博弈论复习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论

判断题(每小题1分,共15分)

囚徒困境说明个人的理性选择不一定是集体的理性选择。(√)

子博弈精炼纳什均衡不是一个纳什均衡。(×)

若一个博弈出现了皆大欢喜的结局,说明该博弈是一个合作的正和博弈。()博弈中知道越多的一方越有利。(×)

纳什均衡一定是上策均衡。(×)

上策均衡一定是纳什均衡。(√)

在一个博弈中只可能存在一个纳什均衡。(×)

在一个博弈中博弈方可以有很多个。(√)

在一个博弈中如果存在多个纳什均衡则不存在上策均衡。(√)

在博弈中纳什均衡是博弈双方能获得的最好结果。(×)

在博弈中如果某博弈方改变策略后得益增加则另一博弈方得益减少。(×)上策均衡是帕累托最优的均衡。(×)

因为零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈。

(×)

在动态博弈中,因为后行动的博弈方可以先观察对方行为后再选择行为,因此总是有利的。(×)

在博弈中存在着先动优势和后动优势,所以后行动的人不一定总有利,例如:在斯塔克伯格模型中,企业就可能具有先动优势。

囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。

(×)

纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合。(√)不存在纯战略纳什均衡和存在惟一的纯战略纳什均衡,作为原博弈构成的有限次重复博弈,共同特点是重复博弈本质上不过是原博弈的简单重复,重复博弈的子博弈完美纳什均衡就是每次重复采用原博弈的纳什均衡。(√)

多个纯战略纳什均衡博弈的有限次重复博弈子博弈完美纳什均衡路径:两阶段都采用原博弈同一个纯战略纳什均衡,或者轮流采用不同纯战略纳什均衡,或者两次都采用混合战略纳什均衡,或者混合战略和纯战略轮流采用。(√)

如果阶段博弈G={A1, A2,…,An; u1, u2,…,un)具有多重Nash均衡,那么可能(但不必)存在重复博弈G(T)的子博弈完美均衡结局,其中对于任意的t

零和博弈的无限次重复博弈中,所有阶段都不可能发生合作,局中人会一直重复原博弈的混合战略纳什均衡。(√)(或:零和博弈的无限次重复博弈中,可能发生合作,局中人不一定会一直重复原博弈的混合战略纳什均衡。(×))原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合,符合各局中人最

大利益:采用原博弈的纯战略纳什均衡本身是各局中人能实现的最好结果,符合所有局中人的利益,因此,不管是重复有限次还是无限次,不会和一次性博弈有区别。(√)

原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合,符合各局中人最大利益,但惟一的纳什均衡不是效率最高的战略组合,存在潜在合作利益的囚徒困境博弈。(√)(或:原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合,符合各局中人最大利益,不存在潜在合作利益的囚徒困境博弈。(×))根据参与人行动的先后顺序,博弈可以划分为静态博弈(static game)和动态博弈(dynamic game)。

如果阶段博弈G有唯一的Nash均衡,那么对任意有限次T,重复博弈G(T)有唯一的子博弈完美结局:在每一阶段取G的Nash均衡策略。(√)

四、名词解释(每小题3分,共15分)

参与人(player)

指的是博弈中选择行动以最大化自己效用(收益)的决策主体,参与人有时也称局中人,可以是个人,也可以是企业、国家等团体;

策略(strategy)

是参与人选择行动的规则,如“以牙还牙”是一种策略;

信息(information)

是指参与人在博弈中的知识,尤其是有关其他参与人的特征和行动的知识;支付(payoff)函数

是参与人从博弈中获得的效用水平,它是所有参与人策略或行动的函数,是每个参与人很关心的东西;

结果(outcome)

是指博弈分析者感兴趣的要素的集合,常用支付矩阵或收益矩阵来表示;

均衡(equilibrium)

是所有参与人的最优策略或行动的组合。

静态博弈

指参与人同时选择行动或虽非同时但后行动者并不知道先行动者采取什么样的行动;

动态博弈

指参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

博弈

就是一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。

零和博弈:

也称“严格竞争博弈”。博弈方之间利益始终对立,偏好通常不同

变和博弈:

零和博弈和常和博弈以外的所有博弈。合作利益存在,博弈效率问题的重要

性。

完全信息静态博弈

即各博弈方同时决策,且所有博弈方对各方得益都了解的博弈。 上策:

不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略 上策均衡:

一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果 严格下策:

不管其它博弈方的策略如何变化,给一个博弈方带来的收益总是比另一种策略给他带来的收益小的策略 合作博弈 非合作博弈 零和博弈 常和博弈 变和博弈 上策均衡 纳什均衡

纳什均衡:在博弈

中,如果由各个博弈方的各一个策略组成的某个策略组合 中,任一博弈方 的策略,都是对其余博弈方策略的组合 的最佳对策,也即

对任意

都成立,则称 为 的一个纳什均衡

(或纳什均衡是指这样一种策略组合,这种策略组合由所有参与人的最优策略组成,即给定别人策略的情况下,没有任何单个参与人有积极性选择其他策略,从而没有任何参与人有积极性打破这种均衡。) 完全信息博弈

混合策略:在博弈 中,博弈方 i 的策略空间

为 ,则博弈方 以概率分布 随机在其 k 个可选策略中选择的“策略”,称为一个“混合策略”,其中 对 都成立,且 帕累托上策均衡 风险上策均衡 聚点均衡 重复博弈

指同样结构的博弈重复多次,其中的每次博弈称为“阶段博弈”。 阶段博弈

重复博弈中的每次博弈称为“阶段博弈”。 贴现因子

下一期的一单位支付在这一期的价值。 触发战略(Trigger Strategy )

},;,{11n n u u S S G =),(*

*n i s s )

,...,,(*

*1*1*n i i i s s s s +- i j i S s ∈),...,,,(),...,,,(*

*1*1***1**1*n i ij i i i n i i i i i s s s s s u s s s s s u +-+-≥ ),(*

*n i s s },;,{11n n u u S S G =},{1ik i i s s S =),(1ik i i p p p =k j ,,1 =10≤≤ij p 11=++ik i p p

相关文档
最新文档