y φ==都可微,则=dyA .dt t f )(' B .)('x φdx C .)('t f )('x φdt D .)('t f dx124.设,2sin xey =则=dy ( )A .x d e x 2sinB .x d e x 2sin sin 2C .xxd e x sin 2sin 2sin D .x d e x sin 2sin125.若函数)(x f y =有dy x x x x f 处的微分该函数在时则当00,0,21)('=→∆=是( ) A .与x ∆等价的无穷小量 B .与x ∆同阶的无穷小量 C .比x ∆低阶的无穷小量 D .比x ∆高阶的无穷小量126.给微分式21xxdx -,下面凑微分正确的是( )A .221)1(xx d ---B .221)1(xx d -- C .2212)1(xx d ---D .2212)1(xx d --127.下面等式正确的有( ) A .)(sin sin x x x xe d e dx e e= B .)(1x d dx x=-C .)(222x d e dx xe x x -=-- D .)(cos sin cos cos x d e xdx e x x =128.设)(sin x f y =,则=dy ( )A .dx x f )(sin ' B .x x f cos )(sin ' C .xdx x f cos )(sin ' D .xdx x f cos )(sin '-129.设,2sin x e y =则=dyA .xd e x 2sin B .x d ex2sinsin 2C .x xd e xsin 2sin 2sinD .x d e x sin 2sin三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .0)('=x f B .)()(F'x f x = C .0)(F'=x D .0)(=x f131.若函数)(F x 和函数)(x Φ都是函数)(x f 在区间I 上的原函数,则有( )A .I x x x ∈∀=Φ),(F )('B .I x x x ∈∀Φ=),()(FC .I x x x ∈∀Φ=),()(F' D .I x C x x ∈∀=Φ-,)()(F132.有理函数不定积分2d 1x x x⎰+等于( ).A .2ln 12x x x C ++++B .2ln 12x x x C --++ C .2ln 12x x x C -+++ D .2ln 122x xx C -+++ 133.不定积分x 等于( ).A .2arcsin x C +B .2arccos xC + C .2arctan x C +D .2cot arc x C +134.不定积分2e e (1)d xxx x-⎰-等于( ).A .1exC x -++ B .1e x C x -+ C .1e x C x ++ D .1e xC x--+135.函数x e x f 2)(=的原函数是( )A .4212+x eB .x e 22C .3312+x eD .x e 231 136.⎰xdx 2sin 等于( )A .c x +2sin 21 B .c x +2sin C .c x +-2cos2 D .c x +2cos 21137.若⎰⎰-=xdx x x dx x xf sin sin )(,则)(x f 等于( )A .x sinB .x x sin C .x cos D .xxcos 138. 设x e -是)(x f 的一个原函数,则⎰=dx x xf )('( )A .c x e x+--)1( B .c x e x ++--)1( C .c x e x +--)1( D . c x e x ++-)1(139.设,)(x e x f -= 则⎰=dx xx f )(ln ' ( ) A .c x +-1 B .c x+1C .c x +-lnD .c x +ln140.设)(x f 是可导函数,则()')(⎰dx x f 为( )A .)(x f B .c x f +)( C .)('x f D .c x f +)('141. 以下各题计算结果正确的是( )A .⎰=+x x dxarctan 12B .c xdx x +=⎰21 C .⎰+-=c x xdx cos sin D .⎰+=c x xdx 2sec tan142. 在积分曲线族⎰dx x x中,过点(0,1)的积分曲线方程为( )A .12+x B .1)(525+x C .x 2 D .1)(255+x143.⎰dx x 31=( )A .c x +--43 B .c x+-221 C . c x +-221 D . c x +-221 144.设)(x f 有原函数x x ln ,则⎰dx x xf )(=( )A .c x x++)ln 4121(2B .c x x ++)ln 2141(2C .c x x +-)ln 2141(2D .c x x +-)ln 4121(2 145.⎰=xdx x cos sin ( )A .c x +-2cos 41 B .c x +2cos 41 C .c x +-2sin 21 D .c x +2cos 21146.积分=+⎰dx x ]'11[2( ) A .211x + B .c x++211 C .x tan arg D .c x +arctan 147.下列等式计算正确的是( )A .⎰+-=c x xdx cos sinB .c x dx x +=---⎰43)4( C .c x dx x +=⎰32 D .c dx x x +=⎰22 148.极限⎰⎰→xxx xdxtdt000sin lim的值为( )A .1-B .0C .2D .1149.极限⎰⎰→x xx dx x tdt 0202sin lim的值为( )A .1-B .0C .2D .1150.极限4030sin limx dt t xx ⎰→=( )A .41 B .31 C .21D .1 151.=⎰+2ln 01x t dt e dxd( )A .)1(2+xe B .ex C .ex 2 D .12+xe152.若⎰=xtdt dx d x f 0sin )(,则()A .x x f sin )(=B .x x f cos 1)(+-=C .c x x f +=sin )( D .x x f sin 1)(-=153.函数()⎰+-=xdt t t tx 0213φ在区间]10[,上的最小值为( )A .21 B .31C .41D .0 154.若()⎰+==xtxc dt t e x f e x x g 02122213)(,)(,且23)(')('lim=+∞→x g x f x 则必有( )A .0=cB .1=cC .1-=cD .2=c 155.⎰=+xdt t dx d14)1(( )A .21x + B .41x + C .2121x x+ D .x x+121 156.=⎰]sin [02dt t dx d x( ) A .2cos x B .2cos 2x x C .2sin x D .2cos t157.设函数⎪⎪⎩⎪⎪⎨⎧=≠=⎰00sin )(20x ax x tdt x f x在0=x 点处连续,则a 等于( )A .2B .21C .1D .2- 158.设)(x f 在区间],[b a 连续, ),()()(b x a dt t f x F xa≤≤=⎰则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f ax x x F xa ⎰-=)(lim x F a x →=( ) A .2a B .)(2a f a C . 0 D .不存在160.函数x2sin 1的原函数是( )A .c x +tanB .c x +cotC .c x +-cotD . xsin 1-161.函数)(x f 在[a,b]上连续, ⎰=xadt t f x )()(ϕ,则( )A .)(x ϕ是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x ϕ的一个原函数C .)(x ϕ是)(x f 在[a,b]上唯一的原函数 D . )(x f 是)(x ϕ在[a,b]上唯一的原函数162.广义积分=⎰+∞-0dx e x ( )A .0B .2C .1D .发散 163.=+⎰dx x π2cos 1( )A .0B . 2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x -=⎰( )A .)(x FB .)(x F -C . 0D . 2)(x F165.下列广义积分收敛的是( )A .⎰+∞1xdx B .⎰+∞1xxdx C .dx x ⎰+∞1D .⎰+∞132xdx166.下列广义积分收敛的是( )A .⎰+∞13x dx B .⎰+∞1cos xdx C .dx x ⎰+∞1ln D .⎰+∞1dx e x167.⎰+∞->apxp dx e )0(等于( ) A .pae- B .pae a-1 C .pa e p -1 D .)1(1pa e p --168.=⎰∞+ex x dx2)(ln ( )A .1B .e1C .eD .∞+(发散) 169.积分dx e kx-+∞⎰收敛的条件为( )A .0>kB .0<kC .0≥kD .0≤k170.下列无穷限积分中,积分收敛的有( ) A .⎰∞-0dx e x B .⎰+∞1xdxC .⎰∞--0dx e xD .⎰∞-0cos xdx171.广义积分⎰∞+edx xxln 为( ) A .1 B .发散 C .21D .2 172.下列广义积分为收敛的是( ) A .⎰+∞edx x xln B .⎰+∞e xx dx lnC .⎰∞+edx x x 2)(ln 1D .⎰+∞edx x x 21)(ln 1173.下列积分中不是广义积分的是( ) A .⎰+∞+0)1ln(dx x B .⎰-42211dx x C .⎰11-21dx x D .⎰+03-11dx x174.函数()f x 在闭区间[a,b]上连续是定积分⎰badx x f )(在区间[a,b]上可积的( ). A .必要条件 B .充分条件C .充分必要条件D .既非充分又飞必要条件 175.定积分121sin 1xdx x -+⎰等于( ). A .0 B .1 C .2 D .1- 176.定积分⎰-122d ||x x x 等于( ). A .0 B . 1 C .174 D .174- 177.定积分x x x d e )15(405⎰+等于( ). A .0 B .5e C .5-e D .52e178.设)(x f 连续函数,则=⎰22)(dx x xf ( )A .⎰40)(21dx x f B .⎰2)(21dx x f C .⎰40)(2dx x f D .⎰4)(dx x f179.积分⎰--=-11sin 2xdx x e e xx ()A .0B .1C .2D .3 180.设)(x f 是以T 为周期的连续函数,则定积分⎰+=Tl ldx x f I )(的值( )A .与l 有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关 181.设)(x f 连续函数,则=⎰2)(dx xx f ( ) A .⎰+210)(21dx x f B .⎰+210)(2dx x f C .⎰2)(dx x f D .⎰2)(2dx x f182.设)(x f 为连续函数,则⎰1)2('dx x f 等于( )A .)0()2(f f - B .[])0()1(21f f - C .[])0()2(21f f - D .)0()1(f f - 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分⎰b adx x f )(的值必定( )A .大于零B .大于等于零C .小于零D .不等于零 184.下列定积分中,积分结果正确的有( ) A .c x f dx x f ba+=⎰)()(' B .)()()('a f b f dx x f ba+=⎰C .)]2()2([21)2('a f b f dx x f ba-=⎰D .)2()2()2('a f b f dx x f b a -=⎰185.以下定积分结果正确的是( ) A .2111=⎰-dx x B .21112=⎰-dx x C .211=⎰-dx D .211=⎰-xdx 186.⎰=adx x 0)'(arccos ( )A .211x-- B .c x+--211 C .c a +-2arccos πD .0arccos arccos -a187.下列等式成立的有( ) A .0sin 11=⎰-xdx x B .011=⎰-dx e xC .a b xdx abtan tan ]'tan [-=⎰D .xdx xdx d xsin sin 0=⎰188.比较两个定积分的大小( ) A .⎰⎰<213212dx x dx x B .⎰⎰≤213212dx x dx xC .⎰⎰>213212dx x dx x D .⎰⎰≥213212dx x dx x189.定积分⎰-+22221sin dx x xx 等于( ) A .1 B .-1 C .2 D .0 190.⎰=11-x dx ( )A .2B .2-C .1D .1- 191.下列定积分中,其值为零的是( ) A .⎰22-sin xdx x B .⎰2cos xdx xC .⎰+22-)(dx x e x D .⎰+22-)sin (dx x x192.积分⎰-=21dx x ( )A .0B .21 C .23 D .25 193.下列积分中,值最大的是( ) A .⎰12dx x B .⎰13dx x C .⎰14dx x D .⎰15dx x194.曲线x y -=42与y 轴所围部分的面积为()A .[]⎰--2224dy y B .[]⎰-224dy y C .⎰-44dx x D .⎰--444dx x195.曲线x e y =与该曲线过原点的切线及y 轴所围形的为面积( )A .()⎰-exxdx xe e1 B .()⎰-1ln ln dy y y yC .()⎰-1dx ex exD .()⎰-edy y y y 1ln ln196.曲线2x y x y ==与所围成平面图形的面积( )A .31B .31- C .1 D .-1四、常微分方程 197.函数y c x =-(其中c 为任意常数)是微分方程1x y y '+-=的( ). A .通解 B .特解 C .是解,但不是通解,也不是特解 D .不是解 198.函数23x y e =是微分方程40y y ''-=的( ).A .通解B .特解C .是解,但不是通解,也不是特解D .不是解 199.2()sin y y x y x '''++=是( ).A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程 200.下列函数中是方程0y y '''+=的通解的是( ). A .12sin cos y C x C x =+ B .x y Ce -=C .y C =D .12x y C e C -=+专升本高等数学综合练习题参考答案1.B 2.C 3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x -≥且20x -≥,解得24x ≤≤,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x x x f x -=---=-+=-,所以3()23sin f x x x =-是奇函数.6.解:令t x-=1,则t t t t t f 21212211)(--=---+=,所以xxx f 212)(--= ,故选D7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:110≤+≤x ,所以01≤≤-x ,故选B 12. 解:选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:)(x f 的定义域为)4,1[-,选D17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数)1,0(log ≠>==a a x y a y a x 与互为反函数,故它们的图形关于直线x y =轴对称,选C 21.A 22.D23.解:这是00型未定式ln 1l 1limlim x e x e x x e x e →→-==-,故选B . 24.解:这是∞∞型未定式22csc ln cot sin cot lim lim lim lim 11ln sin cos sin cos x x x x xx x x x x x x x x xx→→→→-==-⋅=-=-++++0000 故选D .25.解:因为2sin lim20=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,2sin lim 20=→x x ax x 所以2=a ,故选A 26.解:b b b b b a b b n n n n n n n nn ==+≤+≤=2选B27.解:选D28.解:因为∞→x lim2121lim 21sin==∞→x x x x x ,故选B29.解:nmnx mx nx mx x x ==→→00lim sin sin lim 故选A30.解:因为1tan lim230=+→x x b ax x 所以0)(lim 2=+→b ax x ,得0=b ,1tan lim 230=→x x ax x ,所以1=a ,故选B 31.解:1cos 1cos 1lim cos cos lim=+-=+-∞→∞→xxx x x x x x x x ,选A32.解:因为01lim )(lim 0=-=++→→)(xx x e x f ,11sin lim )(lim 00=+=--→→)(x x f x x 所以)(limx f x →不存在,故选D33.解:41414010])41(lim [)41(lim e xx x x x x =+=+→→,选D34.解:极限0sin lim cotx lnx - lim )1(lim 200tan 0===+++→→→xxx x x x x ,选C 35.解:110sin 11sinlim 0-=-=⎪⎭⎫⎝⎛-→x x x x x ,选A 36.解:kkx x kx x x x 11lim 1sinlim ==∞→∞→选B 37.解:1sin lim 2=-→x x π,选B 38.解:选A 39. 解:选D40.解:06lim21=++→ax x x ,7-=a ,选B41.解:2),2(lim tan lim 00=+=-+→→a x xaxx x ,选C 42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C43.解:因为22lim )2sin(lim2020=+=+→→xx x x x x x x ,故选C 44.解:因为11ln(lim0=+→xx x ),故选B45.解:因为33lim )3tan(lim2020=+=+→→xx x x x x x x ,故选C 46.解:因为21)1(21lim1)1(21lim11=++=-+-→→x x xx xx x ,故选C47.解:因为021lim 11lim 00==-+++→→xxx x ax ax ,所以1>a ,故选A48.解:因为02tan lim 20=→x xx ,故选D49.解:由书中定理知选C 50.解:因为01cos 1lim=∞→xx x ,故选C51.解:因为6ln 13ln 32ln 2lim 232lim00=+=-+→→x x x x x x x ,选B 52.解:选A 53.解:1sin )cos 1(2lim20=-→xx x ,选C54.解:因为1)(lim =+∞→x f x ,选A55.解:选A 56.解:0sec 1sin lim0=+→xxx ,选C57.解:选C58.解:,11sinlim20=+→xx x x x 选D59.解:根据连续的定义知选B 60.C 61.解:选A 62.解:选A 63.解:)0(2)(lim 0f x f x ≠=+→π, )0(2)(lim 0f x f x =-=-→π,选B64.解:选A65.解:因为21)1)(1(lim 11lim 21=-+-=--++→→x x x x x x x ,21)1)(1(lim 11lim 21-=-+--=----→→x x x x x x x ,选A66.解:因为)0(1)(lim 0f x f x ==+→,又)0(1)(lim 0f x f x ==-→,所以)(x f 在0=x 点连续,但111lim )0()(lim )0('00=-+=-=--→→-xx x f x f f x x ,011lim )0()(lim )0('200=-+=-=++→→+xx x f x f f x x 所以)(x f 在0=x 点不可导,选C67.解:选C68.解:因为)0(1)(lim 0f x f x ≠=+→,又)0(1)(lim 0f x f x ≠=-→,所以)(x f 在0=x 点不连续,从而在0=x 处不可导,但当0→x 时,极限存在,选B69.解:选B 70.解:313lim)(-=-=∞→nxnxx f x ,选A71.解:)0(2111limf x x x ≠=-+→,选A72.解:选C 73.解:因为0)11cot(lim )(lim211=-+=++→→x arc x x f x x , π=-+=--→→)11cot(lim )(lim 211x arc x x f x x 故选B74.解:选D 75.解:因为2lim ,lim-=∞=∞→→y y x x ,曲线既有水平渐近线2-=y ,又有垂直渐近线0=x ,选C76.解:因为11sinlim =+∞→xx x ,所以有水平渐近线1=y ,但无铅直渐近线,选A 77.D 78.C 解:e cos e sin x x y x x '=-,(0)101y '=-=.选C .79.C 解:x x g cos )('=,所以x e x g f cos )]('[=,故选C .80.解:=--→h x f h x f h )()21(lim 000 1)('21)21(21)()21(lim0000-=-=----→x f h x f h x f h ,选C 81.解:)('2])()()()([lim )()(lim 00a f xa f x a f x a f x a f x x a f x a f x x =---+-+=--+→→,选B82.解:因为=--+→h h f h f h )2()2(lim 0 +-+→h f h f h )2()2([lim 0 ])2()2(hf h f ---=)2('2f ,故选A83.解:)0('f 6)3)(2)(1(lim )0()(lim 00-=---=-=→→x x x x x x f x f x x ,故选B84.解:因为=--→h h f h f h )()(lim 0 +-→h f h f h )0()([lim 0 ])0()(hf h f ---=)0('2f ,故选C85.解:因为0lim→h )(')()h - x (000x f hx f f -=-,故选B86.解:因为=--→h f h f h )1()21(lim 021)1('222)1()21(lim 0=-=----→f h f h f h )( ,故选D87.解:222242)('',2)('xx x e x e x f xe x f ---+-=-=,2)0(''-=f 选C88.解:选B 89.解:01282829.....a x a x a x y ++++=,所以!29)29(=y ,选B90.解:)(')()('')()(x f e e f e e f y x f x x f x x ⋅+=+,选C91.解:!100)100()2)(1(lim )0()(lim)0('00=---=-=→→xx x x x x f x f f x x ,选B 92.解:)'('ln x x e y =)ln 1(x x x +=,选D。

专升本高数真题答案及解析

专升本高数真题答案及解析

专升本高数真题答案及解析随着社会竞争的日益激烈,越来越多的人开始选择专升本的途径来提升自己的学历和能力。

其中,高等数学作为专升本考试的重要科目之一,对于许多考生来说是一个难题。

为了帮助考生更好地准备高数的考试,下面我们将介绍一些专升本高数真题的答案及解析。

一、选择题部分:1. 如表达式 (x^2-1)/(x-1),在x=1时的取值:答案:无定义解析:由于分母为x-1,当x=1时,分母为零,造成整个表达式的取值无定义。

2. 函数 f(x) = |x-3| 的定义域是:答案:x≥3或x≤3解析:绝对值函数的定义域可以根据函数图像在x轴上的取值范围来确定。

对于f(x) = |x-3|,其图像在x=3处取得最小值0,向两边无限延伸,所以定义域为x≥3或x≤3。

3. 设函数 f(x) = 2^x ,则 f(2x) = ?答案:2^2x = 4^x解析:根据指数函数的性质,对于 f(2x),相当于在原函数的自变量上乘以2,所以 f(2x) = 2^(2x) = 4^x。

二、填空题部分:1. 关于异或运算,以下哪个命题是正确的:(1分)答案:B解析:异或运算满足交换律,即 A^B = B^A。

2. 设函数 f(x) 满足 f'(x) = 2x^3+3x^2-4 ,则 f(x) =______ 。

答案:1/2x^4 + x^3 - 4x + C (C为常数)解析:根据导函数与原函数的关系,可以得到 f(x) 的形式,再通过求导积分即可得出答案。

三、解答题部分:1. 求函数 f(x) = 2x^3 + 3x^2 + 4x + 5 在区间 [-1,1] 上的极值点。

答案:极小值点为 (-1, 2) ,极大值点为 (1, 14)。

解析:通过求导,将导函数等于零求出的x值代入原函数,得到对应的y值,即为极值点。

2. 已知函数 f(x) = (x-2)^2 - 4x + 3 ,判断 f(x) 的类型并求出其顶点坐标。

广东省专升本高数练习题

广东省专升本高数练习题

广东省专升本高数练习题### 广东省专升本高数练习题#### 一、选择题1. 函数 $y = \sin(x)$ 的导数是:A. $\cos(x)$B. $-\sin(x)$C. $\tan(x)$D. $\cot(x)$2. 极限 $\lim_{x \to 0} \frac{\sin(x)}{x}$ 的值是:A. 0B. 1C. $\infty$D. 不存在3. 以下哪个函数是奇函数?A. $f(x) = x^2$B. $f(x) = x^3$C. $f(x) = x^4$D. $f(x) = \sqrt{x}$#### 二、填空题1. 计算定积分 $\int_{0}^{1} x^2 dx$ 的结果为 ________。

2. 函数 $y = e^x$ 的反导数是 ________。

3. 函数 $y = \ln(x)$ 的导数是 ________。

#### 三、解答题1. 求极限 $\lim_{x \to \infty} \left(1 +\frac{1}{x}\right)^x$。

解:根据指数函数的性质,我们可以将极限转化为自然对数的底数$e$ 的定义形式。

即:$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$2. 求函数 $y = x^3 - 3x^2 + 2$ 的极值点。

解:首先求导数 $y' = 3x^2 - 6x$,令导数等于0,解得 $x =0$ 或 $x = 2$。

然后计算二阶导数 $y'' = 6x - 6$,代入 $x =0$ 得到 $y''(0) = -6 < 0$,说明 $x = 0$ 处为极大值点;代入 $x = 2$ 得到 $y''(2) = 6 > 0$,说明 $x = 2$ 处为极小值点。

3. 计算定积分 $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$。

广东省2022年专升本《高等数学》真题解析精选全文完整版

广东省2022年专升本《高等数学》真题解析精选全文完整版

广东省2022年普通高等学校专升本招生考试高等数学本试卷共20小题,满分100分。

考试时间120分钟。

一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一项符合题目要求)1.若函数1,1(),1x x f x a x +≠⎧=⎨=⎩,1x =在处连续,则常数a =( )A.-1B.0C.1D.22.1lim(13)xx x →-=()A.3e - B.13e-C.1D.3e 3.1lim 0n n x n u u ∞→==∑是级数收敛的( )A.充分条件B.必要条件1C.充要条件D.即非充也非公必要条件得分阅卷人4.2+1()()1f x f x dx x∞=⎰已知是函数的一个原函数,则( )A.2B.1C.-1D.-25.xf (x 2+y 2)dy 化为极坐标形成的二次积分,则 I =()110I dx =⎰⎰将二次积分 A.2sec ()400d f p dp πθθ⎰⎰ B.2c ()40cs d pf p dp πθθ⎰⎰B.2sec 2()04d f p dp πθθπ⎰⎰ D.2csc 2()04d pf p dp πθθπ⎰⎰二、填空题(本大题共5小题,每小题3分,共15分)6.若0→x 时,无穷小量x 2与x x m 32+等价,则常数m =7.2225,log t x t t dy dx y t=⎧=-=⎨=⎩设则8.椭圆13422=+y x 所围成的图形绕x 轴旋转一周而成的旋转体体积为9.微分方程2'=-y ex的通解是10.ln (,)(,)ye e Z xe e dz==函数在点处的全微分得分阅卷人三、计算题(本大题共8小题,每小题6分,共48分)12.2212=tan ,x d yy arc x dx=设求13.设函数21sin ,00,0x x x x ⎧≠⎪⎨⎪=⎩,利用导数定义(0)f '.14.求不定积分2.得分阅卷人15.已知tan ln cos xdx x C=-+⎰,求定积分24sec x xdx π⎰.16.2(,)2z z z Z f x y Z x y e y x y∂∂==--∂∂设是由方程所确定的隐函数,计算.17.cos ,sin (0)0,2Dxd D y x x y πσ=≤≤=⎰⎰计算二重积分其中是曲线和曲线2x π=围成的有界闭区域。

天津高数专升本试题及答案

天津高数专升本试题及答案

天津高数专升本试题及答案一、选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3在区间[1,3]上的最大值是()。

A. 0B. 2C. 3D. 42. 若函数f(x)在点x=a处可导,则f(x)在该点的导数为()。

A. f(a)B. f'(a)C. f'(x)D. f(x)3. 曲线y=x^3-6x^2+9x在点(2,1)处的切线斜率为()。

A. -3B. 0C. 3D. 64. 已知函数f(x)=sin(x)+cos(x),则f'(x)为()。

A. cos(x)-sin(x)B. sin(x)-cos(x)C. cos(x)+sin(x)D. -sin(x)-cos(x)5. 若f(x)=ln(x),g(x)=x^2,则f(g(x))=()。

A. ln(x^2)B. 2ln(x)C. ln(2)D. 2x二、填空题(每题2分,共10分)6. 函数f(x)=x^3-3x^2+2x在x=______处取得极小值。

7. 若f(x)=x^2+2x+1,则f'(x)=______。

8. 曲线y=x^2与直线y=4的交点坐标为(______,4)。

9. 若f(x)=x^3-6x^2+11x-6,则f'(x)=______。

10. 函数f(x)=e^x的反函数为f^-1(x)=______。

三、计算题(每题10分,共20分)11. 求函数f(x)=2x^3-9x^2+6x-1在区间[-1,3]上的最大值和最小值。

12. 求曲线y=x^3-3x^2+2x在点(1,0)处的切线方程。

四、证明题(每题15分,共30分)13. 证明:若函数f(x)在区间(a,b)上连续,且f(a)f(b)<0,则至少存在一点c∈(a,b),使得f(c)=0。

14. 证明:若函数f(x)在区间[a,b]上可导,且f'(x)≥0,则f(x)在区间[a,b]上单调递增。

五、解答题(每题25分,共50分)15. 解决实际问题:某工厂生产一种产品,其成本函数为C(x)=50x+100,其中x为生产数量。

2020年河南省普通专升本高等数学真题及答案

2020年河南省普通专升本高等数学真题及答案

2020年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试高等数学试卷一、单项选择题(每小题2分,共60分)在每个小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需更改,用橡皮擦干净后,再选涂其他答案标号.1.当0→x 时,x x 632-是x 的()A .高阶无穷小B .低阶无穷小C .同阶非等价无穷小D .等价无穷小2.)(x f 是R 上的奇函数,则⎪⎭⎫ ⎝⎛-++x x x f 21ln )(sin 在R 上是()A .奇函数B .偶函数C .非奇非偶函数D .无法判断3.极限=⎪⎭⎫⎝⎛-∞→xx x 411lim ()A .4e B .4-e C .0D .14.设12)1(+=+x x f ,则=--)5(1x f ()A .92-x B .112-x C .32-xD .22-x 5.设函数⎪⎪⎩⎪⎪⎨⎧>-=<--=1,11,21,1)1(2sin )(2x x x x x x x f ,则=→)(lim 1x f x ()A .0B .1C .2D .不存在6.函数xx y -++=31)1ln(的定义域为()A .[]3,1-B .)3,1(-C .)3,1[-D .]3,1(-7.极限=--→xe x xx ln lim 11()A .0B .1C .2D .38.设极限6)()()(lim 3=--→a x a f x f ax ,在a x =处()A .)(lim x f ax →存在,0)(≠'a f B .不可导C .)(x f 有极大值D .无极值9.极限=+--∞→844lim2x x x x ()A .1-B .0C .1D .∞10.设21)2(='f ,则极限=+-+→)1ln()2()22(lim0h f h f h ()A .21B .1C .21-D .1-11.下列式子成立的是()A .⎪⎭⎫ ⎝⎛+=a x ad adx 2B .22221dx e dx xe x x=C .x d dx x =D .⎪⎭⎫⎝⎛=x d xdx 1ln 12.设函数)(x f 满足1)(=-xdex df ,则='')(x f ()A .x xe --B .x e --C .xxe D .x e -13.x x y 33⋅=在0x 处取得极小值,则=0x ()A .3ln 1-B .3ln -C .3ln 1D .3ln 14.设函数x x y ln =在0M 的切线平行于12+=x y ,则0M 的坐标为()A .)0,1(B .)0,(e C .)1,(e D .),(e e15.函数)(x y y =是由方程1332=+-x xy y 所确定的隐函数,则='y ()A .xy y x 32332--B .xy x y 32332--C .yx x y 33322--D .yx x y 33322--16.函数xx x x f sin )1()(2-=有________个间断点.()A .0B .1C .2D .无数17.若不定积分C xdx x f +=⎰1)(,则=')(x f ()A .x ln B .x 1C .21x -D .32x 18.⎰=-dx x )21sin(()A .C x +-)21cos(B .C x +--)21cos(C .Cx +-)21cos(21D .C x +--)21cos(2119.已知dt e x f xt ⎰+=2)1()(连续,则当2≥n 时,=)(x f n ()A .xe 2B .x n e 22C .xn e 212-D .xn e 212+20.曲线x y 2=,x y =以及1=x 围成的平面图形绕x 轴旋转的旋转体体积为()A .π517B .πC .π1D .π17521.下列广义积分收敛的是()A .dx x x ⎰+∞+021B .dxx ⎰+∞1sin C .dx xe⎰+∞1D .dx x ⎰+∞-424122.两平面013=++-z y x 和022=++y x 的位置关系是()A .垂直B .斜交C .平行不重合D .重合23.曲面方程022=++z y x 表示的是()A .椭圆面B .圆锥面C .旋转抛物面D .柱面24.已知)sin(2xy z =,则=∂∂22xz()A .)cos(24xy yB .)cos(24xy y -C .)sin(24xy y D .)sin(24xy y -25.已知x ye z -=在点)1,0(-沿方向l 上取得最大方向导数,则l 可取()A .j i --B .j i +C .ji +-D .ji -26.设函数)(x y y =由参数方程⎩⎨⎧+=-=tet y t t x sin cos 所确定,则==0t dx dy()A .0B .1C .1-D .2-27.下列级数收敛的是()A .∑∞=11n ne B .nn ∑∞=⎪⎭⎫⎝⎛123C .∑∞=⎪⎭⎫ ⎝⎛-13132n n n D .∑∞=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛1132n n n 28.L 是正向圆周622=+y x ,则=++-⎰dy x x dx y y xL)4()23(32()A .π6B .π6-C .π36D .π36-29.级数∑∞=0!n nn kx 在0>k 时的收敛区间为()A .)1,1(-B .⎪⎭⎫ ⎝⎛-k k 1,1C .),(k k -D .),(+∞-∞30.用待定系数法求x e y y y x sin 862=+'-''时,*y 应设为()A .xCe 2B .)cos sin (212x C x C e x +C .)cos sin (212x C x C xe x +D .)cos sin (2122x C x C e x x +二、填空题(每小题2分,共20分)31.已知x x f arctan )1(=+,[]2)(-=x x g f ,则=+)2(x g ________.32.已知⎪⎩⎪⎨⎧≤+>+=0,cos 50,)(2sin )(2x x e x x x a xx f x 在0=x 处连续,则=a ________.33.dt t x f x ⎰+=2)3ln()(的单调递增区间为________.34.已知)(lim 2x f x →极限存在且)(lim 3)(23x f x x x f x →+=,则=')(x f ________.35.定积分22-=⎰________.36.⎰+=C x F dx x f )()(,则⎰=xdx x f cos )(sin ________.37.设平面区域{}10,0),(≤≤≤≤=x x y y x D ,则⎰⎰=Dxdxdy ________.38.2ln()z x y =+的全微分dz =________.39.已知0>x ,则∑∞=-0)!2()1(n nn n x 的和函数=)(x S ________.40.微分方程0=+'+''y y y 的通解为________.三、计算题(每小题5分,共50分)41.求极限23)1(1321211lim -∞→⎪⎪⎭⎫⎝⎛+++⨯+⨯n n n n .42.求函数x x y ln =的导数.43.求不定积分⎰+dx x x )12(1.44.求函数5683)(234++-=x x x x f 的凹凸区间和拐点.45.已知)1ln(1111sin)(x e x x x f x +--+=,求)(x f 的渐近线(不考虑斜渐近线).46.计算定积分dx x ⎰+4023cos 1π.47.已知{}0,4,4=a ,{}8,2,3=b ,{}6,0,1=c ,求c b a ⋅⨯)(.48.已知函数),(y x z z =由123232=+++z xyz y x 确定,求x z ∂∂,yz∂∂(其中026≠+xyz ).49.计算二重积分⎰⎰Dydxdy ,其中D 为122=+y x 与坐标轴围成的的第一象限部分.50.求函数25241)(2-+=x x x F 关于x 的展开式.四、应用题(每小题7分,共14分)51.某文物于1972年8月发掘出土,经研究测算该文物出土时C 14(放射性同位素碳-14)标本存量为初始量0R 的7761.0倍.已知C 14的衰变速度与它的现存量成正比,且它的半衰变期(由初始量0R 衰变至2R 所需要的时间)为5730年.(1)试求C 14的现存量与时间t (年)的函数关系(其中涉及的对数不必写出具体数值).(2)计算该文物至1972年8月大约经历了多少年,能否认为该文物为西汉时期(公元前202年~公元前8年)的作品,并说明理由(计算结果取整数:6931.02ln ≈,2535.07761.0ln -≈).52.21x y -=与x 轴交A 、B 两点,在它们所围成的平面区域内,以AB 为下底作内接等腰梯形ABCD ,问C 坐标为多少时,梯形ABCD 面积最大?五、证明题(6分)53.函数()f x 在]1,0[上连续,在)1,0(内可导,0)0(=f ,af +=11)1(,证明:在)1,0(内存在两个不同的实数1ξ,2ξ,使得aaf f 2121)()(ξξξξ+='+'.2020年河南省高等数学试题解析一、单项选择题1.【答案】C 【解析】由于06)63(lim 63lim020≠-=-=-→→x xxx x x ,故x x 632-是x 的同阶非等价无穷小,故应选C .2.【答案】A【解析】令)(sin )(x f x g =,则[])()(sin )(sin )(sin )(x g x f x f x f x g -=-=-=-=-,故)(sin )(x f x g =是奇函数,又由于⎪⎭⎫ ⎝⎛-+x x 21ln 是奇函数,根据四则运算,奇函数+奇函数=奇函数,故应选A .3.【答案】B 【解析】由于4)4(411lim 11lim --⋅-∞→∞→=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-e x x x x xx ,故应选B .4.【答案】D 【解析】由于1)1(212)1(-+=+=+x x x f ,故12)(-=x x f ,又由于21)(1+=-x x f ,故22215)5(1-=+-=--xx x f ,故应选D .5.【答案】D 【解析】由于0)1(lim )(lim 211=-=++→→x x f x x ,21)1(2sin lim )(lim 11=--=--→→x x x f x x ,则)(lim )(lim 11x f x f x x -+→→≠,极限不存在,故应选D .6.【答案】B 【解析】由题意得⎩⎨⎧>->+0301x x ,即⎩⎨⎧<->31x x ,则函数的定义域为)3,1(-,故应选B .7.【答案】C 【解析】由于2)1(lim 11lim ln lim111111=+=+=--→-→-→x x x x xx e x xe xe x ,故应选C .8.【答案】D 【解析】由于66)(lim )(6)(lim )(3)(lim )()()(lim 23='''=-''=-'=--→→→→x f a x x f a x x f a x a f x f a x a x a x ax ,可知)()(a f x f =,0)(='a f ,0)(=''a f ,36)(='''a f ,故应选D .9.【答案】B 【解析】由于0lim 844lim22==+--∞→∞→x xx x x x x ,故应选B .【解析】由于=⋅-+=-+=+-+→→→22)2()22(lim )2()22(lim )1ln()2()22(lim000hf h f h f h f h f h f h h h 1)2(2='f ,故应选B .11.【答案】B 【解析】由于dx xe dx x e dx e x x x 222)(212122='⋅=,故应选B .12.【答案】D 【解析】由题意得,1)()(=-'=--dxe dxx f de x df xx ,则x e x f --=')(,故x e x f -='')(,故应选D .13.【答案】A 【解析】由于)3ln 1(333ln 3333x x y x x x ⋅+⋅=⋅+⋅=',令0='y ,则3ln 10-=x ,故应选A .14.【答案】D 【解析】由题意可知,令21ln 00=+='=x y x x ,则e x =0,0M 的坐标),(e e ,故应选D .15.【答案】B 【解析】令13),(32-+-=x xy y y x F ,则233x y F x +-=,x y F y 32-=,故xy x y x y x y F F dx dy y y x 3233323322--=-+--=-==',故应选B .16.【答案】D 【解析】由题可知,当)(Z k k x ∈=π时,0sin =x ,所以)(Z k k x ∈=π均为)(x f 的间断点,故间断点有无数个,故应选D .17.【答案】D 【解析】由于C x dx x f +=⎰1)(,两边求导得21)(x x f -=,则32)(xx f =',故应选D .18.【答案】C 【解析】由于C x x d x dx x +-=---=-⎰⎰)21cos(21)21()21sin(21)21sin(,故应选C .【解析】由于1)1()(202+='⎥⎦⎤⎢⎣⎡+='⎰x xte dt e xf ,x x e e x f 222)1()(='+='',x x e e x f 2222)2()(='=''', ,xn n e x f 212)(-=,故应选C .20.【答案】B 【解析】绕x 轴旋转的旋转体体积[]ππππ=⋅==-=⎰⎰131210223)2(xdx x dx x x V x ,故应选B .21.【答案】D 【解析】对于A :∞=+=++=+∞++∞+∞⎰⎰0220202)1ln(21)1(11211x x d x dx x x ,发散;对于B :∞-=-=+∞+∞⎰cos 1cos cos sin 11x dx x ,不存在,发散;对于C :∞==∞++∞⎰ee xdx x21,发散;对于D :∞++∞+∞+∞+--=⎪⎭⎫ ⎝⎛+---=+--=-⎰⎰⎰4444222ln41212141)2)(2(141x x dx x x dx x x dx x31ln 41=,收敛,故应选D .22.【答案】B 【解析】两平面的法线向量{}3,1,11-=n 和{}0,1,22=n ,由于0121≠=⋅n n ,且两个向量不对应成比例,则两平面斜交,故应选B .23.【答案】C 【解析】由二次曲面的特点可知其为旋转抛物面,故应选C .24.【答案】D 【解析】由于)cos(22xy y x z =∂∂,)sin(2422xy y xz -=∂∂,故应选D .25.【答案】B 【解析】当给定的方向l 与梯度方向一致时,方向导数可以取得最大值.由于梯度{}{}{}j i +==-==-----1,1,,)1,0()1,0()1,0(x x yx e ye z z grad ,故应选B .26.【答案】D 【解析】由于1sin --=t dt dx ,t e t dt dy +=cos ,故21sin cos 0-=--+===t t t t e t dxdy,故应选D .27.【答案】C 【解析】由于∑∞=131n n 是公比为31的等比数列,收敛,则∑∞=132n n ,收敛;且∑∞=131n n 为3=p 的-p 级数,收敛,所以级数∑∞=⎪⎭⎫ ⎝⎛-13132n n n 收敛,故应选C .28.【答案】C 【解析】由于π3666)4()23(32===⎪⎪⎭⎫⎝⎛∂∂-∂∂=++-⎰⎰⎰⎰⎰DDDLSdxdy dxdy y P x Q dy x x dx y y x ,故应选C .29.【答案】D 【解析】由于0!)!1(lim lim1=⋅+==∞→+∞→k n n k a a n nn n ρ,则收敛半径为+∞=R ,收敛区间为),(+∞-∞,故应选D .30.【答案】B 【解析】对应的齐次方程为086=+'-''y y y ,其对应的特征方程为0862=+-r r ,特征根21=r ,42=r ,由于x e x sin 2对应的复根为i ±2,故)cos sin ()cos sin (2122120x C x C e x C x C e x y x x +=+=*,故应选B .二、填空题31.【答案】x tan 1+【解析】由于x x f arctan )1(=+,则)1arctan()(-=x x f ,故[]2]1)(arctan[)(-=-=x x g x g f ,解得)2tan(1)(-+=x x g ,故x x g tan 1)2(+=+.32.【答案】31【解析】由于)(x f 在0=x 处连续,所以)0()(lim )(lim 00f x f x f x x ==-+→→.又a x ax x x x a x x f x x x 2)1(2lim )(2sin lim )(lim 020=+=+=+++→→→,)0(6)cos 5(lim )(lim 00f x e x f xx x ==+=--→→,故31=a .33.【答案】),0(+∞【解析】由于)3ln(2)(2+='x x x f ,令0)(>'x f ,则0>x ,故单调递增区间为),0(+∞.34.【答案】52432-x 【解析】令A x f x =→)(lim 2,则A x x x f ⋅+=3)(3,两边同时取极限)3(lim )(lim 322A x x x f x x ⋅+=→→,即A A 68+=,故58-=A ,x x x f 524)(3-=,所以5243)(2-='x x f .35.【答案】0【解析】由于24x x -是奇函数,根据偶倍奇零,故220-=⎰.36.【答案】C x F +)(sin 【解析】⎰⎰+==C x F x d x f xdx x f )(sin sin )(sin cos )(sin .37.【答案】31【解析】3112010===⎰⎰⎰⎰⎰dx x xdy dx xdxdy xD.38.【答案】()212xdx dy x y++【解析】由于y x x x z +=∂∂22,yx y z +=∂∂21,故2221z z x dz dx dy dx dy x y x y x y ∂∂=+=+=∂∂++()212xdx dy x y++.39.【答案】xcos 【解析】∑∞=-=02)!2()1(cos n n n n x x ,由于)0()!2()()1()!2()1()(020>-=-=∑∑∞=∞=x n x n x x S n nn n n n ,故x x S cos )(=.40.【答案】)23sin 23cos(2121x C x C e y x+=-(1C ,2C 为任意常数)【解析】其对应的特征方程为012=++r r ,其特征根为i r 23212,1±-=,故通解为)23sin 23cos(2121x C x C e y x+=-(1C ,2C 为任意常数).三、计算题41.【答案】3-e 【解析】=⎪⎭⎫ ⎝⎛+-++-+-+-=⎪⎪⎭⎫⎝⎛+++⨯+⨯-∞→-∞→232311141313121211lim )1(1321211lim n n n n n n n n 3123lim )23(11)1(23111lim 111lim -+---⋅⎪⎭⎫⎝⎛+-⋅+-∞→-∞→==⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+-→∞e e n n n n n n n n n n n .42.【答案】1ln ln 2-⋅='x x x y 【解析】两边同时取对数x x x y 2ln ln ln ln =⋅=,两边同时求导可得xx y y 1ln 21⋅='⋅,故导数1ln ln ln 2ln 2-⋅=⋅='x xx x xxxy .43.【答案】C x x++12ln 【解析】=++-=++-=⎪⎭⎫ ⎝⎛+-=+⎰⎰⎰⎰C x x x d x dx x dx x x dx x x 12ln ln )12(12111221)12(1C x x++12ln.44.【答案】凸区间为1,13⎛⎫ ⎪⎝⎭,凹区间为1,3⎛⎫-∞ ⎪⎝⎭和),1(+∞;拐点为1146,327⎛⎫⎪⎝⎭和(1,6)【解析】函数5683)(234++-=x x x x f 的定义域为(,)-∞+∞,由于x x x x f 122412)(23+-=',)1)(13(12124836)(2--=+-=''x x x x x f ,令()0f x ''=得,311=x ,12=x .把定义域分为三个区间,列表如下:x1,3⎛⎫-∞ ⎪⎝⎭311,13⎛⎫ ⎪⎝⎭1),1(+∞)(x f ''+0-0+)(x f 凹27146凸6凹故函数的凸区间为1,13⎛⎫ ⎪⎝⎭,凹区间为1,3⎛⎫-∞ ⎪⎝⎭和),1(+∞;拐点为1146,327⎛⎫⎪⎝⎭和(1,6).45.【答案】)(x f 仅有水平渐近线1=y 【解析】水平渐近线,+=⎪⎪⎭⎫ ⎝⎛+--+=+∞→+∞→+∞→x x x e x x x f x x x x 1sin lim )1ln(1111sin lim )(lim 1001lim )1ln(1lim 11lim=-+⋅=+--+∞→+∞→+∞→x x x e x x x x ,故水平渐近线为1=y .垂直渐近线,令0=x ,01=-x e ,0)ln(1=+x ,01=+x ,则0=x ,1-=x ,由于+=⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+--+=→→→→0)1ln(111lim 1sin lim )1ln(1111sin lim )(lim 0000x e x x x e x x x f x x x x x x ∞≠-=-+-=-+=+-+=-⋅+--+→→→→12)1(1lim 211lim 1)1ln(lim )1()1ln()1()1ln(lim 200200x x x x x x x x x e x x e x x e x e x e x ,故0=x 不是垂直渐近线.又由于∞≠--+--=⎪⎪⎭⎫ ⎝⎛+--+=--→-→++011)1sin()1ln(1111sin lim )(lim 111e x e x x x f x x x ,故1-=x 也不是垂直渐近线.所以)(x f 仅有水平渐近线1=y .46.【答案】23arctan 63【解析】=+=++=+=+⎰⎰⎰⎰40240224022402tan tan 3411)1(tan 3sec 1sec 3sec 3cos 1ππππx d x dx x x dx x x dx x 23arctan 63tan 23arctan 63tan 23tan 2311324140402=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⋅⎰ππx x d x.47.【答案】8【解析】由于{}4,32,3243232823044--=--==⨯k j i kj ib a ,故864132)(=⋅-⋅=⋅⨯c b a .48.【答案】26322++-=∂∂xyz yz x x z ,263322++-=∂∂xyz xz y yz 【解析】令123),,(232-+++=z xyz y x z y x F ,则232yz x F x +=,2233xz y F y +=,26+=xyz F z ,由于026≠+xyz ,故26322++-=-=∂∂xyz yz x F F x z z x ,263322++-=-=∂∂xyz xz y F F y z zy .49.【答案】31【解析】令⎩⎨⎧==θθcos sin r y r x ,则31cos 31sin 31sin 20201031020=-=⋅=⋅=⎰⎰⎰⎰⎰πππθθθθθd r rdr r d ydxdy D.50.【答案】n n n nx x F ∑∞=+⎦⎤⎢⎣⎡-+-=01251)1(1261)(,)1,1(-∈x 【解析】⎪⎭⎫⎝⎛+--=-+=-+=25111261)1)(25(125241)(2x x x x x x x F ,由于∑∞=-=--=-01111n n x x x ,)1,1(-∈xn n n n nn n x x x ∑∑∞=+∞=-=⎪⎭⎫ ⎝⎛-=+⋅=+010251)1(25)1(2512511251251,)25,25(-∈x 故n n n nx x F ∑∞=+⎦⎤⎢⎣⎡-+-=01251)1(1261)(,)1,1(-∈x .四、应用题51.【答案】(1)t eR R 57302ln 0-=;(2)可认为该文物为西汉时代的作品【解析】(1)设现存量为R ,由于C 14的衰变速度与它的现存量成正比,则衰变速度为kR dtdR-=,0>k 为比例恒量.对kR dtdR-=分离变量并积分可得⎰⎰-=kdt dR R 1,所以1ln C kt R +-=,故kt Ce R -=,由题可知⎪⎩⎪⎨⎧==-k Ce R Ce R 57300002,解得0R C =,57302ln =k ,因此t e R R 57302ln 0-=.(2)由于该文物至1972年8月C 14的现存量为初始量0R 的7761.0倍,则有t eR R 57302ln 007761.0-=,解得209657302ln 7761.0ln ≈-=t ,因此该文物至1972年8月大约经历了2096年,大约出现在公元前124年,故可认为该文物为西汉时代的作品.52.【答案】C 坐标为⎪⎭⎫⎝⎛98,31时,面积最大【解析】由题意可知,)0,1(A ,)0,1(-B ,设C 坐标为)1,(2x x -,则D 坐标为)1,(2x x --,则等腰梯形的面积)1()1()1()22(21)(22x x x x x S -⋅+=-⋅+=)11(<<-x .令0)31)(1(2)1()1()(2=-+=-⋅++-='x x x x x x S ,则10-=x (舍去),311=x .又由于04)31(<-=''S ,故在31=x 处取得极大值,由实际问题可知,在31=x 处可取得最大值,故C 坐标为⎪⎭⎫⎝⎛98,31时,梯形ABCD 面积最大.五、证明题53.【证明】令111)()(++-=a x a x f x F ,将区间]1,0[分为⎥⎦⎤⎢⎣⎡21,0,⎥⎦⎤⎢⎣⎡1,21.由于)(x F 在⎦⎤⎢⎣⎡21,0上连续,在⎪⎭⎫ ⎝⎛21,0内可导,由拉格朗日中值定理可知,⎪⎭⎫⎝⎛∈∃21,01ξ,使得⎪⎭⎫⎝⎛=--⎪⎭⎫⎝⎛='212021)0(21)(1F F F F ξ,即⎪⎭⎫ ⎝⎛=-'212)(11F f a ξξ;同理,)(x F 在⎥⎦⎤⎢⎣⎡1,21上连续,在⎪⎭⎫ ⎝⎛1,21内可导,由拉格朗日中值定理可知,⎪⎭⎫⎝⎛∈∃1,212ξ,使得⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-='212210221121)1()(2F F F F F ξ,即⎪⎭⎫ ⎝⎛-=-'212)(22F f a ξξ;两式相加,可得0)()(2211=-'+-'aaf f ξξξξ,即aaf f 2121)()(ξξξξ+='+',故在)1,0(内存在两个不同的实数21,ξξ,使得aaf f 2121)()(ξξξξ+='+'.。

2024安徽专升本高数刷题

2024安徽专升本高数刷题

选择题:1. 函数f(x) = 2x^2 + 5x + 3 的导函数是:a) f'(x) = 2x^2 + 5x + 3b) f'(x) = 4x + 5c) f'(x) = 2x^2 + 5xd) f'(x) = 4x + 32. 若y = ln(4x) - e^x,则y' 的值是:a) y' = 4/x - e^xb) y' = 1/(4x) - e^xc) y' = 1/x - e^xd) y' = e^x - 4/x3. 设函数f(x) = sin(x) + cos(x),则f'(x) 的最大值和最小值分别为:a) 最大值为1,最小值为-1b) 最大值为2,最小值为-2c) 最大值为√2,最小值为-√2d) 最大值为0,最小值为2填空题:1. 计算极限lim(x->0) (e^(2x) - 1) / (ex - 1),结果为________。

答案:22. 使用泰勒级数展开,计算e^x 的三阶近似值为________。

答案:1 + x + x^2/23. 求函数f(x) = x^3 + 3x^2 + 3x + 1 在区间(-∞, +∞) 上的极值点,极大值为________,极小值为________。

答案:无极大值,极小值为-∞应用题:1. 求曲线y = x^2 + 2x 的切线方程,且切线与x 轴的交点为(1, 0)。

答案:y = 3x - 22. 设一边长为x 的正方形的面积与边长为y 的等边三角形的面积相等,求x 和y 的值。

答案:x = y3. 某物体的速度v(t) 可由函数v(t) = 3t^2 - 4t + 2 表示,其中t 为时间(秒)。

求物体在t = 2 时的加速度。

答案:a(t) = v'(t) = 6t - 4,代入t = 2,得a(2) = 8 m/s^2。

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高考专升本高等数学(二)真题+参考答案解析

2023年成人高等学校招生全国统一考试专升本高等数学(二)真题一、选择题(1~10小题,每题4分,共40分。

在每小给出的四个选项中,只有一是符合题目要求的)1.x→∞x2+1 x2+xlim=()A.-1B.0C.12D.12.设f(x)=x3+5sin x,f'(0)=()A.5B.3C.1D.03.设f(x)=ln x-x,f'(x)=()A.xB.x-1C.1x D.1x-14.f(x)=2x3-9x2+3的单调递减区间为()A.(3,+∞)B.(-∞,+∞)C.(-∞,0)D.(0,3)5.x23dx=()A.x32+CB.35x53+C C.x53+C D.x13+C6.设函数f(x)=x ,则1-1f(x)dx=()A.-2B.0C.1D.27.连续函数f(x)满足x0f(t)dt=e x-1,求f'(x)=()A.e xB.e x-1C.e x+1D.x+18.设z=e xy,dz=()A.e xy dx+e xy dyB.e x dx+e y dyC.ye xy dx+xe xy dyD.e y dx+e x dy9.设z=14(x2+y2),∂2z∂x∂y=()A.x2B.0 C.y2D.x+y10.扔硬币5次,3次正面朝上的概率是()A. B. C. D.二、填空题(11~20小题,每题4分,共40分)11.x→31+x-2x-3=lim。

12.x→∞(x+1 x-1)lim x=。

13.f(x)=e2x,则f(n)(0)=。

14.f(x)=x2-2x+4在(x0,f(x))处切线与直线y=x-1平行,x=。

15.曲线y=xe x的拐点坐标为。

16.y=2x1+x2的垂直渐近线是。

17.xx2+4dx=。

18.曲线y=x2与x=y2所围成图形的面积是。

19.+∞0xe-x2dx=。

20.z=x2+y2-x-y-xy的驻点为。

三、解答题(21~28小题,共70分。

山东专升本高数一练习题

山东专升本高数一练习题

山东专升本高数一练习题1. 极限计算计算下列极限:\[\lim_{x \to 0} \frac{e^x - \cos x}{x^2}\]2. 导数应用求函数 \( f(x) = x^3 - 3x^2 + 2 \) 在 \( x = 1 \) 处的切线方程。

3. 不定积分计算不定积分:\[\int \frac{1}{x^2 - 4x + 4} \, dx\]4. 定积分计算计算定积分:\[\int_0^1 (x^2 + 2x) \, dx\]5. 多元函数微分设 \( z = f(x, y) = x^2 + y^2 \),求 \( \frac{\partialz}{\partial x} \) 和 \( \frac{\partial z}{\partial y} \)。

6. 级数求和求级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的和。

7. 微分方程解微分方程 \( y' + 2y = e^{2x} \)。

8. 二重积分计算二重积分:\[\iint_D (x^2 + y^2) \, dA\]其中 \( D \) 是由 \( x^2 + y^2 \leq 1 \) 定义的圆盘。

9. 线性代数设 \( A \) 是一个 \( 3 \times 3 \) 矩阵,其特征值为\( \lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 3 \),求 \( A \) 的行列式。

10. 解析几何设 \( C \) 是由 \( x^2 + y^2 = 1 \) 定义的圆,求 \( C \)上任意一点到原点的距离。

解答提示:1. 极限计算可以通过洛必达法则或泰勒展开来求解。

2. 导数应用需要先求出函数的导数,然后利用点斜式方程。

3. 不定积分可以通过部分分式分解或换元积分法来求解。

4. 定积分的计算需要先求出原函数,然后应用牛顿-莱布尼茨公式。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

专升本试题及答案高数

专升本试题及答案高数

专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^2-2x+3在区间[0,3]上的最大值是()。

A. 2B. 3C. 4D. 5答案:C2. 设函数f(x)=x^3-3x^2+2x+1,求f'(x)的值。

A. 3x^2-6x+2B. x^2-6x+1C. 3x^2-9x+2D. x^3-9x^2+2答案:C3. 曲线y=x^2与直线x=2所围成的图形的面积是()。

A. 2B. 4C. 8D. 16答案:C4. 已知等差数列{an}的前n项和为S_n=n^2,求a_1的值。

A. 0B. 1C. 2D. 3答案:A5. 极限lim (n→∞) (1+1/n)^n 的值是()。

A. eB. 1C. 2D. 3答案:A6. 函数y=sin(x)的周期是()。

A. πB. 2πC. π/2D. 4π答案:B7. 微分方程dy/dx + y = x的通解是()。

A. y = e^x - x/eB. y = e^x + xC. y = e^(-x) - x/eD. y =e^(-x) + x答案:D8. 曲线y=x^3-6x^2+11x-6在点(1,4)处的切线斜率是()。

A. -2B. 0C. 2D. 4答案:C9. 函数f(x)=x^3-3x^2+2x+1在x=1处的导数值是()。

A. -2B. 0C. 2D. 4答案:A10. 已知函数f(x)=x^2+2x+1,求f''(x)的值。

A. 2x+2B. 2x+4C. 4x+2D. 4x+4答案:B二、填空题(每题2分,共10分)1. 函数f(x)=x^2+1在x=-1处的导数值是____。

答案:22. 函数f(x)=ln(x)的原函数是____。

答案:xln(x)-x+C3. 曲线y=x^2与直线y=4x-5平行的切点坐标是____。

答案:(5,25)4. 函数y=x^3-6x^2+11x-6的极小值点是____。

专升本高数试题及答案文库

专升本高数试题及答案文库

专升本高数试题及答案文库一、选择题1. 函数f(x)=x^2+3x+2在区间[-5,1]上的最大值是()。

A. 6B. 7C. 8D. 9答案:B2. 设函数f(x)=x^3-2x^2-3x+1,求f'(x)。

A. 3x^2-4x-3B. x^3-4x^2C. 3x^2-4x+1D. x^3-2x^2答案:A3. 若曲线y=x^2与直线y=4x-5相切,则切点坐标为()。

A. (1,3)B. (2,3)C. (1,1)D. (2,4)答案:A二、填空题4. 若函数f(x)=x^3-6x^2+11x-6的零点为x0,则x0的值为______。

答案:15. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值。

答案:32三、解答题6. 求函数y=x^3-6x^2+9x+2在区间[0,3]上的单调性。

答案:函数y=x^3-6x^2+9x+2的导数为y'=3x^2-12x+9。

令y'>0,解得x>1或x<3。

因此,函数在区间[0,1]和[2,3]上单调递增,在区间[1,2]上单调递减。

7. 求曲线y=x^2-4x+3与x轴的交点坐标。

答案:令y=0,解得x^2-4x+3=0,即(x-1)(x-3)=0,所以曲线与x轴的交点坐标为(1,0)和(3,0)。

四、证明题8. 证明:对于任意实数x,不等式e^x > 1+x恒成立。

答案:设函数f(x)=e^x-x-1,求导得f'(x)=e^x-1。

当x>0时,f'(x)>0,函数f(x)单调递增;当x<0时,f'(x)<0,函数f(x)单调递减。

因此,f(x)的最小值出现在x=0处,即f(0)=e^0-0-1=0。

所以对于任意实数x,有f(x)≥f(0)=0,即e^x≥1+x。

五、综合题9. 已知函数f(x)=sin(x)+cos(x),求f(x)在区间[0,π/2]上的最大值。

专升本数学考试真题2024

专升本数学考试真题2024

专升本数学考试真题2024一、选择题(每题3分,共30分)函数y = 1/√(x - 1)的定义域是()。

A. (1,+∞)B. [1,+∞)C. (-∞,1)D. (-∞,1]已知f(x) = 3x^2 - 2x + 1,则f(-1) =()。

A. 6B. 0C. 3D. 4下列函数中为奇函数的是()。

A. y = xx若lim(x→1) (x^2 - 1) / (x - 1) =()。

A. 1B. 2C. 不存在D. 0函数y = sin 2x的导数是()。

A. y' = 2cos 2xB. y' = cos 2xC. y' = 2sin 2xD. y' = sin 2x∫(0→1) x^2 dx =()。

A. 1/3B. 1C. 1/2D. 2/3直线y = 2x + 1的斜率是()。

A. 1B. 2C. -1D. -2二次函数y = ax^2 + bx + c (a ≠ 0)的顶点坐标是()。

A. (-b/2a, (4ac - b2)/4a)C. (-b/2a, -(4ac - b2)/4a)若向量→a = (1,2),→b = (3,-1),则→a · →b =()。

A. 1B. -1C. 5D. -5在等差数列{a_n}中,a_1 = 1,公差d = 2,则a_5 =()。

A. 9B. 11C. 7D. 5二、填空题(每题3分,共15分)函数y = log_2(x - 1)的图象过定点______。

若y = e^x sin x,则y' =______。

已知→a = (2,3),则|→a| =______。

等比数列{a_n}中,a_1 = 2,公比q = 3,则a_3 =______。

曲线y = x^3 - 3x + 1在点(1,-1)处的切线方程为______。

三、解答题(共55分)求函数单调区间(10分)求函数y = (x^2 + 1) / x的单调区间。

江苏专转本高等数学真题 (附答案)

江苏专转本高等数学真题 (附答案)

2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

2022年河南省专升本高等数学真题带答案详解

2022年河南省专升本高等数学真题带答案详解

河南省一般高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己旳姓名、座位号、考生号涂写在答题卡上。

本试卷旳试题答案在答题卡上,答试卷上无效。

一、选择题(每题2分,合计60分)在每题旳四个备选答案中选出一种对旳答案,有铅笔把答题卡上相应旳题目旳标号涂黑。

如需改动,用橡皮擦干净后,再涂其她答案标号.1.下列函数相等旳是 ( )A.2x y x=,y x = B. y =y x =C.x y =,2y =D. y x =,y =【答案】D.解:注意函数旳定义范畴、解析式,应选D.2.下列函数中为奇函数旳是 ( )A.e e ()2x xf x -+= B. ()tan f x x x =C. ()ln(f x x =D. ()1xf x x=- 【答案】C.解: ()ln(f x x -=-,()()ln(ln(ln10f x f x x x +-=-+==()()f x f x -=-,选C.3.极限11lim1x x x →--旳值是 ( ) A.1 B.1- C.0 D.不存在 【答案】D. 解:11lim 11x x x +→-=-,11lim 11x x x -→-=--,应选D. 4.当0x →时,下列无穷小量中与x 等价是 ( )A.22x x - C. ln(1)x + D. 2sin x 【答案】C.解: 由等价无穷小量公式,应选C.5.设e 1()x f x x-=,则0=x 是()f x 旳 ( )A.持续点B.可去间断点C.跳跃间断点D.无穷间断点 【答案】B.解: 00e 1lim ()lim1x x x f x x→→-==⇒0=x 是)(x f 旳可去间断点,应选B. 6. 已知函数()f x 可导,且0(1)(1)lim12x f f x x→--=-,则(1)f '= ( )A. 2B. -1C.1D. -2 【答案】D. 解:0(1)(1)1lim(1)1(1)222x f f x f f x →--''==-⇒=-,应选D.7.设()f x 具有四阶导数且()f x ''=(4)()f x = ( )AB C .1 D .3214x --【答案】D. 解:1(3)21()2fx x -=,(4)()f x =3214x --,应选D.8.曲线sin 2cos y t x t=⎧⎨=⎩在π4t =相应点处旳法线方程 ( )A. x =1y = C. 1y x =+ D. 1y x =- 【答案】A.解:0d 2cos 20d sin y t k x x x t =⇒=⇒==切,应选A. 9.已知d e ()e d x xf x x -⎡⎤=⎣⎦,且(0)0f =,则()f x = ( ) A .2e e x x + B. 2e e x x - C. 2e e x x -+ D. 2e e x x -- 【答案】B.解:由d e ()e d x x f x x -⎡⎤=⎣⎦得 2d e ()d(e )e ()e ()e e x x x x x x f x f x C f x C --⎡⎤=⇒=+⇒=+⎣⎦, 把(0)0f =代入得1C =-,因此2()e e x x f x =-,应选B.10.函数在某点处持续是其在该点处可导旳 ( ) A. 必要条件 B. 充足条件 C. 充足必要条件 D. 无关条件 【答案】A.解:根据可导与持续旳关系知,应选A.11.曲线42246y x x x =-+旳凸区间为 ( ) A.(2,2)- B. (,0)-∞ C.(0,)+∞ D. (,)-∞+∞ 【答案】A.解: 34486y x x '=-+,212480(2,2)y x x ''=-<⇒∈-,应选A.12. 设e xy x= ( )A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线D.既无水平又无垂直渐近线 【答案】B.解: e lim0x x x →-∞=,0e lim xx x→=∞,应选B. 13.下列说法对旳旳是 ( ) A. 函数旳极值点一定是函数旳驻点 B. 函数旳驻点一定是函数旳极值点C. 二阶导数非零旳驻点一定是极值点D. 以上说法都不对 【 答案】D.解: 根据极值点与驻点旳关系和第二充足条件,应选D.14. 设函数()f x 在[,]a b 持续,且不是常数函数,若()()f a f b =,则在(,)a b 内 ( )A. 必有最大值或最小值B.既有最大值又有最小值C. 既有极大值又有极小值D. 至少存在一点ξ,使()0f ξ'= 【答案】A.解:根据持续函数在闭区间上旳性质及()()f a f b =旳条件,在相应旳开区间内至少有一种最值,应选A.15.若()f x 旳一种原函数为ln x ,则()f x '= ( )A. 1xB.21x- C. ln x D. ln x x【答案】B.解: ()1()ln f x x x '==⇒ 21()f x x'=-,应选B.16.若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰ ( ) A. 222(1)x C --+ B. 222(1)x C -+C. 221(1)2x C --+D. 221(1)2x C -+【答案】C.解: 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰=221(1)2x C --+,应选C. 17.下列不等式不成立旳是( )A. 22211ln (ln )xdx x dx >⎰⎰ B. 220sin xdx xdx ππ<⎰⎰C. 220ln(1)x dx xdx +<⎰⎰ D. 22(1)x e dx x dx <+⎰⎰【答案】D.解: 根据定积分旳保序性定理,应有22(1)x e dx x dx ≥+⎰⎰,应选D.18.1ln eex dx ⎰= ( )A. 111ln ln e exdx xdx +⎰⎰ B. 111ln ln eexdx xdx -⎰⎰C. 111ln ln eexdx xdx -+⎰⎰ D. 111ln ln eexdx xdx --⎰⎰【答案】C.解:因1ln ,1|ln |ln ,1x x x ex x e⎧-≤≤⎪=⎨⎪≤≤⎩,考察积分旳可加性有 1111ln ln ln eeeexdx xdx xdx =-+⎰⎰⎰,应选C.19.下列广义积分收敛旳是 ( )A.ln ex dx x +∞⎰B. 1ln e dx x x +∞⎰ C. 21(ln )e dx x x +∞⎰D. e +∞⎰ 【答案】C.解:由广义积分性质和结论可知:21(ln )edx x x +∞⎰是2p =旳积分,收敛旳,应选C.20.方程220x y z +-=在空间直角坐标系中表达旳曲面是 ( ) A.球面 B.圆锥面 C. 旋转抛物面 D.圆柱面 【答案】C.解:根据方程旳特点是抛物面,又因两个平方项旳系数相等,从而方程220x y z +-=在空间直角坐标系中表达旳曲面是旋转抛物面,应选C.21. 设{}1,1,2a =-,{}2,0,1b =,则a 与b 旳夹角为 ( ) A .0 B .6π C .4π D .2π 【答案】D.解:0(,)2a b a b a b π=⇒⊥⇒=,应选D.22.直线34273x y z++==--与平面4223x y z --=旳位置关系是 ( ) A. 平行但直线不在平面内 B. 直线在平面内 C. 垂直 D. 相交但不垂直 【答案】A.解:因{}2,7,3s =--,{}4,2,20n s n s n =--⇒⋅=⇒⊥⇒直线在平面内或平行但直线不在平面内.又直线上点(3,4,0)--不在平面内.故直线与平面旳位置关系是平行但直线不在平面内,应选A.23.设(,)f x y 在点(,)a b 处有偏导数,则0(,)(,)limh f a h b f a h b h→+--=( )A.0B.2(,)x f a b 'C. (,)x f a b 'D. (,)y f a b ' 【答案】B.解:原式00(,)(,)(,)(,)limlimh h f a h b f a b f a h b f a b h h→→+---=- 00(,)(,)(,)(,)limlim 2(,)x h h f a h b f a b f a h b f a b f a b h h→-→+---'=+=- 应选B. 24.函数x yz x y+=-旳全微dz = ( ) A .22()()xdx ydy x y -- B .22()()ydy xdx x y --C .22()()ydx xdy x y -- D .22()()xdy ydx x y -- 【答案】D 解:22()()()()2()()()x y x y d x y x y d x y xdy ydx z dz x y x y x y +-+-+--=⇒==---,应选D25.0(,)ady f x y dx ⎰化为极坐标形式为 ( )A .20(cos ,sin )ad f r r rdr πθθθ⎰⎰ B .2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰C .sin 20(cos ,sin )a d f r r rdr πθθθθ⎰⎰D .20(cos ,sin )ad f r r rdr πθθθ⎰⎰【答案】D.解:积分区域{(,)|0,0(,)|0,02x y y a x r r a πθθ⎧⎫≤≤≤≤=≤≤≤≤⎨⎬⎩⎭有(,)ady f x y dx ⎰20(cos ,sin )ad f r r rdr πθθθ=⎰⎰,应选D.26.设L 是以A(-1,0),B(-3,2),C(3,0)为顶点旳三角形区域旳边界,方向为ABCA,则(3)(2)Lx y dx x y dy -+-=⎰A.-8B.0 C 8 D.20 【答案】A.解: 由格林公式知, (3)(2)228LDx y dx x y dy d S σ∆-+-=-=-=-⎰⎰⎰,应选A.27.下列微分方程中,可分离变量旳是 ( ) A .tan dy y ydx x x=+ B .22()20x y dx xydy +-= C .220x y x dx edy y ++= D . 2x dy y e dx+= 【答案】C.解: 根据可分离变量微分旳特点,220x y xdx e dy y++=可化为 22y x ye dy xe dx -=-知,应选C.28.若级数1n n u ∞=∑收敛,则下列级数收敛旳是 ( )A .110nn u ∞=∑ B .1(10)n n u ∞=+∑C .110n n u ∞=∑ D . 1(10)n n u ∞=-∑【答案】A.解: 由级数收敛旳性质知,110nn u ∞=∑收敛,其她三个一定发散,应选A. 29.函数()ln(1)f x x =-旳幂级数展开为 ( )A .23,1123x x x x +++-<≤ B .23,1123x x x x -+--<≤C .23,1123x x x x -----≤< D . 23,1123x x x x -+-+-≤<【答案】C.解: 根据23ln(1),1123x x x x x +=-+--<≤可知,23ln(1),1123x x x x x -=-----≤<,应选C.30.级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 ( )A .条件收敛B .绝对收敛C .发散D .无法拟定 【答案】B.解: 令1x t -=,级数1(1)nn n a x ∞=-∑化为1n n n a t ∞=∑,问题转化为:2t =-处收敛,拟定1t =处与否收敛.由阿贝尔定理知是绝对收敛旳,故应选B.二、填空题(每题2分,共30分)31.已知()1xf x x=-,则[()]______f f x =. 解:()1[()](1,)1()122f x x f f x x x f x x ==≠≠--.32.当0x →时,()f x 与1cos x -等价,则0()lim_______sin x f x x x→=. 解:2211cos ()1cos 2220sin 00()1cos 12lim lim lim sin 2x x f x x x x x x x x f x x x x x x --→→→-==============. 33.若2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则_______a =. 解:因2223()221lim 12lim lim 1lim 1x xa axa x a x x a x x a a x a a x a e x x e x a e a a x x ⋅→∞-→∞→∞⋅--→∞⎛⎫⎛⎫++ ⎪ ⎪+⎛⎫⎝⎭⎝⎭==== ⎪-⎝⎭⎛⎫⎛⎫- ⎪- ⎪⎝⎭⎝⎭, 因此有 38a e =ln 2a ⇒=.34.设函数sin ,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩在(,)-∞+∞内到处持续,则_______a =.解:函数在(,)-∞+∞内到处持续,固然在0x =处一定持续,又由于0sin lim ()lim1;(0)x x xf x f a x→→===,因此0lim ()(0)1x f x f a →=⇒=.35.曲线31xy x=+在(2,2)点处旳切线方程为___________. 解:因2231340(1)3x y k y x y x =''=⇒==⇒-+=+. 36.函数2()2f x x x =--在区间[0,2]上使用拉格朗日中值定理结论中____ξ=. 解:(2)(0)()2121120f f f x x ξξ-'=-⇒-=⇒=-.37.函数()f x x =旳单调减少区间是 _________.解:1()100,4f x x ⎛⎫'=<⇒∈ ⎪⎝⎭,应填10,4⎛⎫ ⎪⎝⎭或10,4⎡⎤⎢⎥⎣⎦或10,4⎡⎫⎪⎢⎣⎭或10,4⎛⎤⎥⎝⎦. 38.已知(0)2,(2)3,(2)4,f f f '===则2()______xf x dx ''=⎰.解:222200()()()()2(2)(2)(0)7xf x dx xdf x xf x f x dx f f f ''''''==-=-+=⎰⎰⎰.39.设向量b 与}{1,2,3a =-共线,且56a b ⋅=,则b =_________. 解:因向量b 与a 共线,b 可设为{},2,3k k k -,5649564a b k k k k ⋅=⇒++=⇒=,因此{}4,8,12b =-.40.设22x y z e+=,则22zx∂=∂_______.解:22222222222(12)x y x y x y z z z exe x e x x+++∂∂=⇒=⇒=+∂∂. 41.函数22(,)22f x y x xy y =+-旳驻点为________.解:40(,)(0,0)40fx y x x y f x y y∂⎧=+=⎪∂⎪⇒=⎨∂⎪=-=∂⎪⎩.42.区域D 为229x y +≤,则2______Dx yd σ=⎰⎰.解:运用对称性知其值为0或232420cos sin 0Dx yd d r dr πσθθθ==⎰⎰⎰⎰.43.互换积分顺序后,10(,)_____________xdx f x y dy =⎰.解:积分区域{{}2(,)|01,(,)|01,D x y x x y x y y y x y =≤≤≤≤=≤≤≤≤,则有21100(,)(,)yxydx f x y dy dy f x y dx =⎰⎰⎰.44.14x y xe -=-是23x y y y e -'''--=旳特解,则该方程旳通解为_________.解:230y y y '''--=旳通解为312x x y C e C e -=+,根据方程解旳构造,原方程旳通解为31214x x x y C e C e xe --=+-.45.已知级数1n n u ∞=∑旳部分和3n S n =,则当2n ≥时,_______n u =.解:当2n ≥时,3321(1)331n n n u S S n n n n -=-=--=-+.三、计算题(每题5分,共40分)46.求011lim 1x x x e →⎛⎫- ⎪-⎝⎭.解:20001111lim lim lim 1(1)x x x x x x x e x e x x e x e x →→→----⎛⎫-== ⎪--⎝⎭0011limlim 222x x x e x x x →→-===. 47.设()y y x =是由方程ln sin 2xy e y x x +=拟定旳隐函数,求dxdy . 解:方程两边对x 求导得()ln 2cos 2xy ye xy y x x x''++= 即 ()ln 2cos 2xy e x y xy y y x x x x ''+++= 2(ln )2cos 2xy xy x e x x y x x e xy y '+=--因此 dydx=22cos 2ln xy xy x x e xy y y x e x x --'=+.48.已知2()x xf x dx e C -=+⎰,求1()dx f x ⎰. 解:方程2()x xf x dx e C -=+⎰两边对x 求导得 2()2xxf x e-=-,即22()xe f x x--=,因此211()2x xe f x =-. 故22111()24x x dx xe dx xde f x =-=-⎰⎰⎰ 222211114448x x x x xe e dx xe e C =-+=-++⎰.49.求定积分44|(1)|x x dx --⎰.解:40144401|(1)||(1)||(1)||(1)|x x dx x x dx x x dx x x dx ---=-+-+-⎰⎰⎰⎰1441(1)(1)(1)x x dx x x dx x x dx -=-+-+-⎰⎰⎰14322332401322332x x x x x x -⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭641164118843323332=++-+--+=. 50.已知22x xy y z e +-= 求全微分dz .解:因222222()(2)x xy y x xy y x ze x xy y e x y x+-+-∂'=+-=+∂,222222()(2)x xy y x xy y y ze x xy y e x y y+-+-∂'=+-=-∂, 且它们在定义域都持续,从而函数22xxy y z e +-=可微,并有z zdz dx dy x y∂∂=+∂∂22[(2)(2)]x xy y e x y dx x y dy +-=++-. 51.求(2)Dx y d σ+⎰⎰,其中区域D 由直线,2,2y x y x y ===围成.x x y =→=2yx =2解:积分区域D 如图所示: 把D 看作Y 型区域,且有(,)|02,2y D x y y x y ⎧⎫=≤≤≤≤⎨⎬⎩⎭故有22(2)(2)yy Dx y d dy x y dx σ+=+⎰⎰⎰⎰2222025()4yy x xy dy y dy =+=⎰⎰230510123y ==. 52.求微分方程22x y xy xe -'-=旳通解. 解:这是一阶线性非齐次微分方程,它相应旳齐次微分方程20y xy '-=旳通解为2x y Ce =, 设原方程旳解为2()x y C x e =代入方程得22()x x C x e xe -'=, 即有 22()x C x xe -'=, 因此 222222211()(2)44x x x C x xe dx e d x e C ---==--=-+⎰⎰, 故原方程旳通解为2214x x y e Ce -=-+.53.求幂级数212nn n n x ∞=∑旳收敛区间(考虑区间端点). 解:这是原则缺项旳幂级数,考察正项级数212nn n n x ∞=∑, 因221112limlim 22n n n n n nu n x l x u n ++→∞→∞+==⨯=, 当212x l =<,即||x <212n n n nx ∞=∑是绝对收敛旳; 当212x l =>,即||x >212n n n nx ∞=∑是发散旳; 当212x l ==,即x =212nn n n x ∞=∑化为1n n ∞=∑,显然是发散旳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知x x x f 3)1(2
+=-,则=)(sin x f ______. 2.已知⎪⎩
⎪⎨⎧≤+>=0,0,1sin )(2x x a x x
x x f 在R 上连续,则=a _____. 3.极限=+∞→x x x
x 2)1(lim _________. 4.已知)1ln(2x x y ++=,则='y _____.
5.已知函数xy e z =,则此函数在(2,1)处的全微分=dz _____________.
1.设)(x f 二阶可导,a 为曲线)(x f y =拐点的横坐标,且)(x f 在a 处的二阶导数等于零,则在a 的两侧( )
A .二阶导数同号 B.一阶导数同号 C.二阶导数异号 D.一阶导数异号
2.下列无穷级数绝对收敛的是( )
A .∑∞=--111)
1(n n n B .∑∞=--111)1(n n n C .∑∞=--1121)1(n n n D .∑∞=--1
1)1(n n n 3.变换二次积分的顺序⎰⎰=2022),(y y dx y x f dy ( )
A .⎰⎰20
2),(x x dy y x f dx B .⎰⎰402),(x x dy y x f dx C .⎰⎰4
022),(x x dy y x f dx D .⎰⎰402),(x x
dy y x f dx 4.已知⎰⎰=x
t x t dt
e dt e x
f 0220
22
)()(,则=+∞→)(lim x f x ( ) A .1 B .-1 C .0 D .+∞
5.曲面3=+-xy z e z 在点(2,1,0)处的切平面方程为( )
A .042=-+y x
B .042=-+y x
C .02=++y x
D .042=++y x
三、计算下列各题(每小题7分,共35分)
1.求极限)1
11(lim 0--→x x e x 2.求不定积分⎰xdx x cos 2
3.已知02sin 2=-+xy e y x ,求dx
dy
4.求定积分⎰-+52111dx x
5.求二重积分⎰⎰+D
d y x σ)23(,其中D 是由两坐标轴及直线3=+y x 所围成的闭区域。

四、求幂级数∑∞
=-1)3(n n n x 的收敛半径和收敛域。

(9分)
五、已知),(xy y x f z +=,且f 具有二阶连续偏导数,试求y
x z ∂∂∂2。

(9分) 六、求二阶微分方程x
xe y y y =+-6'5''的通解。

(9分) 七、设0>>a b ,证明不等式b
a a
b a b -<
-ln ln 。

(8分)
九江学院2008年“专升本”高等数学试卷
注:
1.请考生将试题答案写在答题纸上,在试卷上答题无效.
2.凡在答题纸密封线以外有姓名、班级学号、记号的,以作弊论.
3.考试时间:120分钟
一、填空题(每题3分,共15分)
1. 设函数⎪⎪⎩
⎪⎪⎨⎧=≠+=0,0
,)1()(2x k x x x f x 在0=x 处连续,则参数=k __________.
2. 过曲线2x y =上的点(1,1)的切线方程为_______________.
3. 设x y arccos =,则==0|'x y _______________.
4. 设1)('=x f ,且0)0(=f ,则
⎰=dx x f )(_______________. 5. 设y e x z +=2,则z 的全微分=dz _______________.
二、选择题(每题3分,共15分)
1.设)(x f y =的定义域为(0,1],x x ln 1)(-=ϕ,则复合函数)]([x f ϕ的定义域为( )
A.(0,1)
B.[1,e]
C.(1,e]
D.(0,+∞)
2.设2323
1)(x x x f -=,则)(x f 的单调增加区间是( ) A.(-∞,0) B.(0,4) C.(4, +∞) D. (-∞,0)和(4, +∞)
3.函数a a x x f (||)(+=为常数)在点0=x 处( )
A.连续且可导
B.不连续且不可导
C.连续且不可导
D.可导但不连续
4.设函数3)(x x f =,则x x f x x f x ∆-∆+→∆)()2(lim
0等于( ) A.26x B.32x C.0 D.23x
5.幂级数∑∞=-1)2
1(
n n x 的收敛区间为( ) A.[-1,3] B.(-1,3] C.(-1,3) D.[-1,3)
三、计算题(每题7分,共42分)
1.30sin lim x
x x x -→ 2.⎰
xdx x sin
3.已知⎪⎩⎪⎨⎧==⎰t a y udu a x t sin sin 0(a 为非零常数),求dx dy 4.求直线2=+y x 和曲线2x y =及x 轴所围平面区域的面积.
5.计算二重积分⎰⎰D
ydxdy ,其中D 是由22,x y y x ==所围平面区域. 6.求微分方程x
x y xy ln '+=的通解. 四、设二元函数)ln(22y x z +=,试验证2=∂∂+∂∂y
z y x z x (7分) 五、讨论曲线123
4+-=x x y 的凹凸性并求其拐点.(7分) 六、求幂级数∑∞=-111n n x n
的收敛域,并求其和函数.(9分) 七、试证明:当0≥x 时,x e x ≥-1(5分)。

相关文档
最新文档