35多元非线性模型的线性化
(整理)计量经济学第四章非线性回归模型的线性化
(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。
但有时候变量之间的关系是⾮线性的。
例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。
可采⽤⾮线性⽅法进⾏估计。
估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。
计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。
专⽤软件使这种计算变得⾮常容易。
但本章不是介绍这类模型的估计。
另外还有⼀类⾮线性回归模型。
其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。
称此类模型为可线性化的⾮线性模型。
下⾯介绍⼏种典型的可以线性化的⾮线性模型。
4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。
显然x t 和y t 的关系是⾮线性的。
对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。
其中u t 表⽰随机误差项。
010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。
x t和y t的关系是⾮线性的。
令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。
图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。
非线性模型的线性化方法
提高计算效率
线性模型通常具有更简单的计算形式,可以更快地求解,提高模型 的计算效率。
扩展应用范围
线性模型在许多领域都有广泛的应用,线性化方法可以扩展非线性模 型的应用范围。
缺点
近似误差
线性化方法通常是对非线性模型 的近似,可能引入一定的误差, 特别是在非线性较强的模型中。
考虑模型的物理意义和实际应用背景,选择一个具有代表性的
点作为线性化点。
通过交叉验证和比较不同线性化点的拟合效果,选择最优的线
03
性化点。
对非线性模型进行线性化转换
01
02
03
将非线性模型在所选的 线性化点处进行泰勒级 数展开,得到线性化模
型。
保留级数展开的前几项 ,舍弃高阶项以避免过
拟合。
根据实际需求和数据特 点,选择适合的线性化 方法,如对数转换、幂
非线性模型的特点
复杂性和不确定性
非线性模型通常具有复杂性和不确定性,难以预测和控制。
动态性和时变性
非线性模型中的变量通常具有动态性和时变性,即随着时间的推 移,变量之间的关系可能会发生变化。
相互作用和耦合
非线性模型中的变量之间通常存在相互作用和耦合,即一个变量 的变化可能会对其他变量产生影响。
非线性模型的应用场景
函数转换等。
验证线性化模型的准确性
01
使用独立的数据集对线性化后的模型进行验证,评估其预测 精度和稳定性。
02
比较线性化模型和非线性模型在验证数据集上的表现,以评 估线性化的效果。
03
如果线性化后的模型表现不佳,可能需要重新选择线性化点 或尝试其他线性化方法。
非线性模型的线性化方法
(7-19)
6.2072 dLnyt dyt / yt , 6.2072 dyt / yt
dLnLnxt
1 Lnxt
1 xt
dxt
Lnxt dxt / xt
弹性系数不是常量,是弹性函数 6.2072/ Lnxt。说明人均食品支出对人均收入的 弹性系数是随着城镇人均收入的增加而减小。当城镇人均收入为 1000 元水平
LnQt = Ln + LnLt + LnCt + ut
(7-6)
取 yt = LnQt, 0 = Ln, 1= , 2= , xt1 = LnLt, xt2 = LnCt,可写为,
yt= 0 +1 xt 1 + 2 xt 2 + ut
(7-7)
为线性模型。只要 ut 满足第 5 章给出的假定条件,用 OLS 法估计式(7-7),再 返回到原模型(7-5)。根据新古典增长理论, 若回归参数 1 + 2 = + = 1,则称该模型为规模报酬不变型。 若回归参数1 + 2 = + > 1,则称模型为规模报酬递增型。 若回归参数1 + 2 = + < 1,则称模型为规模报酬递减型。
log(y) c log(x) 这样写的好处是,模型可以直接预测到 y。
7.1.2 指数函数模型
指数函数定义如下: yt aebxt
b>0 和 b<0 两种情形的函数曲线分别见图 7-3 和 7-4。xt 和 yt 呈指数函数关系, 是非线性的。对上式等号两侧同取自然对数,得
Lnyt = Lna + bxt
第 7 章 可线性化的非线性模型
7.1.2 指数函数模型
由式 Lnyt = Lna + bxt,得
多元非线性回归模型
j表示在其他解释变量保持不变的情况下,
Xj每变化1个单位时,Y的均值E(Y)的变化。
非线性的情况:
(1) ln Yi 1 2 ln X i ui
(2) ln Yi 1 2 X i ui
(3)Yi 1 2 ln X i ui
(4)Yi 1 2 X i 3 X i2 ui
非线性回归模型的线性化
一、双对数模型 二、半对数模型 三、幂函数模型 四、多项式函数模型 五、倒数函数模型
一元线性回归模型
Yi 1 2 X i ui
i=1,2…,n
1表示X每变化一个单位时, 的均值E(Y)的变化。 Y
多元线性回归模型
Yi 1 2 X 2i 3 X 3i k X ki ui i=1,2…,n
Cobb-Dauglas生产函数
Yi AKi Li e
ui
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数:
ln Qi = ln A + ln Ki + ln Li+ui
斜率系数衡量的是被解释变量Y关于解释变量X的弹 性, 表示当L不变时,K每变动百分之一,Y的均值 变动的百分比; 表示当K不变时,L每变动百分之 一,Y的均值变动的百分比。
(二)半对数模型
如果设定的非线性模型为
ln Yi 1 2 X i ui
E (lnYi ) E (lnYi 1 ) Y的均值的相对变化 X i X i 1 X的绝对变化
2
斜率系数 2 衡量的是当变量X的绝对量每发生单位变动 时,引起被解释变量Y平均值的相对变动比率。 令
研究119个发展中国家1960-1985年的GDP增长率与 相对人均GDP之间的关系,考虑建立如下模型:
浅谈非线性回归模型的线性化
浅谈非线性回归模型的线性化广东省惠州市惠阳区崇雅中学高中部 卢瑞勤(516213)回归分析在各个领域中都有十分重要的作用,比如:在财务中可以用回归分析进行财务预测;在医疗检验中可以用回归分析进行病理预报等等。
高中新课标教材就在《必修3》和《选修2-3》中分别增加了《线性回归》和《回归分析》的内容,介绍了求线性回归方程的方法。
但在实际问题中,变量间的关系并非总是线性关系,本文结合本人的教学实践,对教材中的这两部分内容进行适当延伸,谈谈对一些可线性化的非线性回归模型的线性化问题,供各位同行在教学时参考。
一、什么是可线性化的非线性回归模型线性回归模型的基本特征是预报变量可以表示成解释变量和一个系数相乘的和,即预报变量y 可以表示成解释变量i x (i =1,2,3,……)的如下形式:0112233y a a x a x a x =++++,其中变量ix 是以其原型(而不是以ni x 或其它)的形式出现,变量y 是各变量i x 的线性函数。
而有些回归模型不具备这个特点,但是可以通过适当的代数变换转化成这种形式,我们称这类回归模型为可线性化的回归模型。
在本文中,我们只讨论只有一个解释变量可线性化的非线性回归模型的线性化。
二、非线性回归模型的线性化的基本思路非线性回归模线性化的基本思路是:由已知数据,确定解释变量和预报变量,作出散点图,根据经验,确定回归曲线的类型,然后作适当的代数变换,若变换后散点图体现较好的线性关系,即可将其化成线性形式求解,最后还原到原来的回归曲线。
如果回归曲线可用多种形式表示,可以各自将其线性化后求解,再用相关系数2R 进行拟合效果分析,2R 越大,拟合效果越好,所求的回归方程也就越精确。
三、非线性回归模型的线性化的常用方法可线性化的非线性回归模型有以下几种常见类型:(1)双曲线型,其形式为1a b y x =+,其变换为1y y '=, 1x x'=,变换后的形式为y b ax ''=+ (2)幂函数型,其形式为by ax = ,可以变形为ln ln ln y a b x =+,作变换ln y y '= ,ln x x '= ,变换后的形式为y a bx ''=+(3)指数函数型,其形式为bxy ae = ,以变形为ln ln y a bx =+,作变换ln y y '=,ln a a '= ,变换后的形式为y a bx ''=+(4)对数函数型,其形式为ln y a b x =+,作变换ln x x '=,变换后的形式为y a bx '=+ 下面以高中新课标数学教材《选修2-3》一道习题为例加以说明【例】在某地区的一段时间内观察到的不小于某震级x 的地震个数y 数据如下表,试建立回归方程表述二者之间的关系。
第六章非线性模型
ln Q ln A ln L ln K
令 Q* ln Q, A* ln A, L* ln L, K * ln K
Q* A* L* K *
1
(二)多项式
y 0 1 x 2 x 2
6.3
y 0 1 x 2 x 2 3 x3
6.4
多项式的种类有很多个,6.3和6.4分别为最常见的二次多项式和三次多项式。二 次多项式有着广泛的应用,如最为著名的库兹涅茨收入不平等倒U型假说,如果一次项 系数为正,二次项系数为负,函数图形正好为倒U型的抛物线,如可以用二次多项式模 型检验收入不平等假说,甚至环境污染与经济发展中是否存在倒U型假说。 二次项的另外一个含义,即可能存在一个最优区间,如农作物产量与施肥量之间 可能呈现出这种关系。当然,如果二次项系数为正,一次项系数为负,则函数呈现U型, 如离婚率与经济水平、生育率与经济水平等现象间很可能呈现出这种关系。 总成本与产量、短期总产量与劳动投入等现象间常常表现出三次多项式的特征。 如果研究此类现象可以采用三次项拟合。
6.10
dy y dx
对6.10微分并整理可得, 单位,被解释变量平均增加
。
100 %
,其含义是,当解释变量增加一个 。
3.对数函数
y ln x
6.11
从本质上看,幂函数、指数函数都是一种对数函数,而6.11给出了另外 一种对数函数,对数-线性函数,是半对数模型的另外表现形式。 该模型的特点在于,解释变量变化范围很大,而被解释变量的变化范围 较小,如城镇化率、工业化程度、学习成绩等等。研究此类现象的影响因素 时可以考虑用对数-线性模型。 对6.11微分并整理可得, d x 被解释变量平均增加 个单位。
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
非线性回归模型的线性化讲解
( b1>0, b2>0)
(b1<0, b2 <0
(2) 双曲函数模型
1 1 ui 双曲函数模型的一般形式为: Yi Xi 1 1 令 * * Yi , Xi Yi Xi
则可将原模型化为标准的线性回归模型
Yi X ui
* * i
双曲线函数还有另一种表达方式,
ln GDP i ln A ln Ki ln Li ui
Yi ln GDP i , X 1i ln Ki , X 2i ln Li
0 ln A, 1 , 2 则可将C-D生产函数模型转换成标准的二元线性回归模型
Yi 0 1 X1i 2 X 2i ui
Z p f p ( X1, X 2 ,, X k )
Y 0 1Z1 2 Z2 p Z p u
7
下面介绍在经济问题时经常遇到的几种非标准线性 回归模型 (1)多项式函数模型
多项式函数模型的一般形式为:
Yi 0 1 X i 2 X i2 k X ik ui
首先对上式做倒数变换得:
1 e X i ui Yi
令
1 Yi , X i* e X i Yi
*
则可将原模型化为标准的线性回归模型
Yi* X i* ui
15
2 可线性化的非线性回归模型的线性化方法
下面几种在研究经济问题时经常遇到的可线性化的非线性 回归模型 (1)指数函数模型
yt = b0 +b1 x 1t + b2 x 2t + b3 x 3t + ut 这是一个三元线性回归模型。如经济学中的总成本与产 品产量曲线与左图相似。
非线性化模型的线性化方法总结
非线性化模型的线性化方法总结在学习计量经济学过程中,我们所接触的经济学模型不仅仅是线性的,许多实际经济活动中的经济模型都是非线性的,例如恩格尔曲线表现为幂函数曲线形式,菲利普斯曲线表现为双曲线形式,下面介绍三种非线性模型的转化方法,分别适应于不同的模型:一、直接置换法:直接替换模型中原有的非线性变量。
适用模型如下:(1)倒数(双曲线)模型:0111u Q P ββ=++,可以用1Y Q =,1X P=来置换,变为01Y X u ββ=++(2)多项式模型:2012Y t t u βββ=+++,可以用212,X t X t ==来置换变为: 0122Y X X u βββ=+++(3)对数模型: 01ln Y X u ββ=++,将1ln X X=带入原式进行置换,得到:011Y X u ββ=++二、函数变换法:通过函数变化,如取对数、移项等方式对原模型进行变形以得到线性化模型:12(,,,)k Y f X X X u =⋅⋅⋅+(1) 幂函数模型:u Q AK L e αβ=,方程两边取对数,得到:ln ln ln ln Q A K L u αβ=+++再对上式进行置换。
(2)指数函数模型:Q uC ab e =,方程两边取对数得到:ln ln ln C a Q b u =++,再对上式进行置换。
三、级数展开法:如CES 函数112()p p u pQ A K L e δδ---=+,方程两边取对数得到:121ln ln ln()p p Q A K L u pδδ--=-++,将式中12ln()p p K L δδ--+在p=0处展开泰勒级数,取关于p 的线性项,即得到一个线性近似式,如取0阶、1阶、2阶项,可得:212121ln ln ln ln [ln()]2K Y A K L p Lδδδδ=++- (备注:无法线性化的模型一般为:12(,,,)k Y f X X X u =⋅⋅⋅+,其中12(,,,)k f X X X ⋅⋅⋅为非线性函数)。
02 数学模型 - 03非线性微分方程的线性化
第二章控制系统的数学模型第3讲非线性微分方程的线性化王燕舞为什么要进行线性化?严格的说,几乎所有元件或系统的运动方程都是非线性方程,即输入、输出和扰动等之间的关系都是非线性的。
非线性微分方程的求解和控制系统性能研究非常复杂,而线性化后的模型可借助叠加原理的性质,简化系统分析。
因此,研究非线性微分方程的线性化具有较强的工程实用价值。
什么是非线性数学模型的线性化?在一定的条件下或在一定范围内把非线性的数学模型化为线性模型的处理方法。
符合什么条件的系统可以进行线性化呢?▪条件1: 小偏差理论或小信号理论。
在工程实践中,控制系统都有一个额定的工作状态和工作点,当变量在工作点附近作小范围的变化时,就满足这个条件。
▪条件2: 在工作点附近存在各阶导数或偏导数。
如何进行线性化呢?假设微分方程模型中包含非线性函数f(x)如图所示。
设y=f(x),假设系统在工作点(x 0, y 0), y 0=f(x 0) 附近变化,且在该工作点处各阶导数均存在,在(x 0, y 0)附近将y 展开成泰勒级数:)()()()(000xx x x x f x f x f y -⎥⎦⎤⎢⎣⎡∂∂+==若偏差Δx=x-x 0很小,可忽略级数中高阶无穷小项,上式化为)()()()()()(00000x xK x f x x x x x f x f x f y -+=-⎥⎦⎤⎢⎣⎡∂∂+≈=K 表示y=f(x)曲线在(x 0,y 0)处切线的斜率。
因此非线性函数在工作点处可以用该点的切线方程线性化。
yy=f(x)y 0x 0x ⋯+-⎥⎦⎤⎢⎣⎡∂∂+20022)()(!21x x x x x f xK x f x f y y y ∆=-=-=∆)()(00如何进行线性化呢?小偏差法:在给定工作点的邻域将非线性函数展开为泰勒级数,忽略级数中的高阶项,得到只包含偏差的一次项的线性方程。
液位流体过程。
如图,Q1为流入量,也是输入量;Q 2为流出量;h 为液位高度,为系统输出;C 为液缸的截面积。
第四章 非线性回归模型的线性化
变量间的非线性关系
(1)非标准线性回归模型: 虽然被解释变量Y与解释变量X1X 2 .....X k 之间 不存在线性关系,但与未知参数 0 1...... k 之间 存在线性关系。例如: 根据平均成本与产量为U型曲线理论,总成本C 可以用产量X的三次多项式来近似表示,得到总成 本函数模型如下: C 0 1 X 2 X 2 3 X 3
-10.46385643
1.287009777
-8.130362812
1.1E-06
X Variable 1
1.021123591
0.029404208
34.72712407
5.5E-15
X Variable 2
1.471943365
0.239290421
6.151284117
2.5E-05
(2)Eviews3.1结果:
0 =lnA 1 =
2 =
X1=lnK
X2=lnL
新生成的线性回归模型为: Y= 0 +1X1+ 2 X2+
对于非线性模型的解决方法:以生产函数为例
案例分析:见Excel表格
解答: (1)Excel回归 (2)Eviews3.1
(1)EXcel回归结果
回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 0.99930353 1 0.99860754 8 0.99840862 6 0.02991798 5 17
第四章 非线性回归模型的线性化
陈修兰
线性回归模型 最小二乘法求解 若不是线性回归模型,又该如何求解呢?
(一)变量关系非线性问题:
若:(1)、变量
非线性函数的线性化问题
D(X)= 2 X X X X X t t 1 t 2
2 X X X X1X 2 1 t 1 2 X X X X2Xt 2 1 2
协方差阵传播率
E X E (( X 12 )) 随机向量X的数学期望E(X)是由E(X)= E (X ) t 定义的,它具有如下性质:
则有
A ( k ) X ( k 1) L ( k ) R
(k )
ε 0
(6)
在式(6)中,将 换成估值形式 ,用 代表 的最或然误差 (又称为 的改正数),则有
V 1( k ) (k ) V 2 V (k ) n
(D(L1)+D(L2)+·· ·+D(Ln)).
n
2
如果D(L1)=D(L2)=·· ·=D(Ln)=σ2,则上式为 D(x)= 令
D (x)
,
n
=σx,则有 σx=
式中σ和σx分别为观测值和算术平均值的标准差,标准 差在测量中称为中误差。
二.协方差及其传播律
1.协方差的概念及定义
设有线性函数 z=f1x+f2y, 令x,y的真误差为⊿x,⊿y,则z的真误差⊿z 为 ⊿z=f1 ⊿x+f2 ⊿y. ⊿y
ξ
1
(3)n个随机变量之和的数学期望,等 于各随机变量数学期望之和,即 E(ξ1+ξ2+·· n)=E(ξ1)+E(ξ2)+·· ξ ). ·+ξ ·+E随机变量的线性函数 F=α1ξ1+α2ξ2+·· αnξn= ·+ 的数学期望为 E( )= α1E(ξ )+ α2E(ξ2)+·· α E(ξn). ·+
第九章 非线性模型的线性化
第九章 非线性模型的线性化标准线性模型:因变量与自变量以及参数均呈线性关系。
非标准线性模型:因变量与自变量不呈线性关系,但与参数呈线性关系。
非线性模型:因变量与参数都不呈线性关系。
§5.1 非标准线性模型的线性化因变量与自变量不呈线性关系,但与参数呈线性关系。
一. 多项式函数模型:形如2012k k y x x x u ββββ=+++⋅⋅⋅⋅⋅++的模型可通过代换s z x s =, 1,2,,s k =⋅⋅⋅⋅ 线性化(标准化)后,得01122k k y z z z u ββββ=+++⋅⋅⋅⋅⋅++二. 双曲函数模型:形如011y u x ββ=++的模型可通过代换1z x=线性化,得 01y z u ββ=++三. 半对数函数模型和双对数函数模型:形如01ln y x u ββ=++或01ln y x u ββ=++的模型称为半对数模型; 形如01ln ln y x u ββ=++的模型称为双对数模型。
可分别采用变换 ln y y *=或ln x x *=进行标准化,01y x u ββ*=++;01y x u ββ*=++;01y x u ββ**=++§5.2 非线性模型的标准化一. 非线性模型的变换(间接代换):对某些非线性模型施以适当的变换,可化为标准线性模型。
研究柯布-道格拉斯生产函数模型:1. 柯布-道格拉斯生产函数模型:u Q AL K e βα=其中Q 代表产出,L 表示劳动力投入,K 表示资本的投入。
L 和K 是生产要素;u 是随机干扰项,A ,α和β是参数。
对于道格拉斯生产函数,一般要求满足“规模报酬不变”。
所谓规模报酬是指:在一定技术水平条件下,由生产规模的变动(要素投入量的变动)引起的产出量变动。
“规模报酬不变”是所有要素投入量按同比例变动,产出量也按相同比例变动。
一般, 设生产函数(,)Q f L K =,0λ> (,)f L K λλ(,)f L K λ= 不变规模报酬(又称为一阶齐次性)(,)f L K λλ(,)f L K λ> 递增规模报酬(,)f L K λλ(,)f L K λ< 递减规模报酬对于柯布-道格拉斯生产函数模型,有()()u u Q A L K AL K e e βαββααλλλλ+==所以,当 1αβ+= 不变规模报酬 (1βα=-)1αβ+> 递增规模报酬1αβ+< 递减规模报酬2.标准化:模型 u Q AL K e βα=首先,两边取对数ln ln ln ln Q A L K u αβ=+++然后作如下变换ln y Q =,1ln L x =,2ln x K =,ln a A =(要求u 满足假定,且1x ,2x 无多重共线性)则,12y a x x u αβ=+++,并且可用OLS 估计其参数,这样原模型的样本回归方程为Q A L K αβ∧∧∧∧=,其中,α∧和β∧是参数α和β的无偏估计量;y Q e ∧∧=,a A e ∧∧=,不是无偏估计量。
Linearization非线性方程的线性化
H ( s) 1 KA G( s) = = = Qin ( s ) As s
自动控制原理 浙江大学控制学院 2016
,
四、高阶
高阶对象:三阶或更高阶微分方程的对象
对于稳定系统而言(微分方程 的解均具有负实部),高阶系 统的单位阶跃响应与二阶系统 的单位阶跃响应相似,因此常 用二阶系统近似高阶系统。 工程上为简单起见,经常还采 用一阶加纯滞后的对象来近似 二阶或更高阶的对象。
对于保护套管 M1c1 对于热电阻体
dTa = α1 A1 (T − Ta ) − α 2 A2 (Ta − TR ) dt
M 2c2
自动控制原理 浙江大学控制学院 2016
M1 保护套管质量 2 M2 热电阻质量 d T dT R R 联立模型 T T + ( T + T + R C ) + TR = T c1 保护套管比热 1 2 1 2 1 2 2 dt dt c2 热电阻比热 A1 保护套管有效表面积 1 1 A2 热电阻表面积 R1 = R2 = C1 = M 1c1 C2 = M 2c2 α1 A1 α 2 A2 α1 介质与套管间导热系数 α2 套管与热电阻间导热系数
Linearization 非线性方程的线性化
非线性系统在工作点(平衡点)进行线性化
- - - 直线代替平衡点附近的曲线 不同的平衡点,具有不同的线性化关系 偏移愈小,这个关系愈准确
n dϕ 1 d 2ϕ 1 d ϕ ϕ = f (i f ) = ϕ 0 + ( )0 Δi f + ( 2 )0 ( Δi f ) 2 + ! + ( n )0 ( Δi f ) n + Rn+1 di f 2! di f n! di f
非线性系统线性化
化。
令状态偏差为 e x xd ,则有e x xd
由式(1.1)和式(1.2)可得系统的状态偏差方程为:
e x xd f (x,u,t) ( Ad xd Bd v) Ad e [ f (x,u,t) ( Ad x Bdv)] (1.3)
按上述思想,提出如下的基于平衡状态控制原理的非线性控制系统反馈线 性化的直接方法:
(1)按系统的动态性能要求设计一满足希望特性的线性动态系统作为模 型参考系统。
(2)以模型参考系统的状态作为实际被控系统的被控平衡状态。利用李 亚普诺夫直接方法设计控制律使系统对动平衡状态渐进稳定。从而被控系统近 似具有模型参考系统的动态特性,实现非线性系统的反馈线性化。
在非线性系统的模型参考方法中,基于李亚普诺夫直接方法的非线性系统 反馈线性化方法是最重要和最有效的一种设计方法,这类方法称为非线性系统 反馈线性化的直接方法。
运用控制系统动平衡状态的概念,提出一种建立在控制系统动平衡状态渐 近稳定概念上的新的设计方法。本方法认为:控制系统的输入直接控制的是系 统的动平衡状态。系统的输出和状态是在系统结构的约束下运动的。当系统对 其平衡状态大范围渐近稳定时,其状态将在系统结构约束下渐近收敛于系统的 平衡状态。当其平衡状态运动时,系统的状态亦将跟踪其平衡状态运动。因此 控制系统平衡状态的运动,即可实现对系统运动状态及输出的控制。
基于动平衡状态理论的非线性系统反馈 线性化直接方法
按上述方法,基本设计过程如下:
考虑一般的非线性系统
x f (x,u,t)
(1.1)
其中,x Rn 为状态向量,u Rm 为控制向量,f 为向量函数。
设希望的线性系统动态特性为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接近。
意味着:所建立的食品需求函数满足零阶齐次性特征
K 1 ln Y ln A 1 m ln K 2 m ln L m 1 2 ln L 2
2
并非所有的函数形式都可以线性化
无法线性化模型的一般形式为:
Y f ( X 1 , X 2 ,, X k )
其中,f(x1,x2,…,Xk)为非线性函数。如:
X:人均消费 X1:人均食 品消费 GP:居民消 费价格指数 FP:居民食品 消费价格指数 XC:人均消 费(90年价) Q:人均食品 消费(90年价) P0:居民消费 价格缩减指数 (1990=100) P:居民食品 消费价格缩减 指数 (1990=100
(当年价 ) (当年价 ) (上年 =100) (上年 =100)
(75.86)(52.66) (-3.62)
为了比较,改写该式为:
ˆ 3.83 1.07 (ln X ln P ) 0.09 (ln P ln P ) ln Q 0 1 0 3.83 1.07 ln X 0.09 ln P1 0.98 ln P0
发现与
ˆ ) 3.63 1.05 ln( X ) 0.08 ln( P ) 0.92 ln( P ) ln(Q 1 0
Q f ( X / P0 , P1 / P0 )
(**)
为了进行比较,将同时估计(*)式与(**)式。
首先,确定具体的函数形式
根据恩格尔定律,居民对食品的消费支出与居 民的总支出间呈幂函数的变化关系:
Q AX
1
P1 2 P0 3
对数变换:
ln(Q ) 0 1 ln X 2 ln P1 3 ln P0
中 国 城 镇 居 民 人 均 食 品 消 费
1800 1600 1400 1200 1000 800 600 400 200 82 84 86 88 90 92 94 96 98 00 Q
特征:
消费行为在 1981~1995年间表 现出较强的一致性 1995年之后呈现出 另外一种变动特征。
建立1981~1994年中国城镇居民对食品的消费需求模型:
表 3.5.1 中国城镇居民消费支出(元)及价格指数
X 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 456.8 471.0 505.9 559.4 673.2 799.0 884.4 1104.0 1211.0 1278.9 1453.8 1671.7 2110.8 2851.3 3537.6 3919.5 4185.6 4331.6 4615.9 4998.0 5309.0 X1 420.4 432.1 464.0 514.3 351.4 418.9 472.9 567.0 660.0 693.8 782.5 884.8 1058.2 1422.5 1766.0 1904.7 1942.6 1926.9 1932.1 1958.3 2014.0 GP 102.5 102.0 102.0 102.7 111.9 107.0 108.8 120.7 116.3 101.3 105.1 108.6 116.1 125.0 116.8 108.8 103.1 99.4 98.7 100.8 100.7 FP 102.7 102.1 103.7 104.0 116.5 107.2 112.0 125.2 114.4 98.8 105.4 110.7 116.5 134.2 123.6 107.9 100.1 96.9 95.7 97.6 100.7 XC (1990年价 ) 646.1 659.1 672.2 690.4 772.6 826.6 899.4 1085.5 1262.5 1278.9 1344.1 1459.7 1694.7 2118.4 2474.3 2692.0 2775.5 2758.9 2723.0 2744.8 2764.0 Q (1990年价 ) 318.3 325.0 337.0 350.5 408.4 437.8 490.3 613.8 702.2 693.8 731.3 809.5 943.1 1265.6 1564.3 1687.9 1689.6 1637.2 1566.8 1529.2 1539.9 P0 (1990=100) 70.7 71.5 75.3 81.0 87.1 96.7 98.3 101.7 95.9 100.0 108.2 114.5 124.6 134.6 143.0 145.6 150.8 157.0 169.5 182.1 192.1 P1 (1990=100) 132.1 132.9 137.7 146.7 86.1 95.7 96.5 92.4 94.0 100.0 107.0 109.3 112.2 112.4 112.9 112.8 115.0 117.7 123.3 128.1 130.8
一、模型的类型与变换
1、倒数模型、多项式模型与变量的直接置换法 例如,描述税收与税率关系的拉弗曲线:抛物线 s = a + b r + c r2 c<0 s:税收; r:税率 设X1 = r,X2 = r2, 则原方程变换为 s = a + b X1 + c X2 c<0
2、幂函数模型、指数函数模型与对数变换法
Q AK L
二、非线性回归实例
例3.5.1 建立中国城镇居民食品消费需求函数模型。 根据需求理论,居民对食品的消费需求函数大致为
Q f ( X , P1 , P0 )
(*)
Q:居民对食品的需求量,X:消费者的消费支出总额 P1:食品价格指数,P0:居民消费价格总指数。 零阶齐次性,当所有商品和消费者货币支出总额按同 一比例变动时,需求量保持不变
1
(1+2=1)
Q:产出量,K:资本投入,L:劳动投入 :替代参数, 1、2:分配参数
方程两边取对数后,得到:
1 LnQ LnA Ln( 1 K 2 L )
将式中ln(1K- + 2L-)在=0处展开台劳级数,取关于 的线性项,即得到一个线性近似式。 如取0阶、1阶、2阶项,可得
(***) (****)
考虑到零阶齐次性时
ln(Q ) 0 1 ln( X / P0 ) 2 ln( P1 / P0*)式施加如下约束而得 1 2 3 0
因此, 对( **** )式进行回归,就意味着原需 求函数满足零阶齐次性条件。
例如,Cobb-Dauglas生产函数:幂函数 Q = AKL Q:产出量,K:投入的资本;L:投入的劳动 方程两边取对数: ln Q = ln A + ln K + ln L
3、复杂函数模型与级数展开法
例如,常替代弹性CES生产函数
Q A( 1 K
2 L ) e
ˆ ) 3.63 1.05 ln( X ) 0.08 ln( P ) 0.92 ln( P ) ln(Q 1 0
(9.03) (25.35) (-2.28) (-7.34)
按零阶齐次性表达式回归:
ˆ ) 3.83 1.07 ln( X / P ) 0.09 ln( P / P ) ln(Q 0 1 0
§3.5 回归模型的其他函数形式
一、模型的类型与变换 二、非线性回归实例
在实际经济活动中,经济变量的关系是复杂 的,直接表现为线性关系的情况并不多见。
如著名的恩格尔曲线(Engle curves)表现为幂 函数曲线形式、宏观经济学中的菲利普斯曲线 (Pillips cuves)表现为双曲线形式等。 但是,大部分非线性关系又可以通过一些简 单的数学处理,使之化为数学上的线性关系,从 而可以运用线性回归的方法进行计量经济学方面 的处理。