初三培优锐角三角函数辅导专题训练含详细答案

初三培优锐角三角函数辅导专题训练含详细答案
初三培优锐角三角函数辅导专题训练含详细答案

初三培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数

1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈)

【答案】AB 的长约为0.6m . 【解析】 【分析】

作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】

解:作BF CE ⊥于F ,

在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=,

3.85CF BC cos BCF ?∠≈=,

在Rt ADE ?E 中,

3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=

由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】

考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,

【答案】(1)∠BPQ=30°;

(2)该电线杆PQ的高度约为9m.

【解析】

试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;

(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.

试题解析:延长PQ交直线AB于点E,

(1)∠BPQ=90°-60°=30°;

(2)设PE=x米.

在直角△APE中,∠A=45°,

则AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,33

米,

∵AB=AE-BE=6米,

则x-

3

3

x=6,

解得:x=9+33.

则BE=(33+3)米.

在直角△BEQ中,QE=3

BE=

3

(33+3)=(3+3)米.

∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.

考点:解直角三角形的应用-仰角俯角问题.

3.如图,在△ABC中,AB=7.5,AC=9,S△ABC=81

4

.动点P从A点出发,沿AB方向以每秒

5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM (P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;

(2)当△PQM与△QCN的面积满足S△PQM=9

5

S△QCN时,求t的值;

(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.

【答案】(1)coaA=4

5

;(2)当t=

3

5

时,满足S△PQM=

9

5

S△QCN;(3)当2733

-或

2733

+时,△PQM的某个顶点(Q点除外)落在△QCN的边上.

【解析】

分析:(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;

(2)如图2中,作PH⊥AC于H.利用S△PQM=9

5

S△QCN构建方程即可解决问题;

(3)分两种情形①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;

详解:(1)如图1中,作BE⊥AC于E.

∵S △ABC =12

?AC?BE=814,

∴BE=

9

2

, 在Rt △ABE 中,AE=22=6AB BE -,

∴coaA=

64

7.55

AE AB ==. (2)如图2中,作PH ⊥AC 于H .

∵PA=5t ,PH=3t ,AH=4t ,HQ=AC-AH-CQ=9-9t , ∴PQ 2=PH 2+HQ 2=9t 2+(9-9t )2, ∵S △PQM =9

5

S △QCN , ∴

32=9352, ∴9t 2+(9-9t )2=9

5

×(5t )2, 整理得:5t 2-18t+9=0,

解得t=3(舍弃)或35

. ∴当t=

35时,满足S △PQM =9

5

S △QCN . (3)①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .

易知:PM∥AC,

∴∠MPQ=∠PQH=60°,

∴PH=3HQ,

∴3t=3(9-9t),

-.

∴t=2733

②如图4中,当点M在CQ上时,作PH⊥AC于H.

同法可得3,

∴39t-9),

∴27+33

-s27+33时,△PQM的某个顶点(Q点除外)落在△QCN 综上所述,当2733

的边上.

点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.

4.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD31.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE?cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

5.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:

(1)如图1,若k=1,则∠APE的度数为;

(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.

(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.

【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.

【解析】

分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;

(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;

(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;

详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,

∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,

∴BD=AF,BF=AD.

∵AC=BD,CD=AE,

∴AF=AC.

∵∠FAC=∠C=90°,

∴△FAE≌△ACD,

∴EF=AD=BF,∠FEA=∠ADC.

∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EHD.

∵AD∥BF,

∴∠EFB=90°.

∵EF=BF,

∴∠FBE=45°,

∴∠APE=45°.

(2)(1)中结论不成立,理由如下:

如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,

∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,

3AC CD

BD AE ==. ∵BD=AF ,

3AC CD

AF AE

==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,

3AC AD BF

AF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.

在Rt △EFB 中,tan ∠FBE=3

3

EF BF =

, ∴∠FBE=30°, ∴∠APE=30°,

(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,

∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,

∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,

3AC CD

BD AE

==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,

3AD AC

AH EH

==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.

在Rt △DAH 中,tan ∠ADH=3AH

AD

=, ∴∠ADH=30°, ∴∠APE=30°.

点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.

6.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF ⊥BC 于点F ,∠CDF=45°,求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 m .参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

【答案】2.5m. 【解析】

试题分析:设DF=x ,在Rt △DFC 中,可得CF=DF=x ,则BF=4-x ,根据线段的和差可得AN=5-x ,EN=DM=BF=4-,在Rt △ANE 中,∠EAB=,利用∠EAB 的正切值解得x 的

值.

试题解析:解:设DF=,在Rt △DFC 中,∠CDF=,

∴CF=tan ·DF=,

又∵CB=4, ∴BF=4-,

∵AB=6,DE=1,BM= DF=, ∴AN=5-,EN=DM=BF=4-, 在Rt △ANE 中,∠EAB=

,EN=4-,AN=5-,

tan ==0.60,

解得=2.5,

答:DM 和BC 的水平距离BM 为2.5米. 考点:解直角三角形.

7.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:

如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:

把图1中的△AEF 绕点A 顺时针旋转.

(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;

(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记

AC

BC

=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)

【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为3

3

时,CPE V 总是等边三角形 【解析】 【分析】

(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有

EM FP

MC PB

=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.

(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据

AC k BC =,AC

BC

=tan30°,求出当△CPE 总是等边三角形时,k 的值是

多少即可.

【详解】

解:(1)PC=PE成立,理由如下:

如图2,过点P作PM⊥CE于点M,∵EF⊥AE,BC⊥AC,∴EF∥MP∥CB,

∴EM FP

=,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE;

MC PB

(2)PC=PE成立,理由如下:

如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中

,∵∠DAF=∠EAF,∠FDA=∠FEA,AF=AF,

∴△DAF≌△EAF(AAS),

∴AD=AE,在△DAP和△EAP中,

∵AD=AE,∠DAP=∠EAP,AP=AP,

∴△DAP≌△EAP(SAS),

∴PD=PE,

∵FD⊥AC,BC⊥AC,PM⊥AC,

∴FD∥BC∥PM,

∴DM FP

=,

MC PB

∵点P是BF的中点,

∴DM=MC,又∵PM⊥AC,

∴PC=PD,又∵PD=PE,

∴PC=PE;

(3)如图4,∵△CPE总是等边三角形,

∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,

∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵

AC k BC ,AC

BC

=tan30°, ∴k=tan30°=3

, ∴当k 为

3

时,△CPE 总是等边三角形.

【点睛】

考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.

8.如图,四边形ABCD 是菱形,对角线AC 与BD 交于点O ,且AC =80,BD =60.动点M 、N 分别以每秒1个单位的速度从点A 、D 同时出发,分别沿A→O→D 和D→A 运动,当点N 到达点A 时,M 、N 同时停止运动.设运动时间为t 秒. (1)求菱形ABCD 的周长;

(2)记△DMN 的面积为S ,求S 关于t 的解析式,并求S 的最大值;

(3)当t=30秒时,在线段OD 的垂直平分线上是否存在点P ,使得∠DPO=∠DON ?若存在,这样的点P 有几个?并求出点P 到线段OD 的距离;若不存在,请说明理由.

【答案】解:(1)在菱形ABCD中,

∵AC⊥BD,AC=80,BD=60,∴。∴菱形ABCD的周长为200。

(2)过点M作MP⊥AD,垂足为点P.

①当0<t≤40时,如答图1,

∵,

∴MP=AM?sin∠OAD=t。

S=DN?MP=×t×t=t2。

②当40<t≤50时,如答图2,MD=70﹣t,

∵,

∴MP=(70﹣t)。

∴S△DMN=DN?MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。∴S关于t的解析式为。

当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480;当40<t≤50时,S随t的增大而减小,最大值不超过480。

综上所述,S的最大值为480。

(3)存在2个点P,使得∠DPO=∠DON。

如答图3所示,过点N作NF⊥OD于点F,

则NF=ND?sin∠ODA=30×=24,

DF=ND?cos∠ODA=30×=18。

∴OF=12。∴。

作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,

则FG=GH。

∴S△ONF=OF?NF=S△OGF+S△OGN=OF?FG+ON?GH=(OF+ON)?FG。

∴。

∴。

设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG,

∴。

∴PK=。

根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′。

∴存在两个点P到OD的距离都是

【解析】

试题分析:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.

(1)根据勾股定理及菱形的性质,求出菱形的周长;

(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;

(3)如答图4所示,作ON的垂直平分线,交EF于点I,连接OI,IN.过点N作

NG⊥OD,NH⊥EF,垂足分别为G,H.易得△DNG∽△DAO,由EF垂直平分OD,得到OE=ED=15,EG=NH=3,再设OI=R,EI=x,根据勾股定理,在Rt△OEI和Rt△NIH中,得到关于R和x的方程组,解得R和x的值,把二者相加就是点P到OD的距离,即PE=PI+IE=R+x,又根据对称性可得,在BD下方还存在一个点P′也满足条件,故存在两个点P,到OD的距离也相同,从而问题解决.

试题解析:(1)如图①)在菱形ABCD中,OA=AC=40, OD=BD=30,

∵AC⊥BD,

∴AD==50,

∴菱形ABCD的周长为200;

(2)(如图②)过点M作MH⊥AD于点H.

① (如图②甲)①当0<t≤40时,

∵sin∠OAD===,

∴MH=t,

∴S=DN·MH=t2.

②(如图②乙)当40<t≤50时,

∴MD=80-t,

∵sin∠ADO=-,

∴MH=(70-t),

∴S=DN·MH,

=-t2+28t

=-(t-35)2+490.

∴S=,

当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而增大,当t=40时,最大值为480.综上所述,S的最大值为480;

(3)存在2个点P,使得∠DPO=∠DON.

(如图④)作ON的垂直平分线,交EF于点I,连接OI,IN.过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.

当t=30时,DN=OD=30,易知△DNG∽△DAO,

∴NG=24,DG=18.

∵EF垂直平分OD,

∴OE=ED=15,EG=NH=3,

设OI=R,EI=x,则

在Rt△OEI中,有R2=152+x2……①,

在Rt△NIH中,有R2=32+(24-x)2……②,

由①,②可得:,

∴PE=PI+IE=.

根据对称性可得,在BD下方还存在一个点P′也满足条件,∴存在两个点P,到OD的距离都是.

考点:相似性综合题.

9.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.

(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;

(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.

BE

【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3

【解析】

【分析】

(1)①补全图形即可,

②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3

得出结果.

【详解】

解:(1)①补全图形如图1所示,

②FG=DG,FG⊥DG,理由如下,

连接BG,如图2所示,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∵EG⊥AC,

∴∠EGC =90°,

∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,

在△BEG 和△GCF 中,BE CF BEG GCF EG CG =??

∠=∠??=?

∴△BEG ≌△GCF (SAS ), ∴BG =GF ,

∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,

∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.

(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2

在Rt △DHG 中,∵∠AGD =60°, ∴GH 3

323

6,

∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()

2

2436-3

∴BE =CF =3.

【点睛】

本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.

10.如图,公路AB为东西走向,在点A北偏东36.5?方向上,距离5千米处是村庄M,在点A北偏东53.5?方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:

(1)M,N两村庄之间的距离;

(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)

【答案】(1) M,N29千米;(2) 村庄M、N到P站的最短距离和是5

【解析】

【分析】

(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.

【详解】

解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

锐角三角函数专题

如有帮助欢迎下载支持 锐角三角函数专题 共100分 命题人:王震宇 张洪林 一、选择题(30分) 1、如果∠A 是锐角,且A cos A sin =,那么∠A=_______。 A. 30° B. 45° C. 60° D. 90° 2. CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=________。 A. 5 3 B. 4 3 C. 3 4 D. 5 4 3、如果130sin sin 22=?+α,那么锐角α的度数是________。 A. 15° B. 30° C. 45° D. 60° 4、已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是________。 A. 32B sin = B. 32B cos = C. 3 2 B tan = 5、在Rt △AB C 中,如果各边长度都扩大2倍,那么锐角A 的正切值( ) A. 没有变化 B. 扩大2倍 C.缩小2倍 D. 不能确定 6、 在△ABC 中,∠C =90°,AC =BC ,则sin A 的值等于( ) A. 2 1 B. 22 C. 2 3 D. 1 7、已知α为锐角,下列结论 ①1cos sin =+αα ②如果?>45α,那么ααcos sin > ③如果2 1 cos > α,那么?<60α ④ααsin 1)1(sin 2-=- 正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 △ABC 中,∠C =90°,53 sin = A ,则BC ∶AC 等于( ) A. 3∶4 B. 4∶3 C. 3∶5 D. 4∶5: 9、 如果α是锐角,且5 4 sin = α,那么)90cos(α-?=( ) A. 54 B. 43 C. 53 D. 5 1. 10、如右图,CD 是平面镜,光线从A 点出发经过CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为( )

锐角三角函数专题训练

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边的邻边斜边的对边A A A A ∠=?∠=cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

)90sin(cos ),90cos(sin A A A A -?=-?=. 七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。 即 ()A A -=ο90cot tan , ()A A -=ο90tan cot . 八、同角三角函数之间的关系: ⑴、平方关系:1cos sin 22=+A A ⑵商的关系A A A cos sin tan = A A A sin cos cot = ⑶倒数关系tana ·cota=1 【典型例题】 【1】 已知a 为锐角①若sina=3/5,求cosa 、tana 的值。②若tana=3/4,求 sina 、cosa 的值。③若tana=2,求(3sina+cosa )/(4cosa-5sina ) 【2】 在△ABC 中,角A, 角B,角C 的对边分别为a 、b 、c ,且a :b :c=9:40:41, 求tanA,1/tanA 的值. 【3】 求下列各式的锐角。 ①2sina=1,②,2tana ·cosa=根号3,③ tan 2 a+(1+根号3)tana+根号3=0 【4】 在△ABC 中AB=15,BC=14,S △ABC=84.求tanc ,sina 的值。 【5】 等腰三角形的面积为2,腰长为根号5,底角为a ,求tana 。 【6】 锐角a 满足cosa=3/4,则∠a 较确切的取值范围() A.0°<a <45° B. 45°<a <90° C. 45°<a <60° D. C. 30°<a <45° 【7】计算:020*********sin 88sin 3sin 2sin 1sin +++++Λ 【基础练习】 一、填空题:

锐角三角函数应用题专题

1、(09年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 2、(09年湖南怀化)如图,小明从 A 地沿北偏东 30方向走1003m 到 B 地,再从B 地向正南方向走 200m 到C 地,此时小明离A 地 m . 3、(09年山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 B .253 C .10033 D .25253+ 4、(09年山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点 A 处安置测倾器,测得风筝C 的仰角60CBD =?∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 5、(09年广东深圳、山东东营)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度. 6、(09年广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里.求: (1)军舰N 在雷达站P 的什么方向?(2)两军舰M N 、的距离.(结果保留根号) 第6题图 N M P 北 A B C D 6米 52° 35° (第1题图) A D B E C 60° (第4题图) 第2题图 B C A D l 第3题图 A B C D 第5题图

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

专题14 锐角三角函数(原卷版)

专题14 锐角三角函数 一.选择题(共4小题) 1.(2020?无锡)如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=?,3AB =, BC Rt ABC ?沿着AC 翻折得到Rt AEC ?,若tan AED ∠=,则线段DE 的长度( ) A B C D 2.(2020?苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=; (2)量得测角仪的高度CD a =; (3)量得测角仪到旗杆的水平距离DB b =. 利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( ) A .tan a b α+ B .sin a b α+ C .tan b a α+ D .sin b a α + 3.(2020?扬州)如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )

A B C .23 D .32 4.(2020?镇江)如图①,5AB =,射线//AM BN ,点C 在射线BN 上,将ABC ?沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,//PQ AB .设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点(9,2)E ,则cos B 的值等于( ) A .25 B .12 C .35 D .710 二.填空题(共4小题) 5.(2020?苏州)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12 AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠= . 6.(2020?泰州)如图,点P 在反比例函数3y x =的图象上,且横坐标为1,过点P 作两条坐

初中锐角三角函数专题

第1页 锐角三角函数 目录 课题:锐角三角函数课件 ........................................................................................................................................ 1 解直角三角形应用题 ................................................................................................................................................ 5 解直角三角形的方法技巧 ...................................................................................................................................... 10 锐角三角函数考点 .................................................................................................................................................. 15 锐角三角函数 课后检测 . (18) 课题:锐角三角函数课件 【引题】 例题1:操作与探究 (1)度量下列一组直角三角形30度角所对的边与斜边,计算它们的比值,发现什么规律? (2)度量下列一组直角三角形45度角所对的边与斜边,计算它们的比值,发现什么规律? (3)猜想:当∠A 取其它一定度数的锐角时,它的对边与斜边的比值是否定值?为什么? (4)用同样的方法探讨∠A 的邻边与斜边、∠A 的对边与邻边的比有什么规律?为什么? 45? 45? 45? C 2 B 2 A 2 A 1 B 1 C 1C A B ★【归纳与总结】 三角函数的定义:如图,在RtΔABC 中,∠C=90°, 例题2:如图:利用特殊直角三角形求特殊角的三角函数。 (1)已知,在Rt △ABC 中,∠C=90°,∠A=30°,求30°角、60°角的三角函数,并填出表格。 (2)已知,在Rt △ABC 中,∠C=90°,∠A=45°,求45°角的三角函数,并填出表格。 (3)分析上面特殊角的三角函数,你能从表格中发现什么规律?

锐角三角函数的应用专题复习

锐角三角函数的应用专题复习 一、选择题 1. 一艘轮船由海平面上A地出发向南偏西40o 由B地向北偏西10o的方向行驶40海里到达C地,则A、 (A)30海里(B)40海里( C)50海里( 2. 如图,为了测量河的宽度,王芳同学在河岸边相距 200m 定对岸一棵树P的位置,P在M的正北方向,在N 宽度是() A.B C.D.100 3. 王师傅在楼顶上的点A处测得楼前一棵树CD的顶端C的俯角为60 o,又知水平距离BD=10m,楼高AB=24 m,则树高CD为() A.()3 10 24-m B.?? ? ? ? ? - 3 3 10 24m C.()35 24-m D.9m 4. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为() A.8米B.C. 3 D 5. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为()A.5sin40°B.5cos40°C. 5 tan40° D. 5 cos40° 6. 如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于() (A) m·sinα米 (B) m·tanα米 (C) m·cosα米 (D) α tan m 米 7. 小明沿着坡度为2:1的山坡向上走了m 1000,则他升高了() A.m 5 200 B.m 500 C.m 3 500 D.m 1000 8. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分 别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m, 则乘电梯从点B到点C上升的高度h是() A.4 m C..8 m 9. 河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是 比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是() A.米 B. 10米 C.15米 D. P A B C m α

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

2020人教版中考数学《锐角三角函数》专题及答案详解

【2020】人教版中考数学《锐角三角函数》 专题及答案 一、选择题 1. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 2..如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于( ) A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx 【答案】D 【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a ?cosx+b ?sinx ,故选D . 3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高BC =2千米. A. B. C. D. BC AB 2 sin 20sin 20BC .故按键顺序为 20° 2

4.已知∠α为锐角,且sinα=1 2,则∠α=() A.30° B.45° C.60° D.90° 【答案】A 【解析】∵∠α为锐角,且sinα=1 2,∴∠α=30°.故选A. 5.矩形OABC 在平面直角坐标系中的位置如图所示,已知B (32,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD ⊥PC 交x 轴于点D ,下列结论:①OA=BC= 32;②当点D 运动到OA 的中点处时,PC 2+PD 2=7;③在运动过程中,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(33 2,0),其中正确结论的个数是() A. 1个 B. 2个 C.3个 D. 4个 【答案】D 【解析】已知B (32,2),所以OA=BC=32,故①正确;当点D 运动到OA 的中点处时, OD=3,而OC=2,所以OC 2=7,在直角三角形CPD 中,PC 2+PD 2 =7,故②正确;过点P 作PD ⊥ PC 交x 轴于点D ,所以在运动过程中,∠CDP 是一个定值,故③正确;当△ODP 为等腰三角形时, OC ⊥BD ,∠CDO=60°所以3 OD OC ,即OD=332,所以点D 的坐标为(332,0). 6. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 【解析】过点A 作AD ⊥BC 于点D ,∵cosC=1 4,AC=4,∴CD=1,∴BD=3, AD= B

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中锐角三角函数专题

第1页 目录 课题:锐角三角函数课件 ........................................................................................................................................ 1 解直角三角形应用题 ................................................................................................................................................ 5 解直角三角形的方法技巧 ...................................................................................................................................... 10 锐角三角函数考点 .................................................................................................................................................. 15 锐角三角函数 课后检测 . (18) 课题:锐角三角函数课件 【引题】 例题1:操作与探究 (1)度量下列一组直角三角形30度角所对的边与斜边,计算它们的比值,发现什么规律? (2)度量下列一组直角三角形45度角所对的边与斜边,计算它们的比值,发现什么规律? (3)猜想:当∠A 取其它一定度数的锐角时,它的对边与斜边的比值是否定值?为什么? (4)用同样的方法探讨∠A 的邻边与斜边、∠A 的对边与邻边的比有什么规律?为什么? 45? 45? 45? C 2 B 2 A 2 A 1 B 1 C 1B ★【归纳与总结】 三角函数的定义:如图,在RtΔABC 中,∠C=90°, 例题2:如图:利用特殊直角三角形求特殊角的三角函数。 (1)已知,在Rt △ABC 中,∠C=90°,∠A=30°,求30°角、60°角的三角函数,并填出表格。 (2)已知,在Rt △ABC 中,∠C=90°,∠A=45°,求45°角的三角函数,并填出表格。 (3)分析上面特殊角的三角函数,你能从表格中发现什么规律? A C B 45? 60? C B A 30?

相关文档
最新文档