第五章习题解答
第五章习题答案
5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。
设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。
已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。
解:作梁的弯矩图如图所示。
梁的最大弯矩发生在固定端截面上。
22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。
若[]160MPa σ=,试求许可载荷F 。
解:(1)求支座反力。
选整个梁为研究对象,受力分析如图所示。
列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。
由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。
5.8 压板的尺寸和载荷情况如图所示。
材料为45钢,380s MPa σ=,取安全因数1.5n =。
试校核压板的强度。
解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。
第5章 习题参考答案
第五章习题参考答案一、填空题1、MCS-51有5个中断源,2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择。
2、外中断请求标志位是 IE0 和 IE1 。
3、 RETI 指令以及任何访问 IE 和 IP 寄存器的指令执行过后,CPU不能马上响应中断。
4、8051单片机响应中断后,产生长调用指令LCALL,执行该指令的过程包括:首先把 PC的内容压入堆栈,以进行断点保护,然后把长调用指令的16位地址送 PC ,使程序执行转向程序存储器中的中断地址区。
二、选择题:1、在中断服务程序中,至少应有一条( D )。
A、传送指令B、转移指令C、加法指令D、中断返回指令2、要使MCS-51能够响应定时器T1中断,串行接口中断,它的中断允许寄存器IE的内容应是( A )。
A、 98HB、 84HC、 42HD、 22H3、MCS-51响应中断时,下列哪种操作不会发生( A )A、保护现场B、保护PCC、找到中断入口D、保护PC转入中断入口4、MCS-51中断源有( A )A、 5个B、 2个C、 3个D、6个5、计算机在使用中断方式与外界交换信息时,保护现场的工作应该是( C )A、由CPU自动完成B、在中断响应中完成C、应由中断服务程序完成D、在主程序中完成6、MCS-51的中断允许触发器内容为83H,CPU将响应的中断请求是( D )。
A、 INT0,INT1B、 T0,T1C、 T1,串行接口D、 INT0,T07、若MCS-51中断源都编程为同级,当它们同时申请中断时,CPU首先响应( B )。
A、 INT1B、 INT0C、 T1D、T08、当CPU响应串行接口中断时,程序应转到( C )。
A、 0003HB、 0013HC、 0023HD、 0033H9、执行MOV IE,#03H后,MCS-51将响应的中断是( D )。
A、 1个B、 2个C、 3个D、0个10、外部中断1固定对应的中断入口地址为( C )。
第5章_经营决策分析习题
第5章_经营决策分析习题第五章课后练习题整理(附答案)⼀、单选题1、在有关产品是否进⾏深加⼯决策中,深加⼯前的半产品成本属于()A.估算成本B.重置成本C.机会成本D.沉没成本2、在进⾏半产品是否进⼀步深加⼯决策时,应对半成品在加⼯后增加的收⼊和()进⾏分析研究。
A.进⼀步加⼯前的变动成本B.进⼀步加⼯追加的成本C.进⼀步加⼯前的全部成本D.加⼯前后的全部成本3、设⼀⽣产电⼦器件的企业为满⾜客户追加订货的需要,增加了⼀些成本开⽀,其中()是专属固定成本。
A.为及时完成该批产品的⽣产,⽽要购⼊⼀台新设备B.为及时完成该批追加订货,需要⽀付职⼯加班费C.⽣产该批产品机器设备增加的耗电量D.该⼚为⽣产该批产品以及以后的⽣产建造了⼀间新的⼚房4、某⼚需要零件甲,其外购单价为10元,若⾃⾏⽣产,单位变动成本为6元,且需要为此每年追加10000元的固定成本,通过计算可知,当该零件的年需要量为()时,外购、⾃制两种⽅案等效。
A.2500 B.3000 C.2000 D.18005、某公司⽣产⼀种化⼯产品甲,进⼀步加⼯可以⽣产⾼级化⼯产品⼄,甲、⼄两种产品在市场上的售价为50元每千克、120元每千克,但⼄产品的⽣产每年需要追加固定成本20000元,单位变动成本为10元,若每千克甲可加⼯0.6千克⼄,则以下选择中,该公司应( )。
A.进⼀步加⼯⽣产产品⼄B.当产品甲的年销售量超过1250千克,将甲加⼯为⼄C.将甲出售,不加⼯D.两种⽅案均可6、在固定成本不变的情况下,下列()应该采取采购的策略。
A.⾃制单位变动成本⼩于外购价格B.⾃制单位变动成本=外购价格C.⾃制单位变动成本⼤于外购成本D.⾃制单位产品成本⼤于外购成本7、在产销平衡的情况下,⼀个企业同时⽣产多种产品,其中⼀种单位边际贡献为正的产品最终变为亏损产品,其根本原因是()A.该产品存在严重积压B.该产品总成本太⾼C.该产品上分担的固定成本相对较⾼D.该产品的销量太⼩8、下列哪种成本为相关成本()A.可避免成本B.共同成本C.联合成本D.沉没成本9、下列哪种成本为⽆关成本()A.沉没成本B.专属成本C.可避免成本D.增量成本10、如果把不同产量作为不同⽅案来理解的话,边际成本实际上就是不同⽅案形成的()A.相关成本B.沉没成本C.差量成本D.付现成本11、设某企业⽣产某种半成品2000件,完成⼀定加⼯⼯序后,可以⽴即出售,也可以进⼀步深加⼯之后再出售,如果⽴即出售,每件售价15元,若深加⼯后出售,售价为24元,但要多付深加⼯成本9500元,则继续进⾏深加⼯的机会成本为()A.48000 B.30000 C.9500 D.1800012、如上题条件,⽴即出售的机会成本为()A.48000 B.30000 C.38500 D.1800013、有⼀批可修复废品,存在两种处置⽅案,⼀个是降价后直接出售,⼀个是修复后按正常价格出售,修复成本为3000元,降价后出售收⼊为7000元,修复后出售收⼊为11000元,那么差量损益为()A.3000 B.4000 C.8000 D.100014、在短期经营决策中,企业不接受特殊价格追加订货的原因是买⽅出价低于()A.正常价格B.单位产品成本C.单位变动成本D.单位固定成本⼆、多选题1、下列各项中,属于决策分析过程的特征的有()A.本质的主观能动性B.依据的客观性C.⽅案的可选择性D.时间上的未来性2、按照决策条件的肯定程度,可将决策划分为以下类型()A.战略决策B.确定型决策C.风险型决策D.不确定型决策3、下列各项中,属于⽣产经营决策中相关成本的是()A.增量成本B.机会成本C.专属成本D.沉没成本E.不可避免成本4、下列各项中,备选⽅案中不涉及相关收⼊的是()A.差别损益分析法B。
第5章 习题答案
第5章 相对论习题5-1 观察者A 测得与他相对静止的XOY 平面上一个圆的面积是12cm 2,另一观察者B 相对A 以0.8C(C 为真空中光速)平行于XOY 平面作匀速直线运动,B 测得这一图形为一椭圆,面积是多少(椭圆面积S=πab ,a 、b 为长短半轴).5-2 一宇宙飞船固有长度,m 900=L 相对地面以v=0.8c 匀速度在一观测站上空飞过,则观测站测得飞船船身通过观测站时间间隔是多少?宇航员测得船身通过观测站的时间隔是多少?解:设地面为S 系,飞船为S ′系,则观测站测飞船长度为2201c L L υ-=.所以,观测站时间间隔是s 1025.28.018.090172220-⨯=-=-==cc L Lt υυυ∆ 宇航员在S ′系测得船身通过的时间是00τυ=='L t ∆,宇航员观察S 系中的钟是以-v 在运动,所以宇航员测得船身通过观测站的时间隔是s 1025.217220-⨯=-==cL t υυγτ∆5-3 半人马星座α星是太阳系最近的恒星,它距地球为 m 。
设有一宇宙飞船,以v =0.999c 的速度飞行,飞船往返一次需多少时间?如以飞船上的时钟计算,往返一次的时间又为多少?解:在地面上观测飞船往返一次的时间为s 1087.2999.0103.42816⨯=⨯⨯=ct ∆;16103.4⨯在飞船上观测距离缩短,测得时间为s 1028.1999.0999.01103.47216⨯=-⨯='ct ∆;或运动的钟测得s 1028.1999.01999.0103.47216⨯=-⨯='ct ∆.5-4 观测者甲和乙分别静止于两个惯性参照系K 和K ′中,甲测得在同一地点发生的两个事件的时间间隔为4S,而乙测得这两个事件的时间间隔为5S,求:(1) K ′相对于K 的运动速度;(2) 乙测得这两个事件发生的地点的距离.解:(1)设两事件的时空坐标见下表事件1 事件2 K 系 ),(11t x ),(21t x K ′系),(11t x '' ),(22t x '' 由洛伦兹变换)/(2c x t t υγ-='得222/1/)/(c t c x t t υυγ-=-='∆∆∆∆解上式得 c c t t c 6.0)54(1)(122=-='-=∆∆υ. (2)由洛伦兹变换)/(2c x t t '+'=υγ得)/(2c x t t '+'=∆∆∆υγ解之得 m 109105)56.014()(882212⨯-=⨯⨯--='-='-'='υγc t tx x x ∆∆∆5-5 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为x 1=6×104m,t 1=2×10-4s ,以及x 2=12×104m, t 2=1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少?解:(1)由洛伦兹变换)/(2c x t t υγ-='得0)/(2=-='c x t t ∆∆∆υγ解之得 m/s 105.110310610)1(10388448⨯-=⨯⨯⨯⨯-⨯⨯==-c x t c ∆∆υ (2)由)(t x x '+'=υγ得x t x x '='+'=∆∆∆∆γυγ)(所以 m 102.55.01106/)(424⨯=-⨯=='+'='γυγx t x x ∆∆∆∆5-6 长度01m =l 的米尺静止于S ′系中,与x '轴的夹角o 30'=θ,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为o45=θ. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解:(1)由教材p152例题5.3有θγθ'=tan tan 得 c c 816.0)tan tan (12='-=θθυ (2)在x 方向尺会缩短,即m 5.0tan tan cos tan tan 0=''=''='=θθθθθγl x x x ;y 方向没运动,长度不变,即m 5.0sin 0='='=θl y y 。
第五章定积分习题参考解答
习题5-1 定积分的概念1、利用定积分的几何意义,求下列积分: (1)dx x ⎰-21(2)dx x ⎰--3329解2、估计下列各积分的值:(1)()⎰+ππ4542sin 1dx x (2)⎰-022dx exx3、根据定积分的性质及教材中习题5-1第12题的结论,说明下列各对积分哪一个的值较大: (1)⎰21ln xdx 还是()⎰212ln dx x ?解(1)在区间{1,2}上,由于0ln 1x ≤≤,得()2ln ln x x ≥,因此21ln xdx ⎰比()221ln x dx ⎰大.(2)⎰1dx e x 还是()⎰+11dx x ?解 由于当0x >时()ln 1x x +<,故此时有1xx e +<,因此10x e dx ⎰比()11+x dx ⎰大。
习题5-2 微积分基本公式1、求由参数表达式⎰=t udu x 0sin ,⎰=tudu y 0cos 所确定的函数对x 的导数dxdy.2、求由+⎰y t dt e 00cos 0=⎰x tdt 所确定的隐函数对x 的导数dxdy.3、计算下列各导数:(1) ⎰+2021x dt t dx d ; (2) ()⎰x x dt t dxd cos sin 2cos π. 解 (1)原式=2; (2)原式=()()()()cos sin 222200cos cos sin cos cos cos cos sin x x d t dt t dt x x x x dx ππππ⎡⎤-=--⎢⎥⎣⎦⎰⎰ ()()()()222sin cos sin cos cos sin sin cos cos sin x x x x x x x ππππ=---=-4、 计算下列定积分: (1)⎰-1024x dx; (2)⎰-+++012241133dx x x x ; 解 (1)110arcsin 26x π⎡⎤==⎢⎥⎣⎦⎰(2)42000232211133113arctan 1114x x dx x dx x x x x π---++⎛⎫⎡⎤=+=+=+ ⎪⎣⎦++⎝⎭⎰⎰ (3)⎰42tan πθθd ; (4)⎰π20sin dx x ;解 (3) ()[]2244400tan sec 1tan 14d d ππππθθθθθθ=-=-=-⎰⎰(4)()[][]22200sin sin sin cos cos 4x dx xdx x dx x x πππππππ=+-=-+=⎰⎰⎰(5)⎰20)(dx x f ,其中⎪⎩⎪⎨⎧>≤+=.1,21,1,1)(2x x x x x f 解()11232122010018()12263x x f x dx x dx x dx x ⎡⎤⎛⎫=++=++= ⎪⎢⎥⎣⎦⎝⎭⎰⎰⎰5、求下列极限: ⎰⎰⎪⎭⎫ ⎝⎛→xt xt x dt te dt e 0220022lim .解()222222220020020222limlimlimlim21x x xt x t t x xxx x x x t e dtee dte dtexxe te dt→→→→====⎰⎰⎰⎰6、设⎩⎨⎧∈∈=].2,1[,),1,0[,)(2x x x x x f 求=Φ)(x ⎰x dt t f 0)(在]2,0[上的表达式,并讨论)(x Φ在)2,0(内的连续性.习题5-3 定积分的换元法和分部积分法 1、计算下列各定积分:(1)⎰262ππdu u ; (2))0(0222>-⎰a dx x a x a; 解 (1)()2222666111cos 1cos2sin 222268udu u du u u πππππππ⎡⎤=+=+=-⎢⎥⎣⎦⎰⎰(2)()()4sin 2422220sin cos sin 228x a ua a xa u udu u d u ππ===⎰⎰⎰44422242001sin sin 8442216t ua a a tdt tdt a ππππ====⋅⋅=⎰⎰ 另解()sin 422422220sin cos sin 1sin x a ua xa u udu au u du ===-⎰⎰⎰ππ441312242216a a ⎛⎫=⋅-⋅⋅= ⎪⎝⎭πππ。
第五章 课后习题及答案
第五章中学生的情绪管理一、理论测试题(一)单项选择题1.()是人各种感觉、思想和行为的一种综合的心理和生理状态,是对外界刺激所产生的心理反应,以及附带的生理反应,如喜、怒、哀、乐等。
A.情绪B.情感C.心情D.态度2.()是指人或动物面对现实的或想象中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态。
A.快乐B.愤怒C.恐惧D.悲哀3.小华即将上考场,感觉心跳加速,有点微微出汗,这属于情绪的()。
A.外部表现B.主观体验C.生理唤醒D.认知活动4.下列不属于基本情绪的是()。
A.快乐B.焦虑C.恐惧D.悲哀5.王悦接到高考录取通知书已经十多天了,仍心情愉悦,往常觉得平淡的事也能让她很高兴,这种情绪状态属于()。
A.激情B.心境C.应激6.“情急生智”所描述的一种情绪状态是()。
A.心境B.理智C.应激D.激情7.“忧者见之则忧,喜者见之则喜”,这是受一个人的()影响所致。
A.激情B.心境C.应激D.热情8.()是一种猛烈、迅疾和短暂的情绪,类似于平时说的激动。
A.快乐B.应激C.心境D.激情9.狂喜、恐惧的情绪状态属于()。
A.激情B.热情C.应激D.心境10.学生临考的怯场属于()。
A.应激B.心境C.激情D.热情11.车祸、地震、水灾等突如其来的灾难引起的情绪体验是()。
A.心境B.激情C.应激12.晓东在解决了困扰他许久的数学难题后出现的喜悦感属于()。
A.道德感B.理智感C.美感D.效能感13.求知欲属于()。
A.道德感B.理智感C.美感D.应激14.“先天下之忧而忧,后天下之乐而乐”是()。
A.道德感B.理智感C.美感D.热情15.当同学们获悉本班取得学校合唱比赛第一名的成绩时欣喜若狂。
他们的情绪状态属于()。
A.心境B.激情C.应激D.热情16.当人们遇到突然出现的事件或意外发生危险时,为了应付这类瞬息万变的紧急情境,就得果断地采取决定。
这种情况属于()。
A.激情B.应激C.快乐D.心境17.()用因素分析的方法,提出人类具有8~11种基本情绪,它们是兴趣、惊奇、痛苦、厌恶、愉快、愤怒、恐惧、悲伤、害羞、轻蔑、自罪感。
第五章 习题解答
答:包括以下三个过程:
1热流体以对流传热方式将热量传给管内壁
2热量由内壁面以热传导方式传给外壁面
3热量由外壁面以对流传热的方式传给冷流体
6.简述何谓强化传热?有哪三个主要途径?
答:强化传热是指提高冷热流体间的传热速率。
1增大总传热系数K,这是强化传热的重点。
5.对流传热速率方程的表达式为,其中温度差代表。
流体与壁面(或反之)间温度差的平均值
6.在间壁式换热器中,间壁两边流体都变温时,两流体的流动方向有、、和四种。
并流逆流错流折流
7.对流传热系数的主要影响因素有(1)(2)(3)(4)(5)。
1、流体的种类和相变化的情况2、流体的性质3、流体流动的状态
4、流体流动的原因5、穿热面的形状、分布和大小
已知 ,故
(2)当导热系数小的材料包在里层时,热损失 为:
(3)当导热系数大的材料包在里层时,热损失 为:
(4)可求出: ,说明在圆筒壁当采用两种以上材料保温时,为减少热损失,应将 小的材料包在里层为好。
5.求绝压为140 ,流量为1000 的饱和水蒸汽冷凝后并降温到60℃时所放出的热量。用两种方法计算并比较结果。已知140 水蒸汽的饱和温度为109.2℃,冷凝热为2234.4 ,焓为2692.1 ;60℃的水的焓为251.21 。
解:(1)第一种方法
(2分)
(2)第二种方法
①冷凝水的平均温度为 (1分)
查出84.6℃下的水的比热容为: (1分)
②水蒸气冷凝并降温放出的热量为:
计算表明两种方法结果一样,但是第一种方法较简单。(1分)
6.将0.417 、80℃的有机苯,通过一换热器冷却到40℃;冷却水初温为30℃,出口温度不超过35℃。假设热损失可略,已查出在平均温度下,硝基苯和水的比热容分别为1.6 。求:(1)冷却水用量 ?
第五章习题解答
习 题 五1. 设V 是数域F 上向量空间,假如V 至少含有一个非零向量α,问V 中的向量是有限多还是无限多?有没有n (n ≥ 2)个向量构成的向量空间? 解 无限多;不存在n (n ≥ 2)个向量构成的向量空间(因为如果F 上一个向量空间V 含有至少两个向量, 那么V 至少含有一个非零向量α , 因此V 中含有α , 2α , 3α , 4α , …,这无穷多个向量互不相等,因此V 中必然含有无穷多个向量).2. 设V 是数域F 上的向量空间,V 中的元素称为向量,这里的向量和平面解析几何中的向量α,空间解析几何中的向量β有什么区别?解 这里的向量比平面中的向量意义广泛得多,它可以是多项式,矩阵等,不单纯指平面中的向量.3. 检验以下集合对所指定的运算是否构成数域F 上的向量空间.(1)集合:全体n 阶实对称矩阵;F :实数域;运算:矩阵的加法和数量乘法;(2)集合:实数域F 上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, 0) k • (a 1, b 1)=(ka 1, 0)(3)集合:实数域上全体二维行向量;运算: (a 1, b 1)+ (a 2, b 2)=(a 1+a 2, b 1+b 2)k •( a 1, b 1)=(0, 0)解 (1) 是; (2) 不是(因为零向量不唯一);(3) 不是(不满足向量空间定义中的(8)).4. 在向量空间中,证明,(1) a (-α)=-a α=(-a ) α ,(2) (a -b )α=a α-b α ,a ,b 是数,α是向量.证明 (1) a a a a =+-=+-))(()(αααα 0= 0ααa a -=-∴)(又 ==+-=+-a a a a a 0))(()(ααα 0ααa a -=-∴)(综上, .)()(αααa a a -=-=-(2) ααααααb a b a b a b a -=-+=-+=-)())(()(.5. 如果当k 1=k 2=…=k r =0时,k 1α1+k 2α2+…+k r αr =0, 那么α1, α2, …, αr 线性无关. 这种说法对吗?为什么?解 这种说法不对. 例如设α1=(2,0, -1), α2=(-1,2,3), α3=(0,4,5), 则0α1+0α2+0α3=0. 但α1, α2, α3线性相关, 因为α1+2α2-α3=0.6. 如果α1, α2, …, αr 线性无关,而αr +1不能由α1, α2, …, αr 线性表示,那么α1, α2,…, αr , αr +1线性无关. 这个命题成立吗?为什么? 解 成立. 反设α1, α2,…, αr , αr +1线性相关,由条件α1, α2, …, αr 线性无关知αr +1一定能由α1, α2, …, αr 线性表示,矛盾.7. 如果α1, α2, …, αr 线性无关,那么其中每一个向量都不是其余向量的线性组合. 这种说法对吗?为什么?解 对. 反设 αi = k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k r αr ,则 k 1α1+k 2α2+…k i -1αi-1+(-1) αi +k i+1αi +1 +…+k r αr =0. 由于-1≠0, 故α1, α2, …, αr 线性相关.8. 如果向量α1, α2, …, αr 线性相关,那么其中每一个向量都可由其余向量线性表示. 这种说法对吗?为什么?解 不对. 设α1=(1,0) , α2=(2,0) , α3=(0,1) , 则α1, α2, α3线性相关, 但α3不能由α1, α2线性表示.9. 设α1= (1, 0, 0), α2= (1, 2, 0), α3=(1, 2, 3)是F 3中的向量,写出α1, α2, α3的一切线性组合. 并证明F 3中的每个向量都可由{α1, α2, α3}线性表示.解 k 1α1+k 2α2+k 3α3 k 1, k 2 , k 3∈F .设k 1α1+k 2α2+k 3α3=0,则有⎪⎩⎪⎨⎧==+=++030220332321k k k k k k , 解得 k 1= k 2 =k 3=0.故α1, α2, α3线性无关.对任意(a,b,c)∈F 3, (a,b,c)=3213)32())322((αααc c b c ba +-+--,所以F 3中的每个向量都可由{α1, α2, α3}线性表示.10. 下列向量组是否线性相关(1) α1= (1, 0, 0), α2= (1, 1, 0), α3=(1, 1, 1);(2) α1=(3, 1, 4), α2=(2, 5, -1), α3=(4, -3, 7).解 (1) 线性无关; (2) 线性无关.11. 证明,设向量α1, α2, α3线性相关,向量α2, α3, α4线性无关,问:(1) α1能否由α2, α3线性表示?说明理由;(2) α4能否由α1, α2, α3线性表示?说明理由.解 (1)因为α2, α3线性无关而α1, α2, α3线性相关,所以α1能由α2, α3线性表示;(2)反设α4能由α1, α2, α3线性表示,但α1能由α2, α3线性表示,故α4能由α2, α3线性表示,这与α2, α3, α4线性无关矛盾,所以α4不能由α1, α2, α3线性表示.12. 设α1= (0, 1, 2), α2= (3, -1, 0), α3=(2, 1, 0),β1= (1, 0, 0), β2= (1, 2, 0), β3=(1, 2, 3)是F 3中的向量. 证明,向量组{α1, α2, α3}与{β1, β2, β3}等价.证明 (β1, β2, β3)=(321,,εεε)A(α1, α2, α3)= (321,,εεε)B其中A=⎪⎪⎪⎭⎫ ⎝⎛300220111, B=⎪⎪⎪⎭⎫ ⎝⎛-002111230.易验证A , B 均可逆, 这样 (β1, β2, β3) = (α1, α2, α3 )(B -1A )(α1, α2, α3) = (β1, β2, β3)(A -1B ) ,故向量组{α1, α2, α3}与{β1, β2, β3}等价.13. 设数域F 上的向量空间V 的向量组{α1, α2, …, αs }线性相关,并且在这个向量组中任意去掉一个向量后就线性无关. 证明,如果∑=s i i ik 1α=0 (k i ∈F ),那么或者k 1=k 2=…=k s =0, 或k 1,k 2,…,k s 全不为零.证明 由条件∑=s i i ik 1α=0 (k i ∈F )知k i αi = - (k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ) (*)(1) 当k i =0时,(*)式左边等于零,故k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs =0. 由于这s -1个向量线性无关,所以k 1=k 2=…=k s =0.(2) 当k i ≠0时, αi = -ik 1(k 1α1+k 2α2+…k i -1αi-1+k i+1αi +1 +…+k s αs ),下证对于任意i j s j ≠∈},,2,1{ 时k j ≠0. 反设k j =0, 则αi 可由s -2个向量线性表示.这与任意s -1个向量线性无关矛盾,所以此时k 1,k 2,…,k s 全不为零.14. 设α1=(1, 1), α2=(2, 2), α3=(0, 1) , α4=(1, 0)都是F 2中的向量. 写出{α1, α2, α3, α4}的所有极大无关组.解 α1, α3 ; α1, α4 ; α2 ,α3 ; α2 ,α4 ; α3 ,α4 .15. 设A 1=⎪⎪⎭⎫ ⎝⎛-2001,A 2=⎪⎪⎭⎫ ⎝⎛-0021, A 3=⎪⎪⎭⎫ ⎝⎛0120,A 4=⎪⎪⎭⎫ ⎝⎛-2142∈M 2×2(F ). 求向量空间M 2×2(F )中向量组{A 1, A 2,A 3, A 4}的秩及其极大无关组. 解 秩{A 1, A 2,A 3, A 4}=3, {A 1, A 2,A 3}是向量组{A 1, A 2, A 3, A 4}的一个极大无关组.16.设由F 4中向量组{α1=(3,1,2,5),α2=(1,1,1,2),α3=(2,0,1,3),α4 =(1,-1,0,1),α5 =(4,2,3,7)}. 求此向量组的一个极大无关组.解 (α1,α2,α3,α4,α5)= (4321,,,εεεε)A , 其中A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-71325301122101141213, 则秩A =2. 又(α1,α2 )= (4321,,,εεεε)B , 其中B =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛25121113. 秩B =2, 故{α1,α2}线性无关, 它是向量组{α1,α2,α3,α4,α5}的一个极大无关组.17. 证明,如果向量空间V 的每一个向量都可以唯一表成V 中向量α1, α2, …, αn 的线性组合,那么dim V =n .证明 由条件零向量可唯一的表示成α1, α2, …, αn 的线性组合, 这说明α1, α2, …, αn 线性无关, 故可作为V 的基, 从而dim V =n .18. 设β1, β2,…,βn 是F 上n (>0)维向量空间V 的向量,并且V 中每个向量都可以由β1, β2,…,βn 线性表示. 证明, {β1, β2,…,βn }是V 的基.证明 由条件标准正交基{ e 1, e 2, …,e n }可由β1, β2,…,βn 线性表示, 反过来β1, β2,…,βn 又可由{ e 1, e 2, …,e n }线性表示,所以{ e 1, e 2, …,e n }和{β1, β2,…,βn }等价. 由{ e 1, e 2, …,e n }线性无关知{β1, β2,…,βn }线性无关,又因V 中每个向量都可以由β1, β2,…,βn 线性表示, 由基的定义知{β1, β2,…,βn }是V 的基.19. 复数集C 看作实数域R 上的向量空间(运算: 复数的加法,实数与复数的乘法)时,求C 的一个基和维数.解 基为{1, i }; dim C =2.20. 设V 是实数域R 上全体n 阶对角形矩阵构成的向量空间(运算是矩阵的加法和数与矩阵的乘法). 求V 的一个基和维数.解 基为E ii (i =1,2, …,n ); dim V =n .21. 求§5.1中例9给出的向量空间的维数和一个基.解 任意一个不等于1的正实数都可作为V 的基; dim V =1.22. 在R 3中,求向量α=(1, 2, 3)在基ε1=(1, 0, 0),ε2=(1, 1, 0),ε3=(1, 1, 1)下的坐标.解 (-1,-1,3)T .23. 求R 3中由基{α1, α2, αs }到基{β1, β2, β3 }的过渡矩阵,其中α1=(1, 0, -1), α2=(-1, 1, 0), α3=(1, 2, 3),β1=(0, 1, 1), β2=(1, 0, 1), β3=(1, 1, 1).解 所求过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛-32204230061. 24. 设{α1, α2,…, αn }是向量空间V 的一个基,求由这个基到基{α3, α4, …, αn ,α1, α2}的过渡矩阵.解 所求过渡矩阵为⎪⎪⎭⎫ ⎝⎛-0022n I I . 25. 已知F 3中向量α关于标准基ε1=(1, 0, 0),ε2=(0, 1, 0) ,ε3=(0, 0, 1)的坐标是(1, 2, 3),求α关于基β1=(1, 0, 1), β2=(0, 1, 1), β3=(1, 1, 3)的坐标.解 (1,2,0)T .26. 判断R n 的下列子集哪些是子空间(其中R 是实数域,Z 是整数集).(1) {(a 1, 0, …, 0, a n )| a 1, a n ∈R };(2) {(a 1, a 2, …, a n )|∑==ni i a 10,a 1, a 2, …, a n ∈R };(3) {(a 1, a 2, …, a n )|a i ∈Z , i =1, 2, …, n };解 (1) 是; (2) 是; (3) 不是(数乘不封闭).27. 设V 是一个向量空间,且V ≠{0}. 证明,V 不能表成它的两个真子空间的并集.证明 设W 1与W 2是V 的两个真子空间(1) 若21W W ⊆,则W 1⋃W 2= W 2≠V ;(2) 若21W W ⊇,则W 1⋃W 2= W 1≠V ;(3) 若21W W ⊄且12W W ⊄, 取1W ∈α但2W ∉α,2W ∈β但1W ∉β, 那么1W ∉+βα,否则将有1)(W ∈=-+βαβα,这与1W ∉β矛盾, 同理2W ∉+βα, 所以V 中有向量21W W ∉+βα,即V ≠21W W .28. 设V 是n 维向量空间,证明V 可以表示成n 个一维子空间的直和.证明 设{α1, α2,…, αn }是向量空间V 的一个基, (α1), (α2) ,…, (αn )分别是由α1, α2,…, αn 生成的向量空间, 要证(α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn )(1) 因为{α1, α2,…, αn }是V 的一个基, 所以V 中任一向量α都可由α1, α2,…, αn 线性表示, 此即(α1+α2+…+αn )= (α1)+ (α2)+…+ (αn ).(2) 对任意i ≠j ∈{1,2,…, n },下证 (αi )∩ (αj )={0}. 反设存在0 ≠∈x (αi )∩ (αj ),由∈x (αi )知存在k F ∈使得x =k αi ; 由 x ∈ (αj )知存在F l ∈使得x =l αj , 从而αi =kl αj , 即α1与α2线性相关, 矛盾, 所以 (αi )∩ (αj )={0}. 综上, (α1+α2+…+αn )= (α1)⊕ (α2)⊕…⊕ (αn ).29. 在R 3中给定两个向量组α1=(2, -1, 1, -1), α2=(1, 0, -1, 1),β1=(-1, 2, -1, 0), β2=(2, 1, -1, 1).求 (α1, α2)+ (β1, β2) 的维数和一个基.解 取R 4的标准正交基{4321,,,εεεε},于是(α1, α2, β1, β2)= (4321,,,εεεε)A ,其中 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1011111112012112 , 秩A = 4. 故α1, α2, β1, β2线性无关, 又因为 (α1, α2)∩ (β1, β2)={0},所以dim (α1, α2) + dim (β1, β2)= 4,{ α1, α2, β1, β2}是它的基.30. 设W 1, W 2都是向量空间V 的子空间,证明下列条件是等价的:(1) W 1⊆W 2;(2) W 1∩W 2=W 1;(3) W 1+W 2=W 2.证明 (i) (1)⇒(2) 因为W 1⊆W 2 , 所以W 1∩W 2=W 1. (ii) (2)⇒(3) W 1+W 2 ={α1+α2 | α1∈W 1, α2∈W 2} 由(2)知对任意α∈W 1, 都有α∈W 2 , 所以W 1+W 2 ={α1+α2 | α1, α2∈W 2}=W 2 .(iii) (3)⇒(1) W 1+W 2 ={α1,+α2 | α1∈W 1, α2∈W 2}=W 2 , 说明对任意α∈W 1, 都有α∈W 2 , 此即W 1⊆W 2 .31. 设V 是实数域R 上n 阶对称矩阵所成的α2向量空间;W 是数域R 上n 阶上三角矩阵所成的向量空间,给出V 到W 的一个同构映射.解 对∈∀A V (A =(a ij )且a ij = a ji )和B ∈W (B =(a ij ),当i>j 时, a ij =0) 定义f : V → WA B 易验证f 是V 到W 的一个同构映射.32. 设V 与W 都是数域F 上的向量空间,f 是V 到W 的一个同构映射,证明{α1, α2, …, αn }是V 的基当且仅当{f (α1), f (α2), …, f (αn )}是W 的基.证明 设{α1, α2, …, αn }是V 的基.(1) 由α1, α2, …, αn 线性无关知f (α1), f (α2), …, f (αn ) 线性无关.(2) 任取∈ηW , 由f 是同构映射知存在∈ξV 使得f (ξ)=η.但ξ=∑=n i i ia 1α, a i ∈F , f (ξ)=f (∑=n i i i a 1α)=)(1∑=n i i i f a α=η. 由η的任意性知{f (α1), f (α2), …, f (αn )}是W 的基.反过来, {f (α1), f (α2), …, f (αn )}是W 的基(1) 由f (α1), f (α2), …, f (αn )线性无关知α1, α2, …, αn 线性无关.(2) 任取∈ξV , 由f 是同构映射知存在∈ηW 使得f (ξ)=η.但η=∑=n i i i f k 1)(α= f (∑=n i i i k 1α), k i ∈F , 从而ξ=∑=ni i i k 1α, k i ∈F .由ξ的任意性知{ α1, α2, …, αn }是V 的基.补 充 题1. 设W 1, W 2是数域F 上向量空间V 的两个子空间. α,β是V 的两个向量,其中α∈W 2,但α∉ W 1,β∉W2. 证明:(1)对于任意k ∈F ,αβk +∉W 2;(2)至多有一个k ∈F ,使得αβk +∈W 1.证明 (1)反设存在k 1∈F 使得αβ1k +∈W 2 , 又α∈W 2 , 因此β=β+ k 1α-k 1α∈W 2 , 这与β∉W 2矛盾. 所以对于∀k ∈F ,αβk +∉W 2 .(2)若有k 1, k 2∈F , k 1≠k 2使得αβ1k +, αβ2k +∈W 1, 那么。
第五章习题与解答_高电压技术
第五章绝缘得高压试验一、选择题1)用铜球间隙测量高电压,需满足那些条件才能保证国家标准规定得测量不确定度?A 铜球距离与铜球直径之比不大于0、5B 结构与使用条件必须符合IEC得规定C 需进行气压与温度得校正D 应去除灰尘与纤维得影响2)交流峰值电压表得类型有:A电容电流整流测量电压峰值B整流得充电电压测量电压峰值C 有源数字式峰值电压表D 无源数字式峰值电压表3)关于以下对测量不确定度得要求,说法正确得就是:A 对交流电压得测量,有效值得总不确定度应在±3%范围内B 对直流电压得测量,一般要求测量系统测量试验电压算术平均值得测量总不确定度应不超过±4%C 测量直流电压得纹波幅值时,要求其总不确定度不超过±8%得纹波幅值D 测量直流电压得纹波幅值时,要求其总不确定度不超过±2%得直流电压平均值。
4)构成冲击电压发生器基本回路得元件有冲击电容C1,负荷电容C2,波头电阻R1与波尾电阻R2,为了获得一很快由零上升到峰值然后较慢下降得冲击电压,应使______。
A.C1>>C2、R1>>R2B.C1>>C2、R1<<R2C.C1<<C2、R1>>R2D.C1<<C2、R1<<R25)用球隙测量交直流电压时,关于串接保护电阻得说法,下面哪些就是对得?A 球隙必须串有很大阻值得保护电阻B 串接电阻越大越好C 一般规定串联得电阻不超过500ΩD 冲击放电时间很短,不需要保护球面。
6)电容分压器得低压臂得合理结构就是______。
A低压臂电容得内电感必须很小B 应该用同轴插头,插入低压臂得屏蔽箱C 电缆输入端应尽可能靠近电容C2得两极。
D abc环路线应该比较长7)标准规定得认可得冲击电压测量系统得要求就是:A 测量冲击全波峰值得总不确定度为±5%范围内B 当截断时间时,测量冲击截波得总不确定度在±5%范围内C当截断时间时,测量冲击电压截波得总不确定度在±4%范围内D测量冲击波形时间参数得总不确定度在±15%范围内8)光电测量系统有哪几种调制方式:A 幅度-光强度调制(AM-IM)B 调频-光强度调制(FM-IM)C 数字脉冲调制D 利用光电效应二、填空题9)交流高电压试验设备主要就是指______。
大学物理习题解答5第五章稳恒电流 (1)
第五章 稳恒电流本章提要1.电流强度· 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。
如果在t ∆时间内通过导体某一截面的电量为q ∆,则通过该截面的电流I 为qI t∆=∆ · 如果电流随时间变化,电流I 的定义式为tqt q I t d d lim 0=∆∆=→∆2.电流密度· 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。
根据电流密度的定义,导体中某一点面元d S 的电流密度为d d Ij S ⊥=· 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即d j S S=⋅⎰⎰I3.欧姆定律· 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式RU U I 21-=其中R 为导体的电阻,21U U -为导体两端的电势差· 欧姆定律的微分形式为E j σ=其中ρσ1=为电导率4.电阻· 当导体中存在恒定电流时,导体对电流有一定的电阻。
导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。
当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为Sl R ρ= 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率5.电动势· 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。
qA 非=ε· 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为l E lk ⎰⋅=d ε6.电源电动势和路端电压· 若电源正负极板的电势分别为U +和U -,电源内阻为r ,电路中电流为I ,则电源电动势为()U U Ir +-ε=--· 路端电压为Ir U U -=--+ε7.接触电动势· 因电子的扩散而在导体接触面上形成的等效电动势。
第5章课后习题参考答案
printf("一行字符中字母#和a出现的次数分别是%d,%d\n ",num1,num2);
}
6、从键盘输入一个正整数,统计该数的位数,如输入1234,输出4,输入0,输出1
#include<stdio.h>
void main()
{
int n,m,num=0;
printf("请输入一个正整数n:");
}
ave=sum/num2;
printf("负数个数num1=%d,正数的平均值ave=%.2f\n",num1,ave);
}
2、sum=2+5+8+11+14+…,输入正整数n,求sum的前n项和。
#include<stdio.h>
void main()
{
int i,n,sum=0;
#include<stdio.h>
void main()
{
char ch;
int num1=0,num2=0;
printf("请输入一行字符:\n");
while((ch=getchar())!='\n')
{
if(ch=='#') num1++;
if(ch=='a') num2++;
#include<stdio.h>
void main()
{
int x,y,z,num=0;
for(x=1;x<=9;x++)
第5章习题及解答
习题5.1 请根据图P5.1所示的状态表画出相应的状态图,其中X 为外部输入信号,Z 为外部输出信号,A 、B 、C 、D 是时序电路的四种状态。
A B C DD/1D/1D/1B/1Q n+1/Z Q nXB/0C/0A/0C/001 A B C DD/0C/0B/0B/1Q n+1/Z Q nXB/0B/0C/0C/001图P5.1 图P5.2题5.1 解:图 题解5.15.3 在图5.4所示RS 锁存器中,已知S 和R 端的波形如图P5.3所示,试画出Q 和Q 对应的输出波形。
R S图P5.3题5.3 解:5.5 在图5.10所示的门控D 锁存器中,已知C 和D 端的波形如图P5.5所示,试画出Q 和Q 对应的输出波形。
图P5.5题5.5 解:图 题解5.55.7 已知主从RS 触发器的逻辑符号和CLK 、S 、R 端的波形如图P5.7所示,试画出Q 端对应的波形(设触发器的初始状态为0)。
(a)CLK S R(b)图P5.7题5.7 解:CLK S R Q5.9 图P5.9为由两个门控RS 锁存器构成的某种主从结构触发器,试分析该触发器逻辑功能,要求:(1)列出特性表; (2)写出特性方程; (3)画出状态转换图; (4)画出状态转换图。
图 题解5.9题5.9 解:(1)特性表为:(2) 特性方程为:1n nnQXQ YQ +=+(3) 状态转换图为:X=1X=0Y=X=Y=1X=×Y=0图 题解5.9(3)(4)该电路是一个下降边沿有效的主从JK 触发器。
5.11 在图P5.11(a )中,FF 1和FF 2均为负边沿型触发器,试根据P5.11(b )所示CLK 和X 信号波形,画出Q 1、Q 2的波形(设FF 1、FF 2的初始状态均为0)。
(a)X(b)CLK图P5.11题5.11 解:CLK X Q 1Q 2图 题解5.115.13 试画出图P5.13所示电路在连续三个CLK 信号作用下Q 1及Q 2端的输出波形(设各触发器的初始状态均为0)。
第5章-习题解答
第5章-习题解答第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 [ ](A) 其振幅为3 m (B) 其周期为s 31 (C) 其波速为10 m/s (D) 波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10-2cos(πt -3π/2)( SI ) . [答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1ux y (10· · · · · · · 0 5 1122- PSS题5-2图题5-3图的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ] [答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ]题5-4图-(A) A 点振动速度大于零 (B)B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为0=φωS A O ′ωSA ωωSAO ′(A)(B)(C)(D)S题5-5图题5-6图(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ(D) 3点的初相为π-=213φ[答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,题5-7图其能量逐渐减小. [答案:D]5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。
第五章 习题参考答案与提示
第五章习题参考答案与提示第五章数理统计初步习题参考答案与提示1.在总体中随机抽取一长度为36的样本,求样本均值)3.6,52(~2NXX落50.8到53.8之间的概率。
答案与提示:由于)/,(~2nNXσμ,所以{50.853.8}0.8293PX<<=。
2.在总体中随机抽取一长度为100的样本,问样本均值与总体均值的差的绝对值大3的概率是多少?)20,8(~2NX答案与提示:由于2~(,/XNnμσ),所以{83}0.1336PX−>=3.设为来自总体n XXX,,,21)(~λPX的一个样本,X、分别为样本均值和样本方差。
求2SXD及。
2ES答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体期望、总体方差的关系,显然应由定理5-1来解决这一问题。
2,DXDXESnnλλ===。
4.设是来自正态总体的随机样本,。
试确定、b使统计量4321XXXX,,,)30(2,N243221)32()2(XXbXXaX−+−=a X服从分布,并指出其自由度。
2χ答案与提示:依题意,要使统计量X服从分布,则必需使及服从标准正态分布。
解得2χ)2(212/1XXa−)32(432/1XXb−a=1/45;b=1/117。
5.设X和Y独立同分布和分别是来自N()032,,921XXX,,,921YYY,,,X和Y 的简单抽样,试确定统计量UXXYY=++++112929 所服从的分布。
答案与提示:应用t分布的定义,得UXXYY=++++191292~()t96.设随机变量~()Xtn(1n> ),试确定统计量21YX=所服从的分布。
答案与提示:先由t分布的定义知nVUX=,再利用F分布的定义即可。
—1—第五章习题参考答案与提示)1,(~12nFXY=。
7.设总体X服从正态分布,而是来自总体)2,0(2N1521,,,XXX X的简单随机样本,试确定随机变量)(221521121021XXXXY++++=所服从的分布。
第五章习题解答与问题
9.设
f (x)
=
1 1+ x2
,在-5≤x≤5 上取
n = 10,按等距结点求分段线性插值函数Ih(x),
计算各结点间中点处的Ih(x)和f(x) 的值,并估计误差。 解:因为 f(xk) = 1/(1+ k2),(k = -5,…,-1,0,1,…,5)分段线性插值函数为
∑ I h
( x)
=
5
lk
y2 y2
− −
y) y1 )
u1
+
(x (x2
− −
x1 )( y2 x1 )( y2
− −
y) y1 )
u2
+
(x (x2
− −
x1 )( y − y1 ) x1 )( y2 − y1 )
u3
+
( x2 − x)( ( x2 − x1 )(
y2 y2
− −
y) y1 )
u4
二、例题
1. 在代数插值问题中,x0,x1,……,xn是(n+1)个互异的插值结点,由这(n+1)个结点构
F (t) = f (t) − H (t) − C ( x)(t − xk )2 (t − xk+1 )2
显然,F(t)有三个零点xk, x, xk+1,由Roll定理知,存在F’(t)的两个零点t0,t1 满足xk<t0<t1<xk+1,
而xk和xk+1 也是F’(x)的零点,故F’(x)至少有四个相异零点. 反复应用Roll定理,得F(4)(t)至少
∑ P( x) = n Aj
ω(x) j=0 x − x j
5. 设x0,x1,……,xn是(n+1)个互异的插值结点,ω(x) = (x – x0) (x – x1)……(x – xn), 试证明n阶差商的函数值表达式
运筹学习题答案第五章
第五章习题解答
5.11 某城市可划分为11个防火区,已设有4个消 防站,见下图所示。
page 16 2 January 2024
School of Management
运筹学教程
第五章习题解答
上图中,虚线表示该消防站可以在消防允许时间
内到达该地区进行有效的消防灭火。问能否关闭若干 消防站,但仍不影响任何一个防火区的消防救灾工作。 (提示:对每—个消防站建立一个表示是否将关闭的01变量。)
x1, x2 0,且为整数
解:x1 1, x2 3, Z 4
min Z 5x1 x2
3x1 x2 9
(2)
st
x1 x1
x2 5 8x2 8
.
x1, x2 0,且为整数
解:x1 4, x2 1, Z 5
page 8 2 January 2024
School of Management
School of Management
运筹学教程
第五章习题解答
5.12 现有P个约束条件
n
aij xij bi
j 1
i 1,2,, p
需要从中选择q个约束条件,试借助0-1变量列出 表达式。
解:设yi是0 1变量,i 1,2,, p
n
yi ( aij xij bi ) 0 j 1
i 1,2,, p
运筹学教程
第五章习题解答
5.1 某地准备投资D元建民用住宅。可以建住宅
的造分地价别点为建有d几j;n幢处,,:最才A多能1,可使A造建2,a造j幢…的。,住问A宅n应。总当在数在A最i哪处多几每,处幢试建住建住宅立宅的问, 题的数学模型。
解:设xi表示在Ai处所建住宅的数量, i 1,2,, n。
第5章部分习题参考解答
μ 0ε 0
其实,观察题目给定的电场表达式,可知它表征一个沿 + x 方向传播的均匀平面 ω 109 波,其相速为 vp = = = 2 ×108 m/s k 5 1 1 1 1 1 而 vp = = = = × 3 × 108
με
μ 0ε r ε 0
εr
μ 0ε 0
εr
3 故 ε r = ( ) 2 = 2.25 2
G G 5.1 在自由空间中,已知电场 E ( z , t ) = ey 103 sin(ωt − β z ) V/m ,试求磁场强度 G H ( z, t ) 。 解:以余弦为基准,重新写出已知的电场表示式 G π G E ( z , t ) = ey 103 cos(ωt − β z − ) V/m 2 这是一个沿 + z 方向传播的均匀平面波的电场,其初相角为 −90D 。与之相伴的磁 场为 G 1 G G 1 G G π H ( z , t ) = ez × E ( z , t ) = ez × ey 103 cos(ωt − β z − ) η0 η0 2
无损耗媒质中的波阻抗为
9 4
G E E 50 η= G = m = = 500 Ω H H m 0.1
又由于
η=
故
μ r μ0 μr = η0 ε rε 0 εr
(2)
μr η 500 2 ) = ( )2 = ( ε r η0 377
联立式(1)和式(2),得
μr = 1.99 , ε r = 1.13 5.8 在自由空间中,一均匀平面波的相位常数为 β 0 = 0.524 rad/m ,当该波进入到 理想介质后,其相位常数变为 β = 1.81 rad/m 。设该理想介质的 μr = 1 ,试求该理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章常用半导体器件(解答)
1、半导体导电和导体导电的主要差别有哪几点?
答:半导体导电和导体导电的主要差别有三点:①参与导电的载流子不同,半导体中有电子和空穴参与导电,而导体只有电子参与导电;②导电能力不同,在相同温度下,导体的导电能力比半导体的导电能力强得多;③导电能力随温度的变化不同,半导体的导电能力随温度升高而增强,而导体的导电能力随温度升高而降低,且在常温下变化很小。
2、杂质半导体中的多数载流子和少数载流子是如何产生的?杂质半导体中少数载流子的浓度与本征半导体中载流子的浓度相比,哪个大?为什么?
答:杂质半导体中的多数载流子主要是由杂质提供的,少数载流子是由本征激发产生的,由于掺杂后多数载流子与原本征激发的少数载流子的复合作用,杂质半导体中少数载流子的浓度要较本征半导体中载流子的浓度小一些。
3、什么是二极管的死区电压?它是如何产生的?硅管和锗管的死区电压的典型值是多少? 答:当加在二极管上的正向电压小于某一数值时,二极管电流非常小,只有当正向电压大于该数值后,电流随所加电压的增大而迅速增大,该电压称为二极管的死区电压,它是由二极管中PN结的内电场引起的。
硅管和锗管的死区电压的典型值分别是0.7V和0.3V。
4、为什么二极管的反向饱和电流与外加电压基本无关,而当环境温度升高时又显著增大? 答:二极管的反向饱和电流是由半导体材料中少数载流子的浓度决定的,当反向电压超过零点几伏后,少数载流子全部参与了导电,此时增大反向电压,二极管电流基本不变;而当温度升高时,本征激发产生的少数载流子浓度会显著增大,二极管的反向饱和电流随之增大。
5、怎样用万用表判断二极管的阳极和阴极以及管子的好坏。
答:万用表在二极管档时,红表笔接内部电池的正极,黑表笔接电池负极(模拟万用表相反),测量时,若万用表有读数,而当表笔反接时万用表无读数,则说明二极管是好的,万用表有读数时,与红表笔连接的一端是阳极;若万用表正接和反接时,均无读数或均有读数,则说明二极管已烧坏或已击穿。
6、试判断图所示电路中的二极管各处于什么工作状态?假设各二极管导通电压为0.7V,求
U。
输出电压
AO
解:
①将二极管从电路中取出,得下图:
因为开口电压V U 81+=,V U 72−=;所示判断二极管1VD 导通,2VD 截止。
②用相应电路模型代替不同工作状态的二极管。
(导通用V 7.0电压源代替;截止用开关断开代替。
)
③求解此线性电路的电压AO U : V U AO 7.0−=
7、在图所示的各电路中V E 5=,tV u i ωsin 10=,二极管的正向压降可忽略不计,度分别画出输出电压O u 的波形。
解:
17、在两个放大电路中,测得三极管各极电流分别如图所示,求另一个电极的电流,并在图中标出其实际方向及各电极e、b、c。
分别判断它们是NPN 管还是PNP 管。
解:
NPN PNP
18、在一放大电路中,有三个正常工作的三极管,测得三个电极的电位、、分别如下,说明三极管是什么类型的三极管,工作于什么状态。
1)V U 61=,V U 32=,V U 3.23=;
2)V U 31=,V U 3.102=,V U 103=;
3)V U 61−=,V U 3.22−=,V U 23−=。
解:三个管子都工作于放大状态,如下图所示:
1)NPN 型硅管 2)PNP 型锗管 3)PNP 型锗管。