荧光分析法 PPT
合集下载
荧光分析法ppt
当分子从激发态返回到基态时,会以释放光子的形式释放出多余的能 量,这种释放的光子就是荧光。
荧光分析法的化学基础
荧光物质的化学结构
荧光物质的化学结构决定了其荧光性质,如荧光量子产率、荧光 波长等。
荧光物质的激发态性质
荧光物质的激发态性质对其荧光性质也有重要影响,如激发态的 稳定性、激发态的能量转移等。
感谢您的观看
THANKS
详细描述
荧光分析法可用于检测生物样品中的肿瘤标志物、药物浓度、DNA等物质。通过荧光探针、荧光免疫 分析等方法,可实现对肿瘤标志物、药物浓度的快速检测,为肿瘤诊断、药物治疗监测等提供依据。 此外,荧光分析法还可用于DNA检测,为遗传病诊断、亲子鉴定等提供技术支持。
荧光分析法在食品安全中的应用
总结词
荧光分析法的缺点
易受干扰
荧光分析法可能会受到其他物质的干扰,影响检测结果的准确 性。
不稳定性
荧光物质的荧光光谱可能会随着环境条件的变化而发生变化, 导致分析结果不稳定。
成本高
荧光分析法所需的仪器设备相对昂贵,而且需要专业人员操作 和维护。
荧光分析法的改进与发展趋势
优化荧光探针
通过改进荧光探针的设计和合成方法,提高荧光分析法的灵敏度 和特异性。
02
荧光分析法的原理
荧光分析法的物理基础
01
分子能级
荧光分析法涉及分子的能级跃迁,即分子从基态跃迁到激发态,再从
激发态返回到基态的过程。
02 03
激发态与基态的能量差
荧光分析法利用了激发态与基态之间存在的能量差,当分子吸收特定 波长的光能后,会从基态跃迁到激发态,之后释放出特定波长的荧光 。
荧光的产生
荧光物质的基态性质
荧光物质的基态性质同样影响其荧光性质,如基态的稳定性、基 态与激发态之间的跃迁能量等。
荧光分析法的化学基础
荧光物质的化学结构
荧光物质的化学结构决定了其荧光性质,如荧光量子产率、荧光 波长等。
荧光物质的激发态性质
荧光物质的激发态性质对其荧光性质也有重要影响,如激发态的 稳定性、激发态的能量转移等。
感谢您的观看
THANKS
详细描述
荧光分析法可用于检测生物样品中的肿瘤标志物、药物浓度、DNA等物质。通过荧光探针、荧光免疫 分析等方法,可实现对肿瘤标志物、药物浓度的快速检测,为肿瘤诊断、药物治疗监测等提供依据。 此外,荧光分析法还可用于DNA检测,为遗传病诊断、亲子鉴定等提供技术支持。
荧光分析法在食品安全中的应用
总结词
荧光分析法的缺点
易受干扰
荧光分析法可能会受到其他物质的干扰,影响检测结果的准确 性。
不稳定性
荧光物质的荧光光谱可能会随着环境条件的变化而发生变化, 导致分析结果不稳定。
成本高
荧光分析法所需的仪器设备相对昂贵,而且需要专业人员操作 和维护。
荧光分析法的改进与发展趋势
优化荧光探针
通过改进荧光探针的设计和合成方法,提高荧光分析法的灵敏度 和特异性。
02
荧光分析法的原理
荧光分析法的物理基础
01
分子能级
荧光分析法涉及分子的能级跃迁,即分子从基态跃迁到激发态,再从
激发态返回到基态的过程。
02 03
激发态与基态的能量差
荧光分析法利用了激发态与基态之间存在的能量差,当分子吸收特定 波长的光能后,会从基态跃迁到激发态,之后释放出特定波长的荧光 。
荧光的产生
荧光物质的基态性质
荧光物质的基态性质同样影响其荧光性质,如基态的稳定性、基 态与激发态之间的跃迁能量等。
第3章荧光分析法ppt课件
3.2.4 影响物质发光的因素>>1.内部因素
➢ 空间位阻使分子共平面性下降,荧光减弱。
SO3Na
H3C N
CH3
H3C SO3Na N CH3
①1-二甲胺基萘-7-磺酸盐 ②1-二甲胺基萘-8-磺酸盐
f=0.75
f=0.03
➢ 顺反异构体:反式分子有荧光,而顺式分子没有
荧光(位阻原因)。例如:1,2-二苯乙烯反式有强
⑶ 取代基的影响:给电子取代基使荧光强度增大;而 吸电子取代基则使荧光强度降低。
3.2 基本原理>>
3.2.4 影响物质发光的因素>>1.内部因素
➢ 长共轭结构示例 比较:λex (nm)/ λem (nm)/ f
苯 205/278/0.11
萘 286/321/0.29
蒽 356/404/0.36
2. 荧光和磷光的产生
➢ 辐射跃迁-发光失活 荧光:激发态分子从第一激发单线态S1的最低
振动能级回到基态S0所发出的辐射。 磷光:激发态分子从第一激发三重态T1的最低
振动能级回到基态S0所发出的辐射。 波长关系:激发光<荧光<磷光。
3.2 基本原理>>3.2.1分子荧光光谱的产生>>
2. 荧光和磷光的产生
3.2 基本原理>>
3.2.4 影响物质发光的因素>>2.外部因素
➢ 例如:硫酸奎宁在不同波长激发下的荧光光谱和
散射光谱
H
O H3C
H HO
N H
CH CH2
1/2H2SO4 H2O
N
3.2 基本原理>>
3.2.4 影响物质发光的因素>>2.外部因素
➢ 空间位阻使分子共平面性下降,荧光减弱。
SO3Na
H3C N
CH3
H3C SO3Na N CH3
①1-二甲胺基萘-7-磺酸盐 ②1-二甲胺基萘-8-磺酸盐
f=0.75
f=0.03
➢ 顺反异构体:反式分子有荧光,而顺式分子没有
荧光(位阻原因)。例如:1,2-二苯乙烯反式有强
⑶ 取代基的影响:给电子取代基使荧光强度增大;而 吸电子取代基则使荧光强度降低。
3.2 基本原理>>
3.2.4 影响物质发光的因素>>1.内部因素
➢ 长共轭结构示例 比较:λex (nm)/ λem (nm)/ f
苯 205/278/0.11
萘 286/321/0.29
蒽 356/404/0.36
2. 荧光和磷光的产生
➢ 辐射跃迁-发光失活 荧光:激发态分子从第一激发单线态S1的最低
振动能级回到基态S0所发出的辐射。 磷光:激发态分子从第一激发三重态T1的最低
振动能级回到基态S0所发出的辐射。 波长关系:激发光<荧光<磷光。
3.2 基本原理>>3.2.1分子荧光光谱的产生>>
2. 荧光和磷光的产生
3.2 基本原理>>
3.2.4 影响物质发光的因素>>2.外部因素
➢ 例如:硫酸奎宁在不同波长激发下的荧光光谱和
散射光谱
H
O H3C
H HO
N H
CH CH2
1/2H2SO4 H2O
N
3.2 基本原理>>
3.2.4 影响物质发光的因素>>2.外部因素
第十一章荧光分析法.ppt
散射光干扰及消除
散射光:当一束平行光投射在液体试样上,大部分 被吸收或透过,小部分由于光子和物质分子相碰撞, 使光子的运动方向改变,而向不同方向散射形成的 光。
散射光包括瑞利散射光和拉曼光
瑞利散射光:无能量的交换,λ散射≈λ激发
拉曼光: 有能量转移, λ散射> <λ激发
干扰的消除
1)改变激发光的波长;
单色器1
样品池
单色器2
垂直方向
放大 与
记录
检测器
荧光仪特点
与分光光度计的主要差别
① 垂直测量方式, 消除透射光影响 ② 两个单色器,激发和发射,常用光栅
1 光源 A、白炽灯:钨灯、卤钨灯 B、气体放电灯:氢、氙、汞,
常用氙灯(波长: 250-700nm) C、激光光源 2 单色器
闪耀光栅
3 检测器 光电倍增管
5.弱荧光的芳香族化合物也可与荧光试剂作用生成 强荧光衍生物以提高测量灵敏度。
故药物中的胺类、抗菌素、维生素、甾体类均可 用荧光法测定。该法在体内药物定量分析中应用甚 广。
思考题
• 1.荧光和磷光在产生机制上有什么不同?
• 2.何谓荧光量子效率?哪些结构物质有较高荧光效率?
• 3.以下物质中可能有最强荧光的物质是( )。
6.()荧光光谱形状与激发光的波长无关。
7. 荧光光谱的特征?
1. 所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射 出比入射光( )。
A. 波长长的光线
B. 波长短的光线
C. 能量大的光线
D. 频率高的光线
2. 下列说法正确的是(
)
A 荧光发射波长永远大于激发波长
B 荧光发射波长永远小于激发波长
荧光分析法ppt课件
特点:发生在激发态的最低振动能级和基态之间;所需时间约 为10-7~10-9秒。
结果:导致荧光或磷光减弱,甚至熄灭
或
19
续前
返回2 返2回0
11.2.2 激发光谱与发射(荧光)光谱
——荧光物质分子的两个特征光谱
发射波长
激发波长
激发光谱(excitation spectrum): F~ ex 荧光光谱(fluorescence spectrum): F~ em
3
续前 荧光分析法分类:根据光源不同进行分类
激发光源
紫外-可见光
X射线
原子特征谱线
荧光分析法
分子荧光法(Molecular Fluorometry) X射线荧光法(X-ray Fluorometry) 原子荧光法(Atomic Fluorometry)
荧光分析法与可见紫外吸收光谱比较
相同点
本质
不同点
过程:当两个电子的能级非常靠近,以致其振动能级有重叠 时,电子常常由高电子能级以非辐射跃迁方式转移至低 电子能级,这种过程称为内部能量转换
特点:发生在非常靠近的两个电子能级间,他们的振动能级有 重叠;时间约10-1~10-13秒。
或
11
续前
注:
➢ 处于激发态的电子,通过振动弛豫和内部能量 转换,均回到第一激发态的最低振动能级
➢激发光谱与荧光光谱上的λmax是定性定量的依据
荧光
磷光
9
续前 1、振动弛豫(vibrational relexation)
过程:从电子激发态的某一振动能级以非辐射跃迁的方式, 回到同一电子激发态的最低振动能级的过程为振动驰豫
特点:发生在同一个电子能级内不同振动能级间的跃迁;时 间约10-12秒。
结果:导致荧光或磷光减弱,甚至熄灭
或
19
续前
返回2 返2回0
11.2.2 激发光谱与发射(荧光)光谱
——荧光物质分子的两个特征光谱
发射波长
激发波长
激发光谱(excitation spectrum): F~ ex 荧光光谱(fluorescence spectrum): F~ em
3
续前 荧光分析法分类:根据光源不同进行分类
激发光源
紫外-可见光
X射线
原子特征谱线
荧光分析法
分子荧光法(Molecular Fluorometry) X射线荧光法(X-ray Fluorometry) 原子荧光法(Atomic Fluorometry)
荧光分析法与可见紫外吸收光谱比较
相同点
本质
不同点
过程:当两个电子的能级非常靠近,以致其振动能级有重叠 时,电子常常由高电子能级以非辐射跃迁方式转移至低 电子能级,这种过程称为内部能量转换
特点:发生在非常靠近的两个电子能级间,他们的振动能级有 重叠;时间约10-1~10-13秒。
或
11
续前
注:
➢ 处于激发态的电子,通过振动弛豫和内部能量 转换,均回到第一激发态的最低振动能级
➢激发光谱与荧光光谱上的λmax是定性定量的依据
荧光
磷光
9
续前 1、振动弛豫(vibrational relexation)
过程:从电子激发态的某一振动能级以非辐射跃迁的方式, 回到同一电子激发态的最低振动能级的过程为振动驰豫
特点:发生在同一个电子能级内不同振动能级间的跃迁;时 间约10-12秒。
第十三章-荧光分析法PPT课件
内部能量转换
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
《荧光分析法》课件
通过改进技术手段,实现多组分的同步检 测,提高检测效率。
微型化与便携化
智能化与自动化
随着技术的进步,荧光分析仪器将更加微 型化和便携化,方便现场快速检测。
结合人工智能和自动化技术,实现荧光分 析的智能化和自动化,减少人为误差和操 作复杂度。
THANKS FOR WATCHING
感谢您的观看
成和含量。
荧光分析法的应用领域
环境监测
荧光分析法可以用于检测水体 、土壤和空气中的污染物,如
重金属、有机物和农药等。
生物医学研究
荧光分析法可以用于检测生物 体内的标记物、蛋白质、核酸 和细胞等,有助于生物医学研 究和诊断。
食品安全检测
荧光分析法可以用于检测食品 中的添加剂、农药残留和有害 物质等,保障食品安全。
高特异性
荧光分析法可以针对特定的化学物质 或生物分子,提供高度特异性的检测, 降低误报率。
可视化结果
荧光分析法的结果可以通过肉眼直接 观察或使用荧光显微镜进行观察,方 便快捷。
应用广泛
荧光分析法可以应用于多种领域,如 生物医学、环境监测、食品安全等。
荧光分析法的缺点
01
02
03
04
样品处理复杂
荧光分析法通常需要对待测样 品进行预处理,如提取、纯化
荧光寿命的测量
通过测量荧光物质在激发光停止后荧光强度随时间的变化,可以了解荧光物质从 激发态回到基态的速率常数和荧光寿命。
时间分辨荧光光谱的测量
通过测量不同时间点的荧光光谱,可以了解荧光物质在激发态的动态过程和能量 转移过程。
荧光量子产率的实验技术
荧光量子产率的测量
通过测量荧光物质在特定波长激发下的荧光发射光子数和激发光子数,可以计算出荧光量子产率,了 解荧光物质的光致发光效率。
分析化学课件-荧光分析法基本原理
仪器的校正
灵敏度 以能被检出的最低信号来表示
波长
在选定条件下用稳定荧光物质校正 用汞灯标准谱线校正
激发光谱和荧光光谱
双光束仪器时,误差可抵消
二、其他荧光分析技术简介
1.激光荧光分析 2.时间分辨荧光 3.同步荧光分析 4.胶束增敏荧光
谢谢
溶剂
水 乙醇 环己烷 CCl4 CHCl3
激 发 光(nm) 248 313 365 405 436 271 350 416 469 511 267 344 409 459 500 267 344 408 458 499 —— 320 375 418 450 —— 346 410 461 502
第二节 荧光定量分析方法
荧光分析法基本原理
一、分子荧光
(一)分子荧光的产生 1.分子的电子能级与激发过程
hc =
E
S0
S1*
T1*
电子能级的多重性 M=2s+1
振动驰豫
内转换 体系间跨越
磷光
吸收
荧光
外转换
(二)激发光谱与发射光谱
excitation spectrum
横坐标ex,纵坐标 发射光强度
fluorescence spectrum
一、荧光强度与物质浓度的关系
F=K’(I0-I) I=I010-ECL
F= K’I0(1-10-ECL) = K’I0(1-e-2.3ECL) 若c很小,Ecl ≤0.05 则
F=2.3K’I0Ecl=Kc
F=2.3K’I0ECL=KC
ECl≤0.05 F C ECl >0.05 F 与C不成正比
荧光分析法的灵敏度高于紫外-可见分光光度法
荧光法
F
X射线荧光分析(共37张PPT)
经过脉冲高度分析器后的脉冲再经计数率
记录下来。记录方式有两种:定时计数,即计一
定时间的脉冲个数;定数计时,即统计达到一定
脉冲数所需时间。
2.4.X射线荧光分析的特点
2.4.1X射线荧光分析的主要特点
对入射光束而言,衍射角在它的2θ方向上,为从2θ角方向测量X射线,检测器也必须同时相应地转动。
(1)谱线简单、干扰少、分析简便 常用的有正比计数器、闪烁计数器和半导体探测器等几种。
说明俄歇电子和荧光X射线的发射各占一半;
必进行复杂的分离过程就能完成分析。
(2)不破坏样品,试样形式可多样化;
无论固体、粉末、糊状物或
液体等均可使用,这对某些有特殊
要求的分析,如考古分析等具有重
要意义。
(3)分析的元素范围和浓度范围广泛
除少数轻元素外,周期表中几乎所有
元素都能用X射线荧光进行分析。
素的种类。 俄歇电子产生的几率除与元素的原子序有关外,还随对应的能级差的缩小而增加。
这种方法要利用标样做工作曲线,工作十分费时和困难,特别在基体元素含量的变化范围大、基体效应又复杂的情况下,作出线性好的工作 曲线更不容易。
现在除了超轻元素外,极大部分元素的特 分析轻元素有困难,尤其分析超轻元素的精确分析更为困难。
种现象称为俄歇(Auger)效应,或称俄歇
电子。这种效应亦称次级光电效应、内转换
或无辐射跃迁。
如图2-1,当Mg原子的一
个K 电子被电离,L电子跃入填
空而发生Kα线时,如Kα线不出现 原子体系,而是随即被 L1 层上 的一个电子吸收并逐出此电子,
则所逐出的这一电子就是俄歇电
子。
现在引入一个荧光产额的概念:所谓荧光
也叫工作曲线法,人工制作一套标样,使标样的基本组成与试样一致或相近,作出分析线强度与含量关系的工作曲线,再根据测得的未知样
第十二章荧光分析法PPT课件
苯
萘
蒽
lex 205nm
lex 286nm
lex 356nm
lem 278nm
lem 321nm
lem 404nm
0.11
0.29
0.36
15
2. 分子的刚性
分子的刚性越强,荧光效率越大
联苯 =0.2
芴 =1.0
无荧光
有荧光
16
3. 取代基
给电子取代基常使荧光强度增大 如:-NH2、-OH、-OCH3、-NHR、-NR2、-CN等
当两电子激发态能量相差较小以致其振动能级有重 叠时,受激分子由高电子能级转移致低电子能级的 过程。
(振动失活在同样多重态间进行,如S2* S1*)
5
术语
外部能量转换 激发态分子与溶剂或其它溶质碰撞,以热能的形 式释放能量的过程。
体系间跨越 处于激发态分子的电子发生自旋反转而使分子的 多重性发生变化的过程,如S1* T1*
23
碰撞熄灭 能量转移
由于氧分子的顺磁性质,溶液中溶解氧的存在, 使激发单重态分子向三重态的体系间跨越速率增 加,因而会使荧光效率降低。其它顺磁性物质也 有这种作用。
氧的熄灭作用
24
5. 散射光
散射 光子与物质相碰撞,使光子的运动方向发生改变而向 不同的方向散射。
瑞利散射 光子和物质分子发生弹性碰撞,只有光子运动方向发 生改变的散射光,其波长与入射光波长相同。
17
(三)荧光试剂
作用:产生强荧光性产物 1. 荧光胺 2. 邻苯二甲醛 3. 1-二甲氨基-5-氯化磺酰萘 4. 测定无机离子的荧光试剂
18
三、 影响荧光强度的外部因素
1. 温度
温度升高通常会使荧光效率和荧光强度降低 乙醇 -80C =1.00 温度每增加10C ,荧光效率减小约3%
分析化学课件 PPT讲义 荧光分析法
药物分析教研室
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
▪ 温度 ▪ 溶剂 ▪ pH值 ▪ 荧光熄灭剂 ▪ 散射光
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
硫酸奎宁在不同激发波长下的荧光(a)与拉曼光谱(b)
荧光光谱
激发 320nm
激发350nm
荧光448nm
§2.1 荧光强度与物质浓度的关系
荧光分析法与UV-vis定量测定时仪器校正的区别
UV-vis
0
100%
T=0,A=∞
T=100%,A=0
关闭光闸,光不透 空白溶液,光全透
过,全吸收
过,不吸收
荧光分析法
F=0 空白溶液,不发射
荧光
F=100% 对照品溶液Cmax
F=50%(Cmid)
药物分析教研室
的荧光强度降低到最大荧光强度的1/e所需的时间。用f表示。
• 荧光效率(fluorescence efficiemcy):又称荧光量子产率
(fluorescence quantum yield)是指激发态分子发射荧光的光子数 与基态分子吸收激发光的光子数之比。f
• 荧光寿命和荧光效率是荧光物质的重要参数!
分析化学 Analytical Chemistry
药物分析教研室
药物分析教研室
概述
• 发光(phosphorescence):物质受到一定波长的光照射后, 外层电子跃迁后返回基态时,以光辐射的形式释放能量,这 种现象称为发光。(荧光、磷光)
• 荧光(fluorescence):物质分子接受光子能量被激发后,从 激发态的最低振动能级返回基万言书时发射出的光。
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
▪ 温度 ▪ 溶剂 ▪ pH值 ▪ 荧光熄灭剂 ▪ 散射光
药物分析教研室
§1 荧光分析法的基本原理
§1.3 影响荧光强度的外部因素
硫酸奎宁在不同激发波长下的荧光(a)与拉曼光谱(b)
荧光光谱
激发 320nm
激发350nm
荧光448nm
§2.1 荧光强度与物质浓度的关系
荧光分析法与UV-vis定量测定时仪器校正的区别
UV-vis
0
100%
T=0,A=∞
T=100%,A=0
关闭光闸,光不透 空白溶液,光全透
过,全吸收
过,不吸收
荧光分析法
F=0 空白溶液,不发射
荧光
F=100% 对照品溶液Cmax
F=50%(Cmid)
药物分析教研室
的荧光强度降低到最大荧光强度的1/e所需的时间。用f表示。
• 荧光效率(fluorescence efficiemcy):又称荧光量子产率
(fluorescence quantum yield)是指激发态分子发射荧光的光子数 与基态分子吸收激发光的光子数之比。f
• 荧光寿命和荧光效率是荧光物质的重要参数!
分析化学 Analytical Chemistry
药物分析教研室
药物分析教研室
概述
• 发光(phosphorescence):物质受到一定波长的光照射后, 外层电子跃迁后返回基态时,以光辐射的形式释放能量,这 种现象称为发光。(荧光、磷光)
• 荧光(fluorescence):物质分子接受光子能量被激发后,从 激发态的最低振动能级返回基万言书时发射出的光。
第十二章荧光分析法(Fluorometry)
kF
+ kVR
+ kIC
kF + kISC
+ kEC
+ kP
❖ 凡使 kF 增加,使其它去活化常数降低的因素 均可增加荧光量子产率。
❖ kF通常由分子结构决定,而其它参数则由化学
环境和结构共同决定。
2020年7月11日星期六
16
※ 3、荧光产生的条件
❖ 产生并可观察到荧光的条件: 1)分子必须具有吸收一定频率紫外光的特定 结构; 2)物质吸收特征频率的辐射后,必须具有较 高的荧光效率
13
2020年7月11日星期六
14
二、荧光与分子结构的关系
1、荧光寿命:
❖ 去除激发光源后,分子荧光强度降低到最大荧光强度 的1/e所需的时间,用τf 表示。
❖ 根据指数衰减定律可求出荧光寿命:
Ft = F0e-Kt
若t = τ f ,则Ft = ( 1 / e )F0 ,K = 1 / τ f
2020年7月11日星期六
6
(3)外转换(External Conversion,EC)
❖ 受激分子与溶剂或其它分子相互作用发生能量转换而使 荧光或磷光强度减弱甚至消失的过程,也称“熄灭”或 “猝灭”。常发生在第一激发单重态或激发三重态的最 低振动能级向基态转换的过程中。
(4)系间跨跃(Intersystem Conversion,ISC)
基态:M=2S+1=1
激发态: S=0,M=2S+1=1 S=1,M=2S+1=3
S*1
T*1
2020年7月11日星期六
4
荧光和磷光产生示意图
2020年7月11日星期六
5
2. 去活化过程(Deactivation)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种现象是这些物质在吸收光能后重新发射不同波长的光,而不
是由光的漫射作用所引起的,从而导入了荧光是光发射的概念, 他还由发荧光的矿石“萤石”推演而提出“荧光”这一术语。
1867 年, Goppelsroder 进行了历史上首次的荧光分析工作,
应用铝—桑色素配合物的荧光进行铝的测定。 19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由 Jette和West提出了第一台荧光计。
光外还会发射出比原来吸收波长更长的光,当激发光停 止照射后,这种光线随之消失。这种现象称为光致发光。 最常见的是荧光和磷光。
荧光:物质分子接受光子能量激发后,从激发态的最低
振动能级返回基态时发射出的光。
荧光分析法:基于对化合物的荧光光谱测量建立起来的
分析方法。
分类:分子荧光和原子荧光。
根据激发光的波长范围可分为紫外-可见荧光;红外 荧光和X射线荧光。
荧光分析法 (Fluorometry)
1
第一次记录荧光现象的是 16世纪西班牙的内科医生和植物学家 N.Monardes , 1575 年 他 提 到 在 含 有 一 种 称 为 “ Lignum Nephriticum”的木头切片的水溶液中,呈现了极为可爱的天蓝 色。 直到1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光光 度计观察到其荧光的波长比入射光的波长稍微长些,才判断这
2
,l 1),产生不同吸收带,但均回到第一激发单重态的最
低振动能级再跃迁回到基态,产生波长一定的荧光(如l ‘2 )。
12
外转换:激发分子与溶剂或其他分子之间产生
相互作用而转移能量的非辐射跃迁;
外转换使荧光或磷光减弱或“猝灭”。
体系间跨越:处在激发态的电子发生自旋反转
而使分子的多重性发生变化的过程。 S1的最低振动能级同T1的最高振动能级重叠, 则有可能发生体系间跨越(S1 → T1)
13
(二)、荧光激发光谱与发射光谱
能级比相应单重态能级低;大多数有机分子的 基态处于单重态;
基态(S0)→激发态(S1、S2激发态振动能级):
吸收特定频率的辐射;量子化;跃迁一次到位;
激发态→基态:通过辐射跃迁和无辐射跃迁等
方式释放多余的能量而返回至基态。
S0→T1 禁阻跃迁;通过其他途径进入;进入
的几率小。
7
内转换 S2
15
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320 380 440 500 560 室温下菲的乙醇溶液荧(磷)光光谱
620
16
17
3.激发光谱与发射光谱的关系
(1).斯托克斯位移(Stokes shift) 荧光发射波长总比激发光波长的现象,振动弛豫和内转换 消耗了能量。 (2).发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如能级 图l
基态的多重性 2S+1=1, 这种状态称为单重态,以
S0表示
5
当基态电子激发到某高能级时, 将有两种激发态:
自旋相反多重性为1,称为激发单重态,用S表示
自旋平行多重性为M=2× 1+1=3,称为激发三重态 (triplet state)用T表示
6
2.
荧光的产生
平行自旋比相反自旋稳定(洪特规则),三重态
1.荧光检测的基本原理
14
2.荧光的激发光谱和发射光谱
激发光谱(excitation spectrum):固定测量波长, 将激发光的光源分光,测定不同波长的激发光照射 下所发射的荧光强度的变化,以IF —λ激发作图,便 可得到荧光物质的激发光谱。 发射光谱或荧光光谱(fluorescence spectrum):固 定激发光波长和强度, 让物质发射的荧光通过单色 分光,以测定不同波长的荧光强度, 以IF—λ荧光作图 ,便可得到荧光物质的荧光光谱。
内转换 振动弛豫 系间窜越
S1
能 量 吸 收 T1 发 射 荧 光 T2
外转换
发 射 磷 振动弛豫 光
S0
l1
l2
l 2
l3
8
3 2 1 V=0
吸光
无辐射跃迁
3 2 1 V=0
荧光的产生
激发态→基态的能量传递途径
电子处于激发态是不稳定状态,返回基态时, 通过辐射跃迁(发光)和无辐射跃迁等方式失去能量;
传递途径
辐射跃迁 无辐射跃迁
荧光
磷光
系间跨越 内转移
外转移
振动弛豫
10
辐射能量传递过程
荧光发射:电子由第一激发单重态的最低振动能级→基态(
多为 S1→ S0跃迁),发射波长为 l ‘2的荧光; 10-7~10 -9 s 。
由图可见,发射荧光的能量比分子吸收的能量小,波长 长; l ‘2 > l 2 > l 1 ;
目录
荧光分析法的基本原理
(一)、荧光产生
(二)、荧光激发光谱与发射光谱
(三)、荧光的产生与分子结构的关系 (四)、影响荧光强度的外部因素 (五)、荧光分光光度计及其使用 (六)、荧光定量分析方法及实例
(七)、荧光分析法的发展
3
几个概念
光致发光:有些物质受到光照射时,除吸收某种波长的
4
一、荧光分析法的基本原理
(一)、荧光产生
1.
分子的电子能级与激发过程
在室温时,大多数分子处在电子基态的最低振动
能级,当受到一定的辐射能作用就会发生能级之 间的跃迁。 在基态时 , 电子成对地填充在能量最低的各轨道。 根据保利不相容原理 , 一个给定轨道中的两个电 子必定具有相反的自旋 , 其自旋量子数 S 分别为 1/2和 -1/2, 其总的自旋量子数S总=0
磷光发射:电子由第一激发三重态的最低振动能级→基态(
T1 → S0跃迁); 电子由S0进入T1的可能过程:( S0 → T1禁阻跃迁) S0 →激发→振动弛豫→内转移→系间跨越→振动弛豫→ T1 发光速度很慢: 10-4~10 s 。
光照停止后,可持续一段时间。
11
非辐射能量传递过程 振动弛豫:同一电子能级内以热能量交换形式 由高振动能级至低相邻振动能级间的跃迁。发 生振动弛豫的时间10-12 s。 振动弛豫只能在同一电子能阶内进行 内部能量转换(内转换):当两个电子激发态 之间的能量相差较小,以致其振动能级有重叠 时,受激分子常由高电子能级以无辐射方式转 移至低电子能级的过程。