2006年江西高考理科数学解析版
2006年普通高等学校招生全国统一考试数学试卷江西卷理
2006年普通高等学校招生全国统一考试(江西卷)理科数学第一卷参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk k n n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( )A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z+3i )z =3i ,则z =( )A.32B. 34C. 32D.343、若a >0,b >0,则不等式-b <1x <a 等价于( )A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙=-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( )A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( )A .0 B. -2 C.-52 D.-37、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.2018、在(x)2006 的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( )A. 6B.7C.8D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( )A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定C12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图像表示,则正确的应该是( )第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。
2006年普通高等学校招生全国统一考试(江西卷)理科数学试题及解答(WORD版)
2006年普通高等学校招生全国统一考试(江西卷)数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}230,31,(1)x M x N y y x x R x ⎧⎫=≥==+∈⎨⎬-⎩⎭||,则M N ⋂等于 A.∅ B.{}1x x ≥| C.{}1x x |> D.{}10x x x ≥或|<2.已知复数z 满足3)3i z i =,则z 等于A.322i - B.344- C.322i + D.344+ 3.若0,0a b >>,则不等式1b a x-<<等价于 A.1100x x b a -或<<<< B.11x a b -<<C.11x x a b -或<>D.11x x b a-或<>4.设O 为坐标原点,F 为抛物线24y x =的焦点,A 为抛物线上一点,若4OA AF ⋅=-,则点A 的坐标为A.(2,±B.(1,2)±C.(1,2)D.5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有 A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切1(0,2x ∈]成立,则a 的最小值为 A.0 B.2- C.52-D.3- 7.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+ ,且A 、B 、C 三点共线(该直线不过点O ),则200S 等于A.100B.101C.200D.2018.在2006(x -的二项展开式中,含x 的奇次幂的项之和为S ,当x =,S 等于A.30042B 30042- C.30092D.30092-9.P 为又曲线221916x y -=的右支上一点,M 、N 分别是圆222(5)4(5)1x y x y ++=-+=和上的点,则PM PN -的最大值为A.6B.7C.8D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a ,甲、乙分在同一组的概率为P ,则a 、P 的值分别为A .5105,21a P ==B.4105,21a P ==C.5210,21a P ==D.4210,21a P ==11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F .如果截面将四面体分为体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别为1S 、2S ,则必有A.12S S <B.12S S >C.12S S =D.1S 、2S 的大小关系不能确定12.某地一年内的气温()Q t (单位:℃)与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10℃,令()C t 表示时间段[]0,t 的平均气温,()C t 与t 之间的函数关系用下列图表示,则正确的应该是第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则lim n n S →∞= ___________. 14.设3()log (6)f x x =+的反函数为1()fx -,若11()6()627f m f n --⎡⎤⎡⎤++=⎣⎦⎣⎦,则()f m n +=_____________.15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,190,6,ACB AC BC CC P ∠=︒===是1BC 上一动点,则1CP PA +的最小值为__________.16.已知圆22:(cos )(sin )1M x y θθ++-=,直线:l y kx =,下面四个命题 (A)对任意实数k 和θ,直线l 和圆M 相切; (B)对任意实数k 和θ,直线l 和圆M 有公共点;(C)对任意实数θ,必存在实数k ,使得直线l 和圆M 相切; (D)对任意实数k ,必存在实数θ,使得直线l 和圆M 相切.其中真命题的代号是_______________(写出所有真命题的代号).三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1)求a 、b 的值及函数()f x 的单调区间;(2)若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、乙两人摸球后获得的奖金总额,求(1)ξ的分布列; (2)ξ的数学期望.19.(本小题满分12分)如图,已知△ABC 是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心,G .设2()33MGA ππαα∠=≤≤. (1)试将△AGM 、△AGN 的面积(分别记为1S 与2S )表示为α的函数; (2)求221211y S S =+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A BCD -中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且1AD BD CD ===.另一个侧面ABC 是正三角形.(1)求证:AD BC ⊥(2)求二面角B AC D --的大小;(3)在线段AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定点E 的位置;若不存在,说明理由.21.(本小题满分12分)如图,椭圆2222:1(0)x y Q a b a b+=>>的右焦点为(,0)F c ,过点F 的一动直线m 绕点F 转动,并且交椭圆于A 、B 两点,P 为线段AB 的中点.(1)求点P 的轨迹H 的方程;(2)若在Q 的方程中,令221cos sin ,sin (0).2a b πθθθθ=++=≤<确定θ的值,使原点距椭圆Q 的右准线l 最远.此时设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?22.(本小题满分14分) 已知数列{}n a 满足:*11133,(2,)221n n n na a a n n N a n --==≥∈+-且. (1)求数列{}n a 的通项公式;(2)证明:对一切正整数n ,不等式122!n a a a n ⋅⋅⋅⋅<恒成立.2006年普通高等学校招生全国统一考试(江西卷)数学(理工农医类)参考答案一. 选择题1.C ;2.D ;3.D ;4.B ;5.C ;6.C ;7.A ;8.B ;9.D ;10.A ;11.C ;12.A 二.填空题 13.12;14.2;15.16.B 、D 三.解答题 17.解:322(1)(),()32,f x x ax bx c f x x ax b '=+++=++22124()0,(1)320,3931,2,2()32(32)(1),():f a b f a b a b f x x x x x f x ''-=-+==++==-=-'=--=+-由得函数的单调区间如下表所以函数()f x 的递增区间为(,)3-∞-与(1,)+∞; 递减区间为2(,1)3-. [][]32221222(2)()21,2,,(),2327(2)2,(2)2.()(1,2),(2)2,1 2.f x x x x c x x f x c f c f c f x c x c f c c c =--+∈-=-=+=+=+∈-=+-当时为极大值而则为最大值要使恒成立只须解得或 <> <>18.解:(1)ξ的所有可能的取值为0,10,20,50,60.3222239729(0)();10100019918243(10)();10101010100011818(20);10101000919(50);1010100011(60);101000P P P P P ξξξξξ=====⨯+⨯===⨯===⨯==== 7292431891(2)010205060 3.310001000100010001000E ξ=⨯+⨯+⨯+⨯+⨯=(元) 19.解:(1)因为G 为边长为1的正三角形ABC 的中心,所以2.36AG MAG π==∠= 由正弦定理,sinsin()66GM GA πππα=--126sin()61sin sin (212sin()6,sin sin()666sin()61sin sin()(212sin ()6GM S GM GA GN GA GN S GN GA αααπαππαααπαπαα=+=⋅⋅==+=-=-=⋅⋅-==-得则或又得则或2222221211144(2)sin ()sin ()72(3cot ).sin 66y S S ππαααα⎡⎤=+=++-=+⎢⎥⎣⎦ 因为233ππα≤≤,所以当233ππαα==或时,y 的最大值min 240y =; 当2πα=时,y 的最小值min 216y =.20.解法一:(1)方法一:作AH ⊥面BCD 于H ,连.DH,AB BD HB BD ⊥⇒⊥3,1AD BD ==AB BC AC BD DC ∴===∴⊥又BD CD =,则BHCD 是正方形. 则..DH BC AD BC ⊥∴⊥方法二:取BC 的中点O ,连AO 、DO , 则有,.AO BC DO BC ⊥⊥,.BC AOD BC AD ∴⊥∴⊥面(2)作BM AC ⊥于M ,作MN AC ⊥交AD 于N , 则BMN ∠就是二面角B AC D --的平面角.AB AC BC ===M 是AC 的中点,且MN ∥CD则111,222BM MN CD BN AD =====由余弦定理得222cos 2BM MN BN BMN BMN BM MN +-∠==∴∠=⋅ (3)设E 为所求的点,作EF CH ⊥于F ,连FD .则EF ∥AH∴,EF BCD EDF ⊥∠面就是ED 与面BCD 所成的角,则30EDF ∠=︒.设EF x=,易得1,,AH HC CF x FD ====则tan ,3EF EDF FD ∴∠===解得 1.x CE ===则 故线段AC 上存在E 点,且1CE =时,ED 与面BCD 成30︒角.解法二:(1)作AH ⊥面BCD 于H ,连BH 、CH 、DH ,则四边形BHCD 是正方形,且1AH =, 以D 为原点,以DB 为x 轴,DC 为y 轴建立空间直角坐标系如图, 则(1,0,0),(0,1,0),(1,1,1).B C A(1,1,0),(1,1,1),0,.BC DA BC DA BC AD =-=∴⋅=⊥则(2)设平面ABC 的法向量为1(,,),nx y z =则由1n BC ⊥知:10n BC x y ⋅=-+=; 同理由1n CA ⊥知:10.n CA x z ⋅=+= 可取1(1,1,1).n =-同理,可求得平面ACD 的一个法向量为2(1,0,1).n =- 由图可以看出,三面角B AC D --的大小应等于<12,n n > 则cos <12,n n>12123n n n n ⋅===即所求二面角的大小是arccos 3. (3)设(,,)E x y z 是线段AC 上一点,则0,1,x z y ==> 平面BCD 的一个法向量为(0,0,1),(,1,),n DE x x == 要使ED 与面BCD 成30︒角,由图可知DE 与n 的夹角为60︒, 所以1cos ,cos 60.21DE n DE nDE n⋅===︒=+<>则2x =解得,2x =,则 1.CE == 故线段AC 上存在E 点,且1CE =,时ED 与面BCD 成30︒角. 21.解:如图(1)设椭圆2222:1x y Q a b+=上的点1,1()A x y 、2,2()B x y ,又设P 点坐标为(,)P x y ,则2222221122222222b x a y a b b x a y a b⎧+=⎪⎨+=⎪⎩………………①1︒当AB 不垂直x 轴时,12,x x ≠由①—②得………………②22121221221222222()2()20,,0,(*)b x x x a y y y y y b x y x x a y xc b x a y b cx -+-=-∴=-=--∴+-=2︒当AB 垂直于x 轴时,点P 即为点F ,满足方程(*).故所求点P 的轨迹H 的方程为:222220b x a y b cx +-=.(2)因为,椭圆Q 右准线l 方程是2a x c =,原点距椭圆Q 的右准线l 的距离为2a c,222222,1cos sin ,sin (0).22sin().24c a b a b a c πθθθθθπ=-=++=≤==+由于则<2πθ=当时,上式达到最大值,所以当2πθ=时,原点距椭圆Q 的右准线l 最远.此时222,1,1,(2,0),1a b c D DF ====.设椭圆22:121x y Q +=上的点1,1()A x y 、2,2()B x y ,△ABD 的面积1212111.222S y y y y =+=- 设直线m 的方程为1x ky =+,代入22121x y +=中,得22(2)210.k y ky ++-=由韦达定理得12122221,,22k y y y y k k+=-=-++()()222212121222814()()4,2k S y y y y y y k+=-=+-=+令211t k =+≥,得28424tS t≤=,当1,0t k ==取等号.因此,当直线m 绕点F 转动到垂直x 轴位置时,三角形ABD 的面积最大.22.解:(1)将条件变为:1111(1)3n n n n a a ---=-,因此,1n n a ⎧⎫-⎨⎬⎩⎭为一个等比数列. 其首项为1113n a -=,公比为13,从而11,3n n n a -= 据此得3(1)31nn nn a n ⋅=≥-. (2)证:据①得,122!.111(1)(1)(1)333n n n a a a =---为证122!,n a a a n ⋅<只要证*n N ∈时有21111(1)(1)(1)3332n--->.…………② 显然,左端每个因式皆为正数,先证明,对每个*,n N ∈22111111(1)(1)(1)1(),333333k k ---≥-+++…………③ 用数学、归纳法证明③式: 11n ︒=时,显然③式成立, 2︒设n k =时,③式成立即22111111(1)(1)(1)1(),333333k k---≥-+++则当1n k =+时,212121122111111111(1)(1)(1)(1)1()(1)33333333111111111()()3333333311111().3333k k k k k k k k k k +++++----≥-+++-=-+++-++++≥-++++[]即当1n k =+时,③式也成立. 故对一切*n N ∈,③式都成立. 利用③得,22111111(1)(1)(1)1(),333333n n---≥-+++11[1]331113n -=--()1111111[1].232232n n =--=+()()> 故②式成立,从而结论得证.。
2006年高考江西卷理科数学试题及参考答案
2006年高考江西卷理科数学试题及参考答案第一篇:2006年高考江西卷理科数学试题及参考答案Unit 8 B卷I.词组英汉互译(10分)1.干家务________2.洗餐具______3.整理床铺__________4.打扫客厅__________5.一个重要会议__________6.Feed dogs and cats_________7.No walking dogs in the park.__________8.Work on English teaching_________9.Stay out late_____________10.have an English test tomorrow __________ II.选择填空(15分)()1 Could you please ________ your classroom every day?A.to cleanB.cleaningC.cleanD.cleaned()2.Could you please ________--to music in class?A.No listenB.not listenC.don't listenD.No listening()3.__________ times do you eat junk food a week?A.How oftenB.how manyC.how longD.how much()4.I often help grandpa _______ the birds and animals.A.Feeding B.feeds C.to feed D.fed()5.So _____ homework really make the students ______ tired.much: feel B.many feel C.much feeling D.many feels ()6-Dave!Your mom is too busy!You shouldn't throw your waste things everywhere!---Oh.I am sorry.I am going to_____________ and put them in the waste box.A.tale out the trash B.make the desk cleanC.fold my clothesD.do some shopping()7.-Could you please go skating with me this afternoon?--Oh.I'd love to.But my sister is ill in bed and I have to _________her.A.take care B.take a walk with C.take care of D.takeout of()8.________ some money from himbut I will _________my bike to him in a few days.A.borrow, return B.lend, borrow C.borrow, lend D.lend, keep()9.Don't forget _________ when you leave.A.putting it on B.to put it on C.put on it D.to put on it()10-Could I please use your pen?---______________.A.with pleasure B.No, y ou can't C.You shouldn't say that D.You're polite ()11(2005年浙江丽水中考题)--Can you stay here for lunch?-Sorry, _________, I have to see my parents.A.can't B.shouldn't C.I mustn't D.I won't()12.(2005年山东泰安市中考题)--Can I get you a cup of tea?--__________.A.It's very nice of you B.With pleasure C.You can, please D.That's all right()13.(2005年广州市中考题)A neighbour helped to keep our dog.It _________while we were on holiday.A.was taken care B.took care of C.is taken care of D.was taken care of()14.(2005年安徽省中考题)--Excuse me, could you help me carry the heavy box?---____.A.Yes, I could B.It doesn't matter C.With pleasure D.Don't mention it()15.(2005年福州市中考题)--I like the party so much, but I _______go home.It's too late.--What a pity!A.mustn'tB.have toC.mayD.can'tIII.以所给词的正确形式填空(10分)1.Good food and exercise help me study__________(well)And practice __________(speak)English is good for my study.2.How often does Katrina___________(do)homework ?-Very often.She ialways has a lot of homework ___________(do)3.Who is the __________(good)English student?4.How about ___________(go)to the sports camp next week?5.What did you_________(do)an hour ago? I ___________(feed)my dogs.6.They __________(enjoy)________(them)at the English party yesterday.7.Listen.Can you hear the birds __________(sing)in the tree?8.It's good for your health__________(eat)a lot of fruit and vegetables.VI.翻译下列句子(15分)1.我不喜欢倒垃圾。
高考江西卷理科数学试题及参考答案
D.12
1
2
a2 0 恒成立,
4
A. C41C82C132C146 10 C40
B. C42C81C132C146 10 C40
解:依题意,各层次数量之比为 4321,即红球抽 4 个,蓝球抽 3 个,白球抽 2 个,
黄球抽一个,故选 A
9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下
1
,即-1≤a≤0,则应有
的二项展开式中,若常数项为
B. 6
2 x
r
2rCrn x 2
n-3r
2
f(- a
60
C. 9
2
a
的最小值为( C )
D. 3
)=
a2
2 42
,则
n-3=r 0
n
a2 -+=1-
等于( B )
,由 2rCrn=60 解得 n=6 故选 B
8.袋中有 40 个小球,其中红色球 16 个、蓝色球 12 个,白色球 8 个,黄色球 4 个,从中
A )
A. 2
B. 0
解:设公差为 d,则 an+1=an+d,an-1=an-d,由 an1 an2 an1 0(n ≥ 2) 可得 2an-
an2 =0,解得 an=2(零解舍去),故 S2n1 4n 2×(2n-1)-4n=-2,故选 A
4.下列四个条件中, p 是 q 的必要不充分条件的是( D )
解:设双曲线的两个焦点分别是 F1(-5,0)与 F2(5,0),则这两点正好是两圆的 圆心,当且仅当点 P 与 M、F1 三点共线以及 P 与 N、F2 三点共线时所求的值最大,此 时
|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9 故选 B
2006年高考数学(江西卷)试题及略解
4 ・ 5
维普资讯
20 年 第 7 06 期
2( ) .理 巳知复数 满足 ( +3 ) i =3 , i 则 等于( )
^ ‘
中学数 学研 究
6 , ,等于( 0则 z )
A . B. C. D .2 3 6 9 1
o-
-
1  ̄7 -
+
:
r +
4户 十 1
2c
二 口
+
旦
D
+
.
C
要证结论成 。
,
=(+ + ) (号 旦 2 q = 一 十 ・+ b 2 4 P
一
_ . _ + . 。 1. 1 _一 _ r ‘ + _ r
9
旦
r
立 , 需 证 明 a + 0 +a ≥ n+6+ c 即证 只 b b C 十C口 +a b ≥ 口 b +b +Ca *) E 2 2 c z 2 b( , 因 为 bC z + C 口 2 ≥ 2 b c 口 ca , + a b 2 ≥
(+ + )9 口6c3 于 1 , ++= 一,是 1c 但  ̄ ( 6c 十 + ≥ () 口 , n +)一1 )9* 而 ,c + ( . 6
同号 ’. *) 显然成 立 . .( 式 . 故结论 成 立.
1 +
绰
一十
.
.
一
~
1+
=
2 十b盘 cb2 +( ac2 \ +。 +。 一一 其 彘
c= 一
证 胡 : 口= z+ 2, 设 7 b= 2 十Y, 7 C: Y十 z,
q 十
1
则 Y~2 C一口, 7 z—Y 口一b 2一z b—C , 7 ,
2006年江西省重点中学高考第一次联考理科数学试卷
2006年江西省重点中学高考第一次联考理科数学试卷参考答案一、选择题(每小题5分,共12×5分=60分) 1. A 2. D 3. B 4. C 5. C6. A7. D8. C9. A10. A 11. C 12. B二、填空题(每小题4分,共4×4分=16分) 13. 2π14. -2≤a ≤-1或0≤a ≤1 15. a n =2n+1(n ∈N*) 16. (1),(2)三、解答题(共6小题,总分76分)17. (1)BC=BAC AC AB AC AB ∠⋅⋅-+cos 222=132分cosB=BC AB AC BC AB ⋅-+2222=131>05分(2)∵cosB>0,∴B 为锐角,sinB=1332 7分∵-π<B+x<2π,cos (B+x )=-1310 < 0 ∴-π<B+x<2π-,∴sin (B+x )=-1339分 ∴cosx=cos[(B+x )-B]= … =-13106+ 12分 18. (1) P (ξ=7)=351222C C C =51,P (ξ=8)= 3512221122C C C C C +=103, P (ξ=9)=35111212C C C C =52, P (ξ=10)=351122C C C =1017分 E ξ=8.4 8分 (2)信息畅通的概率P 1=P (ξ=10) =10110分 信息基本畅通的概率P 2=P (ξ=8或ξ=9)=10712分 19. (1) ∵DE ⊥平面ACD ,∴DE ⊥AF又∵AC=AD=CD ,F 为CD 的中点∴AF ⊥CD ∴AF ⊥平面CDE 4分(2)取DE 的中点G ,连AG 、CG ,则∠CAG 或其补角就是异面直线AC 、BE 所成角 6分 由题设可以求出:CG=AG =5a ,AC=2a∵cos ∠CAG=AG AC CG AG AC ⋅-+2222=55∴异面直线AC 、BE 所成角的余弦值为558分 (2)延长DA 、EB 交于H 点,连CH , 则CH ∥AF , 又由AF ⊥平面DCE ,故HC ⊥平面DCE ,从而∠DCE 就是平面BCE 和平面ACD 所成锐二面角 10分 由平面几何知:△CDE 为等腰直角三角形 ∴∠DCE=45°∴平面BCE 和平面ACD 所成锐二面角为45° 12分 注:采用向量法求解答题各小问的得分给出相应分数。
2006年高考江西卷(理科数学)
2006年普通高等学校招生全国统一考试理科数学(江西卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合3{0}(1)xM xx =≥-,2{31,}N x y x x R ==+∈,则M N =A .∅ B.{1}x x ≥ C.{1}x x > D.{01}x x x <≥或2.已知复数z 满足3)3i z i =,则z =A .322- B.344i - C.322i + D.344+ 3.若0a >,0b >,则不等式1b a x-<<等价于 A.10x b -<<或10x a << B.11x a b-<<C.1x a <-或1x b >D.1x b <-或1x a>4.设O 为坐标原点,F 为抛物线24y x =的焦点,A 是抛物线上一点,若OA AF ⋅4=-,则点A 的坐标是A .(2,± B.(1,2)± C.(1,2) D.(2, 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有 A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ C.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是A .0 B.2- C.52- D.3-7.已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且,,A B C 三点共线(该直线不过原点O ),则200S =A .100 B.101 C.200 D.2018.在2006(x -的二项展开式中,含x 的奇次幂的项之和为S ,当x =S 等于A.23008B.23008-C.23009D.23009-9.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆22(5)4x y ++=和 22(5)1x y -+=上的点,则PM PN -的最大值为A.6B.7C.8D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为A.105a =,521p =B.105a =,421p =C.210a =,521p =D.210a =,421p =11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有A.12S S <B.12S S >C.12S S =D.1S ,2S 的大小关系不能确定12.某地一年的气温()Q t (单位:C )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10C ,令()G t 表示时间段[0,]t 的平均气温,()G t 与t 之间的函数关系用下列图象表示,则正确的应该是10C二、填空题:本大题共4小题,每小题4分,共16分.13.数列21{}41n -的前n 项和为n S ,则n lim n S →∞= .14.设3()log (6)f x x =+的反函数为1()f x -,若11[()6][()6]27f m f n --++=,则()f m n += .15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,90ACB ∠=,6AC =,1BC CC ==,P 是1BC 上一动点,则1CP PA +的最小值是 .16.已知圆M :22(cos )(sin )1x y θθ++-=, 直线l :y kx =,下面四个命题:A.对任意实数k 与θ,直线l 和圆M 相切;10C10C10CC(G t ABCPA 1B 1C 1B.对任意实数k 与θ,直线l 和圆M 有公共点;C.对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切D.对任意实数k ,必存在实数θ,使得直线l 与和圆M 相切 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(Ⅰ)求a 、b 的值与函数()f x 的单调区间;(Ⅱ)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元.现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额.求: (Ⅰ)ξ的分布列; (Ⅱ)ξ的的数学期望. 19.(本小题满分12分)如图,已知ABC ∆是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过ABC ∆的中心G ,设MGA α∠=(233ππα≤≤).(Ⅰ)试将AGM ∆、AGN ∆的面积(分别记为1S 与2S ),表示为α的函数; (Ⅱ)求221211y S S =+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A BCD -中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD =1BD CD ==,另一个侧面是正三角形AB CDMNα(Ⅰ)求证:AD BC ⊥; (Ⅱ)求二面角B AC D --的大小(Ⅲ)在直线AC 上是否存在一点E ,使ED 与面BCD 成30角?若存在,确定E 的位置;若不存在,说明理由.21.(本大题满分12分)如图,椭圆Q :22221x y a b=+(0a b >>)的右焦点(,0)F c ,过点F 的一动直线m绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点. (Ⅰ)求点P 的轨迹H 的方程.(Ⅱ)在Q 的方程中,令21cos sin a θθ=++,2sin b θ=(02πθ<<),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?22、(本大题满分14已知数列{}n a 满足:132a =,且11321n n n na a a n --=+-,2n ≥,n N *∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)证明:对于一切正整数n ,不等式122!n a a a n ⋅⋅<⋅.ABCD。
2006年高考数学试卷(江西卷.理)含详解
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322 B. 344 C. 322 D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙ =-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC+,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201 8、在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )C理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
高考理科数学普通高等学校招生全国统一考试 附答案2006
高考理科数学普通高等学校招生全国统一考试(附答案)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()(1)18.下图是某地区2000年至环境基础设施投资额y(单位:亿元)的折现图。
高考数学模拟试卷复习试题三角函数和解三角形三角函数的图象和性质A 基础巩固训练1. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是 ( ) A .s i n (2)3π=-y x B .s i n (2)6π=-y xC .s i n (2)6π=+y xD .s i n ()23π=+x y【答案】B2. 设函数()f x =sin()A x ωϕ+(0,A ≠0,ω>)22ϕππ-<<的图象关于直线23x π=对称,它的最 小正周期为π,则( )A .()f x 的图象过点1(0)2,B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上是减函数 C .()f x 的一个对称中心是5,012π⎛⎫ ⎪⎝⎭D .()f x 的一个对称中心是,06π⎛⎫⎪⎝⎭【答案】C【解析】根据题意可知,2ω=,根据题中所给的ϕ角的范围,结合图像关于直线23x π=对称,可知6πϕ=,故可以得到()sin(2)6f x A x π=+,而A 的值不确定,所以(0)f 的值不确定,所以A 项不正确,当2[,]123x ππ∈时,32[,]632x πππ+∈,函数不是单调的,所以B 项不对,而()06f A π=≠,所以,06π⎛⎫ ⎪⎝⎭不是函数的对称中心,故D 不对,而又5()012f π=,所以5,012π⎛⎫⎪⎝⎭是函数的对称中心,故选C . 3. 已知函数()2sin(2)(||)2f x x πϕϕ=+<的图象过点(0,3),则()f x 的图象的一个对称中心是A .(,0)3π-B .(,0)6π-C .(,0)6πD .(,0)4π【答案】B4. 函数21cos -=x y 的定义域为() A .⎥⎦⎤⎢⎣⎡33-ππ,B .⎥⎦⎤⎢⎣⎡+-3,3ππππk k ,k ∈ZC .⎥⎦⎤⎢⎣⎡+-32,32ππππk k ,k ∈ZD .R【答案】C【解析】定义域是021cos ≥-x ,即21cos ≥x ,根据x y cos =的图像,所以解得⎥⎦⎤⎢⎣⎡+-32,32ππππk k ,k ∈Z 5. 已知函数2()3f x ax bx a b =+++是定义在[1,2]a a -上的偶函数,则2cos[()]3y a b x π=+-的最小正周期是( )A .6πB .5πC .4πD .2π 【答案】AB 能力提升训练 1.函数()2sin 1xf x x =+的图象大致为( )【答案】A【解析】根据题意,函数为奇函数,所以图像关于原点对称,故排除,C D 两项,在(0,)π上,函数值是正值,所以B 不对,故只能选A . 2. 若函数()2sin()3f x x πω=+,且()2,()0f f αβ=-=,αβ-的最小值是2π,则()f x 的单调递增区间是( )A .5[,]()1212k k k Z ππππ-+∈B .[,]()36k k k Z ππππ-+∈ C .2[2,2]()33k k k Z ππππ-+∈D .5[2,2]()66k k k Z ππππ-+∈【答案】D3. 已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为() A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈ 【答案】B4. 函数)62sin(π-=x y 的图像与函数)3cos(π-=x y 的图像( )A .有相同的对称轴但无相同的对称中心B .有相同的对称中心但无相同的对称轴C .既有相同的对称轴但也有相同的对称中心D .既无相同的对称中心也无相同的对称轴 【答案】A5.已知函数()sin cos 1f x x x =+,将()f x 的图像向左平移6π个单位得到函数()g x 的图像,则函数()g x 的单调减区间为( )A.7[2,2],1212k k k Z ππππ++∈ B.7[,],1212k k k Z ππππ++∈C.2[,],63k k k Z ππππ++∈D.2[2,2],63k k k Z ππππ++∈【答案】B【解析】()11()sin cos 1sin 21sin 21223f x x x x g x x π⎛⎫=+=+∴=++ ⎪⎝⎭,求单调减区间时令3722,2,3221212x k k x k k πππππππππ⎡⎤⎡⎤+∈++∴∈++⎢⎥⎢⎥⎣⎦⎣⎦C 思维扩展训练(满分30分)1. 已知函数⎪⎩⎪⎨⎧>≠><-=0)10(log 01)2sin()(x a a x x x x f a ,,且,,π的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) (A ))550(,(B ))155(,(C ))133(, (D ))330(, 【答案】A此时,只需在5x =时,log a y x =的纵坐标大于2-,即log 52a >-,得50a <<. 2. 已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,1yx +的取值范围是( )A .4[0,]3B .3[0,]4C .14[,]43D .13[,]44【答案】D【解析】因为()sin (),()1cos 0f x x x f x f x x '-=--=-=+≥,所以函数()f x 为奇函数且为增函数,所以由22(23)(41)0f y y f x x -++-+≤得222222(23)(41),(23)(41),2341,f y y f x x f y y f x x y y x x -+≤--+-+≤-+--+≤-+-22(2)(1)1,x y -+-≤当1y ≥时,1yx +表示半圆上的点P 与定点(10)A -,连线的斜率,其取值范围为13[,][,]44PB l k k =,其中(3,1),B l 为切线3. 若1212(,),(,)a a a b b b ==,定义一种运算:1122(,)a b a b a b ⊗=,已知1(2,)2m =,(,0)3n π=,且点(,)P x y ,在函数sin y x =的图象上运动,点Q 在函数()y f x =的图象上运动,且OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的最大值A 和最小正周期T 分别为( )A .2,A T π==B .2,4A T π==C .1,2A T π== D .1,42A T π== 【答案】D【解析】由条件1(2,sin )32OQ x x π=+,所以1(2)sin 32f x x π+=,从而求得1()sin()226x f x π=-, 1,4.2A T π∴==.4. 函数23()3sincos 3sin 4442x x x f x m =+-+,若对于任意的33x π2π-≤≤有()0f x ≥恒成立,则实数m 的取值范围是( ). A .32m ≥B .32m ≥-C .32m ≥-D .32m ≥ 【答案】D5. 已知函数2()sin 22cos 1f x x x =+-,有下列四个结论:①函数()f x 在区间3[,]88ππ-上是增函数; ②点3(,0)8π是函数()f x 图象的一个对称中心; ③函数()f x 的图象可以由函数2sin 2y x =的图象向左平移4π得到; ④若[0,]2x π∈,则()f x 的值域为[0,2].则所有正确结论的序号是( )A .①②③B .①③C .②④D .①② 【答案】D。
2006年高考数学试题(江西理)含答案
2006高等学校全国统一考试数学理试题(江西理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合230{31}(1)x M x N y y x x R x ⎧⎫===+∈⎨⎬-⎩⎭,,≥,则 M N 等于( ) A.∅ B.{1}x x ≥ C.{1}x x > D.{10}x x x <或≥2.已知复数z满足3)3i z i =,则z 等于( )A.322-B.344-C.322+D.344+3.若00a b >>,,则不等式1b a x-<<等价于( )A.10x b-<<或10x a<< B.11x a b-<<C.1x a<-或1x b>D.1x b<-或1x a>4.设O 为坐标原点,F 为抛物经24y x =的焦点,A 为抛物线上一点,若4OA AF =-,则点A 的坐标为( )A.(2±, B.(12)±, C.(12),D.(2 5.对于R 上可导的任意函数()f x ,若满足(1)()0x f x '-≥,则必有( ) A.(0)(2)2(1)f f f +< B.(0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥D.(0)(2)2(1)f f f +>6.若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A.0B.2-C.52- D.3-7.已知等差数列{}n a 的前n 项和为n S ,若120O B aO A a O C =+,且A B C ,,三点共线(该直线不过点O ),则200S 等于( )A.100 B.101 C.200 D.2018.在2006(x -的二项展开式中,含x 的奇次幂的项之和为S,当x =S 等于( )A.30082B.30082-C.30092D.30092-9.P 为双曲线221916xy-=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6 B.7 C.8 D.910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a ,甲、乙分在同一组概率为p ,则a p ,的值分别为( ) A.510521a p ==, B.410521a p ==,C.521021a p ==, D.421021a p ==, 11.如图,在四面体A B C D 中,截面AEF 经过四面 体的内切球(与四个面都相切的球)球心O ,且与 BC DC ,分别截于E F ,.如果截面将四面体分 为体积相等的两部分,设四棱锥A BEFD -与三棱锥A E F C -的表面积分别为12S S ,,则必有( )A.12S S < B.12S S > C.12S S = D.1S ,2S 的大小关系不能确定12.某地一年内的气温()Q t之间的关系如图(1令()C t 表示时间段[0]t ,第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,请把答案填在答题卡上. 13.数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则lim n n S →∞= . 14.设3()log (6)f x x =+的反函数为1()f x -,若11[()6][()6]27fm fn --++= ,则()f m n += .15.如图,在直三棱柱111ABC A B C -中,底面为直角三角形,1906ACB AC BC CC ∠====,,.P 是BC 上一动点,则1C P PA +的最小值为 .16.已知圆2:(cos )M x θ+2(sin )1y θ+-=,填线:l y kx =,下面四个命题 A .对任意实数k 和θ,直线l 和圆M 相切;B .对任意实数k 和θ,直线l 和圆M 有公共点;C .对任意实数θ,必存在实数k ,使得直线l 和圆M 相切;D .对任意实数k ,必存在实数θ,使得直线l 和圆M 相切. 其中真命题的代号是 (写出所有真命题的代号).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1)求a b ,的值及函数()f x 的单调区间;(2)若对[12]x ∈-,,不等式2()f x c <恒成立,求c 的取值范围.ACP B1A1C 1B BE18.(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元,现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲、乙两人摸球后获得的奖金总额.求(1)ξ的分布列;(2)ξ的数学期望.19.(本小题满分12分)如图,已知A B C△是边长为1的正三角形,MM N经过A B C△的中心G,设2M G Aααππ⎛⎫= ⎪33⎝⎭≤≤.(1)试将AGM AGN,△△的面积(分别记为1S与2S)表示为α(2)求221211yS S=+的最大值与最小值.20.(本小题满分12分)如图,在三棱锥A B C D-中,侧面ABD ACD,是全等的直角三角形,A D是公共的斜边,且1AD BD C D===,另一侧面ABC是正三角形.(1)求证:AD BC⊥;(2)求二面角B A C D--的大小;(3)在线段A C上是否存在一点E,使E D与面BC D成30 角?若存在,确定点E的位置;若不存在,说明理由.21.(本小题满分12分)如图,椭圆2222:1(0)x yQ a ba b+=>>的右焦点为(0)F c,,过点F的一动直线m绕点F转动,并且交椭圆于A B,两点,P为线段A B的中点.(1)求点P的轨迹H的方程;‘(2)若在Q的方程中,令221cos sin sin0a bθθθθπ⎛⎫=++=<⎪2⎝⎭,≤.确定θ的值,使原点距椭圆Q的右准线l最远.此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?22.(本小题满分14分)已知数列{}na满足:132a=,且113(2)21nnnnaa n na n*--=∈+-N,≥.(1)求数列{}na的通项公式;(2)证明:对一切正整数n,不等式122!na a a n<恒成立.ABCDB D2006高等学校全国统一考试数学理试题理(江西)参考答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2006年江西高考数学试题
绝密★启用前 试卷类型:A2006年江西高考数学样卷:附答案数 学(4-1)(文理合卷)考试范围:高一数学。
第一轮复习用卷.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷 (选择题 共60分)注意事项:1.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不得答在试题卷上.2.答题前,请认真阅读答题卡上“注意事项”.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U = R ,A =10xx ⎧⎫<⎨⎬⎩⎭,则U A=( ). A .10xx ⎧⎫>⎨⎬⎩⎭ B.{x | x > 0} C.{x | x ≥0} D.1x x ⎧⎨⎩≥0⎭⎬⎫ 答案:C. {}A |0,U x x C A =<∴= {x | x ≥0},故选C. 2.是“函ax ax y 22sin cos -=的最小正周期为π”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.不等式||(13)0x x ->的解集是( ).A .1(,)3-∞B .1(,0)(0,)3-∞⋃C .1(,)3+∞D .1(0,)3答案:B .||(13)0x x ->(13)01(,0)(9,).03x x ->⎧⇔⇔-∞⎨≠⎩ 故选B.4. 下列命题中为真命题的是( ). A.命题“若x>y ,则y x >”的逆命题 B.命题“x > 1,则12>x ”的否命题C.命题“若x = 1,则022=-+x x ”的否命题D.命题“若x x >2,则1>x ”的逆否命题答案:A .5.(文科做)在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则 =++543a a a ( ).A . 33B . 72C . 84D . 189(理科做) 在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为 ( ).A .25B .6C .7D .8答案:(文)C .易知()3,211121==++a q q a ,故q=2或q=—3(舍),=++543a a a ()843212=++a a a q . (理)对于(1)2n n +中,当n =6时,有6721,2⨯=所以第25项是7. 6.设非零向量a 、b 、c ,若a b cp a b c=++,那么p 的取值范围为( ).A .[0,1]B .[0,2]C .[0,3]D .[1,2]答案:C分别是单位向量,故p 的取值范围为[0,3] .7.设两个非零向量12,e e 不共线,若12ke e + 与12e ke +也不共线,则实数k 的取值范围为 ( ).A .(,)-∞+∞B .(,1)(1,)-∞-⋃-+∞C .(,1)(1,)-∞⋃+∞D .(,1)(1,1)(1,)-∞-⋃-⋃+∞ 8.(文科做)若()⎪⎭⎫⎝⎛+=4cos πx x f ,则( ).A .()()()110f f f >->B .()()()110->>f f fC .()()()101->>f f fD .()()()101f f f >>-(理科做)曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|等于( ).A .πB .2πC .3πD .4π 答案:(文)D .画出函数()⎪⎭⎫⎝⎛+=4cos πx x f 的图像易发现()()()1,0,1f f f -的大小关系.(理)A. ∵)4cos()4sin(2ππ-+=x x y=2sin()sin()1cos(2)1sin 2442x x x x πππ++=-+=+, ∴根据题意作出函数图象即得.选A .9.右图为函数log n y m x =+ 的图象,其中m ,n 为常数,则下列结论正确的是( ).A .m < 0 , n >1B .m > 0 , n > 1C .m > 0 , 0 < n <1D . m < 0 , 0 < n < 1答案:D.当x=1时,y =m ,由图形易知m<0, 又函数是减函数,所以0<n<1,故选D. 10.(文科做)若ABC ∆的内角B满足sin cos 0,sin tan 0,B B B B +>->则角A 的取值范 围为( ). A . ⎪⎭⎫ ⎝⎛4,0π B . ⎪⎭⎫ ⎝⎛2,4ππ C . ⎪⎭⎫ ⎝⎛43,2ππ D . ⎪⎭⎫⎝⎛ππ,43(理科做) 已知,αβ都是锐角,且sin 510αβαβ==+=则( ). A .4π B. 34π C.344ππ或 D. 54π答案:(文)C.由ABC ∆的内角满足sin tan 0B B ->,易得cos B<0,∴B为钝角,取23B π=代入sin cos 0B B +>,显然满足.故选C .(理)B.解法 1 ,cos αβ==依题意得s i n 0),2,.42423,. B.24y x πππππαβππαβπαβ=∴<<<<<+<∴+=且在(,是单调增函数则故选解法2,cos αβ==依题意得c o s ()<0,20<+<.αβαβαβπ∴+=-∴ ,都是锐角, y =c o s x (0,)3.4ππαβ而在内是单调减函数,所以,+= 11.一水池有2个进水口,1 个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该 水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③ 4点到6点不进水不出水.则一定能确定正确的论断是A .①B .①②C .①③D .①②③ 12.某城市各类土地单位面积租金y (万元)与该地段离开市中心的距离x (km )关系如图所示,其中l 1表示商业用地,l 2表示工业用地,l 3表示居住用地,该市规划局将单位面积租金最高定为标准规划用地,应将工业用地划在 A .与市中心距离分别为3km 和5km 的圆环区域 内 B .与市中心距离分别为1km 和4km 的圆环形区域内 C .与市中心距离为5km 的区域外 D .与市中心距离为5km 的区域内第Ⅱ卷 (非选择题 共90分)二、填空题:(本大题共4个小题,每小题4分,共16分,把答案写在横线上). 13.0sin168sin 72sin102sin198+= . 答案:12. 0000sin168sin 72sin102sin198+=00000sin12cos18cos12sin18sin30+=1.2=14.已知i , j 为互相垂直的单位向量,a = i – 2j , b = i + λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是 . 答案:),2()2,(21---∞. 1cos 2.2θθλλ==⇒<≠-由是锐角得且15.(文科做) 若一个函数的定义域是),(+∞-∞,值域是),2(+∞,请写出此函数 的一个解析式 (只要写出一个满足条件的函数即可).(理科做)已知函数()f x ,对任意实数,m n 满足()()(),f m n f m f n +=⋅且 (1)(0f a a =≠则()f n = ()n N +∈.16.(文科做)有一列数a 1=1,以后各项a 2,a 3,a 4…法则如下:如果a n -2为自然数且前面未写出过,则写a n +1=a n -2,否则就写a n +1=a n +3,由此推 算a 6的值应是 .(理科做)符号[]x 表示不超过x 的最大整数,如[][]208.1,3-=-=π,定义函数{}[]x x x -=,那么下列命题中正确的序号是 .(1)函数{}x 的定义域为R ,值域为[]1,0; (2)方程{}21=x ,有无数解; (3)函数{}x 是周期函数; (4)函数{}x 是增函数. 答案:(文科)6. 以题意得, 21323134,3437,a a a a =+=+==+=+=43542725,23,a a a a =-=-==-=65333 6.a a =+=+=(理科)(2)、(3).三、解答题:本大题共6小题,满分74分,解答应写出文字说明,证明过程或演算步骤. 17.(文科做)已知等比数列{}n x 的各项为不等于1的正数,数列{}n y 满足)1,0(log 2≠>=a a x y na n ,y 4=17, y 7=11(1)证明:{}n y 为等差数列;(2)问数列{}n y 的前多少项的和最大,最大值为多少? (理科做)已知数列{}n a 的前n 项的和().2212+∈-=N n n n s n 数列{}n b 满足 ().1++∈=N n a a b nn n (1)判断数列{}n a 是否为等差数列,并证明你的结论; (2)求数列{}n b 中最大项和最小项.18.平面向量)1,2(),1,5(),7,1(===,点M 为直线OP 上的一个动点. (1)当⋅取最小值,求的坐标;(2)当点M 满足(1)的条件和结论时,求AMB ∠的余弦值. 19.已知p:()x f1-是()x x f 31-=的反函数,且().21<-a fq:集合(){},,0122R x x a x x A ∈=+++={}0>=x x B ,且φ=B A .求实数a 的取值范围,使p 、q 中有且只有一个为真命题. 20.已知函数1tan x 2x )x (f 2-θ⋅+=,x ∈[3-,3],θ∈(2π-,2π). (1)当θ=6π-时,求函数f (x)的最大值与最小值; (2)求θ的取值范围,使y= f (x)在区间[-1,3]上是单调函数; (3)判断函数f (x)的奇偶性,并证明你的结论. 答案:(1)当6π-=θ时, 1x 332x )x (f 2--==34)33x (2-- …………1分 ∵]33[x ,-∈,∴33x =时,)x (f 的最小值为34-;3x -=时,)x (f 的最大值为4 ………3分(2)函数θ--θ+=22tan 1)tan x ()x (f 图象的对称轴θ-=tan x ……………4分 ∵)x (f y =在区间[-1,3]上是单调函数, ∴1tan -≤θ-或3tan ≥-θ,即1tan ≥θ或3tan -≤θ, ………… 6分∴θ的取值范围是)24[]32(πππ-π-,, 。
2006年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程)
2006年普通高等学校夏季招生考试数学(理工农医类)江西卷(新课程)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合M={x|0)1(3≥-x x },N={y|y=3x 2+1,x ∈R},则M ∩N 等于 A. B.{x|x ≥1} C .{x|x >1} D .{x|x ≥1或x <0} 2.已知复数z 满足(3+3i)z=3i ,则z 等于A .2323-i B. 4343-i C .i 2323+ D .4343+i 3.若a >0,b >0则不等式-b <x1<a 等价于 A .-b 1<x <0或0<x <a 1 B .-a 1<x <b 1C. x <-a 1或x >b 1D. x <-b 1或x >a14.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若AF OA ∙=-4,则点A 的坐标为A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) 5.对于R 上可导的任意函数f(x),若满足(x-1)f ′(x)≥0,则必有A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1) C. f(0)+f(2)≥2f(1) D .f (0)+f(2)>2f(1) 6.若不等式x 2+ax+l ≥0对一切x ∈(0,21]成立,则a 的最小值为A .0 B.-2 C .-25D .-3 7.已知等差数列{a n }的前n 项和S n ,若OB =a 1OA +a 200,且A 、B 、C 三点共线(该直线不过点O),则S 200等于A .100B .101C .200D .201 8.在(x-2)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x=2时,S 等于A .23008B .-23008C .23009D .-230099.P 为双曲线16922y x -=1的右支上一点,M 、N 分别是圆(x+5)2+y 2=4和(x-5)2+y 2=1上的点,则|PM|-|PN|的最大值为A .6B .7C .8D .910.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a,甲、乙分在同一组的概率为p,则a 、p 的值分别为 A .a=105,p=215 B .a=105,P=214 C .a=210,p=215 D .a=210,p=214 11.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F.如果截面将四面体分为体积相等的两部分,设四棱锥A-BEFD 与三棱锥A-EFC 的表面积分别为S 1、S 2,则必有A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1、S 2的大小关系不能确定12.某地一年内的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图(1)所示,已知该年的平均气温为10℃.令C(t)表示时间段[0,t ]的平均气温,C(t)与t 之间的函数关系用下列图象表示,则正确的应该是第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分。
2006年高考理科数学答案
2006年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一.选择题 (1)B (2)D (3)A (4)B (5)C (6)B (7)C (8)A (9)D (10)B (11)B (12)B二.填空题(13)3π(14)11 (15)2400 (16)6π三.解答题(17)解:由,222,A C B C B A -=+=++ππ得所以有 .2s i n2c o sA CB =+2s i n2c o s 2c o s2c o s A A C B A +=++2s i n 22s i n 212A A +-=.23)212(s i n 22+--=A当.232cos2cos ,3,212sin取得最大值时即C B A A A ++==π(18分)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i = 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i = 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2) = 942194419441⨯+⨯+⨯.94=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B (3,94),729125)95()0(3===ξP,243100)95(94)1(213=⨯⨯==C P ξ,2438095)94()2(223=⨯⨯==C P ξ.72964)94()3(3===ξPξ的分布列为数学期望.34943=⨯=ξE(19)解法:(Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN .由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影, ∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB , ∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。
2006年高考江西卷理科数学试题及参考答案
这七种方法不伤身体又不用长期坚持的减肥方法1、黄瓜鸡蛋法每餐只吃黄瓜和鸡蛋,代替3餐,坚持7天,包你瘦,不过到时你就会特别想念老干妈的味道了。
是很好的刮油办法。
原理:黄瓜果肉脆甜多汁,清香可口,它含有胶质、果酸和生物活性酶,可促进机体代谢,能治疗晒伤、雀斑和皮肤过敏。
黄瓜还能清热利尿、预防便秘。
新鲜黄瓜中含有的丙醇二酸,能有效地抑制糖类物质转化为脂肪,因此,常吃黄瓜对减肥和预防冠心病有很大的好处。
>>>减肥:这样吃黄瓜有害健康2、过午不食法超过下午三点不吃任何东西,当然能吃的时候也不能猛吃啊,这样一周可以瘦几公斤。
原理:夜间休息,人体消耗的能量较少,摄入的过多能量用以变成脂肪囤积起来。
此法的注意事项是早餐和午餐必须吃饱吃好,补充一天所必须的营养物质。
健康提示:如果实在饿得慌,可以多喝水,或者吃一个苹果。
3、不吃正餐法每天少吃正餐,把豆浆作为三餐的一部分,女孩子喝了很有好处的,不过注意是无糖的哦,最好自己买台豆浆机,每天自己打,方便又便宜。
原理:豆浆主要榨取了含有丰富高优质植物性蛋白质的大豆,除了大豆蛋白质,还含有大量的大豆异黄酮(Isoflavone)、大豆配醣体(Saponin)等成份。
这些成份可以抑制吸收体内的脂质和醣类,发挥燃烧体脂肪的效果。
因此从饮用豆浆的那一刻起,经过消化→吸收→燃烧脂肪的各个阶段,这些有效成份可都正在发挥瘦身效果呢!>>>四大密技巧喝豆浆轻松减肥4、苹果减肥法吃2天苹果然后正常节制的饮食3天,这样几个周期循环,效果不错。
原理:肥胖者几乎都是因过食而使胃部扩张,无法控制食欲。
苹果减肥法能使胃部收缩,减肥后食欲变得容易控制,而且味觉变正常,不会喜欢刺激性食物或油腻食物。
苹果减肥可以促进血液内白血球的生成,提高人体的抵抗力和免疫力,同时促进神经和内分泌功能,有助美容养颜。
吃苹果减肥的好处是不必挨饿,肚子饿就吃苹果。
因为它是低热量食物,无论吃多少,都不会比日常生活所摄取的热量还多,所以体重自然减轻。
2006年全国高考理科数学试题及答案
)4p)2p43p(3)23(1)i =-(A )32i (B )32i - (C )i (D )i -(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为的比为(A )316(B )916(C )38(D )932(5)已知A B C D 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则A B C D 的周长是的周长是(A )23 (B )6 (C )43 (D )12 (6)函数ln 1(0)y x x =+>的反函数为的反函数为 (A )1()x y e x R +=Î (B )1()x y e x R -=Î(C )1(1)x y ex +=> (D )1(1)x y ex -=>(7)如图,平面a ^平面b ,,,A B AB a b ÎÎ与两平面a 、b 所成的角分别为4p和6p。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 则:''A B A B =(A )2:1 (B )3:1 (C )3:2 (D )4:3(8)函数()y f x =的图像与函数2()log (0)g x x x =>的图像关于原点对称,则()f x 的表达式为的表达式为(A )21()(0)log f x x x => (B )21()(0)log ()f x x x =<-(C )2()log (0)f x x x =-> (D )2()log ()(0)f x x x =--<A'B'A B ba(9)已知双曲线22221xya b -=的一条渐近线方程为43y x =,则双曲线的离心率为,则双曲线的离心率为(A )53(B )43(C )54(D )32(10)若(sin )3cos 2,f x x =-则(cos )f x = (A )3cos 2x - (B )3sin 2x -(C )3cos 2x + (D )3sin 2x +(11)设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612S S =(A )310(B )13(C )18(D )19(12)函数191()n f x x n ==-å的最小值为的最小值为(A )190 (B )171 (C )90 (D )45 理科数学第II卷(非选择题,共90分)注意事项:本卷共2页,10小题,用黑碳素笔将答案答在答题卡上。
加强高考试题研究提高复习教学质量——2006年高考数学(江西卷)试题评析
加强高考试题研究提高复习教学质量——2006年高考数学
(江西卷)试题评析
黄根发
【期刊名称】《中学数学研究》
【年(卷),期】2006(000)009
【摘要】@@ 2006年高考各项工作已落下帷幕,江西省语、数、外完成了第二年自主命题工作.特别是数学学科,严格按省高招办的要求:"数学试题要成为调控各科难度的方向标"去命制,使江西考生的高分数段人数和取录分数线与05年基本持平,确保了试题难易的稳定性和高区分度,为高校选拔合格生源提供了依据.本人参加了江西数学高考卷的试评和阅卷工作,通过抽样分析并与部分第一线教师交谈,就2006年高考数学(江西卷)文理科试题作一评析,供担任下届高三教学的老师们参考.【总页数】6页(P1-6)
【作者】黄根发
【作者单位】江西师范大学数信学院,330027
【正文语种】中文
【中图分类】G63
【相关文献】
1.2005年广东高考数学试题评析及2006年复习建议 [J], 许少华
2.2016年高考数学全国卷试题评析与新一轮高考数学复习建议(上) [J], 丁益祥
3.研究期刊感悟高考启迪复习——源于《化学教育》的2006年高考试题评析与启
示 [J], 宋海清
4.有效复习提高科学素养——从2006年高考试题谈2007年高考前期复习策略[J], 王美文
5.领悟高考试题导向提高备考复习实效
——2021年高考广东卷地理试题评析 [J], 张贤芳;周群;袁廉兴
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322 B. 344 C. 322i D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙ =-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2) D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52 D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC+,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.2018、在(x )2006的二项展开式中,含x 的奇次幂的项之和为S ,当x 时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( )A. 6B.7C.8D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A-EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上。
CA10º BC13、数列{214n 1-}的前n 项和为S n ,则n lim →∞S n =______________14、设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27则f (m +n )=___________________15、如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 1,P 是BC 1上一动点,则CP +PA 1的最小值是___________16、已知圆M :(x +cos θ)2+(y -sin θ)2=1, 直线l :y =kx ,下面四个命题: (A ) 对任意实数k 与θ,直线l 和圆M 相切;(B ) 对任意实数k 与θ,直线l 和圆M 有公共点;(C ) 对任意实数θ,必存在实数k ,使得直线l 与和圆M 相切 (D )对任意实数k ,必存在实数θ,使得直线l 与 和圆M 相切其中真命题的代号是______________(写出所有真命题的代号)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分) 已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间 (2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围。
18、(本小题满分12分)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元,现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额。
求:(1)ξ的分布列 (2)ξ的的数学期望C 11A19、(本小题满分12分)如图,已知△ABC 是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心G , 设∠MGA =α(233ππα≤≤) (1) 试将△AGM 、△AGN 的面积(分别记为S 1与S 2) 表示为α的函数 (2) 求y =221211S S +的最大值与最小值 20、(本小题满分12分)如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD ,BD =CD =1,另一个侧面是正三角形(1) 求证:AD ⊥BC(2) 求二面角B -AC -D 的大小(3) 在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由。
21、(本大题满分12分)AC如图,椭圆Q :2222x y 1a b+=(a >b >0)的右焦点F (c ,0),过点F 的一动直线m 绕点F 转动,并且交椭圆于A 、B 两点,P 是线段AB 的中点(1) 求点P 的轨迹H 的方程(2) 在Q 的方程中,令a 2=1+cos θ+sin θ,b 2=sin θ(0<θ≤2π ),确定θ的值,使原点距椭圆的右准线l 最远,此时,设l 与x 轴交点为D ,当直线m 绕点F 转动到什么位置时,三角形ABD 的面积最大?22、(本大题满分14分) 已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-(1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n !1、解:M ={x|x >1或x ≤0},N ={y|y ≥1}故选C2、解:z 故选D3、 解:故选D4、 解:F (1,0)设A (20y 4,y 0)则O A =( 20y 4,y 0),F A =(1-20y 4,-y 0),由O A ∙ F A=-4⇒y 0=±2,故选B5、 解:依题意,当x ≥1时,f '(x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f '(x )≤0,f (x )在(-∞,1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 6、 解:设f (x )=x 2+ax +1,则对称轴为x =a2-若a 2-≥12,即a ≤-1时,则f (x )在〔0,12〕上是减函数,应有f (12)≥0⇒ -52≤x ≤-1 若a 2-≤0,即a ≥0时,则f (x )在〔0,12〕上是增函数,应有f (0)=1>0恒成立,故a ≥0若0≤a 2-≤12,即-1≤a ≤0,则应有f (a2-)=222a a a 110424≥-+=-恒成立,故-1≤a ≤0 综上,有-52≤a 故选C 7、 解:依题意,a 1+a 200=1,故选A8、 解:设(x)2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x时,有a 02006+a 1)2005+…+a 2005a 2006=0 (1) 当x时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2) (1)-(2)有a 1)2005+…+a 2005)=-23009÷2=-2300811bx b 001x xb a 11ax x a 00x x 1x 0x x bx 1011bx x x 1ax 01b a x x 0a ⎧⎧⎪⎪⎪⎪⇔⇔⎨⎨⎪⎪⎪⎪⎩⎩⎧⎪⎧⎪⇔⇔⇒⎨⎨⎩⎪⎪⎩++---或-(+)-或(-)或故选B9、 解:设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时|PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9故选B10、 解:a =322742C C C2!=105甲、乙分在同一组的方法种数有(1) 若甲、乙分在3人组,有122542C C C 2!=15种(2) 若甲、乙分在2人组,有35C =10种,故共有25种,所以P =25510521= 故选A11、 解:连OA 、OB 、OC 、OD则V A -BEFD =V O -ABD +V O -ABE +V O -BEFDV A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC 而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C 12、 解:结合平均数的定义用排除法求解,故选A13、解:n 211111a 4n 12n 12n 122n 12n 1∙===(-)-(-)(+)-+ 故n 12n S a a a =++…+1111111112323522n 12n 1=(-)+(-)+…+(-)-+111111123352n 12n 1=(-+-+…+-)-+ 11122n 1=(-)+n n n 111 limS lim 122n 12→∞→∞∴=(-)=+14、解:f -1(x )=3x -6故〔f -1(m )+6〕∙〔f -1(x )+6〕=3m ∙3n =3m +n =27 ∴m +n =3∴f (m +n )=log 3(3+6)=215、解:连A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平面内, 如图所示,连A 1C ,则A 1C 的长度就是所求的最小值。