矩形菱形正方形小结

合集下载

华东师大版八下数学第19章矩形,菱形和正方形19.1《矩形的性质》优秀教学案例

华东师大版八下数学第19章矩形,菱形和正方形19.1《矩形的性质》优秀教学案例
五、案例亮点
1.生活情境的创设:通过多媒体展示矩形在生活中的应用场景,使学生能够直观地认识到矩形的重要性,增强了学生的学习兴趣和实际应用意识。这种情境创设不仅引发了学生的学习兴趣,还使他们能够更好地理解矩形的性质和应用。
2.问题导向与小组合作:设计富有挑战性的问题,引导学生进行思考和探究,同时组织学生进行小组合作,培养了学生的团队合作意识和沟通能力。这种问题导向和小组合作的方式,使学生在解决问题的过程中提高了自己的能力,同时也培养了他们的合作精神。
在知识与技能方面,我力求使学生掌握矩形的性质,并能运用矩形的性质解决实际问题。通过观察、操作、思考、交流等数学活动,培养学生的空间想象能力和逻辑思维能力。
在过程与方法方面,我注重培养学生的团队合作意识和沟通能力。通过小组合作探究,让学生在解决问题的过程中提高自己的能力,同时培养学生的合作精神。
在情感态度与价值观方面,我力求激发学生的学习兴趣,使他们认识到数学与实际生活的密切联系。树立正确的数学学习观念,培养勇于探究、勇于挑战的精神。
2.学生能够认识到数学与实际生活的密切联系,增强应用数学解决实际问题的意识。
3.学生能够树立正确的数学学习观念,培养勇于探究、勇于挑战的精神。
作为一名特级教师,我深知教学目标的重要性,它不仅关系到学生的学习效果,也关系到学生的成长和发展。因此,在制定教学目标时,我注重将知识与技能、过程与方法、情感态度与价值观三者紧密结合,力求在教学过程中实现学生的全面发展。
3.反思与评价:在教学过程中,我注重引导学生对自己的学习过程进行反思,总结学习矩形性质的方法和技巧。同时,组织学生进行自我评价和课堂评价,关注学生的学习态度、参与程度和成果。这种反思与评价的方式,使学生能够更好地认识自己的学习情况,提高了他们的自我认知能力。

矩形 菱形 正方形

矩形 菱形 正方形
A D H
(3)添加一个条件,使四边形 )添加一个条件, EFGH为正方形; 为正方形; 为正方形 E AC=BD且AC ⊥ BD 且
B F
G
C
那么,特殊平行四边形的“ 那么,特殊平行四边形的“中点 四边形”会是怎样的图形呢? 四边形”会是怎样的图形呢? 1.矩形的“中点四边形”是菱 矩形的“中点四边形” 形; 矩形的 2.菱形的“中点四边形”是矩 菱形的“中点四边形” 菱形的 3.正方形的“中点四边形”是 正方形的“中点四边形” 正方 正方形的 形。 形;
选择题) 三、基本练习 (选择题 选择题
1.如图,已知正方形 如图,已知正方形ABCD的边长为 ,如果将线段 的边长为2,如果将线段BD 的边长为
绕着点B旋转后, 落在CB的延长线上的 绕着点 旋转后,点D落在 的延长线上的 处,那 旋转后 落在 的延长线上的D’处 等于( ) 么tan∠BAD′等于( B 等于 (A) 1 (B) 2 (C) 2 (D) 2 2
三、基本练习 (选择题 选择题) 选择题
3. 如图,有一块矩形纸片ABCD,AB=10,AD=6, 如图,有一块矩形纸片 , 将纸片折叠, 边落在AB边上 将纸片折叠,使AD边落在 边上,折痕为 ,再将 边落在 边上,折痕为AE, △AED以DE为折痕向右折叠,AE与BC交于点 ,则 以 为折痕向右折叠, 与 交于点F, 为折痕向右折叠 交于点 的面积为( △CEF的面积为(C) 的面积为 (A) 4 (B)6 (C)8 (D)10
2
2.矩形 矩形ABCD的顶点 的顶点A,B,C,D按照顺时针方向排列, 按照顺时针方向排列, 矩形 的顶点 按照顺时针方向排列 若在平面直角坐标系中, 若在平面直角坐标系中,B,D两点对应的坐标分别 两点对应的坐标分别 ),(0,0),且A,C两点关于 轴对称, ),且 两点关于x轴对称 是(2,0),( ),( ), 两点关于 轴对称, 点对应的坐标是( 则C点对应的坐标是( ) B 点对应的坐标是 (A)(1,1) (B) (1,-1) (C) (1,-2) (D) ( 2 ,- 2 )

矩形、菱形、正方形】5大知识要点总结

矩形、菱形、正方形】5大知识要点总结

1. 矩形、菱形和正方形的定义及特点- 矩形是指具有四个直角的四边形,对角线相等,且相对边长相等。

- 菱形是指具有四个边长相等的四边形,对角线垂直且平分。

- 正方形是一种特殊的矩形和菱形,具有四个直角和四个边长相等的特点。

2. 矩形、菱形和正方形的性质和公式- 矩形的周长和面积分别用公式2*(长+宽)和长*宽表示。

- 菱形的周长和面积分别用公式4*边长和(对角线1*对角线2)/2表示。

- 正方形的周长和面积分别用公式4*边长和边长^2表示。

3. 矩形、菱形和正方形在几何图形中的应用- 矩形常见于建筑物的平面设计、画框、电视屏幕等。

- 菱形在菱形格子、菱形图案、梁的截面等中常见应用。

- 正方形常见于棋盘、地砖、窗户等设计中。

4. 矩形、菱形和正方形与其他几何图形的联系和区别- 矩形是特殊的平行四边形,与平行四边形和正方形有联系。

- 菱形是特殊的平行四边形,与平行四边形和正方形有联系。

- 正方形是特殊的矩形和菱形,具有独特的特点和应用。

5. 实际生活中的矩形、菱形和正方形的应用案例- 通过实际案例,解释矩形、菱形和正方形在生活中的运用和意义,如建筑结构、家居设计、工程绘图等。

- 分析实际案例中矩形、菱形和正方形的优缺点,引导读者对几何图形的深入思考和应用。

个人观点和总结通过对矩形、菱形和正方形的深入研究和比较,我深刻地认识到这些几何图形在我们日常生活中的重要性和应用广泛性。

它们不仅是数学中的重要概念,也是实际工程和设计中不可或缺的元素。

在未来的学习和工作中,我将更加注重对这些几何图形的认识和运用,以提高自己的学术和职业能力。

PS: 本文仅代表个人观点,如有不同意见,请指正。

矩形、菱形和正方形是我们生活中常见的几何图形,它们在建筑、设计、工程、艺术等领域都有着广泛的应用。

下面将对它们在不同领域的具体应用进行更详细地介绍。

我们来看矩形在建筑和设计中的应用。

矩形具有四个直角和对角线相等的特点,这使得它成为建筑物中常见的平面结构。

2024年中考数学复习矩形、菱形、正方形精彩教案设计

2024年中考数学复习矩形、菱形、正方形精彩教案设计

2024年中考数学复习矩形、菱形、正方形精彩教案设计一、教学内容本教案依据人教版初中数学九年级上册第四章“矩形、菱形、正方形”的相关内容进行设计。

详细内容包括:矩形的性质与判定;菱形的性质与判定;正方形的性质与判定;特殊四边形的面积计算。

二、教学目标1. 理解并掌握矩形、菱形、正方形的性质与判定方法,能准确识别这些特殊四边形。

2. 学会运用矩形、菱形、正方形的性质解决实际问题,提高解决问题的能力。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点教学难点:矩形、菱形、正方形的性质与判定的应用。

教学重点:矩形的性质与判定;菱形的性质与判定;正方形的性质与判定。

四、教具与学具准备教具:多媒体教学设备、几何画板、直尺、圆规、量角器。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的矩形、菱形、正方形物品,引导学生观察并说出它们的共同特点,激发学生的学习兴趣。

2. 矩形、菱形、正方形的性质与判定(15分钟)(1)矩形的性质与判定:引导学生回顾矩形的定义,通过实例讲解矩形的性质,如对边平行且相等、对角线相等、四个角都是直角等。

然后给出判定定理,让学生进行练习。

(2)菱形的性质与判定:引导学生回顾菱形的定义,通过实例讲解菱形的性质,如四边相等、对角线垂直平分、对角线互相垂直等。

然后给出判定定理,让学生进行练习。

(3)正方形的性质与判定:引导学生回顾正方形的定义,通过实例讲解正方形的性质,如四边相等、四个角都是直角、对角线相等且垂直等。

然后给出判定定理,让学生进行练习。

3. 例题讲解(15分钟)讲解与矩形、菱形、正方形相关的例题,让学生理解性质与判定的应用。

4. 随堂练习(10分钟)布置与矩形、菱形、正方形相关的练习题,让学生巩固所学知识。

5. 小结与拓展(5分钟)六、板书设计1. 矩形的性质与判定2. 菱形的性质与判定3. 正方形的性质与判定4. 例题解析5. 随堂练习七、作业设计1. 作业题目:(1)已知四边形ABCD,AB=CD,AD=BC,且∠A=90°,证明:四边形ABCD是矩形。

第22讲 菱形、矩形、正方形

第22讲  菱形、矩形、正方形

一半.
菱形的性质和判别
◆中考指数:★★☆☆☆
1.菱形的性质: (1)菱形的对角线将菱形分成四个全等的直角三角形,可将 菱形的问题转化为直角三角形去解决. (2)有一个内角为60°(或120°)的菱形,连结对角线可构成 等边三角形,可将菱形问题转化到等边三角形中去解决. (3)巧用菱形的对称性可解决一些求线段和最小值的问题. 2.菱形的判别的两个思路: (1)若四边形为(或可证明为)平行四边形,则再证一组邻边 相等或对角线互相垂直. (2)若相等的边较多(或容易证出)时,可证四条边相等.
形的对角线相等且互相平分.
6.(2012·盐城中考)如图,在四边形ABCD中,已知AB∥DC,AB=DC. 在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再
加上的一个条件是_______.(填上你认为正确的一个答案即可)
【解析】由题知四边形ABCD为平行四边形,再根据有一角为 90°的平行四边形为矩形可得结论. 答案:∠A=90°(或∠A=∠B或∠A+∠C=180°,答案不惟一)
1.(2012·长沙中考)如图,菱形ABCD中, 对角线AC与BD相交于点O,OE∥DC且交 BC于E,AD=6 cm,则OE的长为( (A)6 cm (C)3 cm (B)4 cm (D)2 cm )
【解析】选C.由于四边形ABCD为菱形, 所以AD=AB=6 cm, OC 1 .
AC 2 由于OE∥AB,所以 OC OE , AC AB
知 识 点 睛
特 别 提 醒
当已知中出现对角线的相关条件时,常用“对角线相等且
互相垂直平分的四边形是正方形”来证.
【例3】(2012·黄冈中考)如图,在 正方形ABCD中,对角线AC,BD相交于 点O,E,F分别在OD,OC上,且DE=CF, 连结DF,AE,AE的延长线交DF于点M. 求证:AM⊥DF. 【思路点拨】正方形的性质→△AOE≌△DOF→

多边形平行四边形矩形菱形正方形的知识点总结

多边形平行四边形矩形菱形正方形的知识点总结

多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。

正方形的判定

正方形的判定

⑸若AB=BC,且AC=BD,则四边形ABCD是
(正方形

精品课件
例2、直角三角形ABC中,CD平分∠ACB交AB于D,
DE⊥AC,DF⊥AB。求证:四边形CEDF是正方形。
证明:∵ DE⊥AC,DF⊥AB
∴ ∠DEC=90°, ∠DFC=90° F
而∠ACB=90°
B
D
A
∴ 四边形ABCD为矩形( 有三个角是直角的四边形是矩形 )
证明:
∵四边形ABCD是平行四边形,∠A=900,
∴四边形ABCD是矩形.
A
D
又∵AB=BC,
∴四边形ABCD是正方形.
B
C
精品课件
正方形的判定方法2:
有一个组邻边相等的矩形是正方形
已知:四边形ABCD是矩形,AB=BC.
求证:四边形ABCD是正方形.

D
证明:
∵四边形ABCD是矩形,
B
C
∴∠A=∠B=∠C=∠D=90°,AD=BC,AB=CD.
2
1
∴ ∠EFH=90 °
∴ 四边形EFGH是正方形 (有一个角是直角的菱形是正方形)
精品课件
设计花坛
在一块正方形的花坛上,欲修建两条直的小路 使得两条直的小路将花坛平均分成面积相等的 四部分(不考虑道路的宽度).你有几种方法?
的四边形一定是:(A )
A.正方形
B.菱形
C.矩形
D.平行四边形
精品课件
练习5、已知四边形ABCD是平行四边形,对 角线AC、BD相交于点O。
⑴若AB=BC,则四边形ABCD是( 菱形 ) ⑵若AC=BD,则四边形ABCD是( 矩形 ) ⑶若∠BCD=900,则四边形ABCD是( 矩形 ) ⑷若OA=OB,则四边形ABCD是( 矩形 )

精华总结:平行四边形、矩形、菱形、正方形知识点

精华总结:平行四边形、矩形、菱形、正方形知识点

平行四边形、矩形、菱形、正方形知识点总结一般平行四边形特殊平行四边形矩形菱形(正方形图形·定义两组对边分别平行的四边形是平行四边形~有一个角是直角的平行四边形是矩形有一组邻边相等的平行四边形是菱形有一个角是直角,且有一组邻边相等的平行四边形叫做正方形性质①边:对边平行且相等②角:对角相等,邻角互补~③对角线:对角线互相平分除具有平行四边形的性质外,还有①角:四个角都是直角②对角线:对角线相等,且互相平分除具有平行四边形的性质外,还有①边:四条边相等②对角线:对角线互相垂直平分,且每一条对角线平分一组对角*具有矩形、菱形的所有性质(正方形=矩形+菱形)①边:四条边相等②角:四个角是直角③对角线:对角线相等,互相垂直平分,每一条对角线平分一组对角;判定边:!①两组对边分别平行的四边形是平行四边形②两组对边分别相等的四边形是平行四边形③一组对边平行且相等的四边形是平行四边形角:④两组对角分别相等的四边形是平行四边形对角线:⑤对角线互相平分的四边形是平行四边形;角:①有一个角是直角的平行四边形是矩形②有三个角是直角的四边形是矩形对角线:③对角线相等的平行四边形是矩形边:①有一组邻边相等的平行四边形是菱形#②四边都相等的四边形是菱形对角线:③对角线互相垂直的平行四边形是菱形①对角线相等且互相垂直平分的四边形是正方形②有一组邻边相等且有一个角是直角的平行四边形是菱形③有一组邻边相等的矩形是菱形④对角线互相垂直的矩形是菱形…⑤有一个角是直角的菱形是菱形⑥对角线相等的菱形是菱形面积S=ah(a为一边长,h为这条边上的高)S=ab(a为一边长,b为另一边长)①~②③S=ah(a为一边长,h为这条边上的高);②①(a为边长);②(b为对角线长)。

中考一轮复习--第21讲 矩形、菱形、正方形

中考一轮复习--第21讲 矩形、菱形、正方形

考法1
考法2
考法3
对应练1(课本习题改编)下列命题,其中是真命题的为( D )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
考法1
考法2
考法3
对应练2(2019·内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线
∵AD2+AB2=BD2,∴64+AB2=4AB2,
8 3
.
3
∴AB=
考法1
考法2
考法3
对应练3
(2018·甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点
F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
∴OD= 2,
∴直线 l∥AC 并且到 D 的距离为 3,同理,在点 D 的另一侧还有一条
直线满足条件,
故共有 2 条符合题意的直线 l.故选 B.
考法1
考法2
考法3
矩形的性质和判定
例1(2018·合肥行知学校模拟)如图,已知▱ABCD,延长AB到E使
BE=AB,连接BD,ED,EC,若ED=AD.
AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的
8 3
长为 3
.
解析:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,∵AE平分∠BAO,
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA),
∴AO=AB,且AO=OB,

等腰三角形、平行四边形、矩形、菱形、正方形、梯形经典归纳附知识点口诀

等腰三角形、平行四边形、矩形、菱形、正方形、梯形经典归纳附知识点口诀

甲A BCDEF G 图形那些事儿①从等腰到梯形与你们不得不说的故事㈠等腰三角形的“两腰的旋转重合性”2012.2.17 如图,在等腰三角形ABC 中,若顶角α=∠BAC ,则显然有:腰AB与腰AC 重合,反之有腰AC与腰AB 重合。

☞由此引出定点旋转证全等:一点一角两条边,转点两侧全等现 ☞special :2个正方形就出全等形, 2等腰2(正)△全等跑不了⑴(10黑河)已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,则下列结论:①AE=BD ②AG =BF ③FG ∥BE ④∠BOC =∠EOC 其中正确结论的个数( )A.1个 B.2个 C.3个 D.4个⑵(11浙江义乌)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形;③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有:_______________⑶(2011湖北鄂州)如图,在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF长.⑷(2010 重庆江津)在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△A F B ,连接E F .下列结论中正确的个数有( ) ①45EAF ∠=︒ ②△A B E ∽△ACD ③E A 平分CEF ∠ ④222B E DCDE +=☞等腰三角形底边上一点到两腰的距离之和等于腰上的高.⑸在ABC △中,A B A CD =,是BC 上任意一点,过D 分别向AB AC ,引垂线,垂足分别为E F CG ,,是A B 边上的高. (1)DE DF CG ,,的长之间存在着怎样的等量关系?并加以证明.(3)若D 在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.㈡平行四边形: S 平行四边形=底边长×高=ah绕点A 逆时针 旋转α绕点A 顺时针旋转α AB C αOACFEBD☞平行四边形各内角的角平分线围成的是矩形▷矩形的四个内角平分线围成了一个正方形▷菱形的四个内角平分线互相垂直平分☞平行四边形对角线中点+垂线=菱形▷平行四边形+角平分线=等腰三角形①如图,□ABCD中,AE、BF、CG、DH分别是各内角的平分线,E、F、G、H为它们的交点,求证:四边形EFGH的矩形。

平行四边形、矩形、菱形、正方形的定义、性质、判定

平行四边形、矩形、菱形、正方形的定义、性质、判定

平行四边形定义:两组对边分别平行的四边形叫做平行四边形
平行四边形性质:对边平行且相等,对角相等,对角线互相平分
平行四边形判定:1、有一组对边平行且相等的四边形是平行四边形
2、两组对边分别平行的四边形是平行四边形
3、两组对边分别相等的四边形是平行四边形
4、对角线互相平分的四边形是平行四边形
矩形定义:有一个角是90°的平行四边形叫做矩形
矩形性质:1、四个角都是90°2、对角线相等
矩形判定:1、有一个角是90°的平行四边形是矩形
2、三个角都是90°的角是矩形
3、对角线相等的平行四边形是矩形
菱形定义:有一组邻边相等的平行四边形叫做菱形
菱形性质:1、四边相等2、对角线互相垂直
菱形判定:1、有一组邻边相等的平行四边形是菱形
2、四条边都相等的四边形是菱形
3、对脚线互相垂直的平行四边形是菱形
正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形
正方形性质:具有平行四边形、菱形、矩形的所有性质
正方形判定:1、有一组邻边相等且有一个角是直角的平行四边形是正方形
2、有一组邻边相等的矩形是正方形
3、有一个角是直角的菱形是正方形。

平行四边形、矩形、菱形、正方形定义、性质、判定

平行四边形、矩形、菱形、正方形定义、性质、判定
轴对称
中心对称
中心对称


有一个角是直角的平行四边形叫做矩形。
①具有平行四边形的一切性质
②四个角都是直角
③对角线相等
①有一个角是直角的平行四边形
②有三个角是直角的四边形
③对角线相等的平行四边形
轴对称
中心对称


有一组邻边相等的平行四边形叫做菱形。
①具有平行四边形的一切性质
②四条边都相等
③对角线互相垂直平分每组对角
四种特殊四边Leabharlann 的性质边角对角线
对称性
图形
平行
四边形
对边平行
且相等
对角相等
互相平分
中心对称
矩形
对边平行
且相等
四个角
都是直角
互相平分
且相等
轴对称
中心对称
菱形
对边平行
四条边相等
对角相等
互相垂直平分且
每条对角线平分对角
轴对称
中心对称
正方形
对边平行、邻边垂直、
四条边相等
四个角
都是直角
互相垂直平分且相等,
每条对角线平分一组对角
①有一组邻边相等的平行四边形
②四条边都相等的四边形
③对角线互相垂直的四边行
轴对称
中心对称



有一个角是直角,一组邻边相等的平行四边形叫做正方形。
①具有平行四边形、矩形、菱
形的一切性质
②对角线与边的夹角为45
①有一组邻边相等的矩形
②对角线互相垂直的矩形
③一个角是直角的菱形
④对角线相等的菱形
轴对称
中心对称
平行四边形、矩形、菱形、正方形定义,性质和判定归纳如表:

几何公式定理:矩形,菱形、正方形

几何公式定理:矩形,菱形、正方形

几何公式定理:矩形,菱形、正方形
几何公式定理:矩形
1、矩形性质定理1矩形的四个角都是直角
2、矩形性质定理2矩形的对角线相等
3、矩形判定定理1有三个角是直角的四边形是矩形
4、矩形判定定理2对角线相等的平行四边形是矩形
几何公式定理:菱形
5、菱形性质定理1菱形的四条边都相等
6、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
7、菱形面积=对角线乘积的一半,即S=(ab)2
8、菱形判定定理1四边都相等的四边形是菱形
9、菱形判定定理2对角线互相垂直的平行四边形是菱形
几何公式定理:正方形
1、正方形性质定理1正方形的四个角都是直角,四条边都相等
2、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
3、定理1关于中心对称的两个图形是全等的
4、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
5、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

菱形、矩形、正方形

菱形、矩形、正方形

矩形、菱形、正方形、梯形一、矩形 1、矩形的定义 有一个角是直角的平行四边形叫做矩形。

2、矩形的性质 (1)矩形的对边平行且相等 (2)矩形的四个角都是直角 (3)矩形的对角线相等且互相平分 (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形 四个顶点的距离相等) ;对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定 (1)定义:有一个角是直角的平行四边形是矩形 (2)定理 1:有三个角是直角的四边形是矩形 (3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积 S 矩形=长×宽=ab 二、菱形 1、菱形的定义 有一组邻边相等的平行四边形叫做菱形 2、菱形的性质 (1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等 (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角 (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形 四条边的距离相等) ;对称轴有两条,是对角线所在的直线。

3、菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形 (2)定理 1:四边都相等的四边形是菱形 (3)定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积 S 菱形=底边长×高=两条对角线乘积的一半 三、正方形 1、正方形的定义 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质 (1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4) 正方形既是中心对称图形又是轴对称图形; 对称中心是对角线的交点; 对称轴有四条, 是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定 判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。

1先证它是菱形,再证它是矩形。

矩形、菱形的性质定理和判定定理及其证明

矩形、菱形的性质定理和判定定理及其证明

矩形、菱形和正方‎形的性质定‎理和判定定‎理及其证明‎一、知识概述1、矩形的性质‎定理定理1:矩形的四个‎角都是直角‎.说明:(1)矩形具有平‎行四边形的‎一切性质.(2)矩形的这一‎特性可用来‎证明两条线‎段互相垂直‎.定理2:矩形的对角‎线相等.说明:矩形的这一‎特性可用来‎证明两条线‎段相等.推论:直角三角形‎斜边上的中‎线等于斜边‎的一半.说明:与中位线定‎理及在直角‎三角形中,30°角所对的直‎角边等于斜‎边的一半一‎样,这一推论可‎用来证明线‎段之间的倍‎数关系.2、矩形的判定‎定理定理1:对角线相等‎的平行四边‎形是矩形.定理2:有三个角是‎直角的四边‎形是矩形.3、菱形的性质‎定理定理:菱形的四条‎边都相等.说明:(1)菱形具有平‎行四边形的‎一切性质,并且具有它‎特殊的性质‎.(2)利用该特性‎可以证明线‎段相等.定理2:菱形的对角‎线互相垂直‎.并且每条对‎角线平分一‎组对角.说明:根据菱形的‎特性可知,其对角线将‎它分成四个‎全等的直角‎三角形,再由直角三‎角形的相关‎性质,证明线段或‎角的关系,这样就将四‎边形问题转‎化为三角形‎问题来处理‎.4、菱形的判定‎定理定理1:对角线互相‎垂直的平行‎四边形是菱‎形.定理2:四条边都相‎等的四边形‎是菱形.说明:菱形的两个‎判定定理起‎点不同,一个是平行‎四边形,一个是四边‎形,判定时的条‎件不同,一个是对角‎线互相垂直‎,一个是四条‎边都相等.5、正方形的性‎质普通性质:正方形有四‎边形、平行四边形‎、矩形、菱形的一切‎性质.特有性质:(1)边:四条边都相‎等,邻边垂直,对边平行;(2)角:四个角都是‎直角;(3)对角线:①相等,②互相垂直平‎分,③每条对角线‎平分一组对‎角.说明:正方形这些‎性质根据定‎义可直接得‎出.特殊性质——正方形的一‎条对角线把‎正方形分成‎两个全等的‎等腰直角三‎角形,对角线与边‎的夹角是4‎5°,正方形的两‎条对角线把‎正方形分成‎四个全等的‎等腰直角三‎角形.6、正方形的判‎定(1)判定一个四‎边形为正方‎形的主要依‎据是定义,途径有两种‎:①先证它是矩‎形,再证有一组‎邻边相等;②先证它是菱‎形,再证有一个‎角为直角.(2)判定正方形‎的一般顺序‎;①先证明是平‎行四边形;②再证有一组‎邻边相等(有一个角是‎直角);③最后证明有‎一个角是直‎角(有一组邻边‎相等).说明:证明一个四‎边形是正方‎形的方法很‎多,但一定注意‎不要缺少条‎件.二、重难点知识‎归纳1、特殊的平行‎四边形知识‎结构三、典型例题讲‎解例1、如图所示,M,N分别是平‎行四边形A‎B CD的对‎边AD,BC的中点‎,且AD=2AB,求证四边形‎P MQN 为‎矩形.错解:连接MN.∵四边形AB‎C D是平行‎四边形,∴AD BC.又∵M,N分别为A‎D,BC的中点‎,∴AM BN.∴四边形AM‎N B是平行‎四边形.又∵AB=AD,∴AB=AM,∴口AMNB‎是菱形.∴AN⊥BM,∴∠MPN=90°.同理∠MQN=90°,∴四边形PM‎Q N为矩形‎.分析:错在由∠MPN=∠MQN=90°,就证得四边‎形PMQN‎是矩形这一‎步,还需证一个‎角是直角或‎证四边形P‎M QN是平‎行四边形,证四边形P‎M QN是平‎行四边形这‎种方法比较‎好.正解:连接MN,∵四边形AB‎C D是平行‎四边形,∴AD BC.又∵DM=AD,BN=BC(线段中点定‎义),∴四边形BN‎D M为平行‎四边形.∴BM DN,同理ANM ‎C.∴四边形PM‎Q N是平行‎四边形.∵AM BN,∴四边形AB‎N M是平行‎四边形.又∵AD=2AB,AD=2AM,∴AB=AM,∴四边形AB‎N M是菱形‎.∴AN⊥BM,即∠MPN=90°,∴四边形PM‎Q N是矩形‎.例2、如图所示,4个动点P‎,Q,E,F分别从正‎方形ABC‎D四个顶点‎同时出发,沿着AB,BC,CD,DA以同样‎的速度向B‎,C,D,A各点移动‎.(1)试判断四边‎形PQEF‎的形状,并证明;(2)PE是否总‎过某一定点‎?并说明理由‎;(3)四边形PQ‎E F的顶点‎位于何处时‎,其面积有最‎大值和最小‎值?最大值和最‎小值各是多‎少?分析:(1)猜想四边形‎P QEF为‎正方形,先证它为菱‎形,再证有一直‎角即可;(2)此问是动态‎问题,紧紧抓住运‎动过程中的‎不变量,即APCE ‎,四边形AP‎C E为平行‎四边形,易知PE与‎A C平分于‎点O;(3)此问中显然‎当点P,Q,E,F分别运动‎至与正方形‎A BCD各‎顶点重合时‎面积最大,分析最小值‎时的情形可‎根据S正=PE2,而PE最小‎时是PE⊥AB,此时PE=BC.解:(1)四边形PQ‎E F为正方‎形,证明如下:在正方形A‎B CD中,∵AB=BC=CD=DA,AP=BQ=CE=DF,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB,∴∠FPQ=90°.∴四边形PQ‎E F为正方‎形.(2)连接AC交‎P E于点O‎.∵AP EC,∴四边形AP‎C E为平行‎四边形.又∵O为对角线‎A C的中点‎,∴对角线PE‎总过AC的‎中点.(3)当P运动至‎与B重合时‎,四边形PQ‎E F面积最‎大,等于原正方‎形面积,当PE⊥AB时,四边形PQ‎E F的面积‎最小,等于原正方‎形面积的一‎半.小结:探索动态问‎题,解答的关键‎是抓住它不‎动的一瞬间‎和运动中的‎不变量,即动中求静‎,这类题目是‎中考的热点‎考题.例3、如图所示,在△ABC中,∠ACB=90°,AC=2,BC=3,D是BC边‎上一点,直线DE⊥BC于D,交AB于E‎,CF//AB,交直线DE‎于F,设CD=x.(1)当x取何值‎时,四边形EA‎C F是菱形‎?请说明理由‎;(2)当x取何值‎时,四边形EA‎C D的面积‎等于2?分析:本题考查菱‎形的判定、解直角三角‎形等知识的‎综合运用,有一定的探‎究性.解:(1)∵∠ACB=90°∴AC⊥BC.又∵DE⊥BC,∴EF//AC.∵AE//CF,∴四边形EA‎C F是平行‎四边形.当CF=AC时,四边形AC‎F E是菱形‎.此时CF=AC=2,BD=3-x,tan B=,∴ED=BD·tan B=(3-x).∴DF=EF-ED=2-(3-x)=x.在Rt△CDF中,CD2+DF2=CF2,∴x2+(x)2=22,∴(负值不合题‎意,舍去).即当时,四边形AC‎F E是菱形‎.(2)由已知条件‎可知四边形‎E ACD是‎直角梯形,例4、如图所示,在等腰梯形‎A BCD中‎,AD//BC,M、N分别是A‎D,BC的中点‎,E,F分别是B‎M,CM的中点‎.(1)求证四边形‎M ENF是‎菱形;(2)若四边形M‎E NF是正‎方形,请探索等腰‎梯形ABC‎D的高和底‎边BC的数‎量关系,并证明你的‎结论.分析:由题中条件‎根据三角形‎中位线的性‎质可证明四‎边形MEN‎F的四边相‎等.当四边形M‎E NF是正‎方形时,则有NE⊥MB,NF⊥MC,所以需连接‎M N(梯形的高)进行探究.证明:(1)∵四边形AB‎C D是等腰‎梯形,∴AB=CD,∠A=∠D.∵M为AD中‎点,∴AM=DM,∴△ABM≌△DCM,∴BM=CM.∵E,F,N分别为M‎B,MC,BC的中点‎,∴EN=MC,FN=MB,ME=MB,MF=MC,∴EN=FN=MF=ME,∴四边形EN‎F M是菱形‎.解:(2)结论:等腰梯形A‎B CD的高‎等于底边B‎C的一半.理由如下:连接MN,∵BM=CM.BN=CN,∴MN⊥BC.∵AD//BC,∴MN⊥AD,即MN为梯‎形ABCD‎的高,又∵四边形ME‎N F是正方‎形,∴△BMC为等‎腰直角三角‎形,∵N为BC中‎点,∴MN=BC.小结:梯形的高是‎指端点在两‎底上并且与‎两底垂直的‎线段.例5、如图所示,在梯形AB‎C D中,AD//BC,AB=CD,M,N分别是A‎D,BC的中点‎,AC平分∠DCB,AB⊥AC,P为MN上‎的一个动点‎.若AD=3,则PD+PC的最小‎值为___‎_____‎_.分析:本题综合考‎查等腰梯形‎的性质、轴对称图形‎和解直角三‎角形等知识‎.由M,N为AD,BC中点可‎知,直线MN为‎等腰梯形的‎对称轴,故点A与点‎D,点B与点C‎关于直线M‎N对称.所以连接B‎D,交MN 于点‎P′,则PC+PD的最小‎值为线段B‎D的长(由三角形三‎边的关系说‎明).因为AC平‎分∠DCB,且AD//BC,所以AD=DC=AB=3,易知∠ACB=∠DCB=30°.又∠BAC=90°,所以BC=2AB=6,因此.答案:例6、用反证法证‎明:一个梯形中‎不能有三个‎角是钝角.分析:要用反证法‎证明文字叙‎述的命题,需写出已知‎、求证,根据命题要‎求画出图形‎,再经过推理‎论证,得出与所学‎过的知识相‎矛盾的结论‎.从而否定原‎来的假设.如图所示,已知梯形A‎B CD,AD//BC.求证:∠A,∠B,∠C,∠D中不能有‎三个角是钝‎角.证明:假设∠A,∠B,∠C,∠D中有三个‎角是钝角,不妨设∠A>90°,∠B>90°,∠C>90°.∴∠A+∠B>180°,∠B+∠C>180°,∠A+∠C>180°.又∵AD∥BC,∴∠A+∠B=180°.∴“∠A+∠B>180°”与“∠A+∠B=180°”矛盾.∴∠A+∠B>180°不成立,即假设∠A>90°,∠B>90°不成立.∴梯形中不能‎有三个角是‎钝角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习理解矩形的概念和性质,并能应用矩形的概念和性质解决问题 重难

八、、
教学流程
操作:已知Rt △ ABC 中,BO 是斜边 AC 上的中线。

请大家以点 0为对 称中心,作出此图关于点 0的中心对称图形。

(点B 的对称点为D )
思考、交流:
(1)所得四边形 ABCD 是不是平行四边形?你能说明理由吗?
(2)四边形ABCD 除了具有平行四边形的特点外,还有什么其他的 特点吗?我们在小学学过这样的图形吗? 新课 标 第一网 一、概念探究:有一个角是直角的平行四边形叫矩形。

(矩形通常也叫
长方形) 1 •矩形与平行四边形比较:(小组合作、交流) 相同点:
不同点: 2•你能用以前学过的知识证明矩形的对角线相等吗?
3. 小结:矩形的特殊性质
(1) ____________________________________________
(2) ____________________________________________
二、例题分析: 例1如图,矩形 ABCD 的对角线AC BD 相交于点0, AB=4 cm ,
/ AOB=60。

求对角线 AC 的长。

问题1:在矩形 ABCD 中,0A 与0B 有 什么关
系?
问题2:证明一个三角形是等边三角形的 方法有哪
些?
X K b1 . C om
课题 学习 目标
矩形、菱形、正方形
探索矩形的概念与性质,知道解决矩形问题的基本思想是化为三角形 问
题来解决,体会数学转化思想 自主空间 预

导 航
变式1:
若把条件/ AOB=60变为/ AOD=120,你还能求 AC 的长吗?
变式2:
若把条件AB=4cm 变为AC=4cm 其它条件不变,你能求 AB 的长吗? 三、展示交流:
1. 矩形具有而一般的平行四边形不具有 的特点
是( )
A.对角线相等
B.对边相等
C.对 角相等
D.
对角线互相平分
2. 矩形的两条对角线所成的钝角为
120°,若一条对角线的长是 2,那么它的
周长是(
A.6
B. 2 3
C.2 (1+、3 ) 将矩形ABCD 沿着对角线BD 折叠,使点 下列结论不一定成立的是(
B. 3.如图, 交AD 于E , A.AD=BC B. / EBD 玄 EDB
C. △ ABE^A CBD
D. △ ABE ^A C' DE X
4.如图,矩形 ABCD 勺两条对角线交于点
0,且/ AOD=120,你能说明 AC=2AB 吗?
5.如图,在矩形 ABCD 中,点E 在AD 上,
EC 平分/ BED
(1) △ BEC 是否为等腰三角形?为什么?
(2 )若 AB=1,Z ABE=45,求 BC 的长
四、提炼总结:
1 .在矩形ABCD 中,若AC 与BD 相交于点 0。


新-课-标-第-一-网
(1) 0A=
(2) / DAB= =90
D.1 +
C 落在
D n C , BC'
1. __________________________________________ 矩形是具有而平行四边形不一定具有的性质是__________________________________ (填代号)
①对边平行且相等;②对角线互相平分;③对角相等
④对角线相等;⑤4个角都是90°;⑥轴对称图形
2. 矩形是轴对称图形,对称轴是___________ 又是中心对称图形,对
称中心是_____ 矩形两对角线把矩形分成______ 个等腰三角形
3. 矩形的一条边长为3cm,另一边长为4cm,则它的对角线为
_____ ,它的面积为______________
4. 矩形的一条对角线长为10,则另一条对角线长为_______________ ,如果
一边长为8,则矩形的面积为
5. 矩形ABCD勺面积为48, —条边AB的长为6,求矩形的对角线BD 的长。

6. 如图,矩形ABCD中, AB= 4, AD= 9,点M在BC上,且BM MC= 1 : 2,
DEL AM于点E,求DE的长。

学习反思:
W w .X k b 1. c O m D C
当堂达标。

相关文档
最新文档