人教A版高中数学必修五课件《正弦定理》.ppt
合集下载
高中数学新人教A版必修5课件:第一章解三角形1.1.1正弦定理3
所以 cos B=cos 105°=cos(45°+60°)=
2- 4
6,
b=cssiinnCB= 2ssinin4150°5°=2sin 105°=2sin(45°+60°)
=
6+ 2
2 .
解析:选 C.由正弦定理得sina A=sinb B=sinc C,又coas A=cobs B
=cocs C,得csions AA=csions BB=csions CC,即 tan A=tan B=tan C,
所以 A=B=C,即△ABC 为等边三角形.
2.在△ABC 中,角 A,B,C 的对边分别是 a,b,c,若 c
C.2<x<2 2
D.2<x<2 3
解析:选 C.由 asin B<b<a,得 22x<2<x,所以 2<x<2 2.
判断三角形的形状
已知在△ABC 中,角 A,B 所对的边分别是 a 和 b,若
acos B=bcos A,则△ABC 一定是( )
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
【解析】 由正弦定理得:acos B=bcos A⇒sin Acos B=sin Bcos A⇒sin(A-B)=0,由于-π<A-B<π,故必有 A-B =0,A=B,即△ABC 为等腰三角形. 【答案】 A
1.若把本例条件变为“bsin B=csin C”,试判断△ABC 的形 状. 解:由 bsin B=csin C 可得 sin2B=sin2C,因为三角形内角和 为 180°, 所以 sin B=sin C.所以 B=C.故△ABC 为等腰三角形.
3.正弦定理的变形
若 R 为△ABC 外接圆的半径,则
高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53
45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外
人教A版必修5第1章《正弦定理和余弦定理》ppt导学课件
2 2 2 2 2 2 2 2 2 2 2 2
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得
.
【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A
=
= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,
根据勾股定理知△ABC 是直角三角形. 4、 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acosC+ 3asinC-b-c =0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b, c. 【解析】本题考查正弦定理.(1)利用正 弦定理边化角结合两角和差公式化简求 解; (2)利用三角形面积公式及余弦定理 求解. 【答案】 (1)由 acosC+ 3asinC-b-c= 0 及正弦定理得
.
【解析】本题考查正弦定理 . 在三角形中【解析】本题考查正弦定理.由正弦定理, 需要考虑大边对大角,三个内角的和不能得 sin B= 2, 2 0 超过 180 .利用正弦定理求得∠B,根据大 ∵a>b,∴∠A>∠B. 边对大角,故∠B =30°,勾股定理求得 ∴∠B 只有一解.∴∠B=45°. c. 【答案】45°.
人教(A)数学 · 必修5 对点助学PPT
【知识目标】
1、理解正弦定理和余弦定理公 式的推导过程;
正弦定理和余弦定理
【学习目标】
1、会根据正弦定理和余弦定理 解三角形(知三求一) ; 2、会利用正弦定理和余弦定理 进行边角的相互转化2 3, b=6,
B=60°或 120°.
a
sin A
=
= =2R sin B sin C
b
c
(R 为△ABC 的外接圆半径).
统一为“边”之间的关系式或“角” 【答案】由正弦定理 a = b sin A sin B 之间的关系式. 3 1 1 可得 = ,∴sin B= , sin 60° sin B 2
【对点巩固】
故∠B=30°或 150°.由 a>b,
正弦定理(53张PPT)
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
典例导悟
系列丛书
变式训练1
(1)一个三角形的两内角分别为45° 与60° ,
如果45° 角所对的边长是6,那么60° 角所对的边的边长为 ( ) A.3 6 C.3 3 B.3 2 D.2 6
1 (2)在△ABC中,若tanA= 3 ,C=150° ,BC=1,则AB =________.
人教A版· 数学· 必修5
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
(3)a=2 3,b=6,a<b,A=30° <90° 又∵bsinA=6sin30° =3,a>bsinA ∴本题有两解. 由正弦定理得: bsinA 6sin30° 3 sinB= a = = 2 ,B=60° 或120° , 2 3 asinC 2 3sin90° 当B=60° 时,C=90° ,c= sinA = sin30° =4 3; 当B=120° 时,C=30° ,
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.1
系列丛书
[点评]
依据条件中的边角关系判断三角形的形状
时,主要有以下两种途径: (1)利用正弦定理把已知条件转化为边边关系,通过因 式分解、配方等得出边的相应关系,从而判断三角形的形 状;
人教A版· 数学· 必修5
高中数学人教A版_正弦定理(15张PPT)
结论
LsinA=s nB= sin C
文字叙述
在一个三角形中,各边和它所对角的_正弦的比相 等
正弦定理
以上我们利用向量方法获得了正弦定理。事 实上,探索和证明这个定理的方法很多,有些方 法甚至比上述方法更加简洁。你还能想到其他方 法吗?
利用三角形的高证明正弦定理(1)当△ABC 是锐角三角形时,设边AB 上的高是CD, 根据锐角三角 函数的定义,有CD=asin B,CD=bsin A。
6.4平面向量的应用 6.4.3第二讲正弦定理
(1)在△ABC 中,若A=30°,B=45° ,AC=4, 你还能直接运用余弦定理求出边BC吗?[提示] 不能。(2)在直角三角形中,边与角之间的关系是什么?
因此我们由那视频可以得出:
B
C
定理推导
又因为sin C=sin 90°=1
同理,过点C 作与CB垂直的单位向量m, 可
【提示】 成立,如图,当△ABC为钝角三角形时,不妨设A为钝 角。过点A作与AC 垂直的单位向量j,则j与AB 的夹角为A; 与CB 的 夹角为 C.仿照上述方法,同样可得:
在钝角三角形中的这个边角关系成立吗?
条件
在△ABC中,角A,B,C所对的边分别为a,b,c
如图,△ABC 为锐角三角形,过点A 作与AC 垂直的单位向量j, 则j 与AB 的夹角 ,j 与CB的 夹 角
也即asin C=csin A,即因
因为AC+CB=AB, 所以 j·(AC+CB)=j·AB. 由分配律,得j·AC+j·CB=j·AB,
利用向量法证明正弦定理
4, 请你用正弦定理来求出
练一练
B
在一个三角形中,各边和它 所对角的正弦的比相等。
LsinA=s nB= sin C
文字叙述
在一个三角形中,各边和它所对角的_正弦的比相 等
正弦定理
以上我们利用向量方法获得了正弦定理。事 实上,探索和证明这个定理的方法很多,有些方 法甚至比上述方法更加简洁。你还能想到其他方 法吗?
利用三角形的高证明正弦定理(1)当△ABC 是锐角三角形时,设边AB 上的高是CD, 根据锐角三角 函数的定义,有CD=asin B,CD=bsin A。
6.4平面向量的应用 6.4.3第二讲正弦定理
(1)在△ABC 中,若A=30°,B=45° ,AC=4, 你还能直接运用余弦定理求出边BC吗?[提示] 不能。(2)在直角三角形中,边与角之间的关系是什么?
因此我们由那视频可以得出:
B
C
定理推导
又因为sin C=sin 90°=1
同理,过点C 作与CB垂直的单位向量m, 可
【提示】 成立,如图,当△ABC为钝角三角形时,不妨设A为钝 角。过点A作与AC 垂直的单位向量j,则j与AB 的夹角为A; 与CB 的 夹角为 C.仿照上述方法,同样可得:
在钝角三角形中的这个边角关系成立吗?
条件
在△ABC中,角A,B,C所对的边分别为a,b,c
如图,△ABC 为锐角三角形,过点A 作与AC 垂直的单位向量j, 则j 与AB 的夹角 ,j 与CB的 夹 角
也即asin C=csin A,即因
因为AC+CB=AB, 所以 j·(AC+CB)=j·AB. 由分配律,得j·AC+j·CB=j·AB,
利用向量法证明正弦定理
4, 请你用正弦定理来求出
练一练
B
在一个三角形中,各边和它 所对角的正弦的比相等。
高中数学人教A版必修正弦定理PPT精品课件
由c sin C
=
a sin A
得
c 16
=
5 12
,解得c=
4 3
65 13
证明:作外接圆O,过B作直径BC’,
连接AC’
∵ BAC 90, C C '
sin C sin C ' c
c
2R
c 2R
A
sin C
B
a
O
C
b
同理 a 2R, b 2R
sin A
sin B
C’
a b c 2R sin A sin B sin C
解析: asinA=bsinB(边角混合式)
方法1:都化为边
把sinA= a , sin B b 代入上式,得
2R
2R
a a =b b 2R 2R
[例 3] 在△ABC 中,acosπ2-A=bcosπ2-B,判断△ABC 的形状.
解析: asinA=bsinB(边角混合式)
方法2:都化为角 把a=2R sin A,b=2R sin B代入上式,得 2R sin2 A=2R sin2 B
a sin A sin A
sin A
=2 cos A=2 3 = 3 42
例4.三角形ABC中 (3)b=2asinB,则A=______.
2R sin B=2 2RsinAsinB 1=2sinA sin A= 1 A=300 或1500
2
下课了!
Байду номын сангаас
正 弦定 理
第二课时
正弦定理: a b c
sin A sin B sin C 已知两角及一边解三角形
例1.在ABC中,a=8,B=600,C=750,求c边。
6.4.3.3余弦定理、正弦定理应用举例(新教材)PPT课件(人教版)
有关的三角形中,建立一个解斜三角形的数学模型; (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模
型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题
的解.
a sin .
sin 180 ( ) sin( )
计算出AC和BC后,再在△ABC中,应用余弦定理
计算出AB两点间的距离为
δγ D
α β
C
变式训练 一条河自西向东流淌,某人在河南岸A处看到河北岸两个目标C,D分别在 东偏北45°和东偏北60°方向,此人向东走300米到达B处之后,再看C,D, 则分别在西偏北75°和西偏北30°方向,求目标C,D之间的距离.
sin A a ,sin B b ,sin C c
2R
2R
2R
sin A: sin B : sin C a : b : c
将等式中的角换成 边,注意2R约掉。
1 课程导入
遥不可及的月亮离我们地球究竟有多远呢?在古代,天文学家没有 先进的仪器就已经估算出了两者的距离,是什么神秘的方法探索到这个奥 秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测 量方案,比如可以应用全等三角形、类似三角形的方法,或借助解直角三 角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会 不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所 以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解 决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用, 第一研究如何测量距离.
4 测量角度问题
例3:位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有 一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位 于甲船南偏西30°,且与甲船相距7 n mile的C处的乙船.那么乙船前往营 救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东 多少度(精确到1°)?需要航行的距离是多少海里(精确到1n mile)?
型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题
的解.
a sin .
sin 180 ( ) sin( )
计算出AC和BC后,再在△ABC中,应用余弦定理
计算出AB两点间的距离为
δγ D
α β
C
变式训练 一条河自西向东流淌,某人在河南岸A处看到河北岸两个目标C,D分别在 东偏北45°和东偏北60°方向,此人向东走300米到达B处之后,再看C,D, 则分别在西偏北75°和西偏北30°方向,求目标C,D之间的距离.
sin A a ,sin B b ,sin C c
2R
2R
2R
sin A: sin B : sin C a : b : c
将等式中的角换成 边,注意2R约掉。
1 课程导入
遥不可及的月亮离我们地球究竟有多远呢?在古代,天文学家没有 先进的仪器就已经估算出了两者的距离,是什么神秘的方法探索到这个奥 秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测 量方案,比如可以应用全等三角形、类似三角形的方法,或借助解直角三 角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会 不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所 以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解 决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用, 第一研究如何测量距离.
4 测量角度问题
例3:位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有 一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位 于甲船南偏西30°,且与甲船相距7 n mile的C处的乙船.那么乙船前往营 救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东 多少度(精确到1°)?需要航行的距离是多少海里(精确到1n mile)?
高中数学必修五全册课件PPT(全册)人教版
答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
人教A版必修五 1.1.1 正弦定理ppt课件
栏 目 链 接
题型1
已知两角及一边解三角形
例1 在△ABC中,已知A=30°,B=45°,a=2,解 三角形.
a b 解析:由正弦定理可知: = ,即 sin A sin B 2 b = ,∴b=2 2. sin 30° sin 45° 又C=180° -30° -45° =105° ,由正弦定理有: 2 c = , sin 30° sin 105° 即c=4sin (60° +45° )= 6+ 2.
解析:由A+C=2B及A+B+C=180° 知,B=60° ,由 栏 目 链 1 3 1 正弦定理知, = ,即sin A= ,由a<b知,A< 接 sin A sin 60° 2 B=60° ,则A=30° ,C=180° -A-B=180° -30° -60° = 90° ,sin C=sin 90° =1. 答案:1
a b c 解析:设正弦定理 = = =k,又因 sin A sin B sin C a c sin A=sin C,故 = ,∴a=c. k k 答案:B
)
栏 目 链 接
自测 自评
2.△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 c= 2,b= 6,B=120° ,则 a 等于( ) A. 6 B.2 C. 3 D. 2
解析:设a=2k,因为a∶b∶c=2∶3∶4,所以a= 2k,b=3k,c=4k,所以(a+b)∶(b+c)∶(c+a)= 5k∶7k∶6k=5∶7∶6. 答案:5∶7∶6
6.(1)三角形中任意两边和______第三边. (2)三角形ABC中,三边长度分别为3、4、x,则x的范围是 __________. 答案:(1)大于 (2)解析:由3+4>x,4+x>3,x+3>4,可知1<x<7. 答案:1<x<7
人教A版高中数学必修5《第六节 正弦定理和余弦定理》示范课课件_23
(2013·新课标全国Ⅱ,17)在△ABC中,角A,B,C的对边 分别为a,b,c,已知 bcosC+csinB=a
(1)求B; (2)若b=2,求△ABC面积的最大值。
(2014·新课标全国Ⅱ,4)钝角三角形ABC的面积是1/2, AB=1,BC= √2,则AC=( )
A.5 B. C.2 D.1
(2015·新课标全国Ⅱ,17)△ABC中,D是BC上的点,AD 平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求sinB/sinC; (2)若AD=1,DC=√2/2,求BD和AC的长.
(2016.新课标全国Ⅱ.13)△ABC的内角A、B、C的对边分别 为a,b,c,若cosA=,cosC=,a=1, 则b=________
(2)在△ABC中,若(a+b+c)(a-b+c) =ac,则角B=________.
跟踪练习:
1.在△ABC中,角A,B,C的对边分别为a,b ,c,已知b cosC+c cosB=2b,则a / b =
________.
2.在△ABC中,角A,B,C的对边分别为a,b ,c,已知a2+b2=2c2,则cosC的最小值为
常见求解问题
考点一:利用正弦、余弦定理解三角形;
考点二:利用正弦、余弦定理判断三角形 的形状;
考点三:与三角形面积有关的问题.
Part 3 典例剖析 考点突破
考点一:利用正弦、余弦定理解三角形
例1.(1)(2016.新课标.13)△ABC的内角A、 B、C的对边分别为a,b,c,若 cosA=4/5,cosC=5/13, a=1, 则b=________
平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求sinB/sinC; (2)若AD=1,DC=√2/2,求BD和AC的长.
(1)求B; (2)若b=2,求△ABC面积的最大值。
(2014·新课标全国Ⅱ,4)钝角三角形ABC的面积是1/2, AB=1,BC= √2,则AC=( )
A.5 B. C.2 D.1
(2015·新课标全国Ⅱ,17)△ABC中,D是BC上的点,AD 平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求sinB/sinC; (2)若AD=1,DC=√2/2,求BD和AC的长.
(2016.新课标全国Ⅱ.13)△ABC的内角A、B、C的对边分别 为a,b,c,若cosA=,cosC=,a=1, 则b=________
(2)在△ABC中,若(a+b+c)(a-b+c) =ac,则角B=________.
跟踪练习:
1.在△ABC中,角A,B,C的对边分别为a,b ,c,已知b cosC+c cosB=2b,则a / b =
________.
2.在△ABC中,角A,B,C的对边分别为a,b ,c,已知a2+b2=2c2,则cosC的最小值为
常见求解问题
考点一:利用正弦、余弦定理解三角形;
考点二:利用正弦、余弦定理判断三角形 的形状;
考点三:与三角形面积有关的问题.
Part 3 典例剖析 考点突破
考点一:利用正弦、余弦定理解三角形
例1.(1)(2016.新课标.13)△ABC的内角A、 B、C的对边分别为a,b,c,若 cosA=4/5,cosC=5/13, a=1, 则b=________
平分∠BAC,△ABD面积是△ADC面积的2倍. (1)求sinB/sinC; (2)若AD=1,DC=√2/2,求BD和AC的长.
人教版数学必修五:11正弦定理和余弦定理PPT
C.60°
D.60°或 120°
[答案] D [解析] 由正弦定理,得sianA=sibnB, ∴sinB=bsainA=4 3×4sin30°= 23, 又∵b>a,∴B>A,∴B=60°或 120°.
三角形形状的判断
的形状.
在△ABC 中,已知ac2osisnBB=bc2osisnAA,试判断△ABC
第一章 1.1 正弦定理和余弦定理 第1课时 正弦定理
1.任意三角形的内角和为________;三条边满足:两边之 和________第三边,两边之差________第三边,并且大边对 ________,小边对________.
2.直角三角形的三边长a,b,c(斜边)满足________定 理,即________.
[分析] 已知两角,由三角形内角和定理第三角可求,已 知一边可由正弦定理求其它两边.
[方法总结] (1)已知任意两角和一边,解三角形的步骤: ①由三角形内角和定理求出第三个角; ②由正弦定理公式的变形,求另外的两边. (2)注意事项: 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.
[分析] 由正弦定理,得 a=2RsinA,b=2RsinB,代入已 知等式,利用三角恒等变换,得出角之间的关系,进而判断△ ABC 的形状.
[方法总结] 利用正弦定理判断三角形形状的方法: (1)化边为角.将题目中的所有条件,利用正弦定理化边为 角,再根据三角函数的有关知识得到三个内角的关系,进而确 定三角形的形状. (2)化角为边.根据题目中的所有条件,利用正弦定理化角 为边,再利用代数恒等变换得到边的关系(如a=b,a2+b2= c2),进而确定三角形的形状.
外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
人教版A版高中数学必修5:正弦定理_课件25
2R 形 sinC= c ;
2R
cosB= 2bc
;
2R
a2+c2-b2
形 (其中R是△ABC外接圆半径) cosC 2ac
式 ③a∶b∶c=sinA∶sinB∶sinC =
④asinB=bsinA,bsinC=
a2+b2-c2 2ab .
csinB,asinC=csinA.
定理
正弦定理
余弦定理
①已知两角和任一边,求 ①已知三边,求各
b,c,若ccooss AB=ab,则△ABC 一定是
()
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等边三角形
解析:法一:由正弦定理得ccooss AB=ab=ssiinn BA, ∴sin Acos B=cos Asin B, 即sin(A-B)=0,可得A-B=0,∴A=B. 法二:由余弦定理将角化为边,可得a=b.
注意:在上述两种方法的等式变形中,一般两边不要约 去公因式,应移项提取公因式,以免漏解.
[精析考题]
[例3] (2011·山东高考)在△ABC中,内角A,B,C的对边分别
为a,b,c.已知cos
A-2cos cos B
C=2c-b a.
(1)求ssiinn CA的值;
(2)若cos B=14,b=2,求△ABC的面积S.
解决 另一角和其他两条边; 角;
的问 ②已知两边和其中一边的 ②已知两边和它们
题 对角,求另一边和其他两 的夹角,求第三边
角.
和其他两个角.
二、三角形常用面积公式 1.S=12a·ha(ha表示边a上的高); 2.S=12absin C=12acsin B = 12bcsin A ; 3.S=12r(a+b+c)(r为内切圆半径).
人教A版数学必修五1.1.1 正弦定理 课件 (共24张PPT)
① 已知两边和其中一边的对角,求另一边 的对角,进而可求其他的边和角
② 已知两角和一边,求其他角和边
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
4、一般地,把三角形的三个角A,B,C 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形
剖析定理、加深理解
(1) 已知两角及任意一边,可以求出其他两边
和另一角;
(2)已知两边和其中一边的对角,可以求出三
角形的其他的边和角。(此时可能有一解、二解、
无解)
课后探究(: 1)你还可以用其它方法证明 正弦定理吗?
(2)
a b c k sinA sinB sinC
那么这个k值是什么呢?你能用一个和三角形有
关的量来表示吗?
在钝角三角形中
B
j
设A 900 过点A作与AC垂直的单位向量 j, 则j与AB的夹角为 A90
j与CB的夹角为 90C
A
C
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
1、A+B+C=π 2、大角对大边,大边对大角
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
3、正弦定理可以解决三角形中的问题:
C
b a
D
Bc
A
正弦定理:
abc sinA sinB sinC
(1)文字叙述 正弦定理:在一个三角形中,各边和它所对角 的正弦的比相等. (2)结构特点 和谐美、对称美. (3)方程的观点
正弦定理实际上是已知其中三个,求另一个.
能否运用向量的方法来证明正弦定理呢?
在锐角三角形中 B
jc
a
② 已知两角和一边,求其他角和边
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
4、一般地,把三角形的三个角A,B,C 和它们的对边a,b,c叫做三角形的元 素。已知三角形的几个元素求其他元素 的过程叫解三角形
剖析定理、加深理解
(1) 已知两角及任意一边,可以求出其他两边
和另一角;
(2)已知两边和其中一边的对角,可以求出三
角形的其他的边和角。(此时可能有一解、二解、
无解)
课后探究(: 1)你还可以用其它方法证明 正弦定理吗?
(2)
a b c k sinA sinB sinC
那么这个k值是什么呢?你能用一个和三角形有
关的量来表示吗?
在钝角三角形中
B
j
设A 900 过点A作与AC垂直的单位向量 j, 则j与AB的夹角为 A90
j与CB的夹角为 90C
A
C
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
1、A+B+C=π 2、大角对大边,大边对大角
剖析定理、加深理解
正弦定理:sinaAsinbBsincC
3、正弦定理可以解决三角形中的问题:
C
b a
D
Bc
A
正弦定理:
abc sinA sinB sinC
(1)文字叙述 正弦定理:在一个三角形中,各边和它所对角 的正弦的比相等. (2)结构特点 和谐美、对称美. (3)方程的观点
正弦定理实际上是已知其中三个,求另一个.
能否运用向量的方法来证明正弦定理呢?
在锐角三角形中 B
jc
a
高中数学人教A版必修五.1正弦定理PPT课件
2
2 2
3
a
43 2
3
B 600 或1200
C
750 或150 c
a sinC
4 3 3
6 4
sin A
2
2 88 3 3
2
例⒉在△ABC中,已知a=2,b= 2 2,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
在直角三角形中
A
c
b
B
a DC
高中数学人教A版必修五.1正弦定理PP T课件
在锐角三角形中
B
jc
a
A
b
C
证 明 : 过 点A作 单 位 向 量j垂 直
于AC,
j与AC的
夹
角
为 90
,
j与CB的
夹
角
为 90
Байду номын сангаас
C
,
j与AB的 夹 角 为90A .
由向量加法的三角形法则
AC CB AB
两边同取与j的数量积, 得
2
2 2 32
2
例⒉在△ABC中,已知a=2,b= 2 2,A=45°,
求B和c。 变式1:在△ABC中,已知a=4,b= 2 2,A=45°,
求B和c。
变式2:在△ABC中,已知a= 4 3 ,b=2 2 ,A=45°,
求B和c。
3
解 : a b
sin A sin B
sin B bsin A 2
B
a<bsinA a=bsinA
≥ bsinA<a<b a b
人教A版数学必修五.1正弦定理讲课PPT课件
人教A版数学必修五.1正弦定理讲课PP T课件
练习
在 ABC 中,已知 a 4 ,b 42 ,B 4,5
求 A。
探究课题引入时问题(2)的解决方法
B
c
A
b
C
AB= bsinβ sin(α+β)
变式拓展:
根据下列已知条件,分别判断有几组解?
(1) b=20,A=60°,a=20 3 ;
C
(2) b=20,A=60°,a=10 3 ;
D
A
得 到 a b
c
sinA sinB
同 理 , 作 A E B C .有 bc sin Bsin C
a b c sinA sinB sinC
人教A版数学必修五.1正弦定理讲课PP T课件
人教A版数学必修五.1正弦定理讲课PP T课件
当 ABC是钝角三角形时,以上等式是否仍然成立?
过点A作AD⊥BC,
1.问题的引入:
(1)在我国古代就有嫦娥奔月的神话故事.明月 高. 悬,我们仰望夜空,会有无限遐想,不禁会问, 月亮离我们地球有多远呢?科学家们是怎样 测出来的呢?
(2)设A,B两点在河的两岸, 只给你米尺和量角 设备,不过河你可以测出它们之间的距离吗 ?
B
A
我们这一节所学习的内容就是解决这些问题 的有力工具.
sinA sinB
, A=30° . 已知两边和其中一边 的对角,求其他边和角
C
得
b sA in 13 6 s3 i n 03
sB i n
a
16 2
16 3 16
16
A 300
所以B=60°,或B时 C=90° c32.
当B=120°时 C=30°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
• 正弦定理 a b c sin A sin B sin C
• 主要应用
(1) 已知两角及任意一边,可以求出其他两边和 另一角;
(2) 已知两边和其中一边的对角,可以求出三角 形的其他的边和角。(此时可能有一解、二解、无解)
a b c sin A sin B
sinC 1
Ba C
abc sin A sin B sin C
思考:
对一般的三角形,这个结论还能成立吗?
(1)当ABC 是锐角三角形时,结论是否还成立呢?
如图:作AB上的高是CD,根椐
C
三角形的定义,得到
aE
b
CD a sin B,CD bsin A
所以 a sin B bsin A
定理结构特征: 含三角形的三边及三内角,由己知二角一
边或二边一角可表示其它的边和角。
解三角形: 已知三角形的几个元素求其他元素的过程
定理的应用举例
例1 在ABC 已知A 32.0o , B 81.8o , a 42.9cm , 解三角形.
变式:若将a=42.9cm改为c=42.9cm,结果如何? 通过例题你发现了什么一般性结论吗?
空白演示
在此输入您的封面副标题
1.1.1 正弦定理
知识回顾:
(1)最基本的边角关系:ቤተ መጻሕፍቲ ባይዱ
大边对大角,小边对小角。
(2)三角形内角和:A+B+C=180
(3)Rt△ABC中最基本三角函数:
a sin A c
b sin B c
B
c a
C
b
A
A
由直角三角形的边角关系可得:
c
b
a csin A b csin B 两等式间有联系吗?
得到 a b sin A sin B
B
D
A
c
同理,作AE BC.有 b c sin B sin C
a b c sin A sin B sin C
(2)当ABC是钝角三角形时,以上等式是否仍然成立?
C
b a
D
Bc
A
正弦定理 在一个三角形中,各边和它所 对角的正弦的比相等,即
a b c sin A sin B sinC
小结:知道三角形的两个内角和任何一边,利 用正弦定理可以求出三角形中的其它元素。
例2 在 ABC 中,已知 a 20, b 28, A 40o, 解三角形。(角度精确到 1o ,边长精确到1cm)
C
ba a
A
B
B
小结:已知两边和其中一边的对角,可以求出 三角形的其他的边和角。
基础练习题
书上第四页练习题 1、 2、