天津理工大学 高等数学AII 历年期末考试试卷

合集下载

天津理工大学2015-2016上大物A期末复习

天津理工大学2015-2016上大物A期末复习

内能能量∆E
m i R(T2 − T1 ) M 2 i =2 (p2 − p1 )V m i R(T2 − T1 ) M 2 i = 2 P (V2 − V1 )
=C =C
V T
pV = C
0
绝热过程就是无热量交换的过程.:: 绝::: 热线 比等温线更陡。 ::::::::::::::::: 2、循环过程 ( 逆循环不考)(二、 5,7,8,10) ♣ 一个循环后, 内 能不变; 净 功大小等于p − V 图上循环曲线所包围的面积. ::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::: 吸热Q1 放热Q2 , 净功W , W = Q1 − Q2 , 热机效率 η = W Q2 =1− . Q1 Q1
2. 理想气体的压强公式和温度公式(一、 4;三、 3) 2 ¯k 压强公式: p = nε 3 其中ε ¯k 是分子的平 均平动动能。 ::::::::: 3. 能量按自由度均分原理(一、 1,2,3,5,6;二、 4;三、 2) ♣ 如果一个理想气体分子的总自由度为i, 则一个分子的 平均动能 :::::::::: i ε ¯ = kT (平均动能=平均平动动能+转动动能) 2 单原子i = 3;双原子i = 5; 多原子分子i = 6. ♣ 理想气体内能: E =
p T
热量Q
m i R(T2 − T1 ) M 2 i =2 (p2 − p1 )V m i+2 R(T2 − T1 ) M 2 i+2 = 2 P (V2 − V1 ) m 2 RT ln V M V1 m 1 =M RT ln p p2
对外做功W 0 p(V2 − V1 ) =
m R(T2 − T1 ) M V2 m RT ln V M 1 p1 m =M RT ln p 2

天津理工大学高等数学I期末复习题(5篇范文)

天津理工大学高等数学I期末复习题(5篇范文)

天津理工大学高等数学I期末复习题(5篇范文)第一篇:天津理工大学高等数学I期末复习题《高等数学AI》模拟复习题(二)一、单项选择题1、设f'(x)=[ϕ(x)]3,其中ϕ(x)在(-∞,+∞)连续、可导,且ϕ'(x)>0 则必有()A、f(x)在(-∞ ,+∞)上单调增;B、f(x)在(-∞ ,+∞)上单调减;C、f(x)在(-∞ ,+∞)上是凹的;D、f(x)在(-∞ ,+∞)上是凸的;2、函数f(x)=x3+2在区间[0,1]上满足拉格朗日中值定理的条件,其在(0,1)内适合f(1)-f(0)=f'(ξ)(1-0)的ξ=()1A、;3B、1;C、11;D、223.设函数f(x),g(x)在[a,b]上连续可导,且f'(x)>g'(x),则当a<x<b时,有()A.f(x)>g(x);B.f(x)+g(a)>f(a)+g(x);C.f(x)<g(x);D.f(x)+g(b)>f(b)+g(x).4.若F'(x)=f(x),则⎰dF(x)=()A、f(x);B、F(x);C、f(x)+C;D、F(x)+C5、设函数y=f(x)对任意x满足f''(x)+xf'(x)5=-1-x4,若f'(x0)=0,则以下结果正确的是()A、f(x0)是f(x)的极大值;B、f(x0)是f(x)的极小值;C、(x0,f(x0))是曲线y=f(x)的拐点;D、x0不是f(x)的驻点。

⎰f(x)dx=F(x)+C,则⎰xf(a2-x2)dx=()6、已知f(x)在R上连续,[]A、F(a2-x2)B、F(a2-x2)+C11C、F(a2-x2)+CD、-F(a2-x2)+C 22二、填空题复习题二1、设⎰f(x)dx=ex+sin2x+c,则f(x)=___________;2、曲线y=x-arctanx在区间__________上是凹的;-1x-1x3.若⎰f(x)edx=e+C,则f(x)4、若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=5、⎰f'(x)-f(x)2dx=___________;6、f(x)在(-∞,+∞)连续,⎰f(x)dx=F(x)+C,则⎰f(ax+h)dx=三、计算题1.求⎰cosxdx2、已知f(x)的一个原函数为excosx,求⎰xf'(x)dx.x(ex+1)-2(ex-1)3.lim 3x→0(arcsinx)4、求函数y=2x+8的单调区间和极值.x四、解下列各题1、⎰xarctanx+x22、已知f(x)的一个原函数为exsinx,求⎰xf''(x)dx五、证明题1、设f(x)在[ 1 , 2]上有二阶导数,且f(1)=f(2)=0,又F(x)=(x-1)2f(x)证明:至少存在一点ξ∈(1 , 2),使F''(ξ)=0.2、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0求证:存在ξ∈(a,b),使得f(ξ)+ξf'(ξ)=0;第二篇:天津理工大学高等数学I期末复习题《高等数学 AI》模拟复习题(四)一、选择题1、方程z=(x2+y2)表示的曲面方程是()A、旋转锥面;2.直线B、双曲抛物面;C、旋转抛物面;D、椭圆柱面.x+3y+4z==与平面4x-2y-2z=3的关系是()-2-7312A、平行,但直线不在平面上;B、直线在平面上;C、垂直相交;D、相交但不垂直.二、填空题1.设有点A(1,3,1),B(1,1,2)和C(2,3,5),则AB⋅AC=.2.若直线⎨⎧2x+3y-z+D=0与x轴有交点,则D=.2x-2y+2z-6=0⎩3、平面x+y=0是().A、与oz轴垂直的平面;B、与xoy平面平行的平面;C、通过oz轴的平面;D、不是前三种平面.三、计算题1.过点M(1,-2,3)作平面,使它与两平面π1:x+y-z-3=0和π2:2x+y+z-1=0都垂直.2、求过直线⎨⎧3x+2y-z-1=0且垂直于已知平面x+2y+3z-5=0的平面方程.⎩2x-3y+2z+2=0复习题四第三篇:高等数学极限复习题高等数学复习资料二川汽院专升本极限复习题一极限计算二两个重要极限三用无穷小量和等价第四篇:天津理工大学文件天津理工大学文件津理工人事…2005‟26号关于印发《天津理工大学福利费管理办法》的通知各学院、机关各处室、各直属单位:《天津理工大学福利费管理办法》已经2005年12月8 日第23 次校长办公会审议通过,现印发执行。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

12高数A期末一真题与答案

12高数A期末一真题与答案

淮 海 工 学 院11 - 12 学年 第 2 学期 高等数学A(2)试卷(A 闭卷)答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1.设向量(1,0,2)a =,(0,1,2)b =,则a b ⨯= --------------------------------------(C )(A )23(B )2 (C )3 (D )42.2(,)()yf x y x x y =+,则(,0)xx f x=----------------------------------------------------(B )(A )1 (B )2 (C )x (D )x23. sin cos u y x z =+-在点(0,0,1)-处沿下列哪个方向的方向导数最大-------(A ) (A )(0,1,1)-(B )(1,0,1)- (C )(1,0,1)-(D ))1,0,1( 4.二次积分x d y x f dy ee y⎰⎰10),(的另一种积分次序为-----------------------(C )(A )1ln 0(,)x dx f x y dy ⎰⎰ (B )10(,)x e dx f x y dy ⎰⎰(C )⎰⎰e xdy y x f dx 1ln 0),( (D )1(,)xe e dxf x y dy ⎰⎰5.2252(51)(1)x y x y ds +=++=⎰-----------------------------------------------------------------(D )(A )0 (B ) π (C )2π (D )6.设n u =,则级数-------------------------------------------------------------------(C )(A )11nn n u ∞∞==∑与(B )∑∞=1n nu与1n ∞=都发散(C )∑∞=1n nu收敛,而1n ∞= (D )∑∞=1n n u 发散,而1n ∞=7.设)(x f 是以π2为周期的周期函数,其在],(ππ-上的解析式为2,0(),0x x f x x x πππ⎧--<≤=⎨-<≤⎩,若记)(x f 的傅里叶级数为()S x ,则(7)S π=------(B ) (A )2π- (B )22π- (C )22π (D )2π8.微分方程28xy y y e -'''++=的一个特解可设为--------------------------------------(D ) (A )xae- (B )x axe - (C )()x ax b e -+ (D )2xax e -二、计算题(本大题共4小题,每题7分,共28分)1. 设(,)z f xy x y =+,其中(,)f u v 可微,且0,u f ≠求1()x y uz z f -. 解:x u v z yf f =+------------------------------------------------------------------------------------2y u v z xf f =+-----------------------------------------------------------------------------------2则1()x y uz z y x f -=-.---------------------------------------------------------------------3 2.设D 由,y x y ==x 轴所围成,求2231(1)Ddxdy x y ++⎰⎰. 解: :01,06D r πθ≤≤≤≤----------------------------------------------2则原式12360(1)d r rdr πθ-=+⎰⎰-----------------------------------------212320(1)(1)12r d r π-=++⎰32π=.---------------------------------33.设空间闭区域Ω{}22(,,)1,12x y z x y z =+≤-≤≤,∑是Ω的整个边界曲面的内侧,用高斯公式计算2()2()(1)x y dydz y z x dzdx z z dxdy ∑++-+-⎰⎰. 解: 2,2(),(1)P x y Q y z x R z z =+=-=+------------------------------------------1Ω是半径为1、高为3的圆柱体 ------------------------------------------------1原式=()P Q R Pdydz Qdzdx Rdxdy dxdydz x y z ∑Ω∂∂∂++=-++∂∂∂⎰⎰⎰⎰⎰--------------2 dv Ω=-⎰⎰⎰3π=-.--------------------------------------------------------------------3 4.求411x y y e x x '+=的通解. 解: 1141[]'dx dx x x xye e e x ⎰⎰=-----------------------------------------------------------------------2则4[]'xxy e =-----------------------------------------------------------------------------------2有414xxy e C =+,---------------------------------------------------------------------------2故41()xy e C x=+.--------------------------------------------------------------------------1三、计算题(8分)和建制造,乐在共享。

高等数学A1期末考试试卷.

高等数学A1期末考试试卷.

天津理工大学考试试卷2009~2010学年度第一学期《高等数学 AI》期末考试试卷课程代码: 1590116 试卷编号: 1-A 命题日期: 2009年 12月 1日答题时限: 120 分钟考试形式:闭卷、笔试得分统计表:大题号总分一二三四五核查人签名阅卷教师一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分,共20分)得分1、设在的某邻域内有定义,且,则在()A、有极大值;B、有极小值;C、无极值;D、不能判定是否取得极值.2、设,则在内,是(A、有界函数;B、单调函数;C、周期函数;D、偶函数.3、由两条曲线和所围成的图形的面积为()A、 B、 C、 D、4、设函数在上连续可导,且,则当时()A. ;B. ;C. ;D. .5、设,则在区间内适合(A、只有一个;B、不存在;C、有三个;D、有两个.6、设空间曲面与yoz面相截,截线的方程为(A、;B、;C、;D、.7、下列反常积分收敛的是()A、;B、;C、;D、;8. 若,则为(A、;B、;C、;D、.9、若则()A、;B、;C、;D、.10、直线与平面的关系是(A、平行,但直线不在平面上;B、直线在平面上;C、垂直相交;D、相交但不垂直.二、填空题(每空3分,共30分)得分1、,且,则;2、;3、设连续,且=;4、;5、由定积分的几何意义知;6、由曲线及直线所围成图形的面积是;7、设,则;8、设有点A(2 ,3,1),B(1,,2)和C(1,4,2),且,则= ;9、若在内连续,则;10、函数的极小值是.三、计算题(每小题7分,共28分)1、已知函数由方程确定,求.2、已知,求.3、求由曲线及所围成的平面图形绕轴旋转所得的旋转体的体积.4、求.四、解下列各题(每小题8分,共16分)得分1、已知的一个原函数为,求.2、求过点,且与直线垂直的平面方程.五、证明题(本题6分)得分设在上连续,在内可导,且,,证明,使.。

高数练习题答案(天津理工大学)

高数练习题答案(天津理工大学)

同步训练1-1题解(基本题)一、填空题1、],0[],4(ππ⋃--;2、21x +.二、选择题 1、C ;2、A.三、计算题1、1||110[()]0||1001||110x x x e x f g x e x e x ⎧<-∞<<⎧⎪⎪====⎨⎨⎪⎪->-<<+∞⎩⎩, ()1||1[()]1||1||1f x e x g f x e x e x -<⎧⎪===⎨⎪>⎩. 2、111()()111x x x x x x a a a f x x x x f x a a a ------=-=-==+++,()f x ∴在(,)-∞+∞是偶函数.同步训练1-2题解(基本题)一、填空题1、略;2、n 从[]125aε+开始; 二、选择题1、A,B ;2、B.三、1、0ε∀>,绝对值不等式226|1|5n n n ε++-<+,22226122|1|55n n n n n n n n +++-=<=++, 只须22,n n εε<>,取正整数2[]N ε=,则当n N >时,226|1|5n n n ε++-<+,证毕.2、n x Q 有界,∴存在0M >,对一切n ,||n x M <,又lim 0,0n n y ε→∞=∀>, 对Mε存在正整数N ,当n N >时恒成立,|||0|n n y y M ε=-<,||||||n n n n x y x y M Mεε∴⋅=⋅<⋅=,证毕.同步训练1-3题解(基本题)一、填空题1、略;2、充分必要;3、1,1-,不存在.二、选择题 1、A ; 2、B,A,D ; 3、C.三、1、0ε∀>为使11|sin 0|,|sin |||x x x x x ε-<<,只须|0|||x x ε-=<,取δε=,则当0|0|x δ<-<时,恒成立1|sin 0|x x ε-<,01lim sin 0x x x→∴=.2、0ε∀>,为使|ε<,|=<<Q ,∴ε<,21x ε>,取21X ε=,则当x X >恒成立|ε<,0x →+∞∴=.3. 0ε∀>,为使24|(4)|2x x ε---<+,24|4||24||2|2x x x x -+=-+=++Q , 只须|(2)||2|x x ε--=+<,取δε=,则当0|(2)|x δ<--<时恒成立24|(4)|2x x ε---<+,224lim 42x x x →--∴=-+.同步训练1-4题解(基本题)一、填空题1、0;2、无穷小乘有界变量是无穷小;3、略;4、,0x k k z π→≠∈;5、A.二、选择题1、A ;2、D.同步训练1-5题解(基本题)1、原式=32232(3)27lim 34(2)x x x→∞+=+; 2、原式=11()22112n-=-; 3、原式=1lim(1)11n n →∞-=+; 4、原式=1x →=;5、原式=1lim2x =; 6、由题设知21lim 0x x ax b →++=,即10,1a b b a ++==--,代入原式2111lim lim(1)251x x x ax ax a a x →→+--=++=+=-,3,4a b ∴==-.同步训练1-6题解(基本题)一、填空题1、13;2、12-;3、3;4、1-.二、选择题1、D ;2、A.三、1、原式=221332122lim{[1]}21x xx x e x +-⋅--+→∞-+=+;2、原式30sin (1cos )1limcos 2x x x x x →-==;3、原式=13tan cot 3tan 0lim[(13tan )]x xx x x ⋅→+3e =;4、33,3n <∴=;5、222222111()121n n n n n n n n n n <+++<+++++L ; 2222lim lim 11n n n n n n n →∞→∞==++Q ,∴原式=1;6、原式=1sin lim11x x x =.同步训练1-7题解(基本题)一、选择题1、B ;2、D.二、1、原式=000lim lim 1n n m m x x n mx x n m x n m -→→>⎧⎪===⎨⎪∞>⎩;2、原式=330lim 1x x x →=;3、原式=220sin lim 1x xx →-=-.同步训练1-8, 1-9题解(基本题)一、填空题1、(,0)(0,)-∞+∞U ;2、9;3、(,2)(2,3)(3),2x -∞--+∞=-U U .二、选择题 1、A ;2、B.三、22||11()lim0||11||1nnn x x x f x x x x x x →∞<⎧-⎪===⎨+⎪->⎩,()f x 在(,1)(1,1)(1,)-∞--+∞U U 连续, 1x =±为跳跃间断点.四、1、原式=2x →=;2、原式=2sincos 22limcos 22x ax a x aa x a →-+⋅=-; 3、lim lim1x x →+∞==;4、原式631336223lim[(1)]6x x x x e x +---⋅-+→∞=-=+.同步训练1-10题解(基本题)一、1、原式2ln 300022()1ln 1233lim3lim limln 3x x x x x x x e x x x →→→--====. 2、原式3sin (1cos )cos x x x x x→-==2001sin 1cos limlim cos x x x x x x x →→-=⋅=二、设()21x f x x =-在[0,1]连续,(0)10,(1)2110f f =-<=-=>,由函数取零值定理,至少存在(0,1)ξ∈,使()0f ξ'=,即210ξξ-=, 即至少有(0,1)ξ∈,使x ξ=是方程21x x =的根.三、设()()F x f x x =-在[,]a b 连续,()()0,()()0F a f a a F b f b b =-<=->,由函数取零值定理在(,)a b 内至少存在ξ,使()0F ξ=,即()f ξξ=.四、()f x Q 在0(,)x a b ⊂连续,0()0f x A =>,00lim ()()x xf x f x A →∴==, 对102A ε=>存在0δ>,使当0||x x δ-<时, 即存在0x 的邻域0(,)(,)x a b δ⊂U 内,使11|()|,()222A f x A A A A f x A -<-<<+,即有1()2f x A >. 同步训练第一章检测题题解(基本题)一、填空题1、必要、充分;2、15;3、2611x x ++;4、e.二、选择题1、C ;2、C ;3、B ;4、B. 三、1、原式111lim(1)2212n n →∞=-=+.2<L1n n ==,∴原式=1.3、原式2cos (cos 1)2limlimcot ln cos sin 0lim 1x x x x x x x x xx e e e →→--→====.四、间断点0,1x x ==,1(00)0,(00),0f f e x --=+=∴=Q 是跳跃间断点,(10)0,(10),1f f x -=+=+∞∴=Q 是无穷间断点.五、lim ()1,0,1x f x a b →∞=∴==Q ,又221lim 02x x cx dx x →++=+-, 21lim0,1,1x x cx d c d d c →∴++=∴+=-=--, 2111(1)(1)(1)lim 0lim 0(2)(1)(2)(1)x x x cx c x x c x x x x x →→+--+-+-⇒=⇒=+-+-, 即0(1)(1)1lim(2)0,2,1(2)(1)3x x x c c c d x x →-++=+==-=+-,即当0,1,2,1a b c d ===-=时,lim ()1x f x →∞=,即1lim ()0x f x →=.六、任取x 及[,]x x a b +∆∈,由题设00|()()|||0x f x x f x L x ∆→≤+∆-≤∆−−−→,lim ()()x f x x f x ∆→∴+∆=,即()f x 在[,]x a b ∈连续,由x 的任意性知()f x 在[,]a b 内连续,又()()0f a f b ⋅<,()f a ∴与()f b 异号,由函数取零值定理,至少存在一点(,)a b ξ∈,使()0f ξ=.同步训练2-1题解(基本题)一、填空题1、04()f x ';2、必要,充分;3、!,(1)!n n --.二、选择题1、C ;2、B.三、1、为使()f x 在1x =连续,由(10)(10)(1)1f f f a b -=+=⇒+=, 为使()f x 在1x =可导,由(1)(1)f f -+''=, 计算211()(1)1(1)lim lim 211x x f x f x f x x ---→→--'===--,111()(1)1(1)lim lim lim 111x x x f x f ax b ax af a x x x ++++→→→-+--'====---, 2,1a b ∴==-,即21()211x x f x x x ⎧≤=⎨->⎩在1x =连续可导.2、11||x e x e y x e =='==,切线方程1()1y x e e =-+,即xy e=. 3、22()()()()()lim lim lim()()2()x a x a x a f x f a x a g x f a x a g x ag a x a x a→→→--'===+=--.同步训练2-2题解(基本题)1、12arcsin 222xx y '==. 2、12ln y x x '=⋅=3、1ln ln ln y x x x'=.4、22222111111tan cos33sin3tan (cos33sin3)22x x xy e x e x e x x x x x x '=++⋅-=+-.5. arcsin 2xy '=+arcsin 2x =arcsin 2x =.6、222(cos )(cos )2cos sin (cos )sin 2df x f x x xg x x dx'=-⋅=⋅. 7、2222(sin )sin 2(cos )(sin 2)sin 2[(sin )(cos )]dyf x x f x x x f x f x dx''''=⋅+-=-.同步训练2-3题解(基本题)一、1、y '=23/2(1)x y x -''==+.2、22()1,{()()[()]}()[()]f x y y f x f x f x f x f x '''''''==-. 3、()()n x y n x e =+ 4、设2sin ,u x v x ==,(100)(100)1(99)2(98)100100y u v c u v c u v '''=⋅++2100991009998sin()1002sin()2sin()2222x x x x x πππ⋅=++⋅+++ 23sin 200sin()9900sin()2x x x x x ππ=+⋅++⋅+2sin 200cos 9900sin x x x x x =--.同步训练2-4题解(基本题)一、填空题1、12;2、33(1),24(1)t t +-.二、选择题1、D ;2、C.三、1、2223320,3(1)ay y y a y y '''-+==-,2222323222483(1)33(1)9(1)a y y a ay a yy y y y '⋅''===---.2、当0x =时y e =, 2110y xy y x e y''+++=+, 将0,x y e ==代入2110e y e e '++=得21(0)()y e e'=-+.3、122ln 1(ln 1)()x x x y x x x x x '=++-+. 4、22cos sin cos 1,csc sin sin dy t t t t d y t t dx t dx t--====---.5、1ln [ln(1)ln(2)ln(3)ln(4)]3y x x x x =+++-+--11111[]31234y y x x x x'=+-++++-111]234y x x x '--++-.同步训练2-5题解(基本题)一、填空题1、c ;2、cos sin ln x x x x -. 二、选择题1、A ;2、A.三、1、[2[(2)](2)3[(3)](3)]dy f x x f x f x dx ϕϕϕ''''=+;2、[(1ln )cos sin ]x x dy x x x x x dx =+-;3、sin (1)sin()()0,sin x y x yx y e y xyey xy y xy dy dx e x xy++++''+++==-+.同步训练第二章检测题题解(基本题)一、填空题1、sin cos x x -;2、2(())[()()][()][2()()]f x x x x x f x x x x x ϕϕϕϕϕϕ'''''''+++;3、2cos sin x x x-+;4、1x =.二、选择题1、B ;2、C ;3、B ;4、C.三、1、sin cos tan cos |cos |x x x x xe x y e e e ex -'=⋅=-. 2、ln ln ,ln ln x yx y y x y y y x y x''=+=+,(ln )ln x y x y y y x '-=-,ln (ln )(ln )ln yyy y x y x y x x x y x x y--'==--. 3、2()2()()()(),()0f x x a x x a x f a ϕϕ'''=---=,2()()2()()()()()limlim 2'()x ax a f x f a x a x x a x f a a x a x aϕϕϕ→→'''----''===--. 4、21ln [ln 3ln(1)3ln(1)]2y x x x =+--+236]11xy x x '=--+. 四、22()0x x f x xx ⎧≥=⎨-<⎩,当0x <时,()2f x x '=-,当0x >时,()2f x x '=, 当0x =时,200()(0)(0)lim lim 00x x f x f x f x x---→→--'===-,20(0)lim 0x x f x ++→'==,(0)(0)0f f -+''==,(0)0f '∴=,总之20()20x x f x x x ≥⎧'=⎨-<⎩. 五、1°(0,1]α∈时,当x a →时,()x a α-是无穷小1|sin |1x a≤-, 1lim ()lim()sin0()x ax af x x a f a x aα→→∴=-==-, ()f x ∴在x a =连续,但1()()1()lim lim()sinx ax a f x f a f a x a x a x αα-→→-'==---不存在. ()f x ∴在x a =不可导.2°(1,2]α∈,显然()f x 在x a =连续,又()()()limx af x f a f a x a →-'=-11lim()sin 0x a x a x aα-→=-=-, ()f x ∴在x a =可导,且()0f a '=, 此时1211()()sin()cos (0)f x x a x a x x a x aααα--'=---≠--, 当12α<≤时,lim ()x af x →'不存在,()f x '∴在x a =不连续.3°当[2,)α∈+∞时,lim ()0()x af x f a →''==,()f x '∴在x a =连续.六、()f x Q 以T 为周期,()()f x T f x ∴+=,00()()()()()limlim ()x x f x T x f x T f x x f x f x T f x x x∆→∆→++∆-++∆-''+===∆∆,()f x '∴是以T 为周期的周期函数.同步训练3-1题解(基本题)一、填空题1、2π; 2、3. 二、选择题 1、D ;2、C.三、1、设231120()23n n a a a F x a x x x x n-=++++L , ()F x 在[0,1]上连续,在(0,1)内可导,(0)(1)0F F ==, ∴至少存在一点(0,1)ξ∈,使()0F ξ'=,即2101210n n a a x a x a x --++++=L 在(0,1)内至少有一根.2、()f x Q 在(,)a b 二阶可导,()f x ∴在1223[,],[,]x x x x 连续,在1223(,),(,)x x x x 内可导, 123()()()0f x f x f x ===,由罗尔定理在12(,)x x 及23(,)x x 内分别至少存在12,ξξ, 使12()()0f f ξξ''==,由题设()f x '在12[,]ξξ连续,在12(,)ξξ可导,12()()f f ξξ''=, ∴至少存在一点12(,)(,)a b ξξξ∈⊂,使()0f ξ''=.3、设()ln f x x =,它在[,]b a 连续在(,)b a 可导,由拉格朗日定理至少存在(,)b a ξ∈, 使1ln ln (),ln ln 3a b a ba b a b b a a b a bξ---=-<<⇒<-<. 4、分析:欲证()()0f kf ξξξ'+=,即1()()0k k f k f ξξξξ-'+=,即[()]|0k x x f x ξ='=, 从而可引入辅助函数()()k F x x f x =,证:设()()k F x x f x =在[,]a b 连续在(,)a b 可导,()()0,()()0k k F a a f a F b b f b ====, 由罗尔定理至少存在一点(,)a b ξ∈,使()0F ξ'=, 即1()()0()()0k k f k f f kf ξξξξξξξ-''+=⇒+=.同步训练3-2题解(基本题)一、填空题1、1;2、0. 二、选择题1、B ;2、C.三、1、原式20011lim lim 366x x x x x xe e xe x x →→+-===;2、原式22cos3cos 3sin3sin limlimtan 22tan 2sec 22x x x x x xxx x ππ→→--+==⋅⋅ 213sin3sin 19cos3cos lim lim4tan242sec 2x x x x x x x xππ→→-+-+==191142-==;3、原式00ln 1limlimln(1)x xxx x xe exe e e e →→--===;4、原式33330000tan sin tan sin sin (1cos )12limlim lim lim tan sin cos 2x x x x x x x x x x x x x x x x x x x →→→→⋅---=====. 四、原式00()11()(0)1limlim (0)1222x x f x f x f f x x →→'''--''====. 同步训练3-3题解(基本题)一、填空题1、234561(01)2!3!4!5!6!x xx x x x e e x xθθ=++++++<<;2、341sin 1sin (01)3!4!x x xx θθ=-+<<.二、原式2232330[10()1]2[0()]2!2!3!lim x x x x x x x x x x→++++-+++= 3323233010()20()2!3lim x x x x x x x x x x x→+++++----= 33300()16lim 6x x x x →+== 三、()(),()(1),,()()x x n x f x xe f x x e f x x n e '==+=+L ,(0)0,(0)1,f f '==()(0)2,,(0)n f f n ''==L .()(1)21(0)(0)()()(0)(0)2!!(1)!n n n n f f f x f x f f x x x x n n θ++'''∴=++++++L2311(1)2!(1)!(1)!n x n x x n x x x e x n n θθ+++=+++++-+L(01)θ<<.同步训练3-4题解(基本题)一、填空题1、(0,)(,0)+∞↑-∞↓;2、1230,1,1x x x ==-=. 二、选择题1、A ;2、C ;3、B.三、()(2)(1)x f x e x x -'=-+-,令()0f x '=得驻点2,1x x =-=,列表(,2)-∞-, 2-, (2,1)-, 1, (1)+∞()f x ' - 0 + 0 - ()f x ↓ 极小值 ↑ 极大值 ↓(2)f - (1)f 极小值22(2)(461)0f e e +-=-++=, 极大值1212(1)(131)5f e e e e --=+++=+四、设2()sin 12xx f x e x -=+--,()cos x f x e x x -'=-+-,()(1sin )0,(0,)x f x e x x π-''=-+<∈,()f x '∴单调减少,又(0)0f '=, ∴当0x π<<时,()(0)0f x f ''<=, ∴当0x π<<时,()f x 单调减少,又(0)0f =, ∴当0x π<<时,()(0)0f x f <=,即2sin 12xx e x -+<+.五、由322(),()32f x x ax bx f x x ax b '=++=++(1)123(1)32023f a b a b f a b a b =++=-+=-⎧⎧⇒⇒⎨⎨'=++=+=-⎩⎩0,3a b ⇒==-同步训练3-5题解(基本题)一、填空题1、52055(,),[,),(,)32733+∞-∞;2、13()28f =.二、选择题 1、C ; 2、B.三、1、322,32,62y ax bx y ax bx y ax b '''=+=+=+,(1,3)Q 是曲线32y ax bx =+的拐点,3,620a b a b ∴=++=,39,22a b ⇒=-=.2、设底面三角形边长为x ,柱体高为h ,则2V h =,于是h =,表面积22(0)S x x =+=>,由34)0dS x V dx =-=得唯一驻点x =,又2234)0d S Vdx x+>,故当x =时表面积最小. 3、横断面面积2122S r rh π=+,得24S h r r π=-,断面周长()22()024S f r r r r r r ππ=++-<≤,2()22Sf r r π'=+-,令()0f r '=得唯一驻点24Sr π=+, 且32()0Sf r r ''=>,∴当24Sr π=+时()f r 最小, 此时24Sh π=+,故当r h =时,建沟所用材料最省.同步训练3-6题解(基本题)一、1、14,4;2、0;3、水平,2y π=-.二、经讨论:0y =是水平渐近线.同步训练第三章检测题(基本题)一、填空题1、(1,)+∞;2、1;3、(,)-∞+∞;4、()af a '.二、选择题1、D ;2、C ;3、D ;4、D.三、1、原式500lim 0t t t e →+∞==(令21t x=);2、原式232000cos sin cos sin cos sin cos 1limlim lim sin 33x x x x x x x x x x x x x x x x x →→→--+-====; 3、原式22ln[1(1cos3)]1cos33sin 39limlimlimln(1)22x x x x x xx xx e eee →→→+--+====;4、原式112(ln 2ln(1))11lim2lim()11x x x x x x x x eee →→-+--+===.四、2ln ,2ln ,2ln 21y x x y x x x y x '''==+=++, 令2ln 30y x ''=+=得323ln ,2x x e -=-=,当32,0x e y -''>>,凹区间32(,)e -+∞,当320,0x e y -''<<<凸区间32(0,)e -, 拐点是3323(,)2e e ---五、设()(1)()x F x e f x =-在[0,1]上连续,在(0,1)内可导,且(0)0,(1)(1)(1)0F F e f ==-=,o x1 2 -1由罗尔定理,至少存在一点(0,1)ξ∈使()0F ξ'=,即()(1)()0f e f ξξξ-'+-=.同步训练4-1题解(基本题)一、填空题 1、22sin con x x x x +; 2、2()f x x x c =-+; 3、2323x c +.二、选择题 1、B ; 2、D ; 3、D.三、计算题1、C x e x dx x e x xdx x e x x x x x ++--=+-=+----⎰⎰||ln 32)()(23125323; 2、222222222121111()arctan (1)(1)1x x x dx dx dx x C x x x x x x x+++==+=-+++++⎰⎰⎰; 3、C e dx e dx e x x x x x ++==⎰⎰313ln 1)3(3; 4、C x x dx x dx x +-=-=⎰⎰sin )cos 1(2sin 22;5、C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22. 同步训练4-2题解(基本题)一、填空题 1、arcsin ()f x c +; 2、arctan ()f x c +. 二、选择题1、D ;2、D.三、计算下列各题1、原式=2C =-⎰; 2、原式=444313(1)ln |1|414d x x C x --=--+-⎰; 3、原式=11112()ln ||32131x dx C x x x --=+-++⎰;4、原式=1313()arcsin 33C x x-=-+; 5、C ==;6、⎰⎰⎰--=-=x d x x xdx x x xdx x cos )cos (cos sin cos )cos 1(cos sin 755253C x x ++-=8cos 6cos 86;7、C x tg tgx dtgx x tg xdtgx xdx ++=+==⎰⎰⎰322431)1(sec sec .四、计算下列各题1. 2(0)a > 解:令sin ()22x a t t ππ=-<<,原式=222sin cos (1cos 2)cos 2a ta t a dt t dt a t =-⎰⎰22(sin cos )arcsin 22a a x t t t c c a =-+=. 2、222cos sin sin sec sin sin dt tdt d tt t t t===⎰⎰⎰ C xx C t ++-=+-=21sin 1.3、21sec tan 1cos 9sec tan 9t t dt tdt t t ==⎰⎰1sin 9t C C =+=. 同步训练4-3题解(基本题)一、选择题 1、C2、B二、填空题1.⎰+-'=''c x f x f x dx x f x )()()( 2.c x x x f +-=)1(ln 2)( 三、计算题1、()(1)x x x x x x x xe dx xd e xe e dx xe e C x e C -------=-=-+=--+=-++⎰⎰⎰;2、⎰⎰---=-)11ln()11ln()11ln(xd x xx dx xC x xx x dx xx +---=---=⎰|1|ln )11ln(1)11ln(;3、C x x dx xx x x d x x x x xd dx xx +-=-=-==⎰⎰⎰⎰)2(ln 2)1ln (2)ln ln (2ln 2ln ;4、令udu dx u x u x 2,,2===,⎰⎰⎰⎰-===)sin sin (2sin 2cos 2cosudu u u u ud udu u dx xc x x x c u u u ++=++=)cos sin (2)cos sin (2.四、22()()()()(tan )tan sec 2222x x x xxf x dx xdf x xf x f x dx x x x C C ''==-=-+=+⎰⎰⎰五、⎰⎰⎰-----+=-==xdx x n n x nx x x xdx x n x x x d x I n n n n n n n cos )1(cos sin sin sin )(sin 21121)1(cos sin ----+=n n n n I n n x nx x x I ⎰-+==3455520cos 5sin cos I x x x x xdx x IC x x x x x x x ++-++-=cos )120605(sin )12020(2435同步训练4-4题解(基本题)一、 选择题1、C2、D二、 填空题1、211A B Cx Dx x x x ++++++; 2、2ln |310|x x C +-+; 3、ln |1sin |x C ++.三、计算题1、⎰⎰⎰⎰++-++++=++-+=+++134134)134(2113424221134122222x x dxx x x x d dx x x x dx x x x C x arctg x x x x d x x ++-++=+++-++=⎰)32(31134ln 219)2()2(|134|ln 21222; 2、21111()(ln |1|ln |2|)23123dx dx x x C x x x x =-=--+++--+⎰⎰11ln ||32x C x -=++; 3、解:令tan 2x t =,则221cos 1t x t -=+,221dtdx t=+,22222222113cos 3(1)(1)231dt dx dt dt t c t x t t t t+====-+++-+++⎰⎰⎰⎰;4、⎰⎰⎰+-+=+=+22325631)11(6)1(6)1(t dt t t t dt t t x xx dx =+-=C arctgt t )(6C x arctg x +-)(666.同步训练第4章检测题题解(基本题)一、1、C ;2、C ;3、C ;4、D.二、1、C x ++234)1(61;2、C x arctg +-cos .三、1、原式=C x xx d dx xx ++=++=+⎰⎰|22sin |ln 2sin 2)22(sin 2sin 22cos 2 2、令221x t +=,原式⎰=+-=-=C t t dt t t 35)1(3522C x x ++-+232252)1(31)1(513、原式=⎰⎰=+--=++2)1()1(1112222x x x x d dx xx x C x x arctg +-2121 4、原式⎰⎰⎰+++-=++=++=------1)1()1(1)1(22222x x x x x x xe e d e dx e e e e dx C e e x x +++++-=--]1)1(1ln[25、由212)11ln(xx x -='⎥⎦⎤⎢⎣⎡-+知原式⎰=-+-+=)11ln()11ln(21x x d x x C x x +⎥⎦⎤⎢⎣⎡-+2)11ln(41 6、令t x cos =,原式=⎰⎰⎰-==-tdt t t t td ttdt ctg ctg ctg sin 2C x x xx c t t t +---=+-=221ln arccos 1|sin |ln ctg 7、令arcsin t x =,则sin ,cos ,cos t x t dx tdt ==,原式=22111cos (1cos 2)cos 2242t tdt t t dt t t tdt =+=+⎰⎰⎰22111(arcsin )424x x x C =+-+. 四、C x x x x x dx x f x xf x xdf dx x xf ++-+=-==⎰⎰⎰ln )sin 1(]'ln )sin 1[()()()()('C x x x x x +-++=)ln 1)(sin 1(ln cos五、⎰+-=-=-='=-=='c u u du u u f u u f x u x x x f 2222)21()(,21)(,sin ,sin 212cos )(sin 则令故c x x x f +-=2)(,代入(0)0f =,得0c =,则2()f x x x =-. 六、()(sin )(sin )cos f x x c x x ''=+==Q ,()()()(cos )cos()2n n n f x x x π∴==+ ()()cos()sin()22n n n f x dx x dx x c ππ∴=+=++⎰⎰同步训练5-1题解(基本题)一、填空题1、必要、充分;2、10ln ()f x dx ⎰3、是介于x 轴,ππ-==x x ,及x x f sin )(=围成的两块面积大小相同(符号相反)的两部分的代数和.二、选择题 1、A ;2、C ;3、C.三、1、x x f 2cos 1)(+=Θ在]45,4[ππ上连续,]45,4[,2)(max ,1)(min ππ∈==x x f x f ,2cos 112≤+≤∴x ,524455()(1cos )2()4444x dx ππππππ-≤+≤-⎰,即5244(1cos )2x dx ππππ≤+≤⎰2、设()()F x xf x =,1201()2()2f xf x dx =⎰Q ,又由积分中值定理,11(0,)2ξ∃∈,使12110()()xf x dx f ξξ=⎰,11111()()()22F f f ξξξ∴==,由罗尔定理,11(,)2ξξ∃∈, 使()0F ξ'=,即()()0f f ξξξ'+=.同步训练5-2题解(基本题)一、填空题 1、yex cos ; 2、⎰-04222sin 2sin x x x dt t ;3、3x <.二、选择题1、A ;2、B.三、1、证:2)()()()()('a x dtt f x f a x x F x a---=⎰,令()()()()xa G x x a f x f t dt =--⎰,b x a x f a x x G a G ≤≤≤-==0)(')()(',0)(,由0)('≤x G 知)(x G 单调下降,因此0)(≤x G ,从而0)('≤x F .2、222000|sin ||sin ||sin |sin (sin )x dx x dx x dx xdx x dx πππππππ=+=+-⎰⎰⎰⎰⎰4)(cos )cos (2=+-=0πππx x3、22()22x f x x x +'=++,当[0,1]x ∈时()0f x '>,即()f x 在[0,1]上单调增加,最小值(0)0f =,最大值211122200021(22)(1)(1)22222(1)1t d t t d t f dt t t t t t ++++==+++++++⎰⎰⎰15ln arctan 2224π=+-4、原式=22011lim 33x x e x →-=同步训练5-3题解(基本题)一、填空题 1、0 ; 2、23;3、1.二、选择题1、B ;2、B.三、1、令t a x sin =,则tdt a dx cos =,当2,00π====t a x t x 时当时⎰-a dx x a x0222⎰⋅=2022cos cos sin πtdt a t ta a ⎰=⋅⋅⋅⋅=-=204422416)22143221()sin 1(sinππππa a dt t t a2、00022222(1)|221(1)dx dxarctg x x x x ---==+++++⎰⎰arctg1arctg(1)442πππ=--=+= 3、000|cos |x dx ππ==⎰⎰220022cos (cos )|sin |xdx x dx x x ππππππ=-=-=4、方法一:⎪⎪⎩⎪⎪⎨⎧<<-+≥≥-=--时即当时即当101111011)1(1x x e x x xx f x⎰⎰⎰-+++=--2010211)1(11)1(x dx e dx dx x f x ⎰⎰++-=+-+-+=----10211011112ln |)1ln(1)1(11x x x x e x dx x d e e e )1ln(2ln )]1ln(2[ln 11e e +=++--=-方法二:令1-=x t ,则11≤≤-t ,dt dx =⎰⎰⎰--+==-21111)()1(t e dt dt t f dx x f ⎰++101t dt⎰--+=++-=+++-+=01110)1ln(2ln |])1[ln(1|)1ln(11e e t dt e e e t tt t 同步训练5-4题解(基本题)一、填空题 1、2π;2、21π+.二、选择题 1、A ;2、B.三、1、原式⎰=--=-=---=434302232)2(6|)12arcsin()21()21()21(πππx x x d 方法二:原式⎰==-=434332|arcsin 212πx xx d 2、原式000ln(1)|ln 211xx x xdx e dx e e e+∞+∞-+∞--===-+=++⎰⎰ 3、102211arctan 11111arctan |()ln |ln 2142142x t dx x dx x x x x t ππ+∞+∞+∞+∞=-+⋅=+=+++⎰⎰ 4、令ln u x =,原式=1P duu+∞⎰,由P253例3,当1P >时收敛,当1P ≤时发散.同步训练第五章检测题题解(基本题)一、填空题 1、0;2、31;3、)2,(),21,(--∞-∞;4、)3(6sin )(cos 2222x xf x x xf --.二、选择题1、A ;2、D.三、1、由积分中值定理12312(0)3()3()()(1)33f f x dx f f ξξξ==⋅⋅=≤≤⎰,由罗尔定理有(0,)(0,1)C ξ∈⊂,使()0f C '=.2、0lim ()lim sin 2(1)0(0)x x x f x e f ++→→=-=≠,()f x 在0x =处不连续,在0x ≠处均连续. 3、令x t =-1,于是21010110(1)()()()f t dt f x dx f x dx f x dx ---==+⎰⎰⎰⎰20122221011(1)1(1)12424xx e dx dx e e x ππ--=+=--+-=+-+⎰⎰ 4、原式03300(arcsin )arcsin limlim(1~,0)4xx x x t t dtx xe x x x x x→→--==-→⎰ 241241lim 1211lim 12111lim 20220220=-=--=--=→→→x x x xx x x x x x 5、证明:2002sin sin sin nn n xdx xdx xdx ππππ=+⎰⎰⎰,而⎰⎰⎰⎰==--2=2=-=222020sin sin ))((sin 0,,sin ππππππππππxdx tdt dt t t x t x xdx nn n n时当令 故sin sin sin 2sin nnnn xdx xdx xdx xdx ππππ2002=+=⎰⎰⎰.同步训练6-1,2(一)面积题解(基本题)一、填空题1、23a π2、462二、计算题1、解:面积33242242220024sin (cos )12sin cos 12sin (1sin )A a td a t a t tdt a t t dt πππ===-⎰⎰⎰2231531312()42264228a a πππ=⋅⋅-⋅⋅⋅=。

历年天津理工大学高数期末考试试卷及答案

历年天津理工大学高数期末考试试卷及答案

2015-2016年第二学期《高等数学AII 》期末考试试卷一、单项选择题(从4个备选答案中选择最适合的一项,每小题2分共20分) 1、三重积分⎰⎰⎰Ω=dV z y x f I ),,(,其中Ω由平面1=++z y x ,1=+y x ,0=x ,0=y ,1=z 所围,化为三次积分是( B ) A 、 ⎰⎰⎰---=211010),,(y x x dz z y x f dy dx I ; B 、 ⎰⎰⎰---=111010),,(y x x dz z y x f dy dx I ;C 、 ⎰⎰⎰--=11110),,(yx dz z y x f dy dx I ; D 、 ⎰⎰⎰--=11010),,(yx x dz z y x f dy dx I .2、设y e x u 2=,则=du ( A )A. dy e x dx xe y y 22+;B. dy e xdx y +2;C. dy xe dx e x y y 22+;D. dy e x dx e x y y 22+. 3、微分方程y dxdyx= 的通解为( C ). A. C x y +-=; B. C x y +=; C. Cx y =; D. x y =.4、设1∑是222y x R z --=上侧,2∑是222y x R z ---=下侧,3∑是xoy 平面上圆222R y x ≤+的上侧,R Q P ,,在3R 空间上有一阶连续偏导数,且0=∂∂+∂∂+∂∂zR y Q x P ,则与曲面积分⎰⎰∑++1Rdxdy Qdzdx Pdydz 相等的积分是( B )(A) ⎰⎰∑++2Rdxdy Qdzdx Pdydz ;(B) ⎰⎰∑++3Rdxdy Qdzdx Pdydz ;(C)Rdxdy Qdzdx pdydz ++⎰⎰∑∑21 ;(D)Rdxdy Qdzdx pdydz ++⎰⎰∑∑31 .5、微分方程x xe y y y 396-=+'-''的特解形式为( B )A 、x axe 3-;B 、x e b ax 3)(-+;C 、x e b ax x 3)(-+;D 、x e b ax x 32)(-+ 解:特征方程0)3(9622=-=+-r r r ,321==r r ,特解形式为x e b ax y 3)(-*+=.选(B ). 6、当)0,0(),(→y x 时, 22yx xyu +=的极限为( A ) A 、不存在; B 、1; C 、2; D 、0. 7、下列级数收敛的是( B ) A 、∑+∞=+121n n ; B 、∑+∞=131sin n n ; C 、∑+∞=+1441n n n ; D 、∑+∞=-121)1(n n n . 8、微分方程02=-'+''y y y 的通解为( C )A. x x e C e C y --=21;B. 221x xe C e C y --=; C. 221x xe C eC y -=-; D. x x e C e C y 221+=-.解:特征方程0)1)(12(122=+-=-+r r r r ,11-=r ,212=r ,通解为221xx e C e C y -=-.选(C ).9、设⎰⎰+=Ddxdy y x I 21)(,⎰⎰+=Ddxdy y x I 32)(,D 由直线1=x ,1=y 与1=+y x 围成,则1I 与2I 的大小关系是( A )A 、21I I <;B 、21I I =;C 、21I I >;D 、21I I ≥. 10、积分 0 0adx ⎰⎰的极坐标形式的二次积分为( B )A 、⎰⎰40csc 02πθθa dr r d ;B 、⎰⎰40sec 02πθθa dr r d ;C 、⎰⎰20tan 02πθθa dr r d ;D 、⎰⎰40sec 0πθθa rdr d .二、填空题(每空3分,共30分)1、微分方程0))(,,(4='''y x y y x F 的通解含有(独立的)任意常数的个数是 2 个.2、设)(x f 是周期为π2的周期函数,且⎩⎨⎧<≤<≤--=ππx x x x f 000)(,它的傅立叶级数的和函数为)(x S ,则=)5(πS 2π. 3、已知函数)ln(22y x z +=,则=∂∂-∂∂xzy y z x0 . 4、设平面曲线L 为1||||=+y x ,则曲线积分=⎰+ds e Ly x ||||e 24.5、若曲线积分⎰---=Ldy y ax xy dx y xy I )(3)6(2232与路径无关,则=a 2 。

(整理)天津市l理工高等数学竞赛真题答案.

(整理)天津市l理工高等数学竞赛真题答案.

2011年 天津市大学数学竞赛试题参考解答 (理工类)一. 填空题(本题15分,每小题3分): 1. 设()f x 是连续函数, 且0()lim41cos x f x x →=-, 则01()lim 1x xf x x →⎛⎫+= ⎪⎝⎭2e .2. 设223()2x f x ax b x +=++- , 若 lim ()0,x f x →∞= 则 a =2,- b =4.- 3. 1e ln d x x x x ⎛⎫+= ⎪⎝⎭⎰ e ln .x x C +4. 设(,)f x y 是连续函数, 且(,)(,)d d ,Df x y xy f x y x y =+⎰⎰其中D 由x 轴、y 轴以及直线1x y +=围成,则(,)f x y =1.12xy +5. 椭球面22221x y z ++=平行于平面20x y z -+=的切平面方程为20x y z -++= 和20.x y z -+= 二. 选择题(本题15分,每小题3分):1. 设()(2)ln(1),f x x x =+- 则()f x 在0x =处(A) (0)2f '=-, (B) (0)0f '=, (C) (0)2f '=, (D) 不可导. 答: (A) 2. 设函数()y f x =具有二阶导数, 且满足方程sin e 0.x y y '''+-=已知0()0,f x '=则(A) ()f x 在0x 的某个邻域中单调增加, (B) ()f x 在0x 的某个邻域中单调增少, (C) ()f x 在0x 处取得极小值, (D) ()f x 在0x 处取得极大值. 答: ( C) 3. 图中曲线段的方程为()y f x =, 函数()f x 在区间[0,]a()d af x x '表示(A) 直角三角形AOB 的面积, (B) 直角三角形AOC 的面积, (C) 曲边三角形AOB 的面积, (D) 曲边三角形AOC 的面积. 答: (D)4. 设在区间 [,]a b 上的函数()0,f x > 且 ()0,f x '< ()0.f x ''> 令 1()d ,aS f x x =⎰2()(),S f b b a =-31[()()](),2S f a f b b a =+- 则(A) 123,S S S << (B) 312,S S S << (C) 213,S S S << (D) 231.S S S << 答: (C )5. 设 曲面22{(,,)|,01},x y z z x y z ∑==+≤≤取上侧为正, 1∑是 ∑在 0x ≥的部分, 则曲面积分 (A) d d 0,x y z ∑=⎰⎰ (B) 1d d 2d d .z x y z x y ∑∑=⎰⎰⎰⎰x(C) 122d d 2d d ,y y z y y z ∑∑=⎰⎰⎰⎰ (D) 122d d 2d d ,x y z x y z ∑∑=⎰⎰⎰⎰ 答: (B)三. (6分) 设函数 ()2002[(1)()d ]d 0sin 00xt t u u t,x ,f x x,x .ϕ⎧-⎪≠=⎨⎪=⎩⎰⎰ 其中函数ϕ处处连续. 讨论()f x 在0x =处的连续性及可导性.解 222[(1)()d ]d (1)()d lim ()limlim2x x x x t x t u u tx u uf x x xϕϕ→→→--==⎰⎰⎰220()d ()d limlim22x x x x x u uu ux x ϕϕ→→=-⎰⎰202()0lim0(0)2x x x f ϕ→⋅=-== 因此, ()f x 在0x =处连续.200300[(1)()d ]d ()(0)lim lim xx x t t u u t f x f x x ϕ→→--=⎰⎰ 220(1)()d lim 3x x x u u x ϕ→-=⎰ 22002200()d ()d 11lim lim33x x x x x u u u u x x ϕϕ→→=-⎰⎰ 1(0)3ϕ=- 因此, ()f x 在0x =处可导, 且 1(0)(0).3f ϕ'=-四. (6分) 设函数()x x t =由方程cos 0t x x +=确定, 又函数()y y x =由方程2e 1y xy --=确定, 求复合函数(())y y x t =的导数d d .t y t=解 方程cos 0t x x +=两边对t 求导 d d cos sin 0.d d x x x t x t t -⋅+=当 t=0时, x=0, 故00d cos 1.d sin 1t t x x xt t x ====--= 方程2e 1y xy --= 两边对x 求导 2d d e 0.d d y y yy x x x-⋅--⋅= 当 0x =时,2,y = 故0220d 2.de x y y x yy xx==-==-=因此,00d d d .d d d 2t x t y yxt xt ====⋅=-五. (6分) 设函数()f x 在(,)-∞+∞上二阶可导,且0()lim0x f x x→=,记10()()x f xt dt ϕ'=⎰,求)(x ϕ的导数,并讨论)(x ϕ'在0x =处的连续性.解 由已知的极限知(0)0,(0)0,f f '== 从而有 10(0)(0)d 0.f t ϕ'==⎰当 0x ≠时, 1100011()()()()d()()d ,x f x x f x t dt f x t x t f u u x x x ϕ'''====⎰⎰⎰从而有 (),0()0,0.f x x x xx ϕ⎧≠⎪=⎨⎪=⎩因为()lim ()lim0(0),x x f x x xϕϕ→→=== 所以, ()x ϕ在0x =处连续. 当 0x ≠时, 2()()(),xf x f x x xϕ'-'=在0x =处, 由(0)0,ϕ= 有 200()(0)()()1(0)limlimlim (0)22x x x x f x f x f xx x ϕϕϕ→→→'-'''==== 所以,2()(),0()1(0),0.2xf x f x x x x f x ϕ'-⎧≠⎪⎪'=⎨⎪''=⎪⎩而200000()()()()lim ()limlim lim lim2x x x x x f x f x f x f x x x x xx ϕ→→→→→''''=-=- 001()1()(0)1lim lim (0)(0),222x x f x f x f f x x ϕ→→'''-'''====故 ()x ϕ'在0x =处连续. 六. (7分) 设函数()y y x =在(,)-∞+∞上可导, 且满足: 22,(0)0.y x y y '=+=(Ⅰ) 研究()y x 在区间(0,)+∞的单调性和曲线()y y x =的凹凸性.(Ⅱ) 求极限 30()lim.x y x x →解 (Ⅰ) 当0x >时, 有220,y x y '=+>故 ()y x 在区间(0,)+∞单调增加. 从而当0x >时, 22y x y '=+也单调增加. 可见, 曲线()y y x =在区间(0,)+∞向下凸.(或当0x >时, 可得222222()0.y x y y x y x y '''=+⋅=++> 可见, 曲线()y y x =在区间(0,)+∞向下凸. ) (Ⅱ) 由题设知, (0)(0)0.y y '== 应用洛必达法则22322000()()lim lim lim 33x x x y x y x x y x x x →→→'+==[]22011111lim (0).33333x y y x →⎛⎫'=+=+= ⎪⎝⎭七. (7分) 设()f x 在[0,1]上具有连续导数, 且0()1,(0)0.f x f '<≤= 试证211300()d ][()]d .f x x f x x ⎡⎤≥⎢⎥⎣⎦⎰⎰证 令 2300()()d [()]d ,x xF x f t t f t t ⎡⎤=-⎢⎥⎣⎦⎰⎰ 则 ()F x 在 [0,1]连续, 且对 (0,1)x ∈,30()2()()d [()]x F x f x f t t f x '=-⎰20()2()d ().xf x f t t f x ⎡⎤=-⎢⎥⎣⎦⎰ 又由题设知, 当(0,1)x ∈时, ()0.f x > 令20()2()d (),x g x f t t f x =-⎰则()g x 在[0,1]上连续, 且()2()[1()]0,(0,1),g x f x f x x ''=-≥∈故有()(0)0(0,1).g x g x ≥=∈ 因此()0,(0,1),F x x '≥∈于是()F x 在[0,1]上单调增加, ()(0)0,[0,1].F x F x ≥=∈ 取1x =, 即得211300(1)()d [()]d 0.F f t t f t t ⎡⎤=-≥⎢⎥⎣⎦⎰⎰ 所证结论成立.八. (7分) 设函数()y f x =具有二阶导数, 且()0.f x ''> 直线a L 是曲线()y f x =上任意一点(,())a f a 处的切线, 其中[0,1].a ∈ 记直线a L 与曲线()y f x =以及直线0,1x x ==所围成的图形绕y 轴旋转一周所得旋转体的体积为().V a 试问a 为何值时()V a 取得最小值. 解 切线a L 的方程为 ()()(),y f a f a x a '-=- 即 ()()().y f a x af a f a ''=-+ 于是10()2[()()()()]d V a x f x f a x af a f a x π''=-+-⎰10112()d ()()().322a xf x x f a f a f a π⎡⎤''=-+-⎢⎥⎣⎦⎰a可见, ()V a 在[0,1]连续, 在(0,1)可导. 令 1()2[()()]()(32)0323a V a f a f a f a a ππ'''''''=-+=-=, 由于 ()0,f a ''> ()V a 在(0,1)内有唯一的驻点2.3a =并且, 当 2(0,)3a ∈时, ()0V a '<; 当2(,1)3a ∈时, ()0,V a '> 因此, ()V a 在23a =处取得最小值. 九. (7分) 计算(sin )d (cos 1)d ,Ly y x x y y -+-⎰其中L 为从点(0,0)O 沿圆周222xy x +=在第一象限部分到点(1,1)A 的路径.解 令 sin ,cos 1,P y y Q x y =-=- 则cos (cos 1) 1.Q Py y x y∂∂-=--=∂∂ 取点(1,0).B 作有向直线段,OB 其方程为 0(y x =从0变到1).作有向直线段,BA 其方程为 1(x y =从0变到1). 由曲线L 、有向直线段AB 和BO 形成的闭曲线记为0L (沿顺时针方向), 0L 所围成的区域记为D , 则(sin )d (cos 1)d Ly y x x y y -+-⎰()((sin )d (cos 1)d )AB BOL y y x x y y =---+-⎰⎰⎰d (sin )d (cos 1)d DBAy y x x y y σ=-+-+-⎰⎰⎰(sin )d (cos 1)d OBy y x x y y +-+-⎰11(cos 1)d 04y y π=-+-+⎰ 1sin1 1.4π=-+- 十. (8分) 设(1)有向闭曲线Γ是由圆锥螺线 OA :θθθθθ===z y x ,sin ,cos ,(θ从0变到2π)和有向直线段 AO 构成, 其中()0,0,0O , ()2,0,2A ππ;(2)闭曲线Γ将其所在的圆锥面z =∑是其中的有界部分.(Ⅰ)如果()x z F -=,1, 表示一力场,求F沿Γ所做的功W ;(Ⅱ)如果()x z F -=,1,表示流体的流速,求流体通过∑流向上侧的流量. (单位从略)解(Ⅰ)作有向直线段,AO 其方程为 ⎩⎨⎧==x z y 0(x 从 2π变到0).所求F沿Γ所做的功为d d d W z x y x z Γ=+-⎰()(d d d )OAAOz x y x z =++-⎰⎰()20cos sin sin cos cos d πθθθθθθθθθθ=-++-⎡⎤⎣⎦⎰()02d x x x π+-⎰220(cos sin )d 0πθθθθθ=-+⎰24π=.(Ⅱ)Γ所在的圆锥面方程为z =∑上任一点处向上的一个法向量为(,,1)x yn z z=--=∑在xOy面上的投影区域为D, 在极坐标系下表示为:0,02.rθθπ≤≤≤≤故所求流体通过∑流向上侧的流量为d d d d d d()()d dx yz y z z x x x y z z z x x y∑∑⎡⎤Φ=+-=⋅-+--⎣⎦⎰⎰⎰⎰d dx x x y∑⎛⎫=---⎪⎪⎝⎭⎰⎰()200d2cos sin dr r rπθθθθ=-+⎰⎰2232cos sin d32πθθθθθ⎛⎫=-+⎪⎝⎭⎰26π-=.注: (Ⅰ)的另一解法应用Stokes公式,可得W2d d2d dyz x z x y∑∑==-⎰⎰⎰⎰2d x y∑=⎰⎰222000sin2d d sin drr rrπθπθθθθθ=-⋅=-⎰⎰⎰24π=.十一. (8分) 设函数(,)u u x y=在心形线:1cosL rθ=+所围闭区域D上具有二阶连续偏导数, n是在曲线L上的点处指向曲线外侧的法向量(简称外法向),un∂∂是(,)u x y沿L的外法向的方向导数, L取逆时针方向.(Ⅰ) 证明: d d d .L Lu u us x yn y x∂∂∂=-+∂∂∂⎰⎰(Ⅱ) 若222221,u ux y yx y∂∂+=-+∂∂求dLusn∂∂⎰的值.(Ⅰ) 证由方向导数的定义d(cos sin)d.L Lu u us sn x yαα∂∂∂=+∂∂∂⎰⎰其中, α是n相对于x轴正向的转角.设1α是L的切向量τ相对于x轴正向的转角, 则1,2παα=+或1.2παα=-故11d(sin cos)d.L Lu u us sn x yαα∂∂∂=-∂∂∂⎰⎰d d.Lu ux yy x∂∂=-+∂∂⎰(Ⅱ) 解应用格林公式22222d ()d d(1)d dD DLu uus x y x y y x yn x y∂∂∂=+=-+∂∂∂⎰⎰⎰⎰⎰由对称性x1cos 00d 1d d 2d d D L us x y x r rn πθ+∂==∂⎰⎰⎰⎰⎰203(1cos )d .2πθθπ=+=⎰十二.(8分) 设圆222x y y +=含于椭圆22221x y a b +=的内部, 且圆与椭圆相切于两点(即在这两点处圆与椭圆都有公共切线).(Ⅰ) 求 a 与b 满足的等式; (Ⅱ) 求a 与b 的值, 使椭圆的面积最小.解 (Ⅰ) 根据条件可知, 切点不在y 轴上. 否则圆与椭圆只可能相切于一点. 设圆与椭圆相切于点00(,)x y , 则00(,)x y 既满足椭圆方程又满足圆方程, 且在00(,)x y 处椭圆的切线斜率等于圆的切线斜率, 即2002001b x xa y y -=--. 注意到00,x ≠ 因此, 点00(,)x y 应满足2200222200022001(1)2(2)1(3)1x y a b x y y b a y y ⎧+=⎪⎪⎪+=⎨⎪⎪=-⎪⎩由(1)和(2)式, 得222200220.b a y y a b--+=(4)由 (3) 式得 2022.b y b a =- 代入(4) 式2242222222220.()b a b b a b b a b a-⋅-+=-- 化简得 2222,b a b a=- 或 22420.a b a b --= (5) (Ⅱ) 按题意, 需求椭圆面积S ab π=在约束条件 (5) 下的最小值.构造函数2242(,,)().L a b ab a b a b λλ=+-- 令2322242(24)0(6)(22)0(7)0(8)a b L b ab a L a a b b L a b a b λλλ⎧=+-=⎪=+-=⎨⎪=--=⎩(6) ·a − (7)·b , 并注意到 0λ≠, 可得 242b a =. 代入 (8) 式得644220a a a --=, 故a = 从而2b ==由此问题的实际可知, 符合条件的椭圆面积的最小值存在,因此当22a b ==时, 此椭圆的面积最小.。

天津理工大学-数据库2014-2015期末考试试卷

天津理工大学-数据库2014-2015期末考试试卷

2014 ~2015 学年度第二学期《数据库系统概论》期末考试试卷课程代码:试卷编号:命题日期:2015 年11 月22 日答题时限:120 分钟考试形式:闭卷笔试一、单项选择题(请从4个备选答案中选择最适合的一项,每小题2分,共40分)注意:须将本题答案写在下面的表格中,写在其它地方无效1. 数据库系统与文件系统的根本区别在于()A. 提高了系统效率B. 方便了用户使用C. 数据的结构化D. 节省了存储空间2. 数据库系统的核心是()A.数据库B.数据库管理系统C.数据模型D.软件工具3.用二维表结构表示实体以及实体间联系的数据模型称为()A.网状模型B.层次模型C.关系模型D.面向对象模型4. 数据库的概念模型独立于()A.具体的机器和DBMS B.E-R图C.信息世界D.现实世界5. 层次型、网状型和关系型数据库划分原则是()A.记录长度B.文件的大小C.联系的复杂程度D.数据之间的联系6.设在某个公司环境中,一个部门有多名职工,一名职工只能属于一个部门,则部门与职工之间的联系是()A. 一对一B. 一对多C. 多对多D. 不确定7.在数据库的三级模式结构中,描述数据库中全体数据的全局逻辑结构和特征的是()A.外模式B.内模式C.存储模式D.模式8.在数据库结构中,保证数据库独立性的关键因素是()A.数据库的逻辑结构B.数据库的逻辑结构、物理结构C.数据库的三级结构D.数据库的三级模式和两级映像。

9.关系模型中,一个关键字是()A.可由多个任意属性组成B.至多由一个属性组成C.可由一个或多个其值能惟一标识该关系模式中任何元组的属性组成D.以上都不是10.同一个关系模型的任两个元组值()A.不能全同B.可全同C.必须全同D.以上都不是11. 有关系:R(A, B, C),主码=A;S(D, A),主码=D,外码=A(参照于R)。

关系R和S 的元组如表1、表2所示,指出关系S中违反关系完整性规则的元组是()表1 R 表2 SA.A(1,2)B.(2,Null)C.(3,3)D.(4,1)12.有一个关系:学生(学号,姓名,系别),规定学号的值域是8个数字组成的字符串,这一规则属于()A. 实体完整性约束B. 参照完整性约束C.用户自定义完整性约束D. 关键字完整性约束13. 现有如下关系:患者(患者编号,患者姓名,性别,出生日期,所在单位)医疗(患者编号,医生编号,医生姓名,诊断日期,诊断结果)其中,医疗关系中的外码是()A. 患者编号B. 患者姓名C . 患者编号和患者姓名D . 医生编号和患者编号14. 设关系R 和S 的属性个数分别为2和3,那么12R S <∞等价于( ) A .12()R S σ<⨯ B .14()R S σ<⨯ C .12()R S σ<∞ D .14()R S σ<∞15 . 当关系R 和S 自然联接时,能够把R 和S 原该舍弃的元组放到结果关系中的操作是 ( )A . 左外联接B . 右外联接C .外部并D . 外联接16. 设有一个关系:DEPT(DNO ,DNAME),如果要找出倒数第三个字母为W ,并且至少包含4个字母的DNAME ,则查询条件子句应写成 WHERE DNAME LIKE ( )( )A .'_ _W _%'B .'_ W _ %'C .'_ W _ _'D .' _ %W _ _'第17到第18题 基于这样的三个表即学生表S 、课程表C 和学生选课表SC ,它们的结构如下:S(S#, SN , SEX , AGE, DEPT)C(C# , CN)SC(S#, C#, GRADE)其中:S#为学号,SN 为姓名,SEX 为性别,AGE 为年龄,DEPT 为系别,C#为课程号,CN 为课程名,GRADE 为成绩。

大学高等数学期末考试试题与答案

大学高等数学期末考试试题与答案

大学高等数学期末考试试题与答案下列哪个公式不是牛顿-莱布尼茨公式的应用?B) (4x3 + 5x2 + 6x + 7)′D) (e2x + 3y)′答案:D) (e2x + 3y)′填空题(每题3分,共18分)略解答题(每题10分,共60分)略综合题(每题15分,共30分)略当谈论数学时,大家可能会想到那些复杂的公式和令人头疼的问题。

然而,数学在我们的日常生活中无处不在,它不仅是一门学科,更是一种思维方式。

在吉林大学,高等数学课程一直受到高度重视。

本文将通过学生们的期末试题来展示数学的魅力和应用。

试题是数学学习的重要组成部分。

通过做题,学生不仅可以巩固所学知识,还可以培养解决问题的能力和举一反三的思维方式。

以下是一道吉林大学高等数学的期末试题:求函数 y=x^3-3x^2+2在区间 [0,4]上的最大值和最小值。

这道题目的答案是:最大值为28,最小值为-16。

要解决这个问题,我们需要对函数进行求导,并确定函数的极值点。

然后,我们可以在给定的区间内找到函数的最大值和最小值。

除了在高等数学中学习数学基础知识,我们还可以将这些知识应用到实际生活中。

例如,在经济学的课程中,学生们可以使用数学模型来分析股票市场的波动;在工程学中,可以使用数学方法来设计桥梁和建筑的结构等。

数学是人类文化的重要组成部分,它为我们的日常生活提供了很多帮助。

通过学习高等数学,我们可以更好地理解数学的应用价值,提高我们的思维能力和解决问题的能力。

在未来的学习和工作中,这些能力将是我们不可或缺的竞争优势。

吉林大学高等数学期末试题不仅考察了学生的数学知识,还体现了数学在生活中的应用价值。

通过学习数学,我们可以培养举一反三的思维方式,提高解决问题的能力和竞争力。

让我们一起感受数学的魅力吧!下列哪个选项是高等数学中“极限”的概念? ( )下列哪个选项是高等数学中“导数”的概念?( )下列哪个选项是高等数学中“积分”的概念?( )积分在高等数学中是一个非常广泛的概念,它涉及到面积、体积、平均值等多个方面,但不能简单地说积分就是求面积或体积或平均值。

大学高等数学期末考试试题及答案

大学高等数学期末考试试题及答案

院(系)别班级班级 学号学号学号 姓名姓名成绩成绩 大题大题一 二三 四 五 六 七 小题小题1 2 34 5得分得分,把答案直接填在题中横线上),a = ,b = = .,则2z x y¶=¶¶ .处的切平面方程为处的切平面方程为 .处收敛于处收敛于 ,在处收敛于处收敛于 .= .,答题时必须写出详细的解答过程,1ln n n 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?,)y 具有二阶连续偏导数,求,z z x x y¶¶¶¶¶.,dSz òò三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-ò,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n ¥=×å的收敛域及和函数.的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy S=++-òò,其中S 为曲面221(0)z x y z =--³的上侧.的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]t F t z f xy z dv W =+++òòò,其中t W 是由曲面22z x y=+与222z t x y =--所围成的闭区域,求所围成的闭区域,求 30()lim t F t t+®.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面®答题纸®草稿纸由表及里依序对折上交;不得带走试卷。

2023-2024学年天津市四校高一上学期期末联考数学试卷含详解

2023-2024学年天津市四校高一上学期期末联考数学试卷含详解

2023~2024学年度第一学期高一数学期末四校联考高一数学一、选择题(本愿共9小恩,每小题5分,共计45分、每小题有且仅有一项符合题目要求.)1.已知全集{}0,2,4,6,8,10U =,集合{}0,2,4A =,{}0,6,8B =,则()UA B ⋂=ð()A.{}0 B.{}6,8 C.{}0,6,8 D.{}2,4,6,8 2.“π2π3x k =+,k ∈Z ”是3sin 2x =的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“所有六边形得内角和都是720︒”的否定为()A.存在一个六边形,它的内角和是720︒B.存在一个六边形,它的内角和不是720︒C.所有不是六边形的多边内角和都不是720︒D.所有六边形的内角和都不是720︒4.近年来,人们对健康环境、生态环境的关注越来越高,因此,低碳环保、城市可持续发展已经成为各方关注的热点话题.某市对居民计费方法如下表:若某户居民本月缴纳的电费为150元,则此户居民本月的用电量为()生活用电实行分段计电价0~200度用电量0.3元/度201~400度用电量0.6元/度401度以上用电量0.9元/度A.250度B.350度C.450度D.500度5.设0.914a -⎛⎫= ⎪⎝⎭,0.84b =,4πlog sin2c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A.a b c >>B.b a c >>C.a c b>> D.b c a>>6.已知函数()f x 是定义城为R 的奇函数,当0x ≤时,()2322f x x x =++,则32f ⎛⎫⎪⎝⎭的值为().A.474B.474-C.234D.234-7.若将函数ππ()sin 23f x x ⎛⎫=+⎪⎝⎭的图象向左平移13个单位,得到函数图象解析式是()A.πsin 2y x ⎛⎫= ⎪⎝⎭B.πsin 2y x ⎛⎫=-⎪⎝⎭C.πcos 2y x ⎛⎫= ⎪⎝⎭D.πcos 2y x ⎛⎫=-⎪⎝⎭8.若不等式()232911221e e x x a x x --++⎛⎫> ⎪⎝⎭对任意的()1,4x ∈恒成立,则实数a 的取值范围为()A.(),5∞--B.(],5-∞-C.[)1,-+∞ D.(),1∞--9.音乐是用声音来表达人思想感情的一种艺术,是人类精神通过无意识计算而获得的愉悦享受.法国的数学家傅里叶说:“任何声乐都是形如‘()sin t A ωϕ+’的各项之和”,其中每一项都代表一种有适当频率和振幅的简单声音.某音乐的数学模型可以用函数()cos sin f x x x =⋅表示,则下列结论中正确的个数是()①()f x 是周期为π的周期函数②,44ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间③若()()1214f x f x =-,12x x ≠,则12x x -的最小值为2π④()f x 的对称中心为,02k ππ⎛⎫+ ⎪⎝⎭,k ∈Z A.0个B.1个C.2个D.3个二、填空题(本题共6小题,每小题5分,共计30分.)10.函数311x y a -=-(0a >且1a ≠)无论a 取何值,函数图像恒过一个定点,则定点坐标为________.11.15πlg 25lg 2sin 24++=______.12.tan 2x =,则3cos sin sin 5cos x xx x-=+________.13.若实数1a >,2b >,且满足250a b +-=,则1112a b +--的最小值为______.14.砖雕是我国古建筑雕刻中的重要艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图所示,一扇环形砖雕,可视为将扇形OCD 截去同心扇形OAB 所得图形,已知0.1m OA =,0.4m AD =,125AOB ∠=︒,则该扇环形砖雕的面积为________2m .15.已知函数()2ln 1,022,0x x f x x x x ⎧-≤=⎨-+>⎩若函数()()22m g x f x =-有三个零点,则实数m 的取值范围________.三、解答题(本题共5小题,共75分.解答必需写出必要的文字说明、推理过程或计算步骤,只有结果的不给分.)16.已知集合{}121A x a x a =+≤≤+,函数()23log 310y x x =--的定义域为B .(1)若集合R B C =ð,求集合C ;(2)在(1)条件下,若3a =,求()R A C ð;(3)在(1)条件下,若“x A ∈”是“x C ∈”充分不必要条件,求实数a 的取值范围.17.已知函数()23sin cos 32f x x x x =-+.(1)求函数()f x 的最小正周期及单调递减区间;(2)求函数()f x 在2π,123π⎡⎤-⎢⎥⎣⎦上的最值;(3)若π243f α⎛⎫+= ⎪⎝⎭,求4πcos 23α⎛⎫- ⎪⎝⎭的值.18.函数()22f x ax bx =++,,a b ∈R(1)若()0f x >的解集是{|1x x <或2}x >,求实数a ,b 的值;(2)当0a =时,若()()42ff x x =-,求实数b 的值;(3)a ∈R ,若()24f =,求()28f x x <-+的解集.19.已知函数()()21,mx f x m n x n+=∈+R 是奇函数,且()()2g x f x =-一个零点为1.(1)求m ,n 的值及()f x 解析式;(2)已知函数()f x 在()0,1单调递减,()t x 在()()1,00,1-U 满足()()t x t x -=,当0x >时,()()t x f x =,若不等式()1412t a t ⎛⎫+≥- ⎪⎝⎭恒成立,求实数a 的取值范围;(3)已知函数()()()()233ln 1ln 1h x f x x x k x =--++-+⎡⎤⎣⎦的一个零点为2,求函数()h x 的其余零点.20.已知()f x ,()g x 分别为定义在上的偶函数和奇函数,且()()2xf xg x +=.(1)求()f x 和()g x 的解析式;(2)利用函数单调性的定义证明()f x 在区间[)0,∞上是增函数;(3)已知()()()2449F x f x mf x =-+,其中m 是大于1的实数,当[]20,log x m ∈时,()0F x ≥,求实数m 的取值范围.2023~2024学年度第一学期高一数学期末四校联考高一数学一、选择题(本愿共9小恩,每小题5分,共计45分、每小题有且仅有一项符合题目要求.)1.已知全集{}0,2,4,6,8,10U =,集合{}0,2,4A =,{}0,6,8B =,则()UA B ⋂=ð()A.{}0 B.{}6,8 C.{}0,6,8 D.{}2,4,6,8【答案】B【分析】根据集合的交集和补集的运算得到结果即可.【详解】因为{}0,2,4,6,8,10U =,{}0,2,4A =所以{}6,8,10U A =ð,又{}0,6,8B =所以(){}6,8U A B ⋂=ð,故选:B 2.“π2π3x k =+,k ∈Z ”是3sin 2x =的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【分析】利用充分条件与必要条件的定义,结合三角函数的性质求解即可.【详解】若π2π3x k =+,k ∈Z ,则πsin sin 2π32x k ⎛⎫=+= ⎪⎝⎭,充分性成立;若sin 2x =,则π2π3x k =+或2π2π3x k =+,k ∈Z ,必要性不成立,所以“π2π3x k =+,k ∈Z ”是3sin 2x =的充分不必要条件.故选:A.3.命题“所有六边形得内角和都是720︒”的否定为()A.存在一个六边形,它的内角和是720︒B.存在一个六边形,它的内角和不是720︒C.所有不是六边形的多边内角和都不是720︒D.所有六边形的内角和都不是720︒【答案】B【分析】根据全称量词命题的否定的知识:“改量词,否结论”即可确定正确选项.【详解】“所有六边形得内角和都是720︒”的否定为“存在一个六边形,它的内角和不是720︒”.故选:B4.近年来,人们对健康环境、生态环境的关注越来越高,因此,低碳环保、城市可持续发展已经成为各方关注的热点话题.某市对居民计费方法如下表:若某户居民本月缴纳的电费为150元,则此户居民本月的用电量为()生活用电实行分段计电价0~200度用电量0.3元/度201~400度用电量0.6元/度401度以上用电量0.9元/度A.250度B.350度C.450度D.500度【答案】B【分析】根据题意,得到本月缴纳的电费和居民用电量的函数关系式,结合题意,列出方程,即可求解.【详解】由题意,设某户居民用电量为x 度,本月缴纳的电费为y ,可得0.3,(0,200]600.6(200),(200,400]1800.9(400),(400,)x x y x x x x ∞∈⎧⎪=+⨯-∈⎨⎪+⨯-∈+⎩,当某户居民本月缴纳的电费为150元时,可得600.6(200)150x +⨯-=,解得350x =,即居民本月的用电量为350度.故选:B.5.设0.914a -⎛⎫= ⎪⎝⎭,0.84b =,4πlog sin2c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A.a b c >>B.b a c >>C.a c b >>D.b c a>>【答案】A【分析】利用指数指数函数的性质及特殊角的正弦值计算即可.【详解】易知00.9.9144a -⎛⎫= ⎪⎝⎭=,由于4x y =单调递增,所以041a b >>=,而πsin12=,所以4log 10c ==,综上c b a <<.故选:A6.已知函数()f x 是定义城为R 的奇函数,当0x ≤时,()2322f x x x =++,则32f ⎛⎫⎪⎝⎭的值为().A.474B.474-C.234D.234-【答案】D 【分析】由3322f f ⎛⎫⎛⎫=--⎪ ⎪⎝⎭⎝⎭即可求解.【详解】因为函数()f x 是定义城为R 的奇函数,233332332222224f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--=--+-+=-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦故选:D7.若将函数ππ()sin 23f x x ⎛⎫=+⎪⎝⎭的图象向左平移13个单位,得到函数图象解析式是()A.πsin 2y x ⎛⎫=⎪⎝⎭ B.πsin 2y x ⎛⎫=-⎪⎝⎭C.πcos 2y x ⎛⎫= ⎪⎝⎭D.πcos 2y x ⎛⎫=-⎪⎝⎭【答案】C【分析】利用图象平移“左加右减”的原则,直接推出平移后的函数解析式即可.【详解】将函数ππ()sin 23f x x ⎛⎫=+⎪⎝⎭的图象向左平移13个单位后所得到的函数图象对应的解析式为:1π1ππππ()sin ()sin cos 3233222f x x x x ⎡⎤⎛⎫⎛⎫+=++=+= ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭.故答案为:C .8.若不等式()232911221e e x x a x x --++⎛⎫> ⎪⎝⎭对任意的()1,4x ∈恒成立,则实数a 的取值范围为()A.(),5∞--B.(],5-∞-C.[)1,-+∞ D.(),1∞--【答案】A【分析】化成同底数指数幂,然后参变分离,可知a 的取值范围.【详解】因为32219(1)221e()ex x x x a +--+>,所以32219(1)22e e x x x x a +++>,32219(1)22x x x x a ∴+>++,即324(1)x x x a ->+()1,4x ∈ ,241x x a ∴->+当2x =时,24x x -有最小值4-,145a a ∴+<-⇒<-,故选:A9.音乐是用声音来表达人思想感情的一种艺术,是人类精神通过无意识计算而获得的愉悦享受.法国的数学家傅里叶说:“任何声乐都是形如‘()sin t A ωϕ+’的各项之和”,其中每一项都代表一种有适当频率和振幅的简单声音.某音乐的数学模型可以用函数()cos sin f x x x =⋅表示,则下列结论中正确的个数是()①()f x 是周期为π的周期函数②,44ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间③若()()1214f x f x =-,12x x ≠,则12x x -的最小值为2π④()f x 的对称中心为,02k ππ⎛⎫+ ⎪⎝⎭,k ∈Z A.0个 B.1个C.2个D.3个【答案】C【分析】根据三角函数性质周期及对称中心判断①④,根据单调区间及值域分别判断②③.【详解】因为()()()()πcos πsin πcos sin f x x x x x f x +=++=-=-,所以周期不是π,①错误;πππ1πππ1cos sin cos -sin -444222444222f f ⎛⎫⎛⎫⎛⎫⎛⎫=⋅=⨯=-=⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,ππ44f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以ππ,44⎡⎤-⎢⎥⎣⎦不是的单调递增区间,②错误;()1sin2,sin 021sin2,sin 02x x f x x x ⎧≥⎪⎪=⎨⎪-<⎪⎩,因为()()121,4f x f x =-设()()121122f x f x ==-,所以111222πππ,Z,π,Z 44x k k x k k ∈∈=+=-+,所以()121212ππ,Z 2x x k k k k ∈-=+--,所以12x x -的最小值为π2,③正确;()πππ22πcos 22πsin 22πcos sin 222f x k x k x k x x f x ⎛⎫⎛⎫⎛⎫+⨯+=+⨯++⨯=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,④正确.故选:C.二、填空题(本题共6小题,每小题5分,共计30分.)10.函数311x y a -=-(0a >且1a ≠)无论a 取何值,函数图像恒过一个定点,则定点坐标为________.【答案】1(,0)3【分析】根据题意,令310x -=,求得13x =和0y =,即可求解.【详解】由函数311x y a -=-(0a >且1a ≠),令310x -=,解得13x =,则0y =,所以函数恒经过定点1(,0)3.故答案为:1(,0)3.11.15πlg 25lg 2sin 24++=______.【答案】522-【分析】根据对数的运算性质和特殊角的三角函数值可求原式的值.【详解】原式13π32522lg 5lg 2ln e sin 1224222=⨯++-=+-=.故答案为:522-.12.tan 2x =,则3cos sin sin 5cos x xx x-=+________.【答案】17【分析】应用同角三角函数关系结合齐次式求解即可.【详解】因为tan 2x =所以3cos sin 3tan 321sin 5cos tan 5257x x x x x x ---===+++.故答案为:17.13.若实数1a >,2b >,且满足250a b +-=,则1112a b +--的最小值为______.【答案】3+##3【分析】将式子变形,利用常数代换,结合基本不等式即可求得最小值.【详解】因为250a b +-=,所以()()2121a b -+-=,又实数1a >,2b >,所以10,20a b ->->所以()()()211111221221121212a b a b a b a b a b --⎛⎫⎡⎤+=+-+-=+++ ⎪⎣⎦------⎝⎭()21233312a b a b --=++≥+=+--,当且仅当()21212250a b a b a b ⎧--=⎪⎨--⎪+-=⎩,即2221a b ⎧=-⎪⎨⎪=⎩时,等号成立,故答案为:3+14.砖雕是我国古建筑雕刻中的重要艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图所示,一扇环形砖雕,可视为将扇形OCD 截去同心扇形OAB 所得图形,已知0.1m OA =,0.4m AD =,125AOB ∠=︒,则该扇环形砖雕的面积为________2m .【答案】π12【分析】根据题意,结合扇形的面积公式,准确计算,即可求解.【详解】因为扇形OAB 的院校为π25π12518036AOB ∠=⨯=,又因为0.1m OA =,0.4m AD =,所以,该扇环形砖雕的面积为()22125ππ0.50.123612S =⨯⨯-=.故答案为:π12.15.已知函数()2ln 1,022,0x x f x x x x ⎧-≤=⎨-+>⎩若函数()()22m g x f x =-有三个零点,则实数m的取值范围________.【答案】()2,2-【分析】转化为=与22m y =的图象有3个交点,做出=的图象,结合图象可得答案.【详解】若函数()()22m g x f x =-有三个零点,则=与22m y =的图象有3个交点,()2ln 1,022,0x x f x x x x ⎧-≤=⎨-+>⎩,当0x ≤时,ln 10y x =-≥,当0x >时,()2222111y x x x =-+=-+≥,与y 轴的交点为0,2,()f x 的大致图象如下,要使=与22m y =的图象有3个交点,则2122m <<2m <<,或2m -<<.故答案为:()2,2-⋃.【点睛】关键点点睛:解题的关键点是数形结合.三、解答题(本题共5小题,共75分.解答必需写出必要的文字说明、推理过程或计算步骤,只有结果的不给分.)16.已知集合{}121A x a x a =+≤≤+,函数()23log 310y x x =--的定义域为B .(1)若集合R B C =ð,求集合C ;(2)在(1)条件下,若3a =,求()R A C ð;(3)在(1)条件下,若“x A ∈”是“x C ∈”充分不必要条件,求实数a 的取值范围.【答案】(1){}25x x -≤≤(2)4{|}2x x -≤<(3)(,2]-∞【分析】(1)由对数函数的性质,求得集合{2B x x =<-或5}x >,结合补集的运算,即可求解;(2)当3a =时,求得R {|4A x x =<ð或7}x >,结合集合交集的运算,即可求解;(3)根据题意,得到A 是C 的真子集,分类讨论,集合集合的包含关系,列出不等式组,即可求解.【小问1详解】解:由函数23log (310)y x x =--的定义域为B ,可得23100x x -->,即(2)(5)0x x +->,解得2x <-或5x >,所以集合{2B x x =<-或5}x >,所以{}R 25B C x x ==-≤≤ð.【小问2详解】解:当3a =时,集合{|47}A x x =≤≤,可得R {|4A x x =<ð或7}x >,因为{|25}C x x =-≤≤,所以()R {|24}A C x x ⋂=-≤<ð.【小问3详解】解:若“x A ∈”是“x C ∈”的充分不必要条件,所以A 是C 的真子集,当121a a +>+时,即0a <时,此时A =∅,满足A 是C 的真子集;当A ≠∅时,则满足21121512a a a a +≥+⎧⎪+≤⎨⎪+≥-⎩且不能同时取等号,解得02a ≤≤,综上,实数a 的取值范围为(,2]-∞.17.已知函数()23sin cos 2f x x x x =-+.(1)求函数()f x 的最小正周期及单调递减区间;(2)求函数()f x 在2π,123π⎡⎤-⎢⎥⎣⎦上的最值;(3)若π243f α⎛⎫+= ⎪⎝⎭,求4πcos 23α⎛⎫- ⎪⎝⎭的值.【答案】(1)π,单调减区间为()5π11ππ,πZ 1212k k k ⎡⎤+∈⎢⎥⎣⎦.(2)min ()1f x =-,max ()1f x =(3)23-【分析】(1)化简函数为()πsin 23f x x ⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)由(1)得出函数()f x 的单调递增区间,结合π(12f -,5π()12f 和2π(3f 的值,即可求解;(3)根据题意,求得π3sin(2)62α+=,结合4ππ3πcos(2cos[(2)362αα-=+-,即可求解.【小问1详解】解:由函数()()22313sin cos 2sin cos 2cos 1222f x x x x x x x =-+=⨯--1πsin 22sin 223x x x ⎛⎫=-=- ⎝⎭,所以()f x 的最小正周期为2ππ2T ==,令ππ3π2π22π,Z 232k x k k +≤-≤+∈,可得5π11πππ,Z 1212k x k k +≤≤∈,所以()f x 的单调减区间为()5π11ππ,πZ 1212k k k ⎡⎤+∈⎢⎥⎣⎦.【小问2详解】解:由(1)知,函数的单调递增区间为π5ππ,π,Z 1212k k k ⎡⎤-+∈⎢⎥⎣⎦,因为π2π,123x ⎡⎤∈-⎢⎥⎣⎦,所以()f x 在π5π,1212⎡⎤-⎢⎣⎦上单调递增,在5π2π,123⎡⎤⎢⎥⎣⎦上单调递减,且π()112f -=-,5π(112f =,2π(03f =,所以min ()1f x =-,max ()1f x =.【小问3详解】解:由函数()πsin 23f x x ⎛⎫=-⎪⎝⎭,可得ππ2()sin(2463f αα+=+=,因为π4π3π(2(2632αα+--=,所以4ππ3ππ2cos(2)cos[(2]sin(2)36263ααα-=+-=-+=-.18.函数()22f x ax bx =++,,a b ∈R (1)若()0f x >的解集是{|1x x <或2}x >,求实数a ,b 的值;(2)当0a =时,若()()42f f x x =-,求实数b 的值;(3)a ∈R ,若()24f =,求()28f x x <-+的解集.【答案】(1)1a =,3b =-(2)2b =-(3)答案见解析【分析】(1)根据三个二次的关系可求参数的值.(2)先求出()()f f x ,再根据代数式恒相等可求b 的值.(3)原不等式即为2(32)60ax a x +--<,就a 不同情形分类讨论后可得不等式的解.【小问1详解】不等式220ax bx ++>的解集为{|1x x <或2}x >,0a ∴>,且220ax bx ++=的两根为11x =,22x =,3b a∴-=,22a =,1a =,3b =-.【小问2详解】()2()(2)(2)22242f f x f bx b bx b x b x =+=++=++=-,得24222b b ⎧=⎨+=-⎩,2b ∴=-.【小问3详解】(2)4220f a b =+-=,21a b ∴+=,12b a∴=-即2(32)60ax a x +--<,(3)(2)0ax x ∴+-<(1)当0a =时,2x <(2)当0a ≠时,则3(2)0a x x a +-<,①当0a >时,32x a -<<;②当0a <时,若32a -<,即32a <-时,3x a <-或2x >,若32a -=,即32a =-时,2x ≠;若32a ->,即302a -<<时,2x <或3x a >-;综上所述:当32a <-时,不等式的解集为3{|x x a <-或2}x >;当32a =-时,不等式的解集为{|2}x x ≠;当302a -<<时,不等式的解集为{|2x x <或3}x a>-;当0a =时,不等式的解集为{|2}x x <;当0a >时,不等式的解集为3{|2}x x a-<<.19.已知函数()()21,mx f x m n x n+=∈+R 是奇函数,且()()2g x f x =-一个零点为1.(1)求m ,n 的值及()f x 解析式;(2)已知函数()f x 在()0,1单调递减,()t x 在()()1,00,1-U 满足()()t x t x -=,当0x >时,()()t x f x =,若不等式()1412t a t ⎛⎫+≥- ⎪⎝⎭恒成立,求实数a 的取值范围;(3)已知函数()()()()233ln 1ln 1h x f x x x k x =--++-+⎡⎤⎣⎦的一个零点为2,求函数()h x 的其余零点.【答案】(1)1m =,0n =,1()f x x x=+(2)3111[,(,]8448a ∈---- (3)0,4.【分析】(1)根据零点和奇函数的定义,联立方程组,解得,m n 的值,得到()f x 解析式,验证()f x 的奇偶性,即可得解;(2)依题意利用偶函数和单调性可得a 满足的条件,进而可求解a 的取值范围;(3)求出()h x 的解析式,依题意求出k ,进而可得ℎ的其他零点.【小问1详解】因为函数()g x 的一个零点是1,所以()10g =⇒(1)2f =,()f x 是奇函数,所以()12f -=-,所以,()()11211121m f n m f n +⎧==⎪⎪+⎨+⎪-==-⎪-+⎩,解得10m n =⎧⎨=⎩,()211x f x x x x+==+,定义域为()(),00,∞∞-⋃+.()(),00,x ∞∞∀∈-⋃+,都有()()11f x x x f x x x ⎛⎫-=-+=-+=- ⎪-⎝⎭,所以,()f x 是奇函数,满足题意,故1m =,0n =,1()f x x x =+【小问2详解】函数()t x 满足()()t x t x -=,所以()t x 是偶函数且在(0,1)单调递减因为不等式()1412t a t ⎛⎫+≥- ⎪⎝⎭恒成立所以04111412a a ⎧<+<⎪⎨+≤⎪⎩,11102443188a a a ⎧-<<--<<⎪⎪⎨⎪-≤≤-⎪⎩或所以3111[,(,]8448a ∈---- 【小问3详解】()()21ln 1(3)h x k x x ⎛⎫=-+ ⎪-⎝⎭,因为函数ℎ的一个零点为2,所以210(23)k -=-,解得1k =.所以()()211ln 1(3)h x x x ⎛⎫=-+ ⎪-⎝⎭,令()0h x =,得2110(3)x -=-或ln(1)0x +=,解得0,2,4x =.所以函数()g x 的其余零点为0,4.20.已知()f x ,()g x 分别为定义在上的偶函数和奇函数,且()()2xf xg x +=.(1)求()f x 和()g x 的解析式;(2)利用函数单调性的定义证明()f x 在区间[)0,∞上是增函数;(3)已知()()()2449F x fx mf x =-+,其中m 是大于1的实数,当[]20,log x m ∈时,()0F x ≥,求实数m 的取值范围.【答案】(1)()()1222x x f x -=+,()()1222x x g x -=-(2)证明见解析(3)(]1,3【分析】(1)由函数奇偶性,构造方程组即可求解;(2)利用增函数的定义,结合指数函数单调性推理即得;(3)换元并求出新元的范围,转化为二次函数在闭区间上的最小值求解即可.【小问1详解】()f x ,()g x 分别为定义在上的偶函数和奇函数所以−=,()()g x g x -=-()()2x f x g x +=①,()()()()2x f x g x f x g x --+-=-=②,由①②可知,()()1222x x f x -=+,()()1222x x g x -=-【小问2详解】取120x x ∀>≥,()()()()11221211222222x x x x f x f x ---=+-+2112121212121222222222221212222x x x x x x x x x x x x x x --++--+-+--⎛⎫===- ⎪⎝⎭因为120x x >≥,所以12220x x ->,1221x x +>,121102x x +->,所以()()120f x f x ->,即()()12f x f x >,得证;【小问3详解】由已知()()()2449F x f x mf x =-+()2222244922x x x x F x m --⎛⎫⎛⎫++=⋅-⋅+ ⎪ ⎪⎝⎭⎝⎭()()2222229x x x x m --=+-⋅++由(2)得()f x 在[]20,log m 上单调递增,1m ∴>,1()1,2m m f x ⎡⎤+⎢⎥∈⎢⎥⎢⎥⎣⎦设122=2()2,x x t f x m m -⎡⎤=+∈+⎢⎥⎣⎦,令()2290G t t mt =-+≥0t > ,192m t t ⎛⎫∴≤+ ⎪⎝⎭,12,t m m ⎡⎤∈+⎢⎥⎣⎦而函数192y t t ⎛⎫=+ ⎪⎝⎭,在[]2,3t ∈上递减,在[]3,+t ∞∈递增①当13m m +≤时,35132m +<≤<,192t t ⎛⎫+≥ ⎪⎝⎭,显然成立即312m +<≤②当13m m +>时,352m +>,min 193323y ⎛⎫=+= ⎪⎝⎭,3m ∴≤即353 2m+<≤综上所述,实数m的取值范围是(]1,3.。

数电期末试卷

数电期末试卷

天津理工大学考试试卷2013~2014学年度第一学期 《高频电子线路》 期末考试 答案课程代码: 0562010 试卷编号: 5-A 命题日期: 2013 年 11 月 5 日 答题时限: 120 分钟 考试形式:闭卷笔试得分统计表:大题号总分 一二 三 四 五一、单项选择题(从4个备选答案中选择最适合的一项,每小题1分,共10分)得分1. 下图所示抽头式并联谐振回路中,接入系数为p ,则把电容C1折合到LC 回路两端后的值为 A 。

A 12C p B112C pC 1pC D11C p2. 某丙类高频功率放大器原工作于在欠压状态,现欲调整使它工作在临界状态,可采用办法 B 。

A CC V 增加、bm V 减小、p R 减小 B CC V 减小、bm V 增加、p R 增加 C CC V 减小、bm V 减小、p R 减小 DCCV 增加、bmV 增加、pR 增加3. 给一个振荡器附加AFC 系统,是为了 D 。

A 尽量保持输出电平恒定;B 使振荡器的输出与参考信号完全同步(同频同相);C 使振荡器输出的频率与参考信号频率相等,但初相位相对于参考信号初相位有一定的剩余误差;D 使振荡频率比不加时稳定。

4. 为了保证调幅波的包络能够较好地反映调制信号, C 。

A 集电极被调功率放大器和基极被调功率放大器都应工作在欠压状态 B 它们都应工作在过压状态C 集电极被调功率放大器应工作在过压状态,另一个则应工作在欠压状态D 基极被调功率放大器应工作在过压状态,另一个则应工作在欠压状态 5. 下面属于非线性元件特性的是 C 。

A 只有直流电阻,且阻值随静态工作点的改变而改变 B 只有动态电阻,且阻值随静态工作点的改变而改变 C 具有频率变换的作用 D 满足叠加原理6. 某一调谐放大器,假设输入信号的频率为2MHz 、5MHz 、10MHz ,12MHz ,当谐振回路的谐振频率为10MHz 时,频率为 C 的信号在输出信号中最强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档