带加强管的裙座的尾部吊耳计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ATTACHMENT 4 (701-V-01)
TAILING LUG CALCULATION
1. CALCULATION OF LIFTING FORCE
(1) DESIGN DATA
Wo=49870kg(ERECTION WEGHT OF VESSEL)
Df= 1.5(FACTOT)
Y=9590mm(FROM CENTER LINE OF TALING LUG TO C.O.G) X=9690mm(FROM C.O.G TO LUG CENTERLING)
R=2358mm(OUTSIDE RADIUS OF C.L TO TAILING LUG)
** FORMULAS **
LL=Df*Wo*(Y*cosθ+Rsinθ)/((X+Y)*cosθ+R*sinθ)
TL=Df*Wo*(X*cosθ)/((X+Y)*cosθ+R*sinθ)
LV=LL*cosθ
LH=LL*sinθ
TV=TL*cosθ
TH=TL*sinθ
PV=0.5*LH
PH=PV*tan15
2. RESULT OF LIFTING FORCE (θ = 0°to 90°)
MAX. FORCE SUMMARY AT LIFTING AND TAILING LUG
3. STRENGTH OF TAILING LUG SA-516 Gr60USED MATERIAL
Sa =12.02
kg/mm2ALLOWABLE STRESS OF TAILING LUG Sy =22.5kg/mm2YIELD STRESS OF TAILING LUG N =2
TAILING LUG QTY.
TV =37596.496kg LIFTING LOAD (MAX. AT HORIZONTAL COND.)
TV′= TV/N 18798.248kg LIFTING LOAD PER TAILING LUG (VERTICAL FORCE)TH =26994.021kg LIFTING LOAD (MAX. AT VERTICAL COND.) AT 65 deg TH′= TH/N
13497.011
kg
LIFTING LOAD PER TAILING LUG (HORIZONTAL FORCE)
DIMENSIONS
t =42mm R =126mm d =120mm L =240mm L1=252mm W =21mm L3=
122mm TOTAL WELD LENGTH:= L4496
mm
** STRENGTH CALCULATION **
3-1) SHEAR STRESS AT HORIZONTAL STATE = 6.7814748kg/mm2So, S1 = 6.7814748kg/mm2<0.4Sy =9kg/mm2OK!
3-2) TENSION STRESS AT HORIZONTAL STATE = 3.3907374kg/mm2So, S2 = 3.3907374kg/mm2<0.6Sy =13.5kg/mm2OK!
3-3) BENDING STRESS AT MAX. SLOPED LOAD STATE, AT 60 deg.=7.2870157kg/mm2So, S3 = 7.2870157kg/mm2<0.66Sy =14.85kg/mm2OK!
3-4) TENSION STRESS AT MAX. SLOPED LOAD STATE, AT 60 deg.= 2.4345257kg/mm2So, S4 = 2.4345257kg/mm2<0.6Sy =13.5kg/mm2OK!3-5) COMBINE STRESS AT MAX. SLOPED STATE, AT 60 deg.=0.6710434<1
OK!
3-6) SHEAR FORCE IN WELDMENT =18.949847kg/mm FILLET WELD SIZE = 2.8664116mm =21OK!
S4 = TH′/[(2*R-d)*t]Scomb = S3/(0.66Sy)+S4/(0.6Sy)Ws = TV′/(2*L4)W = Ws/(0.55*Sa)USED WELD LEG LENGTH S1 = 2* TV′/[(2*R-d)*t]S2 = TV′/[(2*R-d)*t]S3 = 6*TH′*L/[t*(2*R)^2
]
4. BASE BLOCK UNDER ERECTION CONDITION 4-1) SECTIONAL PROPERTIES OF BASE BLOCK T3 = t1=18mm T1 = t2=28mm T2 = t3=28mm J3 = L2a =79.5mm L2b =93mm J1 = L3=122mm K1 = L =252mm Di =4200mm SA-516 Gr6022.5kg/mm24-2) EFFECTIVE LENGTH OF SKIRT =2109mm 288mm
4-3) SECTION AREA, A =10224mm2=4830mm2=3416mm2=18470mm24-4) CENTROID, A h1 = L2a+0.5*t1=88.5mm h2 = (L2a+L2b)/2=86.25mm h3 = 0.5*L3-(L3-L2a)=18.5mm 74.965214mm
4-5) MOMENT OF INERTIAL OF AREA, I
2148987mm412591974mm415128281mm4
I = I1+I2+I3=29869242mm44-6) MIN. SECTION MODULUS, Z Z = I/C =398441.36
4-7) STRESS IN BASE BLOCK UEO TO TV
a) BENDING MOMENT & DEFLECTION OF BASE BLOCK Ko*W*R^2=2182.5mm = 2.7416578kg/mm Where, TV = PT =37596.496kg
42.564397mm 21000kg/mm2
b) STRESS IN BASE BLOCK Mmax =19589034kg-mm S1 = M/Z =49.164158kg/mm2>0.66Sy =14.85kg/mm2NOT OK!
THEREFORE, STIFFENER BEAM IS REQUIRED!!
DEFLECTION Dx = -W*R ^4/(E*I)*0.4292 = Where, E = modulue of elas. =I3 = (t3*L3^3)/12+A3*(h3-C)^2 =M = W*R 2(1+0.5*cos α-π*sin α+αsinα) =W = TV/(2*π*R)R TOTAL AREA A C = [(A1*h1)+(A2*h2)+(A3*h3)]/A =I1 = [(Le+t3+L)*t1^3]/12+A1*(h1-C)^2 =I2 = [t2*(L2a+L2b)^3]/12+A2*(h2-C)^2 =A1 = t1*(L+Le+t3)Le = Max.(0.78*(Rm*t1)^0.5,16*t1) =A2 = t2*(L2a+L2b)A3 = t3*L3YIELD STRESS OF BASE BLOCK =Rm = (Di+t1)/2
BASE BLOCK MATERIAL: