人教版八年级上册 13.4 将军饮马模型浅解 讲义

合集下载

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
5.结合实际情境,让学生体会数学与生活的密切联系,增强数学学习的兴趣和信心,培养正确的数学价值观。
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

一、定直线与两定点模型作法结论A、在直线l异侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA+最小.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l异侧当两定点B时,在直线l上找上点P,使PA-最大.PBA、在直线l同侧当两定点B时,在直线l上找上点P,使PA-最小.PB二、角到定点模型作法结论点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得PCD ∆周长最小.点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得MN PN +最小.点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小.点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.点Q P 、分别在AOB ∠的边OB OA 、是,在OA 上找一点M ,在OB 上找一点N ,使得MQ MN PN ++最小.二、两定点一定长模型作法结论如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =.如图,21//l l ,21l l 、之间的距离为d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,且NB MN AM ++最小.如图,21//l l ,43//l l ,21l l 、之间的距离为1d ,43//l l 之间的距离为2d ,在21l l 、上分别找N M 、两点,使1l MN ⊥,在43l l 、上分别找Q P 、两点,使3l PQ ⊥且QB PQ NP MN AM ++++最小.如图,在⊙O 上找一点N ,在直线l 找一点M ,使得MN AM +最小.➢ 精讲精练例1:如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值.P OBAMN例2:如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值.例3:如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)第3题图 第4题图 第5题图例4:如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .4B .5C .6D .7例5:如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________. PDCBAA BCDMNNMDCBA例6:如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值.例7:如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( ) A .3 B .4 C . D .第7题图 第8题图 第9题图例8:如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) A B .2 C .D .4例9:如图,在菱形ABCD 中,AC =BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( ) A .6B .C .D .4.5NMDBA E AFCDBNM DCBAEPDCBAM例10:如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ) A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第10题图 第11题图 第12题图例11:如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB 的最小值为( ) A .B .C .D 例12:如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .例13:如图,∠AOB =60°,点P 是∠AOB 内的定点且OP M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A B C .6D .3第13题图 第14题图 CBH FGEDCB AA BMOPN例14:如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .例15:如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为___________.第15题图例16:如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.例17:如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CD EFMx例18:如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,求PD+PE 的最小值。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

将军饮马课件ppt

将军饮马课件ppt

05
将军饮马问题的扩展和挑 战
变种问题
01
02
03
04
障碍物问题
在路径上设置障碍物,求最短 路径时需要避开障碍物。
多点折返问题
在路径上设置多个折返点,求 最短路径时需要多次折返。
限制条件问题
在求最短路径时加入限制条件 ,如步数限制、时间限制等。
动态变化问题
路径长度会随时间或其他因素 变化,需要求最短路径时考虑
这些变化。
计算复杂度
最坏情况下的时间复杂度
在最坏情况下,算法的时间复杂度可 能较高,需要优化算法以降低时间复 杂度。
空间复杂度
并行计算
为了提高算法的效率,可以考虑使用 并行计算来加速计算过程。
算法的空间复杂度也需要考虑,以评 估算法的内存消耗。
实际应用中的限制和优化
数据精度
在实际应用中,需要考虑 数据精度对算法的影响, 以避免误差累积导致结果 不准确。
在车辆调度方面,将军饮马问题同样 适用。通过优化车辆的出发时间和行 驶路线,物流公司可以最大化利用车 辆资源,提高运输效率。
计算机算法
图论算法
将军饮马问题作为图论中的经典问题,可以应用于计算机算法领域。通过解决将军饮马问题,可以开 发出更高效的图论算法,用于解决其他相关问题。
最短路径算法
最短路径算法是计算机算法中的重要组成部分。将军饮马问题可以作为最短路径算法的参考模型,帮 助开发人员找到图中两点之间的最短路径。
03
04
几何法是利用几何知识解决将 军饮马问题的方法。
它通过将问题转化为几何图形 ,利用几何定理和性质来找到
最短路径。
几何法适பைடு நூலகம்于具有明显几何特 征的问题,如两点之间的最短 距离、三角形中的最短路径等

重难点05轴对称之“将军饮马”模型(解析版)-八年级数学

重难点05轴对称之“将军饮马”模型(解析版)-八年级数学

重难点05轴对称之“将军饮马”模型1.识别几何模型。

2.利用“将军饮马”模型解决问题如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?如图,在直线上找一点P使得PA+PB最小?这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)类型一:两定一动之点点在OA、OB上分别取点M、N,使得△PMN周长最小.此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.类型二:两定两动之点点在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

考虑PQ是条定线段,故只需考虑PM+MN+NQ最小值即可,类似,分别作点P、Q关于OA、OB对称,化折线段PM+MN+NQ为P’M+MN+NQ’,当P’、M、N、Q’共线时,四边形PMNQ的周长最小。

类型三:一定两动之点线在OA、OB上分别取M、N使得PM+MN最小。

此处M点为折点,作点P关于OA对称的点P’,将折线段PM+MN转化为P’M+MN,即过点P’作OB垂线分别交OA、OB于点M、N,得PM+MN最小值(点到直线的连线中,垂线段最短)一.选择题(共5小题)1.(2021秋•苏州期末)在平面直角坐标系中,已知点A(﹣1,2),点B(﹣5,6),在x轴上确定点C,使得△ABC的周长最小,则点C的坐标是()A.(﹣4,0)B.(﹣3,0)C.(﹣2,0)D.(﹣2.5,0)【分析】作B点关于x轴的对称点B',连接AB'交x轴于点C,连接BC,此时△ABC的周长最小,求出直线AB'的解析式y=2x+4与x轴的交点即可.【解答】解:作B点关于x轴的对称点B',连接AB'交x轴于点C,连接BC,∴BC=B'C,∴BC+AC=B'C+AC≥AB',此时△ABC的周长最小,∵B(﹣5,6),∴B'(﹣5,﹣6),设直线AB'的解析式为y=kx+b,将点A(﹣1,2),B'(﹣5,﹣6)代入,得,∴,∴y=2x+4,令y=0,则x=﹣2,∴C(﹣2,0),故选:C.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,用待定系数法求函数解析式是解题的关键.2.(2022秋•江都区月考)如图,△ABC中,AB=AC,BC=3,S△ABC=6,AD⊥BC于点D,EF是AB的垂直平分线,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3.5B.4C.4.5D.5【分析】由垂直平分线的性质知AP=BP,则PB+PD=AP+PD,从而PB+PD最小值为AD的长,利用面积即可求出AD的长.【解答】解:∵EF是AB的垂直平分线,∴AP=BP,∴PB+PD=AP+PD,即点P在AD上时,PB+PD最小值为AD的长,=6,∵BC=3,S△ABC∴×3×AD=6,∴AD=4,∴PB+PD最小值为4,故选:B.【点评】本题主要考查了轴对称﹣最短路线问题,线段垂直平分线的性质等知识,将PB+PD最小值转化为AD的长是解题的关键.3.(2020秋•如皋市期末)如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°【分析】由题意可知作B点关于该垂直平分线的对称点B',连接B'C,交垂直平分线于P点,此时PB+PC 最小,证明△BCB'是等腰直角三角形,即可求∠PBC.【解答】解:∵△PBC的面积等于△ABC的面积的,∴P点在AD的垂直平分线上,作B点关于该垂直平分线的对称点B',连接B'C,交垂直平分线于P点,由对称性可知,B'P=BP,∴BP+PC=B'P+PC=B'C,此时PB+PC最小,∵AD=BB',AD=BC,∴BB'=BC,∴△BCB'是等腰直角三角形,∴∠B'CB=∠B'=45°,∴∠B'BP=45°,∴∠PBC=45°,故选:B.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等腰直角三角形的性质是解题的关键.4.(2021秋•如皋市期末)如图,在△ABC中,∠C=90°,AC=BC=2,D为AB上一动点,DE∥AC,DE=2,则AE+CE的最小值等于()A.4B.2C.3D.+2【分析】过E作EF∥AB交CA的延长线于点F,作点A关于EF的对称点A',连接A'E和A'F.依据轴对称的性质即可得到∠BAC=∠AFE=∠A'FE,AE=A'E,再根据四边形ADEF是平行四边形,即可得出AF =DE=2,A'F=AF=2.当点C,点E,点A'在同一直线上时,AE+CE的最小值等于A'C的长,利用勾股定理求得A'C的长即可.【解答】解:如图所示,过E作EF∥AB交CA的延长线于点F,作点A关于EF的对称点A',连接A'E和A'F,∴∠BAC=∠AFE=∠A'FE,AE=A'E,∴AE+CE=A'E+CE,由题可得,△ABC是等腰直角三角形,∴∠BAC=45°,∴∠A'FC=45°×2=90°,∵AF∥DE,EF∥AD,∴四边形ADEF是平行四边形,∴AF=DE=2,A'F=AF=2,当点C,点E,点A'在同一直线上时,AE+CE的最小值等于A'C的长,如图所示.此时,Rt△A'FC中,A'C===,∴AE+CE的最小值为,故选:B.【点评】此题主要考查了最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5.(2022秋•如东县期末)如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是()A.B.C.a+b D.a【分析】首先证明点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小.【解答】解:如图,∵△ABC,△ADE都是等边三角形,∴AB=AC=a,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AF=CF=a,BF=b,∴∠ABD=∠CBD=∠ACE=30°,BF⊥AC,∴点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小,∵CA=CM,∠ACM=60°,∴△ACM是等边三角形,∴AM=AC,∵BF⊥AC,∴FM=BF=b,∴△AEF周长的最小值=AF+FE′+AE′=AF+FM=a+b,故选:B.【点评】本题考查轴对称最短问题、等边三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明点E在射线CE上运动(∠ACE=30°),本题难度比较大,属于中考填空题中的压轴题.二.填空题(共5小题)6.(2022秋•句容市月考)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.【分析】作F关于AD的对称点F',由角的对称性知,点F'在AB上,当CF'⊥AB时,EC+EF的最小值为CF',再利用面积法求出CF'的长即可.【解答】解:作F关于AD的对称点F',∵AD是∠BAC的平分线,∴点F'在AB上,∴EF=EF',∴当CF'⊥AB时,EC+EF的最小值为CF',∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,=,∴S△ABC∴12×8=10×CF',∴CF'=,∴EC+EF的最小值为,故答案为:.【点评】本题主要考查了等腰三角形的性质,轴对称﹣最短路线问题,三角形的面积等知识,熟练掌握将军饮马的基本模型是解题的关键.7.(2021秋•如皋市月考)如图,等边△ABC的边长为6,AD是高,F是边AB上一动点,E是AD上一动点,则BE+EF的最小值为.【分析】过C点作CF⊥AB交AB于F,交AD于E,连接BE,BE+EF的最小值为CF,求出CF即可.【解答】解:过C点作CF⊥AB交AB于F,交AD于E,连接BE,∵AD是等边三角形ABC的高,∴BE=CE,∴BE+EF=CE+EF≥CF,∴BE+EF的最小值为CF,∵BC=6,AB=6,∴BF=3,∴CF===3,∴BE+EF的最小值为3,故答案为:3.【点评】本题考查轴对称求最短距离,熟练掌握等边三角形的性质,轴对称的性质,垂线段最短是解题的关键.8.(2022秋•镇江期中)如图,在△BCD中,∠BDC=90°,∠DBC=30°,射线CN平分∠BCD,AB∥CD,AB=10,BD=24,点F为BC的中点,点M为射线CN上一动点,则MF+MA的最小值为26.【分析】连接AD,交NC于点G,连接FD,交NC于点P,连接GF,根据题意可得△DFC为等边三角形,由等边三角形的三线合一可得GF=GD,以此得出MF+MA的最小值为GF+AG=GD+AG=AD,由AB∥CD 可得△ABD为直角三角形,最后根据勾股定理求解即可.【解答】解:如图,连接AD,交NC于点G,连接FD,交NC于点P,连接GF,∵∠BDC=90°,∠DBC=30°,∴∠BCD=60°,CD=CD,∵点F为BC的中点,∴FD=BF=CF=BC=CD,∴△DFC为等边三角形,∵射线CN平分∠BCD,∴CP垂直平分DP,∴GF=GD,点D为点F关于CN的对称点,∴当M在点G时,此时MF+MA为GF+AG=GD+AG=AD取得最小值,∵AB∥CD,∴∠ABD=90°,∵AB=10,BD=24,∴.故答案为:26.【点评】本题主要考查轴对称﹣最短路线问题、含30度角的直角三角形、等边三角形的判定与性质,正确作出辅助线,得出MF+MA的最小值为AD是解题关键.9.(2022秋•江宁区校级月考)如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为BC的中点,AD=2,若P为AB上一个动点,则PC+PD的最小值为.【分析】作点D关于AB的对称点E,连接PE,BE,依据轴对称的性质,即可得到DB=EB,DP=EP,∠ABC=∠ABE=45°,根据PC+PD=PC+PE,可得当C,P,E在同一直线上时,PC+PE的最小值等于CE 的长,根据全等三角形的对应边相等,即可得出PC+PD的最小值为2.【解答】解:如图所示,作点D关于AB的对称点E,连接PE,BE,则DB=EB,DP=EP,∠ABC=∠ABE=45°,∠CBE=90°,∵D是BC的中点,∴BD=BC=2,∴BE=2,∵PC+PD=PC+PE,∴当C,P,E在同一直线上时,PC+PE的最小值等于CE的长,此时,PC+PD最小,∵AC=BC=4,D为BC的中点,∴CD=DB=BE,又∵∠ACD=∠CBE=90°,∴△ACD≌△CBE(SAS),∴CE=AD=2,∴PC+PD的最小值为2.故答案为:2.【点评】此题考查了轴对称﹣线路最短的问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.(2022秋•海安市期末)如图,在△ABC中,∠BAC=30°,AB=AC=2,点E为射线AC上的动点,DE∥AB,且DE=2.当AD+BD的值最小时,∠DBC的度数为45°.【分析】过点D作DF⊥AC于点F,可知点D在到AC的距离为1的直线上,作出该直线l,利用将军饮马模型,作点A关于直线l的对称点A′,连接A′B交直线l于点D′,此时AD′+BD′=A′B,即点D 与点D′重合时,AD+BD的值最小.利用等腰三角形的性质和三角形的内角和定理分别求得∠ABA′和∠ABC的度数,则结论可求.【解答】解:过点D作DF⊥AC于点F,如图,∵DE∥AB,∴∠DEF=∠BAC=30°,∵DF⊥AC,∴DF=DE=1,∴点D到直线AC的距离等于定值1.过点D作直线l∥AC,则点D在直线l上运动,作点A关于直线l的对称点A′,连接A′B交直线l于点D′,由将军饮马模型可知:此时AD′+BD′=A′B,即点D与点D′重合时,AD+BD的值最小.由题意:AA′⊥l,AG=GA′,∵l∥AC,DF⊥AC,∴四边形AFDG为矩形,∴AG=DF=1,∴AA′=AG+A′G=2,∵AB=AC=2,∴AB=AA′,∴∠ABA′=∠A′.∵∠BAC=30°,∠FAG=90°,∴∠BAA′=120°,∴∠ABA′=∠A′==30°.∵∠BAC=30°,AB=AC=2,∴∠ABC=∠ACB==75°,∴∠DBC=∠D′BC=∠ABC﹣∠ABD′=45°.故答案为:45°.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,轴对称的性质,平行线的判定与性质,利用将军饮马模型构造辅助线解答是解题的关键.三.解答题(共8小题)11.(2022秋•苏州期中)(1)如图,河道上A,B两点(看作直线上的两点)相距200米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=80米,BC=70米,现在菜农要在AB 上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短.请在图中作出点P,保留作图痕迹,并求出PC+PD的最小值.(2)借助上面的思考过程,请直接写出当0<x<15时,代数式+的最小值=17.【分析】(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;根据勾股定理可得DF的长,从而解答即可;(2)先作出点C关于AB的对称点F,连接DF,使AB=15,AD=5,BC=BF=3,DF就是代数式+的最小值,【解答】解:(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;作DE⊥BC交BC的延长线于E.在Rt△DEF中,∵DE=AB=200米,EF=AD+BC=80+70=150米,∴DF===250(米),∴PD+PC的最小值为250米;(2):先作出点C关于AB的对称点F,连接DF,作DE⊥BC交BC的延长线于E.使AB=15,AD=5,BC=BF=3,DF就是代数式+的最小值,∵DF===17,∴代数式+的最小值为17.故答案为:17.【点评】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.12.(2022秋•秦淮区校级月考)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得PA+PC的和最小.【分析】(1)根据轴对称的性质作图即可.(2)连接A1C,与直线l交于点P,连接AP,此时PA+PC的和最小.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.13.(2022秋•江都区校级月考)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使△PBC的周长最小.(3)在DE上找一点M,使|MC﹣MB|值最大.(4)△ABC的面积是.【分析】(1)根据轴对称的性质作图即可.(2)连接B1C,交直线DE于点P,连接BP,此时PB+PC最小,即可得△PBC的周长最小.(3)延长CB,交直线DE于点M,此时|MC﹣MB|值最大.(4)利用割补法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.(3)如图,点M即为所求.(4)△ABC的面积为3×3﹣﹣﹣=.故答案为:.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.14.(2022秋•宜兴市月考)请在如图所示的正方形网格中完成下列问题:(1)如图,请在图中作出△ABC关于直线MN成轴对称的△A′B′C′;(2)求出△ABC的面积.(3)在直线MN上找一点P,使得PC+PB最小.【分析】(1)根据轴对称的性质作图即可,(2)利用割补法求三角形的面积即可.(3)连接B'C,交直线MN于点P,连接PB,此时PC+PB最小.【解答】解:(1)如图,△A′B′C′即为所求.(2)△ABC的面积为3×6﹣﹣﹣=8.(3)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、三角形的面积,熟练掌握轴对称的性质是解答本题的关键.15.(2022秋•江阴市期中)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=6;(3)在AE上找一点P,使得PC+PD的值最小.【分析】(1)利用轴对称的性质作出点B的对应点F,即可解决问题;(2)△AEF与四边形ABCD重叠部分的面积=四边形ADTE的面积,利用分割法求解;(3)作点D关于直线AE的对称点D′,连接CD′交AE于点P,点P即为所求.【解答】解:(1)如图,△AEF即为所求;(2)△AEF与四边形ABCD重叠部分的面积=四边形ADTE的面积=2×4﹣×2×2=6;(3)如图,点P即为所求.【点评】本题考查作图﹣轴对称变换,最短问题,四边形面积等知识,解题的关键是掌握轴对称变换的性质,灵活运用所学知识解决问题.16.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE =2,求EM+BM的最小值.【分析】要求EM+BM的最小值,需考虑通过作辅助线转化EM,BM的值,从而找出其最小值求解.【解答】解:连接CE,与AD交于点M.则CE就是BM+ME的最小值.取BE中点F,连接DF.∵等边△ABC的边长为6,AE=2,∴BE=AB﹣AE=6﹣2=4,∴BF=FE=AE=2,又∵AD是BC边上的中线,∴DF是△BCE的中位线,∴CE=2DF,CE∥DF,又∵E为AF的中点,∴M为AD的中点,∴ME是△ADF的中位线,∴DF=2ME,∴CE=2DF=4ME,∴CM=CE.在直角△CDM中,CD=BC=3,DM=AD,CM==,CE=×=2,∵BM+ME=CE,∴BM+ME的最小值为2.【点评】此题主要考查了轴对称﹣最短路线问题和等边三角形的性质和轴对称及勾股定理等知识的综合应用,根据已知得出M点位置是解题关键.17.(2021秋•连云港期末)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角形的三个顶点A、B、C分别在槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中,你发现线段AD与BE有什么关系?试说明你的结论;【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在△ABC中,点D、E、F分别在边BC、AC、AB上,若∠B=∠FDE=∠C,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理;【拓展应用】如图3,在△ABC中,BA=BC,∠B=45°,点D、F分别是边BC、AB上的动点,且AF=2BD.以DF为腰向右作等腰△DEF,使得DE=DF,∠EDF=45°,连接CE.①试判断线段DC、BD、BF之间的数量关系,并说明理由;②如图4,已知AC=2,点G是AC的中点,连接EA、EG,直接写出EA+EG的最小值.【分析】【问题情境】证明△ABD≌△BCE(AAS),即可求解;【变式探究】利用等量代换即可求解;【拓展应用】①用等量代换即可求解;②在CD上截取DM=BF,连接EM,作点G关于CE的对称点N,连接CN,AN,先证明△BDF≌△MED (SAS),得到EM=CM,在求出∠ECM=∠MEC=22.5°,即可确定E点在射线CE上运动,当A、E、N 三点共线时,EA+EG的值最小,最小值为AN,在Rt△ANC中求出AN即可.【解答】解:【问题情境】AD=BE,理由如下:∵∠ABC=90°,∴∠ABD+∠CBE=90°,∵∠BAD+∠ABD=90°,∴∠BAD=∠CBE,∵AB=BC,∴△ABD≌△BCE(AAS),∴AD=BE;【变式探究】∠BED=∠FDC,∠EDB=∠DFC;∵∠B=∠FDE=∠C,∴∠EDB+∠BED=∠EDB+∠FDC=∠FDC+∠DFC=180°﹣∠EDF,∴∠BED=∠FDC,∠EDB=∠DFC;【拓展应用】①∵AB=BC,∴AF+BF=BD+CD,∵AF=2BD,∴2BD+BF=BD+CD,∴BD+BF=CD;②在CD上截取DM=BF,连接EM,作点G关于CE的对称点N,连接CN,AN,∵∠B=45°,∠EDF=45°,∴∠BFD=∠EDM,∵DF=DE,∴△BDF≌△MED(SAS),∴BD=EM,EM=BD,∠B=∠DME=45°,∵CD=BD+BF,∴CM=BD,∴EM=CM,∴∠MCE=∠MEC,∵∠EMD=45°,∴∠ECM=∠MEC=22.5°,∴E点在射线CE上运动,∵G点与N的关于CE对称,∴EG=EN,∴EA+EG=EA+EN≥AN,∴当A、E、N三点共线时,EA+EG的值最小,最小值为AN,∵∠B=45°,AB=BC,∴∠ACB=67.5°,∴∠ACE=45°,由对称性可知,∠ACE=∠ECN,∴∠ACN=90°,∵点G是AC的中点,AC=2,∴CG=1,∴CN=1,在Rt△ANC中,AC=,∴AE+EG的最小值为.【点评】本题是三角形的综合题,熟练掌握三角形全等的判定及性质,轴对称求最短距离的方法是解题的关键.18.(2020秋•南京期中)某班级在探究“将军饮马问题”时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得PA+PB的值最小.解法:如图1,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点即为P,且PA+PB的最小值为A′B.请利用上述模型解决下列问题:(1)几何应用:如图2,△ABC中,∠C=90°,AC=BC=2,E是AB的中点,P是BC边上的一动点,则PA+PE的最小值为;(2)代数应用:求代数式+(0≤x≤3)的最小值;(3)几何拓展:如图3,△ABC中,AC=2,∠A=30°,若在AB、AC上各取一点M、N使CM+MN的值最小,最小值是.【分析】(1)作点E关于直线BC的对称点E′,连接E′A,根据“将军饮马问题”得到PA+PE的最小值为E′A,根据勾股定理求出E′A,得到答案;(2)根据勾股定理构造图形,根据轴对称﹣﹣最短路线问题得到最小值就是求PC+PD的值,根据勾股定理计算即可;(3)作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,根据等边三角形的性质解答.【解答】解:(1)如图2,作点E关于直线BC的对称点E′,连接E′A,则E′A与直线BC的交点即为P,且PA+PE的最小值为E′A,作E′F⊥AC交AC的延长线于F,由题意得,E′F=1,AF=3,∴PA+PE的最小值E′A==,故答案为:;(2)构造图形如图4所示,BD=3,AC=1,AP=x,CA⊥AB于A,DB⊥AB于B,AB=3,则PC+PD=+,代数式+(0≤x≤3)的最小值就是求PC+PD的值,作点C关于AB的对称点C',过C'作C'E⊥DB交DB的延长线于E.则C'E=AB=3,DE=3+1=4,C'D===5,∴所求代数式的最小值是5;(3)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴CM+MN的最小值为C′N=,故答案为:.【点评】本题考查的是轴对称﹣﹣最短路线问题、勾股定理、等边三角形的判定和性质,解这类问题的关键是将实际问题抽象或转化为数学模型,把两条线段的和转化为一条线段.一.选择题(共2小题)1.(2022秋•和平区校级期末)如图,在等边三角形ABC中,BC边上的高AD=8,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5B.6C.7D.8【分析】连接CF交AD于点E,连接BE,此时BE+EF的值最小,求出CF即可.【解答】解:连接CF交AD于点E,连接BE,∵△ABC是等边三角形,AD是高,∴BE=CE,∴BE+EF=CE+EF≥CF,此时BE+EF的值最小,∵F是AB边上的中点,∴CF=AD,∵AD=8,∴CF=8,故选:D.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等边三角形的性质是解题的关键.2.(2022秋•乌鲁木齐期末)如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N 分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.90°B.100°C.110°D.80°【分析】分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,此时△MNP的周长最小,由条件求出∠DPE的度数,由轴对称的性质,等腰三角形的性质得到∠MPD+∠NPE=∠D+∠E=40°,从而求出∠MPN的度数.【解答】解:分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,此时△MNP 的周长最小,∵∠PHM=∠PGN=90°,∠C=40°,∴∠DPE=360°﹣∠PHM﹣∠PGN﹣∠C=360°﹣90°﹣90°﹣40°=140°,∴∠D+∠E=180°﹣∠DPE=180°﹣140°=40°,∵PM=DM,NP=NE,∴∠MPD=∠D,∠NPE=∠E,∴∠MPD+∠NPE=∠D+∠E=40°,∴∠MPN=∠DPE﹣(∠MPD+∠NPE)=140°﹣40°=100°.故选:B.【点评】本题考查轴对称的性质,关键是分别作P关于BC,AC的对称点E,D,连接DE,交AC于M,交BC于N,找到周长最小的△PMN.二.填空题(共5小题)3.(2022秋•灵宝市期末)如图,在△ABC中,AB=5,AC=7.MN为BC边上的垂直平分线,若点D在直线MN上,连接AD,BD,则△ABD周长的最小值为12.【分析】MN与AC的交点为D,AD+BD的值最小,即△ABD的周长最小值为AB+AC的长.【解答】解:MN与AC的交点为D,∵MN是BC边上的垂直平分线,∴AD=CD,∴AD+BD=AD+CD=AC,此时AD+BD的值最小,∴△ABD的周长=AB+AD+BD=AB+AC最小,∵AB=5,AC=7,∴AB+AC=12,∴△ABD的周长最小值为12,故答案为:12.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的的方法,线段垂直平分线的性质是解题的关键.4.(2022秋•白云区校级期末)如图,等腰△ABC的底边长为8,面积是24,腰AB的垂直平分线MN交AB于点M,交AC于点N.点D为BC的中点,点E为线段MN上一动点,设△BDE的周长的最小值为a,则式子[2a3•a5+(3a4)2]÷a6值是1100.【分析】连接AD交MN于点E,连接BE,当A、E、D三点共线时,△BDE的周长最小,求出a=10,再化简代数式求值运算即可.【解答】解:连接AD交MN于点E,连接BE,∵MN是AB的垂直平分线,∴AE=BE,∵△ABC是等腰三角形,D是BC的中点,∴AD⊥BC,∴△BDE的周长=BD+DE+BE=BD+DE+AE≥BD+AD,当A、E、D三点共线时,△BDE的周长最小,∵腰△ABC的底边长为8,面积是24,∴×8×AD=24,∴AD=6,∴BD+AD=×8+6=10,∴△BDE的周长最小值为10,∴a=10,[2a3•a5+(3a4)2]÷a6=(2a8+9a8)÷a6=11a8÷a6=11a2,当a=10时,原式=1100,故答案为:1100.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,准确的化简代数式并代入求值是解题的关键.5.(2022秋•明水县校级期末)如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为6.【分析】连接BE交AD于点P,连接CP,EP+CP的最小值为BE的长,求BE的长即为所求.【解答】解:连接BE交AD于点P,连接CP,∵△ABC是等边三角形,AD垂直平分BC,∴BP=CP,∴EP+CP=BP+CP≥BE,∴EP+CP的最小值为BE的长,∵E为AC边的中点,∴BE⊥AC,∵AD=6,∴BE=6,故答案为:6.【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,等边三角形的性质是解题的关键.6.(2022秋•岳阳县期末)如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为6.【分析】连接CE,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=6,即BF+EF 的最小值为6.【解答】解:连接CE,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,AE=BE,∴AD⊥BC,CE⊥AB,∴AD是BC的垂直平分线(三线合一),∴CF=BF,即BF+EF=CF+EF=CE,∵等边△ABC中,AE=BE,∴CE⊥AB,∴BF+EF=CE时最小,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF的最小值为6,故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.7.(2022秋•滨城区校级期末)如图,在四边形ABCD中,∠BAD=115°,∠B=∠D=90°,在BC,CD 上分别找一个点M,N使△AMN的周长最小,则∠AMN+∠ANM=130°.【分析】要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″′=65°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=115°,∴∠AA′M+∠A″=180°﹣∠BAD=180°﹣100°=65°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×65°=130°故答案为:130°.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三.解答题(共3小题)8.(2022秋•宜春期末)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出PA+PC的最小值为9.【分析】(1)根据垂直平分线的性质可证△ABE为等腰三角形,由角度可证△ACE为30°直角三角形,再由线段之间的关系即可求出BC的长;(2)根据将军饮马原理即可得出PA+PC的最小值为BC的长度.【解答】解:(1)∵AB=AC,∠BAC=120°,∴,∵AB边的垂直平分线交AB于点D,∴BE=AE=3,∴∠BAE=∠B=30°,∴∠CAE=∠BAC﹣∠BAE=120°﹣30°=90°,在Rt△CAE中,∠C=30°,∴CE=2AE=6,∴BC=BE+CE=3+6=9;(2)如图,取点A关于直线DE的对称点,即点B,∵PA=PB,∴PA+PC=PB+PC,根据两点之间线段最短,则BC即为PA+PC的最小值,最小值为9.【点评】本题考查了图形的轴对称,相关知识点有:垂直平分线的性质、将军饮马等,轴对称性质的充分利用是解题关键.9.(2022秋•新华区校级期末)如图所示.(1)作出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上确定一点P,使得PA+PC最小;(3)求出△ABC的面积.【分析】(1)根据轴对称的性质作图即可.(2)过x轴作点A的对称点A',连接A'C,与x轴交于点P,此时点P即为所求.(3)利用割补法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,点P即为所求.=3×3﹣﹣﹣=.(3)S△ABC∴△ABC的面积为.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题,熟练掌握轴对称的性质是解答本题的关键.10.(2022秋•金牛区校级期末)已知A(1,4),B(2,0),C(5,2).(1)在如图所示的平面直角坐标系中描出点A,B,C,并画出△ABC;(2)画出△ABC关于y轴对称的△A'B'C';(3)点P在x轴上,并且使得AP+PC的值最小,请标出点P位置并写出最小值.【分析】(1)根据点的坐标确定点的位置,作图即可.(2)根据轴对称的性质作图即可.(3)作点A关于x轴的对称点A'',连接A''C,交x轴于点P,连接AP,此时AP+PC的值最小,利用勾股定理求出A''C的值即可得出答案.【解答】解:(1)如图,△ABC即为所求.(2)如图,△A'B'C'即为所求.(3)如图,点P即为所求.由勾股定理得A''C==.∴AP+PC的最小值为.【点评】本题考查作图﹣轴对称变换、轴对称﹣最短路线问题、勾股定理,熟练掌握轴对称的性质是解答本题的关键.。

初中数学模型【讲义】将军饮马

初中数学模型【讲义】将军饮马

“将军饮马”模型一、模型背景“将军饮马”模型:动点在直线上运动,所引出的线段和、差的最值问题往往通过轴对称进行等量代换,转化成两点之间的距离或点到直线的距离,或利用三角形两边之和大于第三边,两边之差小于第三边求得最值核心知识点:两点之间线段最短、垂线段最短二、模型内容(一)线段和最值1. 两定一动型(异侧)点A、B为平面内两个定点,点P为直线l上一动点,求P A+PB的最小值理论依据:2. 两定一动型(同侧)点A、B为平面内两个定点,点P为直线l上一动点,求P A+PB的最小值理论依据:3. 一定两动型点A为平面内定点,点P、Q分别是直线l1、l2上的动点,求AP+PQ+AQ的最小值理论依据:4. 一定两动型(变式)点A为平面内定点,点P、Q分别是直线l1、l2上的动点,求PQ+AQ的最小值理论依据:5. 两定两动型点A、B为平面内两个定点,点P、Q分别是直线l1、l2上的动点,求四边形APQB周长的最小值理论依据:(二)线段差最值6. 两定一动型(同侧)−的最大值点A、B为平面内两个定点,点P为直线l上一动点,求PA PB理论依据:7. 两定一动型(异侧)−的最大值点A、B为平面内两个定点,点P为直线l上一动点,求PA PB理论依据:三、模型应用1.如图,在ABC ∆中,3AB =,4AC =,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP BP +的最小值是______.2.如图,正方形ABCD 的面积为64,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为______.3.如图所示,已知121(,)(2,)2A yB y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当||AP BP −的值最大时,连接OA ,AOP ∆的面积是_______.4.如图,C 为马,D 为帐篷,牧马人牵马,先到草地边牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线.5.(1)如图1,在等边ABCBC=.点P、D、E分别为边BC、AB、AC上(均不与端点重∆中,6合)的动点.①当点P为BC的中点时,在图1中,作出PDE∆的周长的最∆的周长最小,并直接写出PDE∆,使PDE小值;②如图2,当2∆的周长的最小值.PB=时,求PDE(2)如图3,在等腰ABC=,4BC=,点P、Q、R分别为边BC、AB、∠=︒,AB ACBAC∆中.30∆周长的最小值并简要说明理由.AC上(均不与端点重合)的动点,求PQR。

(完整版)“将军饮马”模型详解与拓展

(完整版)“将军饮马”模型详解与拓展

“将军饮马”模型详解与拓展平面几何中涉及最值问题的相关定理或公理有:① 线段公理:两点之间,线段最短. 并由此得到三角形三边关系;② 垂线段的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短. 在一些“线段和最值”的问题中,通过翻折运动,把一些线段进行转化即可应用①、② 的基本图形,并求得最值,这类问题一般被称之为“将军饮马"问题.问题提出:唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?模型提炼:模型【1】一定直线、异侧两定点直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小解答:根据“两点之间,线段距离最短”,所以联结AB交直线l于点P,点P即为所求点模型【2】一定直线、同侧两定点直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小解答:第一步:画点A关于直线l的对称点A’(根据“翻折运动”的相关性质,点A、A’到对称轴上任意点距离相等,如图所示,AP=A'P,即把一定直线同侧两定点问题转化为一定直线异侧两定点问题)第二步:联结A'B交直线l于点Q,根据“两点之间,线段距离最短”,此时“A’Q+QB”最短即“AQ+QB”最短模型【3】一定直线、一定点一动点已知直线l和定点A,在直线k上找一点B(点A、B在直线l同侧),在直线l上找点P,使得AP+PB最小解答:第一步:画点A关于直线l的对称点A’第二步:过点A'做A'B⊥k于点B且交直线l于点P,根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短",可知A’P+PB最小即AP+PB最小模型【4】一定点、两定直线点P是∠MON内的一点,分别在OM,ON上作点A,B,使△PAB的周长最小解答:策略:两次翻折第一步:分别画点P关于直线OM、ON的对称点P1、P2第二步:联结P1P2,交OM、ON于点A、点B(根据“翻折运动”的相关性质,AP=AP1,BP=BP2;根据“两点之间,线段距离最短”可知此时AP1+BP2+AB最短即△ABP周长最短)拓展如果两定点、两定直线呢?“如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形PAQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。

图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。

最值模型之将军饮马模型(解析版)

最值模型之将军饮马模型(解析版)

最值模型之将军饮马模型模型一两定一动型(线段和差的最值问题)【模型解读】在一条直线m上,求一点P,使PA与PB的和最小;题目在一条直线m上,求一点P,使PA+PB最小;分类(1)点A、B在直线m两侧(2)点A、B在直线同侧原图辅助线作法连接AB交直线m于点P,此点P即为所求,PA+PB最小值为AB 作A关于直线m的对称点A',连接A'B交直线m于点P,此点P即为所求,PA+PB最小值为A'B原理三角形两边之和大于第三边【模型解读】在一条直线m上,求一点P,使PA与PB的差最大;题目在一条直线m上,求一点P,使|PA-PB|最大;分类(1)点A、B在直线m同侧:(2)点A、B在直线m异侧原图辅助线作法延长AB交直线m于点P,此点P即为所求,|PA-PB|最大值为AB 过点B作关于直线m的对称点B',连接AB'交点直线m于P,此点P即为所求,|PA-PB|最大值为AB'原理三角形两边之差小于第三边。

例题解析1如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为.【答案】17【分析】连接AE交BD于一点F,连接CF,根据正方形的对称性得到此时CF+EF=AE最小,利用勾股定理求出AE即可.【详解】解:如图,连接AE交BD于一点F,连接CF,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AF=CF,∴CF+EF=AF+EF=AE,此时CF+EF最小,∵正方形ABCD的边长为4,∴AD=4,∠ABC=90°,∵点E在AB上,且BE=1,∴AE=AB2+BE2=42+12=17,即CF+EF的最小值为17故答案为:17.2如图,在菱形ABCD中,∠ABC=120°,对角线AC、BD交于点O,BD=8,点E为OD的中点,点F为AB上一点,且AF=3BF,点P为AC上一动点,连接PE、PF,则PF-PE的最大值为.【答案】2【分析】作E的对称点E',连接FE'并延长交AC于点P',根据三角形三边关系可得到PF-PE=PF-PE≤E F,最后根据等边三角形的性质及菱形的性质即可解答.【详解】解:作E的对称点E ,连接FE'并延长交AC于点P ,∴PE=PE ,∴PF-PE≤E F,=PF-PE当F、E 、P 在同一条直线上时,PF-PE有最大值E F,∵在菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB,∴△ABD是等边三角形,∴∠DAB=∠DBA=∠ADB=60°,,AD=AB=BD,∵BD=8,∴AB=8,∵AF=3BF,∴BF=2,∵点E为OD的中点,∴E 为OB的中点,∴BE =1BD=2,4∴BF=BE ,∴△BE F是等边三角形,∴E F=BF=2,故答案为2;变式训练1如图,菱形ABCD,点A、B、C、D均在坐标轴上,∠ABC=120°,点A-3,0,点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3A.3B.5C.22D.32【答案】A【分析】直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.【详解】如图:连接BE,∵菱形ABCD,∴B、D关于直线AC对称,,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.∵菱形ABCD,∠ABC=120°,点A-3,0,∴∠CDB=60°,∠DAO=30°,OA=3,∴OD=3,AD=DC=CB=23∴△CDB是等边三角形∴BD=23∵点E是CD的中点,∴DE=1CD=3,且BE⊥CD,∴BE=BD2-DE2=3故选:A.22如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是()A.42B.25+2C.213D.210【答案】D【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A ,再连接A O,运用两点之间线段最短得到A O为所求最小值,再运用勾股定理求线段A O的长度即可.【详解】解:如图所示,作点A关于直线BC的对称点A ,连接A O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A关于BC对称,∴AE=A E,AE+OE=A E+OE,当且仅当A ,O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A E+OE=A O,∵正方形ABCD,点O为对角线的交点,AB=2,∴OF=FB=12∵对称,∴AB=BA =4,∴FA =FB+BA =2+4=6,在Rt△OFA 中,OA =FO2+FA 2=210,故选:D.3如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+ MF的最小值为()A.1B.2C.3D.2【答案】C【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.【详解】解:连接AF,则AF的长就是AM+FM的最小值.∵四边形ABCD 是菱形,∴AB =BC ,又∵∠ABC =60°,∴△ABC 是等边三角形,∵CF =BF ∴F 是BC 的中点,∴AF ⊥BC .则AF =AB •sin60°=2×32=3.即MA +MF 的最小值是3.故选:C4如图,已知△ABC 为等腰直角三角形,AC =BC =6,∠BCD =15°,P 为直线CD 上的动点,则|PA -PB |的最大值为.【答案】6【分析】作A 关于CD 的对称点A ′,连接A ′B 交CD 于P ,则点P 就是使|PA -PB |的值最大的点,|PA -PB |=A ′B ,连接A ′C ,根据等腰直角三角形的性质得到∠CAB =∠ABC =45°,∠ACB =90°,根据角的和差关系得到∠ACD =75°,根据轴对称的性质得到A ′C =AC =BC ,∠CA ′A =∠CAA ′=15°,推出△A ′BC 是等边三角形,根据等边三角形的性质即可得到结论.【详解】如图,作A 关于CD 的对称点A ′,连接A ′B 并延长交CD 延长线于点P ,则点P 就是使PA -PB 的值最大的点,PA -PB =A ′B ,连接A ′C ,∵△ABC 为等腰直角三角形,AC =BC =6,∴∠CAB =∠ABC =45°,∠ACB =90°,∵∠BCD =15°,∴∠ACD =75°,∵点A 与A ′关于CD 对称,∴CD ⊥AA ′,AC =A ′C ,∠CA ′A =∠CAA ′,∴∠CAA ′=15°,∵AC =BC ,∴A ′C =BC ,∠CA ′A =∠CAA ′=15°,∴∠ACA ′=150°,∵∠ACB =90°,∴∠A ′CB =60°,∴△A ′BC 是等边三角形,∴A ′B =BC =6.故答案为:65如图,MN 是⊙O 的直径,MN =6,点A 在⊙O 上,∠AMN =30°,B 为AN的中点,P 是直径MN 上一动点,则PA +PB 的最小值是.【答案】32【分析】首先利用在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点P 的位置,然后根据弧的度数发现一个等腰直角三角形计算.【详解】作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,连接OB ,则P 点就是所求作的点.此时PA +PB 最小,且等于AC 的长.连接OA ,OC ,∵∠AMN =30°,∴∠AON =60°,∵B 为AN的中点,∴AB =BN∴∠AOB =∠BON =30°,∵MN ⊥BC ,∴CN=BN,∴∠CON =∠NOB =30°,则∠AOC =90°,又OA =OC =3,则AC =32.故答案为:32.6如图,在矩形ABCD 中,AB =3,BC =5.动点P 满足S △PBC =13S 矩形ABCD.则点P 到B ,C 两点距离之和PB +PC 的最小值为。

人教版八年级数学上册13.4 课题学习 最短路径问题--将军饮马课件

人教版八年级数学上册13.4 课题学习 最短路径问题--将军饮马课件
B A
l
我们是怎样解决问题的?说说思考问题的思路.
反思与总结
新知一 两点一线型
实际问题1 图形表示,数学化 几何问题2
轴对称,转化问题 求两点之间线 段最短问题.
实际意义解释
实际问题1的解
几何问题2的解
轴对称,还原问题
B
B
A
A
DC
l
B′
拓展延伸
新知二 两线一点型
如图,将军从A地出发,先到草地边某处巡逻,再到河边 饮马,然后回到A地,应该怎样走才能使路程最短?
A
拓展延伸
这是个实际问题,你能用自己理解的语言描述一下吗?
如图所示,将A地抽象为一个点,将草地边和河边抽象
为两条直线.
l2
A
l1
你能用数学语言说明这个问题所表达的意思吗?
拓展延伸
如图,在直线l1和直线l2上分别找到点M,N,使得 △AMN的周长最小.
l2
A l1
拓展延伸
如图,在直线l1和直线l2上分别找到点M,N,使得
分析问题
新知一 两点一线型 问题2 如图,A,ห้องสมุดไป่ตู้是直线l同侧的两点,在直线l上作一
点C,使AC+BC最小.
A
问题难在哪里?怎么办?
l
C
如点A,B在直线两侧. B
依据:“两点之间,线段最短”
分析问题
问题2 如图,A,B是直线l同侧的两点,在直线l上作一 点C,使AC+BC最小.
能否把点B变到直线l的另一侧?要求?方法? 对于直线上任一点C有BC=B′C. 作点B关于直线l的对称点B′.
△AMN的周长最小.
作法:过点A分别作关于直线l1,
A2 N

人教版八年级上册 13.4 将军饮马模型浅解 讲义

人教版八年级上册 13.4 将军饮马模型浅解 讲义

将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B 地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。

A’B即为最短距离。

理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。

所以 PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?第 1 页第 2 页模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点B,在直线L 上找一点P ,使得AP+PB 值最小。

做法:做A 点关于l 的对称点A`点,再过A`点做AB 垂直k 于B 点,交l 于P点,此时AP+PB 值最小。

理由:对称后,AP=A`P,A`点到直线k 的最短距离为垂线段A`B ,故AP+PB 的最小值为A`B 。

将军饮马问题(解析版)

将军饮马问题(解析版)

将军饮马问题模型的概述:唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题:将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营。

问如何行走才能使总的路程最短。

模型一(两点在河的异侧):将军在观望烽火之后从山脚下的A点出发,走到河边让战马饮水后再到B 点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,连接AB,与线段L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

模型二(两点在河的同侧):将军在观望烽火之后从山脚下的A点出发,需先走到河边让战马饮水后再到B点宿营,将在何处渡河使行走距离最短并求最短距离。

方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。

模型三:如图,将军同部队行驶至P处,准备在此驻扎,但有哨兵发现前方为两河AB、BC的交汇处,为防止敌军在对岸埋伏需派侦察兵到河边观察,再返回P处向将军汇报情况,问侦察兵在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得∆PMN周长最小。

方法:如右图,分别作点P关于直线AB、BC的对称点P'、P'',连接P'P'',与两直线的交点即为所求点M、N,最短距离为线段P'P''的长。

模型四如图,深夜为防止敌军在对岸埋伏,将军又派一队侦察兵到河边观察,并叮嘱观察之后先去存粮位置点Q处查看再返回P处向将军汇报情况,问侦察在AB、BC何处侦查才能最快完成任务并求最短距离。

数学描述:如图在直线AB、BC上分别找点M、N,使得四边形PQNM周长最小。

方法:如右图,分别作点P、点Q关于直线AB、BC的对称点P'、Q',连接P'Q',与两直线的交点即为所求点M、N,最短距离为线段(PQ+P'Q')的长。

[初中++数学]第十三章+单元专题复习+最短路线之将军饮马+课件+人教版八年级数学上册+

[初中++数学]第十三章+单元专题复习+最短路线之将军饮马+课件+人教版八年级数学上册+

3
例题—变式二
1
如图,在∠MON内有两点
P,Q,在OM,ON上分别找
两点A,B,使四边形PABQ的
周长最小。
A
C四边形PABQ=AP+PQ+QB+AB
=AP1+PQ+Q1B+AB
O
=P1Q1+PQ
A
M
P
Q
B
B
1
如图,点A,B即可使四边形PABQ的周长最小。
N
3
例题—拓展
A,B与直线L的位置关系
米,20米。DE=120米,求PA+PB最小值。
(2)解 由题知: E=BE=20米;
EF=AD=30米;AF=DE=120米
所以,在Rt AF中,由勾股
2
2
2
定理知: + =
2
所以, =120 2 +50 2 =1302
所以, A =130米
所以,PA+PB的最小值为130米。
A
F
B 30米
P
L
E
D
P 20米
1
120米
2
精例讲解—例题
如图,在边长为8的正方形ABCD中,E是AB边上的一
点,且AE=6,点Q为对角线AC上的动点。则BQ+QE的最
10
小值为——。

找对称

关 两点之间,线
键 段最短。
BQ+QE最小值=DQ+QE
=DE= +
= +
=
D
Q
A
E
C
B
3
例题—变式一

人教版数学八年级上册13.4课题学习最短路径问题将军饮马说课稿

人教版数学八年级上册13.4课题学习最短路径问题将军饮马说课稿
(三)互动方式
在教学过程中,我将设计多样化的师生互动和生生互动环节,以促进学生的参与和合作。在师生互动环节,我将通过提问、回答和讨论等方式,与学生进行实时互动,了解学生的学习情况,并及时给予引导和反馈。在生生互动环节,我将组织小组讨论、合作探究等活动,让学生相互交流、分享想法和解决问题,培养他们的团队合作能力和沟通能力。此外,我还将鼓励学生积极参与课堂讨论,提出问题和建议,激发他们的学习兴趣和主动性。通过这些互动方式,我将创造积极的学习氛围,促进学生的参与和合作,提高他们的学习效果。
(二)学习障碍
在学习本节课之前,学生需要具备平面几何的基本知识,如点、线、面的基本概念,图形的性质和运算能力。他们还需要具备一定的问题解决能力和逻辑思维能力,能够理解和运用几何图形的性质来解决问题。然而,部分学生可能对将军饮马问题的背景和意义不够了解,可能会对其解决方法感到困惑。此外,对于一些复杂的最短路径问题,学生可能存在理解上的困难和解决上的挑战。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解。首先,我会介绍将军饮马问题的定义和特点,让学生明确问题的实质。接着,我会通过图形的直观演示和几何绘图软件的应用,向学生展示将军饮马问题的解决方法。我会引导学生观察图形的变化,解释和证明解决方法的合理性。在这个过程中,我会鼓励学生积极参与,提出问题和想法,并与同学们进行交流和讨论。通过这种方式,学生能够深入理解知识点,并培养他们的逻辑思维能力和解决问题的能力。
(五)作业布置
课后作业的布置目的是帮助学生巩固所学知识,并培养他们的自主学习能力。我计划布置一道将军饮马问题的综合练习题,要求学生在课后解决并提交。此外,我还会布置一些相关的阅读材料,让学生进一步了解将军饮马问题的背景和应用。通过这些作业,学生能够在课后继续巩固和运用所学知识,提高他们的学习效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将军饮马问题
将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。

而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

将军饮马故事
“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”
原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B 地,问怎样选择饮水的地点,才能使所走的路程最短?
•A
•B
模型一:一条定直线,同侧两定点
在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点。

A’B即为最短距离。

理由:A’为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A’P。

所以 PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M在什么地方时总路线最短?最短线路的长度是多少千米?
(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?
模型二:一条定直线,一定点,一动点
如图,已知直线L 和定点A ,在直线K 上找一点B
,在直线L 上找一点P ,使得AP+PB 值最小。

做法:做A 点关于l 的对称点A`点,
再过A`点做AB 垂直k 于B 点,交l 于P
点,此时AP+PB 值最小。

理由:对称后,AP=A`P,A`点到直线k 的
最短距离为垂线段A`B ,故AP+PB 的最小值为
A`B 。

模型三:一定点,两条定直线
如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。

一般做法:作点 P 关于 OA 和 OB 的对称点 P1、P2。

连接 P1P2。

P1P2 与 OA 、OB 的交点即为所求点。

P1P2 即为最短周长。

理由:对称过后,PM=P1M ,PN=P2N 。

所以
PM+PN+MN=P1M+P2N+MN 。

所以问题就化成了求 P1
到 P2 的最短距离,直接相连就可以了。

• A • B • B • A • A ’

B ’ • A ’ • B ’
L
L
模型四:两定点,两条定直线
如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上做点A ,B ,是四边形PAQB 的周长最小。

一般做法:分别做P,Q 点关于OM ,ON 的对
称点P`,Q`,连接P`Q`分别交OM ,ON 于A,B 两点,
此时四边形PAQB 的周长最小,最小周长为
PQ+P`Q`。

理由:做完对称后,由对称性可知,PA=P`A ,
QB=Q`B ,P`,A ,B ,Q`四点共线时,四边形PAQB 的周长等于P`A+AB+Q`B+PQ=PQ+P`Q`。

练习题:
1.如图,点P 是∠AOB 内一点,点M ,N 分别在OA ,OB 上运动,若∠AOB=30度,OP=4,则三角形周长的最小值为多少。

2..如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值是多少?
A
B
C
D M N
3.如图所示,在边长为6的菱形ABCD 中,∠DAB=600,E 为AB 的中点,F 是AC
上一动点,则EF+BF 的最小值是多少?
4.如图, 中,BC =4, ,P 为BC 上一点,过点P 作PD//AB ,交AC 于D 。

连结AP ,问点P 在BC 上何处时, ⊿APD 面积最大?
A B C D E F • • ABC ∆
︒=∠=6032ACB AC , A
D C。

相关文档
最新文档